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1.1 Nematodes  

Nematodes, the most abundant Metazoa on earth have simple body plans which are 

usually (in approximately 99% of cases) elongate, cylindrical, and tapered at both ends 

(Decraemer and Hunt, 2006). The body is made up of a tube (the digestive tract) within 

another tube (the body wall) with the space between (the pseudocoelom) filled with a 

fluid, the hymolymph, that houses the reproductive system and other organs 

(Decraemer and Hunt, 2006). Despite their simple morphology, nematodes have been 

successful in colonising a wide range of environments. With simple changes in their 

body plan, nematodes have adapted to different habitats including the soil 

environment, oceans and freshwater lakes as well as rivers (Luc et al., 2005). They 

have also been found within animals (including other nematodes), algae, fungi and 

higher plants (Luc et al., 2005). The phylum Nematoda comprises >25,000 described 

species including free-living and parasitic species of plants and animals. Free-living 

species, which feed on bacteria and fungi, are found in soil, fresh water and marine 

habitats. The free-living species are considered as beneficial organisms since they are 

involved in nutrient turn over and are used as indicator species for pollution monitoring 

(Yeates et al., 2009) while the parasitic species affect human life by infecting a wide 

range of crops, livestock and by causing various human diseases. 

1.2 Plant-parasitic nematodes (PPN)  

A number of nematodes are highly damaging to plants including agronomic and 

vegetable crops, fruit and nut trees, turfgrass, and forest trees. This parasitic way of life 

according to Holterman et al. (2008) is thought to have evolved in an attempt to move 

away from an unpredictable environment for more stable conditions.  
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Some PPN have become very specialized and infect plants using a variety of strategies 

together with adaptation to feed on a variety of plant organs such as seeds and leaves 

although the majority of PPN species are restricted to plant roots (Bird and Koltai, 

2000; Mbega and Nzogela, 2012). To successfully invade the host, PPN are equipped 

with stylets that are repeatedly thrusted into the host cell thus allowing feeding (Baldwin 

et al., 2004). Feeding by nematodes on the cytoplasm of the ruptured cells leads to a 

loss in turgor pressure and, where the nematode moves to another cell, this results in 

cell death and necrosis along the feeding path of the nematode (Wyss, 1997; De 

Waele and Elsen, 2002; Wyss, 2002). As an adaptation to plant parasitism, PPN have 

two sets of pharyngeal glands, dorsal and subventral glands, which are important for 

the production of a cocktail of proteins that are secreted through the stylet into the plant 

cells helping the nematode to establish within the host plant (Vanholme et al., 2004). 

PPN are classified into groups based on their feeding strategies. Nematodes such as 

Xiphinema americanum that draw their nourishment from plant roots without physically 

entering the roots are referred to as ectoparasites. These nematodes have the ability to 

feed on different plants while but are more vulnerable to predators and unfavourable 

soil conditions (Decraemer and Hunt, 2006). Nematodes that actively invade the root 

system in order to feed are endoparasites. This group of nematodes can be further 

subdivided into three groups namely semi-endoparasites, migratory endoparasites and 

sedentary endoparasites (Chitwood and Chitwood, 1974; Decraemer and Hunt, 2006). 

Semi-endoparasites (e.g. Rotylenchulus reniformis) usually penetrate the plant roots 

with their head and form a permanent feeding site. 

Sedentary nematodes such as the cyst nematodes (Globodera and Heterodera) and 

the root-knot nematodes (Meloidogyne) form elaborate nematode-specific (Sijmons et 

al., 1994) feeding structures consisting of modified root cells.  
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The infective second stage juveniles (J2) invade the root and inject secretions into 

selected cells of the host root to stimulate the formation of feeding sites (Wyss, 1997). 

The adult females remain sedentary and grow obese while males become vermiform 

again before maturity (Wyss, 2002). 

Contrary to sedentary endo-parasitic nematodes, migratory endoparasitic nematodes 

are infective at all stages after hatching. They migrate inter- or intracellularly within the 

root sucking out the cytoplasmic content of the root cells, corms or tubers causing 

severe cell death (Wyss, 1997; 2002). The extensive wounds caused by these 

nematodes predispose their hosts to secondary infection by bacteria and fungi that 

further damage the root system (Zunke, 1991). Although these nematodes feed and 

reproduce primarily within the plant tissue, they are also able to move into the soil in 

search of new roots to invade. Examples of migratory endo-parasitic nematodes 

include Pratylenchus (lesion nematode), Radopholus (burrowing nematodes) and 

Hirschmanniella (rice root nematode). 

1.2.1 Economic importance of PPN 

PPN reduce crop yield by directly damaging plant cells through their feeding, by 

transferring viruses that damage plants or by indirectly providing access to the plant for 

other pathogens to invade through the wounds they create (Agrios, 2005). The total 

yield loss caused by PPN in agriculture on a global scale is estimated to be in excess 

of US $100 billion annually (Hooks et al., 2010). 

There is, however, a disparity between the losses caused by PPN in the developing 

and the developed world with higher losses being reported in the developing world 

(Anwar and McKenry, 2012).  
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Yield losses due to PPN according to Hooks et al. (2010) may be higher in the tropics 

as opposed to temperate regions as a result of shorter nematode lifecycles and 

increased number of generations per year (Luc et al., 2005) and the lack of resources 

to combat infections (De Waele and Elsen, 2007).  

Most of the economically important PPN are sedentary endo-parasitic nematodes 

(Wyss, 1997; 2002). Root-knot nematodes such as Meloidogyne incognita have a wide 

host range including over 2,000 plant species and they cause an estimated annual crop 

loss of 5% worldwide (Agrios, 1997; Hussey and Janssen, 2002). Yield loss to potato 

production as a result of Globodera spp is also estimated to be in excess of €300 

million annually in Europe (Deliopoulos et al., 2007).  

Most research on PPN have focused on the sedentary endoparasitic nematodes 

especially Globodera spp, Meloidogyne spp and Heterodera spp due to their 

prevalence in developed western countries as well as their economic importance in 

agriculture (Rosso et al., 2005; Lilley et al., 2012). This thesis, however, focuses on the 

migratory endo-parasitic nematodes, Radopholus similis (Cobb, 1893) Thorne, (1949) 

and Pratylenchus coffeae (Zimmerman, 1898) Filipjev & Schuurmans Stekhoven, 

(1941). These nematodes are widespread in the tropics and cause considerable losses 

to banana, a staple food for about 400 million people (Sundararaju, 2005).  

