3rd International Conference on Fractional Signals and Systems - FSS 2013

Ghent, Belgium, October 24-26, 2013
CD-ROM ISBN: 978-90-9027744-8

SPEED AND POSITION CONTROL OF A DC MOTOR USING FRACTIONAL ORDER PI-PD
CONTROL

C. Copot', C.I. Muresan®, R. De Keyser'

'Ghent University, Department of Electrical energy, Systems and Automation,
Technologiepark 913, 9052 Ghent, Belgium
*Technical University of Cluj-Napoca, Department of Automation,
Str. Memorandumului no. 28, 400114 Cluj-Napoca, Romania

Abstract — In this paper, fractional order PI and
PD controllers are designed for the speed control,
respectively, position control of a DC motor. Both
fractional order controllers were designed based
on time domain specifications. The closed loop
performances of the PI and PD fractional order
controllers are compared with integer order PI
and PD controllers. The experimental results show
that the fractional order controllers outperform the
classical controllers.
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I — Introduction

The mechatronic systems represent one of the most
challenging control applications due to their interdisci-
plinary nature [1, 2, 3]. Numerous control algorithms
have been proposed to deal with nonlinear dynamics
of the mechatronic systems. For linear mechatronic
systems, the proportional-integral-derivative (PID) con-
troller is often used owing to its simple structure and ro-
bustness [4]. Another approach in dealing with mecha-
tronic systems challenges is the fractional-order (FO)
control strategies. One of the most common applica-
tions in all mechatronic domains is the control of DC
motors.

The control of DC motors has been the interest of
many researchers, due to the wide variety of applica-
tions that require the use of different types of DC motors
[5, 6, 7]. The controllers designed for these DC motors
range from simple traditional PIDs to advanced control
algorithms, among which fractional order control has
been gaining more and more popularity [8, 9, 10].

Fractional calculus has been used relatively recently
in modeling and control applications [11, 12]. The
attractiveness of the fractional order PID controllers
resides in their potential to increase the closed loop per-
formance and robustness of the closed loop system, due
to the extra tuning parameters available, as compared
to the conventional controller. With fractional order
controllers, the order of differentiation and integration
may be used as supplementary tuning parameters and
thus more specifications can be fulfilled at the same
time, including the robustness to plant uncertainties,
such as gain and time constant changes [12, 13, 14].

In general, frequency domain tuning of the fractional
order controllers is preferred using optimization rou-

tines to yield the final solutions. The performance cri-
teria are frequently specified in terms of gain crossover
frequency, phase crossover frequency, phase margin,
gain margin, robustness to open loop gain variations
[15, 16].

In this paper we aim to illustrate a laboratory ap-
proach for control education. The envisaged students
are bachelor level which received a broad training be-
fore specialization. The control design method and the
application are kept simple, yet effective to illustrate
basic time domain and frequency domain concepts.

The paper is structured as follows. Section II presents
the tuning procedure for a fractional order PI controller,
as well as a tuning example for the control of the speed
of a DC motor. Section III presents the tuning methods
for the fractional order PD controller, with the position
control for a DC motor. Section IV presents the results
of the experimental tests, while the last section includes
the final conclusions.

II - DC Motor Speed Control

A general model of the DC motor is shown in Figure
1. The applied voltage V,, which is the manipulated
variable, will control the position 6(¢), which is the
controlled variable. For the speed control, the controlled
variable is the angular velocity @(¢) and the transfer
function has the form in [17]:

PDCJnotor(s) = ‘(;:((i)) =

Ko
(Las+Ra)(Js+b) + KpKp,
ey
However, for many DC motors the time constant of
the armature 7, = lLTZ is negligible and therefore the
model can be simplified to:

Km

K _ Rab+KpKm
PDCertor(S) Ry(Js+b)+KpKy —  Tst1 2)
— DC_motor
Ts+1
R _ _ Kn
where T = gt and Kpcmotor = gprior, -

The transfer function from position 6(¢) as output
(controlled variable) to armature voltage V,, as input
(manipulated variable) will be:

6(5) _ KDCJn()l()r
Va(s)  s(ts+1)

3)

Ppc_motor (S) =

The first experimental set-up consists in the control
of the speed of a DC motor using a fractional order
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Figure 1: General model of a DC motor. Photo from Wikimedia Com

