Changes in oxidative stress as a function of weight loss rate in obese ponies

L. Bruynsteen1, K. Vandevelde1, P.A. Harris2, G.P.J. Janssens1, M. Hesta1
1Department of Animal Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 2 WALTHAM Centre for Pet Nutrition, Equine Studies Group, United Kingdom
Lien.bruynsteen@ugent.be

Introduction: In obese humans, oxidative stress is related to chronic disease (Vincent et al., 2007). Obesity increases oxidative stress as indicated by elevations in lipid peroxidation (Van Galle et al., 1998; Ozata et al., 2002) and lowered systemic antioxidants (Reitman et al, 2002). In obese children, altered oxidant-antioxidant status is reversible with a dietary restriction-weight loss program (Mohn et al., 2005; Kelishadi et al., 2008). Little is known, however, about the relationship between oxidative stress and obesity in horses.

Animals, material and methods: Eighteen obese healthy Shetland geldings (BCS 8+/- 1/9; Henneke et al., 1983; age 3-16 years) were studied over a 23.5 week period. During this trial, ponies received low energy hay (8.08 MJ/kg DM) and a commercially available protein, vitamin and mineral supplement (Spillers Gro’n Win®, MARS Horscare). Average daily vitamin E supply via the supplement amounted 170 IU/100kg BW. The study started with a 4 week adaption period in which maintenance energy requirements to maintain stable obese body weight were individually determined (100% MERob). Then ponies were randomly divided into 3 groups: a control group (C), a ‘slow’ (S) and a ‘rapid’ (R) weight loss group which received respectively 100, 80 and 60% of their individual MERob for 16.5 weeks (weight loss period- WLP). The study finished with a 3 week period in which all groups were fed 100% of MERob in order to study any weight gain rebound effect (end phase). Oxidative stress (TBARS) and anti-oxidative capacity (FRAP, SOD and vitamin E) were measured. Statistical analysis is based on a linear model in which pairwise differences between treatments and time periods are significant when P<0.05.

Results and discussion: During the WLP group C lost an average of 3.10 ± 2.03%, group S 5.15 ± 2.01% and group R 12.56 ± 2.06% of their initial body weight. Weight loss was significantly higher in the R group compared to the S and C group. By the end of the trial, group C, S and R had respectively re-gained 1.11 ± 1.64, 1.41 ± 1.04 and 3.40 ± 0.94% of their BW at the end of the WLP. Weight gain was significantly higher in the R compared to the C group. Between the beginning and the end of the WLP, a significant difference in the anti-oxidative stress markers FRAP and vit E was found between group C and R. Between the end of the WLP and the end of the trial, significant differences in the anti-oxidative stress markers were found between group C and R as well as S and R. In the same period, on the oxidative side (TBARS), there was a trend for a treatment effect between group C and R. No significant diet treatment effect was found for SOD.

Conclusion: Different levels of energy restriction and consequently weight loss appear to affect the oxidant/antioxidant balance, even though significant effects are only present with the highest energy restricted treatment. However, even these are not thought to be of biological significance.