1.3 Nematodes under study: Radopholus similis 

1.3.1 Introduction 

R. similis (Cobb) also known as the burrowing nematode is one of the most important 

PPN in the tropics (Haegeman et al., 2010). This nematode is known to cause 

extensive damage in banana (especially the Cavendish group) in the tropics (Jones, 

2009) although it also parasitizes over 250 other plant species including many weeds, 



                                                                                                                                           General introduction 

 

 

6 

 

black pepper, coconut, tea, tuber crops, fruit trees and ornamentals (Haegeman et al., 

2010). It also causes pepper yellows of black pepper a disease that caused severe 

losses to the cultivation of black pepper on an Indonesian island in the early 1930s 

(Ramana and Eapen, 2000; Thorne, 1961). R. similis is native to Australasia and is 

currently found in tropical and subtropical regions around the world (Tan et al., 2010). It 

is believed to have spread through Africa, Asia, Australia, North and South America, 

and the Caribbean through the import of infested planting materials (O’Bannon, 1977, 

Trinh et al., 2004; Gowen et al., 2005). 

1.3.2 Taxonomical position 

R. similis is classified as belonging to Tylenchida (class Chromadorea) (Subbotin et al., 

2006; Haegeman et al., 2010) with the genus Radopholus being classified under the 

family Pratylenchidae within the Tylenchoidea superfamily of the Rhabditid order of the 

phylum Nematoda (De Ley and Blaxter, 2002; Trinh et al., 2009). However, 

phylogenetic studies mainly based on rDNA sequences or the internal transcribed 

spacers (Bert et al., 2008; Holterman et al., 2009; Subbotin et al., 2006) have proven 

that R. similis is closely related to ectoparasitic and cyst-forming endoparasitic 

nematodes (Hoplolaimidae and Heteroderidae) (Figure 1.1) 

Intraspecific variability of R. similis identified two physiological races based on host 

plant and cytogenetic differences; R. citrophilus which is responsible for the disease 

“spreading decline of citrus”, and R. similis (the banana race), cosmopolite and 

polyphagous (Huettel et al., 1984). There is however gene flow between these two 

races, therefore, R. similis was reinstated as the valid species with two pathotypes, 

races or subspecies, R. similis similis and R. similis citrophilus (Elbadri et al., 2002; 

Kaplan and Oppermann, 1997; Kaplan et al., 1997, 2000; Valette et al., 1998). 
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Figure 1.1. A phylogenetic tree (not drawn to scale) illustrating the taxonomical 
position of the two nematode species under study as inferred from Bert et al. 
(2008), De Ley and Blaxter (2002) and Holterman et al. (2009). While R. similis 
shows a close relationship with cyst-forming nematodes, P. coffeae shows a 
sister relationship with root-knot nematodes. 
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1.3.3 Morphological characteristics 

The female nematode of R. similis is 650-800µm long and 20-24µm in diameter. The 

position of vulva is at approximately 54% of the body length from the head. The head 

morphology of the nematode is observed as rounded, slightly flattened and offset by a 

slight constriction with a support of sclerotized framework. The female nematode has a 

long (18µm), plainly visible stylet with prominent knobs. A dorsal overlapping of 

pharyngeal glands is observed in the nematodes. R. similis shows sexual dimorphism 

with the males, which 500-600µm long are being more slender than females. The head 

of the male nematode is well rounded and non-sclerotized and set off by a conspicuous 

constriction. In contrast to female nematodes, the males have a stylet, which is slender 

and indistinct (12µm) with small knobs. 

1.3.4 Biology 

With the exception of males, all motile stages of R. similis are infective. All 

developmental stages of the nematode are capable of entering the roots. They are 

usually located in the root cortex although they can also invade the stele in banana 

(Haegeman et al., 2010). The first stage juveniles (J1) moult within the egg into second 

stage juveniles (J2) which hatch from the egg. The hatched J2 locates a host root and 

penetrates it at the tender growing tip. Once inside the root, the J2 feeds and 

completes its life cycle by undergoing three further moults to become either an adult 

male or female (Figure 1.2) depending on the conditions (Trinh et al., 2004). The 

males, which have a rudimentary stylet, are not capable of invading roots or to cause 

damage to any extent.  
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Figure 1.2. Life cycle of burrowing nematode, Radopholus similis 
 (www.apsnet.org/edcenter/intropp/lessons/Nematodes/Pages/Burrowingnematode.aspx) 

 

R. similis survives well in adverse conditions by adopting three strategies: 1) an 

extensive host range, 2) a short life cycle allowing rapid reproduction and 3) the ability 

of females to reproduce for one or two generations in the absence of males 

(MacGowan, 1977). According to Kaplan and Opperman (2000) this ability to 

reproduce in the absence of males is as a result of hermaphroditism rather than 

parthenogenesis. When the adult female does not find a mate within 60 days, self-

fertilization occurs (Kaplan and Opperman, 2000) and eggs are laid predominantly 

within the host roots.  

http://www.apsnet.org/edcenter/intropp/lessons/Nematodes/Pages/Burrowingnematode.aspx
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A female can lay an average of four eggs a day for up to two weeks (Haegeman et al., 

2010). It takes 20 to 25 days for R. similis to complete a cycle from egg to egg at a 

temperature range of 25 to 32°C (Fallas and Sarah, 1995). 

1.3.5 Symptoms and damage 

Inter- and intracellular migration of the nematodes in the plant roots, feeding mainly on 

the cytoplasm of cortical cells, results in plant cell wall collapse forming cavities and 

tunnels, dark brown necrotic lesion in the cortex and nematode-filled spaces separating 

the stele from the cortex (Duncan and Moen, 2006; Haegeman et al., 2010). This is 

followed by secondary infections, mainly by Fusarium oxysporum and Rhizoctonia 

solani (Duncan and Moen, 2006; Haegeman et al., 2010.). Severe infection with the 

nematodes results in stunting and wilting of the host plant (known as the ‘black head’ 

disease in bananas). In severe cases, infection often leads to toppling of the plant due 

to the weakened stem base (Figure 1.3). These effects can cause massive crop losses 

in banana ranging from 5% to 75% (Price 2006; Haegeman et al., 2010). In the case of 

citrus trees, the infestation results in fewer and smaller leaves and more dead twigs 

due to reduced uptake of water and nutrients. R. similis is considered as one of the ten 

most damaging PPN world-wide (Munera et al., 2010). It is often called burrowing 

nematode. 

R. similis is of great economic importance in the banana growing areas especially in 

Australia, Central and South America, Africa and Pacific and Carribean islands. As a 

result of devastating effects of R. similis, the European and Mediterranean Plant 

protection Organisation (EPPO) has declared the banana race as an A2 quarantine 

organism while the citrus race as A1 since the latter is not present in Europe 

(Haegeman et al., 2010). 
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Figure 1.3. (A) Toppling of banana plants as a result of weakened root system 
caused by severe infection with R. similis and P. coffeae. (Nemapix Archive, 
Bugwood.org) (B) Dark brown necrotic lesions on banana roots caused by the 
migration of nematodes. (Michael McClure, University of Arizona, Bugwood.org) 

1.3.6 Control measures 

A major component of R. similis control is to reduce the initial nematode population 

before planting and use nematode free planting material. In this respect tissue culture-

derived plants that are nematode-free offer a solution. Infected corms, suckers or 

seedlings can be cleaned prior to planting by superficially removing (paring) diseased 

tissue (Gowen and Quénéhervé, 1990; Speijer et al., 2001; Chabrier and Quénéhervé, 

2008). Fallowing, crop rotation with non-host crops such as sweet potato or pineapple, 

and flooding can be other approaches to reduce the population.  

