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Caspase-1 Cleaves Interleukin (IL)-1b and IL-18
Once Activated in Inflammasomes

Innate immune cells such as macrophages and dendritic cells

produce potent inflammatory cytokines to mount an appropriate

immune response against microbial threats. The related cytokines

interleukin (IL)-1b and IL-18 are generated as cytosolic precursors

that require cleavage by the cysteine protease caspase-1 to

generate biologically active IL-1b and IL-18. Hence, mice lacking

caspase-1 are defective in the maturation and secretion of IL-1b
and IL-18 [1]. Caspase-1 itself is generated as an inactive

precursor protein that contains a ‘‘caspase activation and

recruitment domain’’ (CARD) motif in its N-terminus, which is

essential for bringing two or more zymogens sufficiently close to

induce their autocatalytic activation, a process believed to occur in

large cytosolic protein complexes termed ‘‘inflammasomes’’.

Most inflammasomes contain a member of the nucleotide binding

and oligomerization domain (NOD)-like receptor (NLR) family.

These proteins are thought to function as sensors that detect

conserved microbial components in intracellular compartments,

similar to the role of mammalian Toll-like receptors (TLRs) at the

cell surface and within endosomes [2]. NLRs share a domain

organization that usually includes (1) an amino-terminal protein–

protein interaction domain such as a CARD or pyrin domain; (2) an

intermediary NACHT domain that is required for nucleotide binding

and self-oligomerization; and (3) a variable number of carboxy-

terminal leucine-rich repeat (LRR) motifs involved in sensing

pathogen molecules. In general, the pathogen-associated molecular

patterns (PAMPs) recognized by NLRs and TLRs are vital for

microbial survival, representing either nucleic acid structures unique

to microbes or cell wall components alien to mammalian cells.

The bipartite adaptor protein ASC plays a central role in the

interaction between NLRs and caspase-1 in each of these

inflammasome complexes. As a consequence, caspase-1 activation

and the production of IL-1b and IL-18 are abolished in ASC-

deficient macrophages that are infected with intracellular bacteria

or stimulated with a combination of microbial ligands and ATP [3].

ASC has a specific role in caspase-1 activation because secretion of

the cytokines TNF-a and IL-6 is not affected by ASC deficiency.

Genetic studies in mice suggest that at least four inflammasomes

of distinct composition are formed in vivo in a stimulus-dependent

manner (Figure 1): the IPAF inflammasome [3–5], the NALP1

inflammasome [6], the Cryopyrin/NALP3 inflammasome [7–9],

and a fourth inflammasome triggered by Francisella tularensis

infection [8,10]. Biochemical studies suggested the existence of

an additional inflammasome containing NALP2 [11,12], although

specific ligands for this inflammasome remain to be identified. In

addition to these NLRs, the HIN-200 protein absent in melanoma

2 (AIM2) was recently shown to trigger caspase-1 activation in

response to cytoplasmic double-stranded DNA (dsDNA) [13–16].

The IPAF Inflammasome

Caspase-1 activation is largely abolished in IPAF-deficient macro-

phages infected with Salmonella typhimurium [3–5], Legionella pneumophila

[17,18], Pseudomonas aeruginosa [19–21], or Shigella flexneri [22]. Bacterial

flagellin, which typically is translocated into the cytosol by a bacterial

secretion system (type III for S. typhimurium and P. aeruginosa; type IV for

L. pneumophila), was identified as the bacterial compound that is sensed

by IPAF. S. flexneri lacks flagellin, however, so the nature of the S. flexneri

factor that is sensed by IPAF is unknown. Nevertheless, the finding that

recombinant purified flagellin induces IPAF-dependent caspase-1

activation when delivered to the cytosol, either using pore-forming

proteins or upon transfection with cationic lipids, indicates that

cytosolic flagellin is sufficient for IPAF activation regardless of its

delivery mechanism [4,5,23]. Interestingly, the extracellular flagellin

receptor TLR5 is not required for IPAF-mediated detection of

cytosolic flagellin and the subsequent activation of caspase-1 [4,5],

suggesting that TLR5 and IPAF have evolved to control distinct

signalling pathways (NF-kB activation and caspase-1 activation,

respectively) when the host is infected with intracellular pathogens.