PI controller. The design of the controller is based
on a phase margin and a gain crossover condition, to
which we add a criteria regarding the robustness to gain
variations. The transfer function of the FO-PI controller
is given as:

k,

Hro_pr(s) = ky(1+ STIJ) 4

The tuning of the FO-PI controller in (4) implies the
computation of the three parameters k,, k; and u ac-
cording to three performance specifications imposed:

e an imposed gain crossover frequency of the open
loop system
’Hopenfloop(ngc)‘ =1 (5)

e an imposed phase margin of the open loop system

4Hapenflaop (ngc) =—T+Qn (6)
e a condition for robustness to gain variations
d (4H0penfloop(jw>) -0 (7)

dw

W=
where @, and @,, are the imposed gain crossover fre-
quency and the phase margin. For a process, described
by the transfer function Hp(s), the performance specifi-
cations in (5)-(7) may be rewritten as:

1

Hro-p1(j®gc)| = 77 3

| = o)

ZI'IFO—PI(ngc) ==+ Qn— 4HP(ngc) )

d(lHFof’l(ngc)) — _d(lHP(Jwgc)) (10)
d(DgC dwgc

Replacing in (8)-(10), the transfer function of the
FO-PI controller in (4), at the gain crossover frequency
yields:

_ TTnw .. 7TH 1
o oot (o % -0 )| iy
‘ p iy | COS ) Jsin > |Hp(ngc)|

1)

/ [1 + kiwg (cos TE — jsin %)}

. (12)
=T+ Qy— AHP(JwgC)
d(£[1+kig! (cos Bt —jsin H)])
dWge -
) -
dwg.

The identification of the system was done based
on a PRBS (pseudo random binary signal) signal. To
generate this PRBS signal, the following command is
used in Matlab:

e idinput(127, "PRBS’, [0 1/1], [-1 1]).

By using the Prediction Error Method (PEM) for identi-
fication [18], the system’s model is defined. The transfer
function of the DC motor voltage-speed, with 25%
break, was identified to be:

0.25

Hr(9) = A5 1)

(14)

while the imposed performance specifications are:
W = 1.5, ¢, = 60° and robustness to gain uncer-
tainties. Using graphical methods, two curves for the
k; parameter as a function of the fractional order A are
plotted as indicated in Figure 2. The intersection of the
two curves yields the solution for k; and u as resulting
from (12) and (13). The final values, k; = 2.28 and
u = 0.89, are then used to compute the value for the
third parameter k, using (11): k, = 1.37.

The FO-PI controller was implemented using 9"
order Tustin recursive method with a sampling period
of 0.2 seconds [19]. In order to test the robustness
of the designed FO-PI controller, a case study with
a 25% break is considered, the experimental results
being given in Figure 3. The simulation results are also
included for comparison.

IITI - DC Motor Position Control

The second experimental set-up consists in the con-
trol of the position of a DC motor using a fractional
order PD controller. To design the FO-PD controller, a
similar approach to the tuning of the FO-PI controller
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Figure 3: Closed loop simulation and experimental results
comparison considering a 25% break

in the previous section is taken. The transfer function of
the FO-PD controller is given as:

Hro-pp(s) = kp(1+kys*) (15)

The transfer function of the DC motor for position
control, with 25% break, was identified to be:

0.25

T 51455+ 1) (16)

Hp(s)

and the imposed performance specifications are the
same, @.g = 1.5 and ¢,, = 60°, as for the speed control.

The tuning of the FO-PD controller in (15) implies
the computation of the three parameters k,, k; and A
according to three performance specifications imposed
(5), (6) and (7). For a process, described by the transfer
function Hp(s), the performance specifications in (5)-

(7), considering now a FO-PD controller, may be rewrit-
ten as:

1
Hro pp(j0gc)| = 77 (17)
| ¢ | |Hp(lwgc‘)|
ZHFOfPD(]'wgc) = *”JF(Pm*AHP(ngc) (18)
d (AHFOJ’D(ngc)) _ 7d(4HP(ngc)) (19)
d g d Wy

Replacing in (17)-(19), the transfer function of the
FO-PD controller in (15), at the gain crossover fre-
quency yields:

A A 1
k {1 +kda)x (cos—l—jsin)] ’ =
! A2 2 |Hp(joe)|

(20)
£ [lJrkda);“c (cos%+jsin%)} = @1
d(l[l+kdw£fc(cos %+jsin%)])
d W -
_ d(sz(.fwgf)) (22)
dwge

Following the same procedure as for speed control,
based on (20)-(22), the next tuning parameters
for fractional order PD controller were obtained:
kp=1.05k;=151land A =0.8.