The results of these practices are, however, often poor because in areas with 

permanent crops, cultural techniques like fallow, flooding or crop rotation are limited 

(Gowen and Quénéhervé, 1990).  
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Another drawback to the use of crop rotation is the broad host range of R. similis 

enabling it to survive in weeds (Quénéhervé et al., 2006) as well as its ability to survive 

in the absence of a host plant in the soil for more than six months without becoming 

anhydrobiotic (Chabrier et al., 2010). Application of nematicides is the primary way to 

control these nematodes since it can increase banana yield by approximately 50% 

relative to untreated controls (Fogain, 2000). The application of nematicides is, 

however, limited because they are expensive, detrimental to the environment and also 

there is a reduced availability of nematicides on the market due to increasing concerns 

about groundwater contamination and toxicity (Perry and Moens, 2006). 

As an alternative ecologically-friendly approach, biological control agents such as 

arbuscular mycorrhizal fungi (AMF) have been widely used in the control of migratory 

nematodes (Vos et al., 2012; Koffi et al., 2012). Additionally, Atkinson et al., (2004) 

showed that transformation of Cavendish banana with a rice cystatin, a nematode 

proteinase inhibitor, increased nematode resistance by 70%. Alternatively, screening 

for nematode resistance or tolerance in different banana cultivars is being performed 

(De Schutter et al., 2001; Dochez et al., 2006, 2009; Gaidashova et al., 2010). The 

introduction of resistance into commercial cultivars by conventional breeding (Dochez 

et al., 2009) has limited application in banana. Hence genetic engineering (Section 1.8) 

can be a promising approach for improved sustainability of banana production 

(Quénéhervé et al., 2009). 

1.4 Nematode under study: Pratylenchus coffeae 

The root lesion nematode, P. coffeae has an extremely wide host range and is also one 

of the major pests of banana.  
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Recent surveys in Africa have shown an increasing incidence of P. coffeae in West 

African regions and urgent need for developing resistant banana against these 

nematodes (Coyne, 2009).  

In addition to banana, this nematode infects other crops such as abacá, yams, ginger, 

turmeric and coffee. P. coffeae is believed to have originated from the Pacific and 

Pacific Rim countries but it is distributed worldwide having been detected in tropical 

and subtropical regions (Bridge et al., 1997). It is considered a significant pest in 

Southeast Asia, Central and South America, South Africa and Ghana. However, P. 

coffeae is not found so commonly in commercial plantations of the Cavendish group, 

but is often reported in association with cultivars belonging to the plantain group (Luc et 

al., 1990; Bridge et al., 1997; Gowen, 2000). 

1.4.1 Taxonomical position 

P. coffeae was first identified from coffee roots in Java, Indonesia (Zimmerman, 1898; 

Filipjev and Schuurmans Stekhoven, 1941) and it was initially described as Tylenchus 

coffeae. The genus Pratylenchus was erected by Filipjev in 1936. In 1941, Filipjev and 

Schuurmans Stekhoven transferred T. coffeae to the genus Pratylenchus. According to 

Siddiqi (2000), P. coffeae is classified under Tylenchida (class Secernentea) with the 

genus Pratylenchus being grouped under the family Pratylenchidae within the 

Hoplolaimoidea superfamily of the Tylenchida order of the phylum Nematoda. 

However, De Ley and Blaxter, (2002) has classified P. coffeae as belonging to the 

family Pratylenchidae within the Tylenchoidea superfamily of the Rhabditid order of the 

phylum Nematoda. Recent phylogenetic studies (Bert et al., 2008; Holterman et al., 

2009), have shown that a close phylogenetic relationship exist between Meloidogyne 

(root-knot nematodes) and Pratylenchus while Radopholus shows a sister-relationship 

with cyst-forming nematodes (Figure 1.1).  
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Thus, the migratory endoparasitic family, Pratylenchidae which includes Radopholus 

and Pratylenchus appears to be polyphyletic. 

1.4.2 Morphological characteristics 

The morphology of female nematode serves as the basis for the identification of P. 

coffeae since they possess more diagnostic features than males (Loof, 1991). The 

body length of the nematode ranges from 450 to 700µm. The stylet is short and stout 

(14µm) with well-developed basal knobs. The labial region is strongly sclerotized, low 

and flattened. The dorsal glands overlap the intestine ventrally with the vulva 

positioned posterior at 70-80% of body length. They are monoprodelphic (the genital 

system consists of a single, anteriorly directed tract). Female nematodes have a 

broadly rounded or indented tail tip while male nematodes have a short, convex-conoid 

tail. 

1.4.3 Biology  

P. coffeae is a migratory endoparasite with all stages found within the root cortex. The 

female nematodes and juveniles feed mainly on cortical cells leading to the formation 

of cavities containing nematodes of all stages and as a result black necrotic lesions are 

formed. The nematodes are commonly called root lesion nematodes because of the 

pronounced black lesions that form on the affected roots. The life cycle of P. coffeae is 

27 days at temperatures ranging from 25 to 30°C (Loos, 1962; Agrios, 1997). From egg 

to adult, the nematode moults four times. The first moult takes place within the egg, the 

following three moults occur outside the egg (Figure 1.4). Eggs hatch in 6 to 8 days at 

28-30oC in water. These nematodes can survive in the absence of host plants for up to 

24 months in anhydrobiotic state of suspended metabolic activity and survive in soil 

(Radewald et al., 1971; Castillo and Vovlas, 2007).  
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Figure 1.4. Life cycle of root-lesion nematode Pratylenchus coffeae 

(www.apsnet.org/edcenter/intropp/lessons/Nematodes/Pages/LesionNematode.aspx) 
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1.4.4 Symptoms and damage 

All mobile stages of P. coffeae from the second-stage juvenile (J2) onwards may enter 

the roots and invade via all locations along the seedling tap roots, including root cap, 

apical meristem, region of elongation, region of maturation and mature tissues. When 

large numbers of the nematodes invade a root at a single location, both the epidermal 

and cortical tissues are destroyed, resulting in an exposed lesion extending to the stele 

tissues (Radewald et al., 1971). Males are necessary for reproduction and they 

continually migrate in and out of the roots destroying tissue in the same manner as 

migrating females and juveniles; however they do not form cavities (Radewald et al., 

1971).  