The NALP1 Inflammasome

The Bacillus anthracis lethal toxin (LT) consists of a pore-forming

protective antigen (PA) subunit and a metalloprotease subunit lethal

factor (LF). PA allows delivery of LF into the cytosol of infected cells

[24]. Macrophages from C57BL/6J and multiple other inbred mice

strains are resistant to LT-induced death, whereas 129/S1

macrophages are highly susceptible. Mutations in the Nalp1b gene

were identified as the key determinant of LT susceptibility in mice [6].

Five distinct Nalp1b alleles were identified in 18 mouse strains

analyzed, demonstrating the extremely polymorphic nature of the

Nalp1b gene [6]. Two alleles were found in the susceptible mouse

strains, whereas the remaining three alleles correlated with LT

resistance. In addition, morpholinos targeting NALP1b rendered LT-

sensitive macrophages resistant to killing. Importantly, LT-induced

toxicity was restored in C57BL/6 macrophages by expressing the

susceptible Nalp1b allele from a 129/S1-derived bacterial artificial

chromosome (BAC) [6]. This study established that a functional

Nalp1b allele is required for LT to induce cell death in mouse

macrophages. Interestingly, caspase-1 is activated in LT-sensitive but

not in LT-resistant macrophages. Moreover, caspase-1-deficient

macrophages are protected from LT-induced death, even in the
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presence of a sensitive Nalp1b allele [6]. Recently, the proteolytic

activity of the anthrax LF subunit was shown to be required for

NALP1b-mediated caspase-1 activation [25], but the identity of the

LF substrate(s) that are processed in order for caspase-1 to be

activated remains obscure.

The Cryopyrin/NALP3 Inflammasome

Gain-of-function mutations within the NACHT domain of the

NLR protein Cryopyrin/NALP3 are associated with three

autoinflammatory disorders characterized by skin rashes and

prolonged episodes of fever in the absence of any apparent

infection. These hereditary periodic fever syndromes are Muckle-

Wells syndrome (MWS), familial cold autoinflammatory syndrome

(FACS), and neonatal-onset multisystem inflammatory disease

(NOMID), and they are collectively referred to as the Cryopyrin/

NALP3-associated periodic syndromes (CAPS) [12]. Functional

studies revealed that the disease-associated Cryopyrin/NALP3

mutations enhance caspase-1 activation and IL-1b secretion [26].

Indeed, mononuclear cells from CAPS patients spontaneously

Figure 1. Stimuli and composition of distinct inflammasomes. The NLR proteins NALP1b, Cryopyrin/NALP3, and IPAF and the HIN-200 protein
AIM2 assemble a caspase-1 activating inflammasome complex in response to specific microbial or bacterial factors. The murine NALP1b
inflammasome recognizes the cytosolic presence of anthrax LT. The Cryopyrin/NALP3 inflammasome recognizes multiple PAMPs in combination with
ATP or nigericin, as well as crystalline substances including MSU, silica, and asbestos particles. The IPAF inflammasome senses Salmonella and
Legionella flagellin and a yet unidentified Shigella flexneri compound, which all access the cytosol through a type III or IV secretion system. Cytosolic
PAMPs may trigger assembly of a particular inflammasome complex by causing modifications in unknown host factors (X, Y, Z) that are monitored by
specific NLR proteins. In contrast, AIM2 directly binds dsDNA in the cytosol to induce caspase-1 activation. The CARD/pyrin-containing adaptor
protein ASC is essential for all these inflammasome complexes, although its role in the NALP1b inflammasome remains to be formally established.
Once activated, caspase-1 processes the IL-1b and IL-18 precursors into the mature cytokines, which are secreted through an unknown mechanism.
doi:10.1371/journal.ppat.1000510.g001
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secrete IL-1b and IL-18 [12], and IL-1 receptor antagonists have

proved to be an effective treatment for these autoinflammatory

syndromes [27]. In addition to the CAPS-associated mutations in

Cryopyrin/NALP3, polymorphisms in regulatory elements that

cause decreased Cryopyrin/NALP3 expression and IL-1b pro-

duction were recently linked with increased susceptibility to

Crohn’s disease in humans [28].