IV — Results and Discussion

In this section, a part of the simulation and experi-
mental results that were conducted in order to validate
the fractional order controllers are presented.

Hence, a discrete time version of the controllers need
to be developed for the final implementation. The equiv-
alent discrete-time formulation (for sampling time 0.2s)
of the identified model for DC motor voltage-speed is
given by:

0.032
Hp(2) = 057

and for the position control of the DC motor, the dis-
crete model, is:

(23)

~0.0032z+0.0031

Hr@) = 2 874087 @9

As a result, the step response of the DC motor
voltage-speed with 25% break is shown in Figure 4,
while the BODE diagram is depicted in Figure 5. The
BODE diagram of the DC motor position control de-
scribed by (24) is illustrated in Figure 6.

Before to implement and evaluate the performance of
the controllers on the real time setup, a Simulink model

has been designed to test and validate the controllers.
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Figure 4: Validation of the continuous time and discrete time
system of the DC motor voltage-speed. The discrete time
model is the transfer function from (14) divided by the sam-
pling time (0.2s).
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Figure 5: BODE diagram for the continuous and discrete
models of the DC motor voltage-speed.
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Figure 6: BODE diagram for the continuous and discrete
models of the DC motor for position control.

In Figure 7, a Simulink diagram of the fractional order
PI controller for speed control is illustrated. Block con-
stants were set according to parameters of DC motor
and fractional-order controller. The simulation results
for fractional order feedback loop by using the Simulink
model are depicted in Figure 8. The fractional order PI
controller is compared with the integer order PI con-
troller. The integer order PI controller has been designed

using the same performance specifications and the same
tuning algorithm as for the fractional controller. Hence,
the fractional order is 4 = 1 and the tuning parameter
are: k, = 1.23 and k; = 2.41. As observed from the
simulation results, the fractional order controller outper-
forms the classical controller.
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Figure 7: Simulink diagram for the DC motor speed control.

—speed PI-FO
---speed PI
ref

w B o

DC motor speed

Ny

0 10 20 30 40 50 60
Time (s)

Figure 8: Step response via Simulink for the DC motor speed
control.

The performance of the PI controllers has also been
evaluated in the real time application using the setup
depicted in Figure 9. After the system reaches steady
state, different changes in setpoint were applied. Again,
the experimental results from Figure 10 show that the
fractional order controller outperforms the integer order
PI controller. If for the simulation results the superiority
of the fractional controller is slightly visible, in case of
real time the fractional order PI is clearly superior to the
classical controller.

In the second experimental set-up, PD controllers
were designed in order to control the position of the
DC motor. Similarly as for PI controllers, a Simulink
model was made to validate the fractional order PD
and integer order PD controllers. The integer order PD
controller was designed based on the same principle as
fractional order PD controller, where A = 1. The other
PD controller parameters are k, = 0.95 and k; = 1.15.
The experimental result are illustrated in Figure 11.

Analyzing the experimental results for the position
control it can be concluded that the control effort
is similar for both PD controllers. For setpoint



Figure 9: The real set up configuration for the DC motor
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Figure 10: Setpoint tracking for the DC motor speed control.
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Figure 11: Setpoint tracking for the DC motor position con-
trol.

tracking, the fractional order PD controller outperforms
the classical PD controller. The simulation and
experimental results reveal that both fractional order
controllers obtain better performances when dealing

with this type of process in comparison with classical
PI and PD controllers.

V - Conclusion

In this paper, a design of a fractional order PI and
PD controllers has been made to control the speed and
position of a DC motor. The fractional order controllers
were designed based on frequency domain specifica-
tions. The experimental results revealed good perfor-
mances and show a stable and convergent behavior of
the system when dealing with fractional order control
law. The performances of both fractional order PI and
PD controllers are analyzed and compared with integer
order PI and PD controllers. The experimental results
show that the fractional order controllers outperform the
classical integer order controllers.
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