P. coffeae reduces the root’s efficiency to absorb water and nutrients by damaging root 

cells during penetration and feeding (Vaast et al., 1998). Coffee roots infected with P. 

coffeae turn yellow then brown, they become stunted and plants have few and small 

chlorotic leaves. In the case of banana and plantain, P. coffeae causes purple or black 

necrotic lesions leading to the damage of inner cortex. These necrotic lesions enlarge 

and become more deeply coloured over time. Roots heavily infested with P. coffeae 

are often accompanied by secondary rotting and root breakage. The above ground 

symptoms of damage include stunting of plants, lengthening of the vegetative cycle, 

reduction in size and number of leaves and in bunch weight, reduction of the productive 

life of the plantation, and toppling (Figure 1.2) (Gowen et al., 2005). In yam P. coffeae 

causes dry rot disease (Bridge et al., 1996) while in the case of citrus it causes citrus 

slump by reducing tree vigour which in turn causes a serious decline of the trees and 

small fruit sizes (Tarjan and Tomerlin, 1973). 
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1.4.5 Control measures 

The planting of nematode-free suckers is recommended to control P. coffeae 

infestation in banana. The removal of infected external tissue along with the adhering 

soil (paring) and treatment of suckers with nematicidal solution or hot water are 

recommended to obtain nematode-free suckers for planting. Using plantlets grown from 

meristem culture is a reliable solution to obtain nematode free banana plants as well as 

to avoid the toxic effects of nematicides. These nematodes are also controlled by other 

control strategies used for R. similis (Section 1.3.6). Resistance to P. coffeae has been 

assessed in different banana cultivars. Although different techniques for field screening 

of Musa germplasm have been evaluated against P. coffeae, very few sources of 

nematode resistance have been identified so far (Price et al. 1996; Tripathi et al., 

2013).  

1.5 Molecular biology of nematodes and their interaction with plants 

Substantial progress has been made over the past few years in understanding 

nematode parasitism of plants with application of molecular tools. Genes that enable 

nematodes to parasitize plants have been identified and explored by several research 

groups using different molecular tools. Genes encoding different cell wall degrading 

enzymes from different species of nematodes including sedentary nematodes such as 

M. incognita, (Bére-Maileet et al., 2000), Globodera rostochiensis (Smant et al., 1998), 

G. tabacum (Goellner et al., 2000), H. glycines (Smant et al., 1998; Gao et al., 2004), 

H. avenae (Long et al., 2012), as well as migratory nematodes, such as P. penetrans 

and P. coffeae (Uehara et al., 2001: Kyndt et al., 2008), R. similis (Haegeman et al., 

2008), B. xylophilus (Kikuchi et al., 2004; Kikuchi et al., 2005; Kikuchi et al., 2011) and 

Rotylenchulus reniformis (Wubben et al., 2010a) have been identified and 

characterized.  
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The biology and genetics of the sophisticated interaction between sedentary 

nematodes and their host plants have been unravelled with the help of different tools in 

molecular biology (Gheysen and Fenoll, 2002; Abad et al., 2003; Davis et al., 2008; 

Barcala et al., 2010; Jaouannet et al., 2012). Additionally, identification and 

characterization of genes involved in reproductive and developmental processes have 

become more feasible due to the molecular data generated for different species of 

nematodes including free-living and parasitic forms. Over 1,000,000 ESTs are now 

available from different species of nematodes (www.nematode.net). The complete 

genome of free-living nematodes such as C. elegans (C. elegans sequencing 

consortium, 1998), C. briggsae (Gupta and Sternberg, 2003) and Pristionchus pacificus 

(Dieterich et al., 2008) as well as parasitic nematodes Brugia malayi (Ghedin et al., 

2007), M. incognita (Abad et al., 2008) and M. hapla (Opperman et al., 2008), 

Trichinella spiralis (Mitreva et al., 2011), B. xylophilus (Kikuchi et al., 2011) have been 

generated.  

In addition to the primary sequence information, the functional characterization of the 

genes involved in developmental processes has been extensively studied using, RNA 

interference (RNAi) (Fire et al., 1998; Elbashir et al., 2001; Silva et al., 2004; Perrimon 

et al., 2010; Sioud, 2011). In C. elegans this technique has been widely used to provide 

information on the possible function of more than 20,000 genes and the phenotypes 

resulting from the knockout of the genes have been well documented (Zhuang and 

Hunter, 2011a). Recently, the RNAi technique has been applied to parasitic nematodes 

to enrich the knowledge on developmental and parasitism genes. The application of 

RNAi in PPN has made significant progress in developing novel methods for PPN 

control. The basic mechanism of RNAi and its applications and limitations are 

described in this chapter. 



                                                                                                         Chapter one 

 

 

19 

 

 

1.6 RNA interference  

RNA interference is an ancient self-defence mechanism of eukaryotic cells to combat 

infection by RNA viruses (Ruiz et al. 1998; Voinnet 2001) and transposons (Ketting et 

al. 1999; Tabara et al. 1999). Furthermore, it is also found to carry out numerous 

additional functions depending on the organism. It has been demonstrated that it 

eliminates defective mRNAs by degradation (Plasterk, 2002) and also tightly regulates 

protein levels in response to various environmental stimuli (McManus et al., 2002). 

RNAi generally refers to a suppression of the expression of a target gene induced by 

double stranded RNA (dsRNA) that shares significant homology with the target gene. 

The RNA molecules that induce RNAi mainly belong to two small RNA classes 

produced by different types of genes: microRNAs (miRNAs) and small interfering RNAs 

(siRNAs) (Couzin, 2002). Although siRNAs are considered to be the main players in 

RNAi, miRNAs, which inhibit translation of RNA into protein, have been considered as 

one of important players in this machinery. miRNAs are considered to be vital and 

evolutionarily ancient components of regulators of different developemental genes in 

plants and animals (Lee et al., 2007; Moxon et al., 2008; Williams, 2008) 

The discovery of RNAi, was nominated as the breakthrough of the year 2002 and won 

the Nobel Prize in 2006 and today, there is an explosion in its application that is 

revolutionizing different areas of research. Andy Fire, Craig Mello and their colleagues 

discovered the basic mechanism of RNAi in C. elegans and identified important 

characteristics of this new phenomenon (Fire et al., 1998): (a) it is induced by double-

stranded RNA, (b) the effect of RNAi is systemic, and (c) RNAi is heritable.  
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The discovery of RNAi in C. elegans (Fire et al., 1998) has been used as the basis for 

understanding RNAi in other organisms. RNAi is used mainly to unravel the functions 

of genes by switching them “off” at the post-transcriptional level. The genetic screens 

can only be realistically performed on organisms with certain characteristics such as 

the ability to breed under laboratory conditions, short life cycle and high fecundity 

(Montgomery, 2004). Although it often requires months or years of dedicated work to 

identify the mutated gene responsible for a specific phenotype, RNAi-based methods 

have become a ‘back-door entrance’ to reveal the biological functions of genes in the 

organisms that are intractable to traditional genetic manipulations due to its relative 

ease and remarkable potency when it is used as a reverse genetic tool (Montgomery, 

2004). 