Human monocytes constitutively express active caspase-1 and

only require stimulation with TLR ligands such as LPS,

peptidoglycan, or microbial RNA for secretion of mature IL-1b
[29]. In contrast, co-exposure to millimolar concentrations of ATP

is required for activation of the Cryopyrin/NALP3 inflammasome

in primary human and mouse macrophages, dendritic cells, and the

leukemic cell line THP-1 [7–9,29]. ATP triggers opening of the

non-selective cation channel of the purinergic P2X7 receptor, and

this is followed by the gradual opening of a larger pore attributed to

the hemichannel pannexin-1, which is recruited upon P2X7

receptor activation [30–33]. Knockdown and pharmacological

inhibition of pannexin-1 indicates that the hemichannel protein is

critical for Cryopyrin/NALP3-dependent caspase-1 activation and

IL-1b secretion in response to LPS+ATP [32]. Cryopyrin/NALP3

also mediates caspase-1 activation in macrophages infected with

Staphylococcus aureus or adenovirus [8,34]. In addition, medically

relevant crystals such as monosodium urate (MSU), calcium

pyrophosphate dihydrate (CPPD), crystalline asbestos, and silica

were shown to induce Cryopyrin/NALP3-dependent activation of

caspase-1. The Cryopyrin/NALP3 inflammasome was hence

suggested to participate in the aetiology of gout, pseudogout,

asbestosis, and silicosis [35–38]. Moreover, the Cryopyrin/NALP3

inflammasome was proposed to be required for antibody produc-

tion with alum-containing vaccines [39–41], but this has been

disputed by others [42,43]. Because of this plethora of molecularly

diverse agonists, activation of the Cryopyrin/NALP3 inflamma-

some is widely believed to involve the generation/activation of a

common secondary messenger. Although the precise nature of this

factor remains elusive, several mechanisms have been suggested,

including K+ efflux [44,45], lysosomal destabilization [37], and the

generation of reactive oxygen species [36,38].

The AIM2 Inflammasome

Transfection of dsDNA was recently shown to induce caspase-1

activation through the HIN-200 family member AIM2 [13–16].

The HIN domain in AIM2’s C-terminus directly interacts with

dsDNA, whereas the N-terminal pyrin domain recruits caspase-1

through ASC. Interestingly, the dsDNA vaccinia virus relies on the

AIM2 inflammasome for caspase-1 processing [16], whereas

DNA-dependent activation of caspase-1 by adenoviral particles

required Cryopyrin/NALP3 [34]. Studies with additional dsDNA

viruses may reveal the intricacies of these inflammasomes.

The Francisella-Sensing Inflammasome

The Gram-negative coccobacillus Francisella tularensis is the

causative agent of tularaemia. Infected mice lacking ASC or

caspase-1 show markedly increased bacterial burden and mortality

when compared to their wild-type counterparts, indicating that

caspase-1 activation plays a vital role in the normal immune

response to this pathogen [10]. F. tularensis mutants that cannot

escape the vacuole are incapable of activating caspase-1, thus

linking phagosomal escape to caspase-1 activation [46]. Type I

interferon signalling functions upstream of F. tularensis–induced

caspase-1 activation [47], which further requires ASC, but neither

Cryopyrin/NALP3 nor IPAF [8,10]. This suggests the existence of

a separate F. tularensis–sensing inflammasome.

Concluding Remarks

It is evident that inflammasomes fulfill important roles in the innate

immune response. An open question that currently drives inflamma-

some research is how inflammasomes are activated. One possibility is

a direct ligand–receptor interaction, as recently shown for activation

of the AIM2 inflammasome by cytosolic dsDNA [13–16]. Activation

of other inflammasomes may also be direct or rather rely on the

generation of a secondary messenger that is recognized by a specific

inflammasome (Figure 1). However, the molecular nature of such

cellular ‘‘danger signals’’ remains an enigma. Elucidating how

inflammasomes are activated will provide new insights into the

mechanisms governing immunity and may pave the way for new

therapeutic approaches for autoimmune disorders.
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