The discovery of RNAi has brought new revolution in the research studies in a diverse 

set of organisms including trypanosomes, the fruit fly Drosophila, and many other 

animal as well as plant species and has also helped to understand the basic 

connections to post-transcriptional gene silencing (PTGS) in plants (Baulcombe, 2004) 

and fungi (Cogoni and Macino, 1997) as well as to the endogenous regulation by 

miRNAs (Ambros, 2001). The findings that dsRNA could trigger PTGS in C. elegans 

led to the engineering of tobacco and rice plants to synthesize dsRNA exhibiting gene 

silencing in the transgenic plants (Waterhouse et al. 1998). This proved that 

evolutionarily divergent organisms (plants and nematodes) respond to the presence of 

dsRNA in a similar manner.  

With the increasing availability of the genome sequences of many species, RNAi can 

contribute to a more detailed understanding of complicated physiological processes, 

and also to the development of resistance against many pathogens including 

nematodes, insects as well as viruses. 
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1.6.1 Mechanism of RNAi 

Research to identify and characterize the genes implicated in RNAi has been 

performed in C. elegans (Smardon et al. 2000 Calixto et al., 2010; Gent et al., 2010; 

Avgousti et al., 2012; Philips et al., 2012), Arabidopsis (Mourrain et al. 2000; Dunoyer 

et al., 2010; Wang et al., 2010; Pontier et al., 2012), N. crassa (Li et al., 2010; Lee et 

al., 2010), Drosophila (Lipardi and Paterson, 2009; Miyoshi et al., 2010), and mammals 

(Hannon and Rossi, 2004; González-González et al., 2008; Grimm et al., 2010). 

Generally, RNAi can be induced by a dsRNA source from outside the cell (exogenous 

RNAi) as well as from transcription of coding or noncoding genomic sequences within 

the cell (endogenous RNAi) (Grishok et al., 2005; Grishok, 2012). 

In the RNAi pathways, the “core” RNA-silencing response involves processing of the 

trigger dsRNA into smaller 21- to 25-bp (base pair) fragments with dinucleotide 3′ 

overhangs by an adenosine triphosphate (ATP)-dependent enzyme named Dicer. The 

products of Dicer activity are referred to as short interfering RNAs (siRNAs) (Hamilton 

and Baulcombe 1999; Hammond, 2005; Ghildiyal and Samore, 2009) which serve as 

“guides” in bringing the nuclease machinery to the target mRNA. These siRNAs 

associate with a protein complex called the RNA-induced silencing complex (RISC). 

The siRNA is unwound by a helicase component of RISC to allow base pairing 

between the antisense strand and the target mRNA (Zamore et al., 2000; Kaya and 

Doudna, 2012) leading to endonucleolytic cleavage of the target mRNA. Following 

cleavage, the siRNA/RISC complex becomes available to target another messenger 

molecule. Thus, the initial trigger dsRNA generates several siRNAs, each of which 

recruits and activates a RISC, which together may function catalytically to target 

multiple mRNAs. Dicer and RISC are some of the most evolutionarily conserved 

components of the RNA silencing machinery. It has been evident from recent studies 

that, at least in some species, additional amplification may occur.  
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Studies in C. elegans have shown that robust silencing of target RNAs is supplemented 

through the action of RdRPs that amplify primary silencing signals with the generation 

of secondary siRNAs (transitive RNAi) which show homology upstream of the primary 

dsRNA sequence (Sijen et al., 2001; Lipardi et al., 2001; Simmer et al., 2002; 

Tijsterman et al., 2002; Alder et al., 2003; Gent et al., 2009; Vasale et al., 2010).  

Further studies in plants have revealed that transitive RNAi proceeds in both 5’-3’or 3’-

5’ directions, pointing out that aberrant mRNAs from altered chromatin structures serve 

as substrates for RdRPs. However, in flies and mammals, no cellular RdRP for the 

generation of secondary siRNAs has been found (Stein et al. 2003; Duan et al., 2012). 

Additionally, it has recently been discovered that a new class of endogenous small 

RNAs are generated in flies and mammals by a pathway independent of RdRP 

amplification (Ghildiyal et al., 2008; Lau et al., 2009; Crombach and Hogeweg, 2011). 

Thus different mechanisms have apparently evolved in different species for 

amplification of the silencing effect. 

The endogenous pathways share the core components of RNAi pathway such as Dicer 

with exogenous RNAi pathway. However, both pathways differ in the requirement of 

more specialized factors associated with the production of primary and secondary 

siRNAs such as Argonaute proteins bound with primary siRNAs and RdRps required 

for the amplification of secondary siRNAs (Yigit et al., 2006; Gent et al., 2010; Vasale 

et al., 2010). It has been shown that multiple and complex endogenous silencing 

pathways exist in C. elegans (Lee et al., 2006). In the following section of this chapter 

the core pathways of exogenous RNAi is described in detail. 



                                                                                                         Chapter one 

 

 

23 

 

  

1.6.1.1 Classical exogenous RNAi pathway 

Genome wide RNAi based screens have been performed in C. elegans by introducing 

dsRNA into the nematodes through feeding with bacteria expressing dsRNA (Timmons 

and Fire, 1998) and examining the phenotypes in the next generations. This allowed 

large scale screens for RNAi deficient mutants giving more insight on basic mechanics 

underlying the RNAi pathway. The investigation on how siRNAs are generated from 

large dsRNA molecules led to the discovery of the first RNAi deficient (rde) pathway 

mutant in C. elegans (Tabara et al., 1999). 

Two of these genes, rde- 1 and rde-4 are essential components acting in the first step 

of RNAi. Rde-4 encodes a dsRNA binding protein which promotes the specific 

recognition of foreign dsRNA whereas rde-1 encodes a PAZ-PIWI/Argonaute protein 

(Song et al., 2004). When a long dsRNA (>100bp) is introduced into a cell exogenously 

(Figure 1.5, step 1), it is bound by the protein complex that contains RDE-4 and the 

Dicer, DCR-1 (Park and Fire, 2007; Habig et al., 2008) (Figure 1.5, step 2). The RDE-

4/DCR-1 complex also interacts with two Dicer-related helicases DRH-1 and -2 

(Duchaine et al., 2006). The double stranded siRNA generated by the Dicer activity has 

a 5’monophosphate on each strand and a free 3’ hydroxyl group and an overhang with 

2 nucleotides at 3’end of the strand (Macrae et al., 2006). The Argonaute protein RDE-

1 binds to the double-strand siRNA produced by the DCR-1 complex and cleaves the 

passenger strand to produce a single-stranded guide siRNA (Figure 1.5, step 3 to 5), 

so called primary siRNAs (Parrish and Fire, 2001; Tomari et al., 2004; Steiner et al., 

2009; Czech and Hannon, 2011).  

The guide siRNA bound by RDE-1 identifies cognate mRNA and cleaves the target 

mRNA (Figure 1.5, step 6).  
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In the amplification step of primary siRNA pools, the RNA-dependent RNA 

polymerases (RdRps) generate many copies of secondary siRNAs from the targeted 

mRNA-siRNA complex (Figure 1.5, step 7 to 9). These secondary siRNAs are found to 

be anti-sense to the cognate mRNA and distributed towards the 5′ end of the target 

mRNA (Alder et al., 2003; Pak and Fire, 2007; Sijen et al., 2007; Pak et al., 2012). The 

amplification of siRNA is mediated by the putative RdRps, RRF-1 and EGO-1 in soma 

and germline, respectively, in C. elegans (Sijen et al., 2001; Fischer, 2010; Zhuang and 

Hunter, 2011a). In contrast to primary siRNAs, secondary siRNAs have a triphosphate, 

which is a characteristic of RdRP activity (Pak and Fire, 2007; Sijen et al., 2007).  

The secondary siRNAs are found to be more abundant than primary siRNAs and they 

interact with so-called secondary Argonautes (SAGOs) (Yigit et al., 2006). It has been 

observed that these secondary siRNA-SAGO complexes are directly involved in 

sequence-dependent mRNA degradation (Figure 1.5, step 10a and 11a). However, 

Dalzell et al. (2011) pointed out that the SAGOs are poorly conserved in other species 

of nematodes possibly providing a reason why C. elegans RNAi is so efficient 

compared to that of other parasitic nematodes. In C. elegans the silencing events are 

found to be heritable and it was found that the AGO, NRDE-3 is responsible for nuclear 

translocation of RNAi triggers in C. elegans, and is involved in processes which lead to 

heritability of gene silencing events (Gu et al., 2012; Zhuang et al., 2013) (Figure 1.5). 

The NRDE-3 shuttles the secondary siRNAs to nucleus (Figure 1.5, step10b) and 

interacts with a complex of nuclear RNAi-silencing effector, NRDE-2 inside the nucleus 

inducing transcriptional gene silencing (Figure 1.5, step11b) (Guang et al., 2010; 

Burton et al., 2011; Zhuang et al., 2013).  

This nuclear RNAi complex is guided by the siRNA to the nascent transcripts and 

prevents RNA polymerase elongation and initiates histone methyltransferase activity 

(Guang et al., 2010; Burton et al., 2011).  
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This mechanism induces heterochromatin modifications and other transcriptional gene-

silencing phenomena linked to RNAi (Grishok et al., 2005; Claycomb et al., 2009; 

Burton et al., 2011). Similar to the soma restricted NRDE-3, a germline specific nuclear 

Argonaute, HRDE-1 has recently been identified and it has been shown that it is 

essential for multi-generational silencing (Buckley et al., 2012). 
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Figure 1.5. Schematic representation of classical exogenous RNAi pathway in C. 
elegans as inferred from Zhuang and Hunter (2011a). (1) In vitro synthesized long 
(>100 bp) dsRNA (red) with 5′ triphosphate (blue) ends is (2) bound by the RDE-4 
(green) and DCR-1 (yellow) complex. (3) The endonuclease DCR-1 dices the long 
dsRNA into of -20 bp ds-siRNAs. (4) Interaction with the Argonaute RDE-1 
(purple) leads to slicing of the passenger strand producing (5) a single-stranded 
-22 nucleotide guide siRNA bound to RDE-1. (6) This primary ss-siRNA guides 
RDE-1 to its cognate mRNA (black). (7) In a mechanistically unclear step, the 
RdRP RRF-1 (red) is recruited to the RDE-1-siRNA-mRNA complex (8) leading to 
the production of many unprimed secondary siRNAs with 5′triphosphate ends. 
(9) Amplification of the secondary siRNAs, which are anti-sense to regions both 
5′ and 3′ to the originally introduced long dsRNA. (10a), the secondary siRNAs 
become associated with cytoplasmic secondary Argonautes (SAGOs – olive 
green) via a mechanistically unclear step or (10b) the nuclear localized 
Argonaute NRDE-3 (tan). (11a). The secondary siRNAs then guide the 
cytoplasmic SAGOs to cognate mRNAs and via yet another an unkown 
mechanism lead to the elimination of the mRNAs. (11b) NRDE-3 shuttles the 
secondary siRNAs into the nucleus where they guide transcriptional gene 
silencing (TGS) processes. (Zhuang and Hunter, 2011a) 
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In addition to the key components described above, several other genes required for 

RNAi have been analysed by genetic screens in C. elegans. It has been shown that the 

complex containing MUT-7, a putative exoribonuclease and RDE-2/MUT-8, which acts 

downstream of RDE-1 and RDE-4, is required for siRNA accumulation in vivo (Tops et 

al., 2005; Fischer, 2010). Similarly, another essential gene, rde-3/mut2, encoding a 

polymerase-beta nucleotidyltransferase, is also required for siRNA accumulation (Chen 

et al., 2005a). In addition to this, it has also been reported by Yang et al., (2012) that a 

RDE-10/RDE-11 complex is also critical for amplifying the exogenous RNAi response 

in C. elegans. Several other genes which act downstream of secondary siRNA 

amplification such as mut -7 are found to be essential for germline RNAi while others 

like mut-14, -15 and -16 are required for both somatic and germline RNAi (Ketting et 

al., 1999; Tijsterman et al., 2002; Vastenhouw et al., 2003; Fischer, 2010).  

RNAi screens in C. elegans have also identified several chromatin factors required for 

RNAi. These include zfp-1, gfl-1, encoding the proteins homologus to human GAs41 

and AF10, mes-3; mes-4 and mes-6, encoding the chromatin binding polycomb-group 

proteins (Dudley et al., 2002; Grishok et al., 2005). Additionally, another nuclear RNAi 

component, mrg-1, encoding a chromodomain-containing protein, was also identified 

as a factor essential for persistence of RNAi over multiple generations (Vastenhouw et 

al., 2006; Fischer, 2010). Zhuang et al (2013) have recently identified PGL-1, another 

RNAi pathway component, which acts in parallel to NRDE-3 in nuclear RNAi. 
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1.6.1.2  Systemic RNAi 

Although the basic RNAi machinery is found in a wide set of organisms, a variation in 

their ability to take up foreign dsRNA and use it in the RNAi pathway has been 

observed. The effects of RNAi can be both systemic and heritable in plants (Chuang 

and Meyerowitz, 2000) and C. elegans, but not in Drosophila or mammals (McEwan et 

al., 2012). Fire et al. (1998) have demonstrated that RNAi is more efficient in C. 

elegans when dsRNA is injected into the intestine. The RNAi effect induced by the 

injection into the intestine spreads efficiently to most of the cells including the germline 

and is inherited by the progeny (Fire et al., 1998). The transmembrane proteins SID-1 

and SID-2 (systemic RNAi defective) are essential components required independently 

for ingestion-mediated RNAi. It was shown that SID-1 is required for the uptake of 

silencing triggers into all cells and is expressed in the cells with direct environmental 

contact (Winston et al., 2002). It has been shown that SID-1 is required for the import 

but not the export of RNAi triggers (Jose et al., 2009). It was also found that in C. 

elegans, sid-1 is expressed from the late embryo throughout adulthood in all non-

neuronal tissues (Winston et al., 2002). SID-2 is less well characterized and is strongly 

expressed in the intestine (Britton and Murray, 2006) 

In C. elegans neuronal cells are found to be resistant to RNAi triggered by ingested or 

injected dsRNA, but sensitive to neuronally expressed dsRNA, which indicates that the 

limiting factor for neuronal RNAi is the defect in the delivery of dsRNA to neurons. 

Additionally, Calixto et al. (2010) have shown that the transgenic expression of SID-1 in 

neurons enables efficient systemic RNAi. Thus the expression of SID-1 is one of the 

key factors for systemic RNAi in C. elegans. However, SID-1 alone is not sufficient to 

induce RNAi mediated by ingested dsRNA.  
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The single-pass transmembrane protein, SID-2 is also required. SID-2 is expressed 

exclusively in the intestinal cells and localizes strongly to the apical membrane and is 

required to import the ingested dsRNA from the intestinal lumen (McEwan et al., 2012). 

While SID-1 homologs were identified in mouse and human, SID-2 homologs were 

found only in Caenorhabditis nematodes. SID-2 homologs are, however, highly 

divergent among Caenorhabditis species (Winston et al., 2007).  

Although C. briggsae expresses and localizes Cb-SID-2, it is unable to induce RNAi 

mediated by the ingested dsRNA. However, the transgenic expression of Ce-SID-2 in 

C. briggsae enables environmental RNAi suggesting either expression and/or 

functional differences between these two gene homologs. Additionally, McEwan et al. 

(2012) demonstrated that the expression of SID-2 in S2 cells enables the dsRNA 

uptake in Drosophila. It has also been shown that an acidic extracellular environment is 

required for SID-2 dependent dsRNA transport, which selectively transports dsRNA 

with at least 50 base pairs (McEwan et al., 2012). The dsRNA transporters, SID-1 and-

2, act at two distinct steps; first, the ingested dsRNA is transported from the acidic 

intestinal lumen by SID-2 via endocytosis and in the second step, SID-1 brings these 

dsRNA from the internalized vesicles into the cytoplasm either by transporting directly 

from the vesicles or by transporting them from the body cavity space following the 

exocytosis of the vesicularized dsRNA (Figure 1.6). Thus both proteins, SID-1 and SID-

2 function together either cooperatively or sequentially, to import ingested dsRNA 

(Winston et al., 2007; McEwan et al., 2012). 
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Figure 1.6. A Model of coordinated role of SID-2 and SID-1 in dsRNA uptake in C. 
elegans. Uptake of Ingested dsRNA from the intestinal lumenal space is 
mediated by SID-2.and the dsRNA retained in the vesicle is directly transported 
into the cytoplasm by SID-1 (left) or released in the pseudocoelomic fluid and 
imported to cells via SID-1 (right) (McEwan et al., 2012) 

1.6.1.3  Regulators of exogenous RNAi 

A number of proteins that directly or indirectly inhibit the RNAi process has been 

identified by RNAi screens in C. elegans. Mutations affecting such factors lead to 

enhanced RNAi in the mutant backgrounds and hence these genes are called 

Enhanced RNAi (Eri) genes.  

It has been demonstrated that mutants of rrf-3, a gene encoding a putative RdRP, 

display increased sensitivity of several genes including neuronal genes to RNAi in C. 

elegans (Sijen et al., 2001; Simmer et al, 2002) which suggests that RRF-3 functions 

directly or indirectly to inhibit RNAi.  
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Kennedy et al., (2004) identified eri-1 C. elegans mutants with enhanced sensitivity to 

RNAi in the nervous system. ERI-1 is a member of the DEMDh exonuclease subfamily, 

which belonging to the DEDDh family of exonucleases and it contains a SAP domain 

found in DNA binding proteins and also a DEDDh-like 3’- 5’ exonuclease domain 

(Kennedy et al., 2004). Kennedy et al (2004) hypothesized that ERI-1 could normally 

act as an RNAi inhibitor that reduces the silencing effect. Gabel and Ruvkun (2008) 

demonstrated that ERI-1 is a conserved rRNA processing component that mediates 3' 

end maturation of the 5.8S ribosomal RNA (rRNA) in C. elegans. But one of the 

isoforms of ERI-1, which has an extended nematode-specific C-terminal sequence, 

mediates siRNA production and the association of the C. elegans Dicer ortholog, DCR-

1, with a large complex that co-fractionates with the ribosome (Gabel and Ruvkun, 

2008). 

There are nine Eri loci that have been identified so far of which five are widely 

conserved genes (Duchaine et al., 2006; Fischer et al., 2008; Pavelec et al., 2009). 

These genes are mainly involved in the production or stability of siRNAs (Asikainen et 

al. 2007). Pavelec et al. (2009) grouped Eri genes in to; class I and class II (Table 2) on 

the basis of the presence or absence of germline pleiotropy. Class I proteins (ERI-1, 

ERI-3, RRF-3, and DCR-1(mg375Eri)) form a core ERI/Dicer complex that is required 

for endogenous RNAi in both the soma and germline, whereas the class II proteins 

(ERGO-1 and ERI-9) serve as accessory factors that modify core complex activity in 

tissues other than the male germline (Pavelec et al., 2009). Thus it is possible that the 

Eri genes may have distinct biological functions.  
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Additionally, it has been observed that a number of endogenous siRNAs is reduced in 

the Eri mutants of C. elegans while the availability of limiting components of silencing 

pathway such as secondary AGOs (Yigit et al., 2006), Dicer (Mikuma et al., 2004), and 

even the dsRNA channel SID-1 (Winston et al., 2002; Calixto et al., 2010) to 

exogenous siRNA is increased. Hence the current model on the mechanism of eri 

phenotypes proposes that the relatively abundant endogenous siRNAs compete with 

siRNAs produced from experimentally introduced dsRNA for limiting effector 

components of RNAi pathway (Lee et al., 2006; Yigit et al., 2006; Zhuang and Hunter, 

2011a). 

Although ERI-1 (Kennedy et al., 2004) and RRF-3 (Sijen et al., 2001); the DCR-1/ERI-

4, (Pavelec et al., 2009); ERI-6/7 (Fischer et al. 2008); and ERGO-1/ERI-8 (Pavelec et 

al. 2009) are widely conserved among different organisms, ERI-3, ERI-9 and ERI-11 

were found to be specific to Caenorhabditis. However, ERI-5 has shown a good 

conservation among nematodes (Table 1.1). Interestingly, among the Eri class of 

genes, only ERI-1 has been found to be well conserved among the PPN (Dalzell et al., 

2011).  

Additionally, the mutations in some members of the lin-35/Rb pathway (Table 1.1), 

which is involved in many cellular processes and developmental steps, have shown 

enhanced sensitivity to RNAi (Lu et al., 1998; Ceron et al., 2007). In C. elegans, 

mutation of this class of genes displays multiple vulva phenotypes (Ferguson and 

Horvitz, 1989). It has been shown that single mutants for lin-35/Rb, lin-53 (homolog of 

the mammalian chromatin modifying complex subunit, RbAp48) and dpl-1 (homolog of 

the mammalian transcription factor, DP) all display enhanced RNAi (Wang et al., 2005; 

Lehner et al., 2006; Ceron et al., 2007).  
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Grishok et al., (2008) demonstrated that loss of lin-35/Rb results in broad mis-

regulation of endo-siRNA targets in particular, some Argonaute genes that function in 

exo-RNAi were upregulated. Thus, consistent with other eri mutants, RNAi 

hypersensitivity of lin-35/Rb mutants could be due to increased expression of RNAi 

factors and reduced competition with the endogenous pathway. 

Table 1.1. Genes with enhanced RNAi phenotypes 

Gene Gene product Other phenotypes 

eri-1 Exonuclease *T.S sterile at 25 °C 
X-chromosome non-disjunction 

eri-2/rrf-3 RNA-directed RNA 
polymerase 

T.S sterile at 25 °C 
X-chromosome non-disjunction 

eri-3 Hydrolase T.S sterile at 25 °C 
X-chromosome non-disjunction 

eri-4/dcr-1 Helicase domain 
protein of DCR-1 

T.S sterile at 25 °C 
Weak eri phenotype 

eri-5 Tudor domain protein Germline-specific Eri phenotype 
eri-6/7 Helicase None reported 

eri-8/ergo-1 Argonaute None reported 
eri-9 RNA transferase None reported 
eri-11 Oligosaccharyl 

transferase 
None reported 

lin-35 Retinoblastoma 
homolog 

T. S sterile and embryonic lethal, T.S 
arrested development, synthetic 

multivulva 
lin-15B, dpl-1, lin-
53, lin-9, lin-13, hpl-
2 

Syn muv B genes Synthetic multivulva 
 

mir-35–41 miRNA T.S embryonic lethal 
*T.S indicates temperature sensitive 

In addition to the Eri class of genes, it has recently been observed that some 

microRNAs (miRNAs), a class of small RNAs which act as regulators of endogenous 

genes, can also negatively regulate the exogenous RNAi pathway. The first miRNAs, 

lin-4 and let-7 were identified as endogenous regulator genes of the heterochronic 

pathway responsible for timing of developmental events in C. elegans (Ambros, 2001). 

At present, a large number of miRNAs have been reported in a variety of organisms, 

ranging from nematodes and plants to mammals (Carthew and Sontheimer, 2009). 
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Massirer et al. (2012) discovered that the mutant strain of miR-35–41(gk262) was 

hypersensitive to RNAi (Table 1.1). RNAi of unc-22 resulted in paralysis in the miR-35–

41(gk262) mutant background in contrast to the weaker twitching phenotype in wild-

type nematodes.  

Although the expression of miR-35–41 appears to be restricted to embryos, the 

enhanced RNAi sensitivity has been observed in multiple tissues and different stages 

of development in the absence of the miR-35–41 (Alvarez-Saavedra et al., 2010). It 

has been assumed that the cross regulation of exo-RNAi pathway and miRNA pathway 

is possibly due to the liberation of Dicer allowing more effective RNAi in the absence of 

miR 35-41 since Dicer is the only factor described so far to be broadly required for 

siRNA and miRNA biogenesis (Massirer and Pasquinelli, 2013). An extensive 

misregulation of endo-RNAi has been observed in the mutants of miR-35–41 (Massirer 

et al., 2012). Thus it is possible that a complex cross regulation may exist among small 

RNAi pathways. 

MicroRNAs, experimentally introduced double stranded RNAs (dsRNA), and 

endogenous short interfering RNAs (endo-siRNAs) were proposed to compete for 

limiting shared resources, including the single C. elegans Dicer homolog, DCR-1, the 

RNA-directed RNA polymerase RRF-1, and the secondary Argonautes (SAGOs), 

including the C. elegans specific worm Argonautes (WAGOs) that mediated siRNA-

dependent silencing (Figure 1.7). The competition for limiting shared resources implies 

that reduced flux through one pathway allows for increased access to limiting 

resources for the other pathways (Zhuang and Hunter, 2012). 
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Figure 1.7. Scheme of proposed competing small RNA pathways (Zhuang and 
Hunter, 2012) 

Although the basal RNAi machinery is conserved among different organisms, variability 

in RNAi efficacy has been observed (Echeverri et al., 2006). This can be due to 

biological and methodological diversity in dsRNA delivery or differences in RNAi 

regulatory components or other sources for such differences remain to be identified. 

Therefore, to maximize RNAi silencing, it is important to understand the organism-

specific limitations in RNAi (Geldhof et al., 2007). Recent advances in deep sequencing 

have revealed more and more of the intricacy and potency of the endogenous small 

RNA network, as well as its competitive regulation of the exogenous RNAi pathway.  

Mutation studies of the eri genes in mouse have also shown that some endogenous 

RNA processing can be defective in the absence of eri genes (Ansel et al., 2008). 

However, the impact on RNAi efficacy due to the absence of eri genes has not been 

thoroughly analysed in other organisms. Hence probably a thorough examination of the 

RNAi regulation perspective can give more insight into the limited utility of RNAi in 

other organisms.  
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1.7 Application of RNAi in nematodes 

1.7.1 Application of RNAi as a reverse genetics tool in nematodes 

RNAi based methods have been widely used in the free-living nematode C. elegans, 

where it has been deployed in genome-wide high throughput screens to identify genes 

involved in many cellular and developmental processes. RNAi techniques have not yet 

translated efficiently to animal parasitic nematodes while somewhat more progress has 

been made in PPN, although diversity in sensitivity to RNAi has been observed among 

the nematodes.  

The variation in RNAi response has been observed even within the Caenorhabditis 

genus as only C. elegans and the uncharacterized species C. n. sp1 are sensitive to 

feeding RNAi (Winston et al., 2007). This suggests that significant differences in the 

RNAi mechanism exist even amongst closely related species (Lilley et al., 2012; Nuez 

and Felix, 2012). Caenorhabditis briggsae was found to be insensitive to external 

application of dsRNAs and seems to be deficient in the uptake of dsRNAs in the 

intestine. It has also been shown that the expression of C. elegans sid-2 can 

complement this deficiency in C. briggsae (Winston et al., 2007). Similarly most of the 

other close relatives of C. elegans were found to be insensitive to external RNAi. It has, 

however, been found that all species of the genus tested are sensitive to dsRNAs 

introduced by injection into the gonad (Winston et al., 2007). Insensitivity to external 

dsRNA has also been found in other non-parasitic nematodes such as Oscheius 

tipulae and Pristionchus pacificus (Louvet-Vallee et al., 2003; Pires da Silva, 2006; 

Wheeler et al., 2012). Other culturable free-living nematodes such as Panagrolaimus 

species, which are distantly related to C. elegans, have shown sensitivity to external 

RNAi to a lesser degree (Shannon et al., 2008). 
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RNAi in animal- and human-parasitic nematodes has had variable levels of success. 

The human filarial parasite Brugia malayi, the rodent parasite Nippostrongylus 

brasiliensis, and the insect parasite Heterorhabditis bacteriophora appear to be 

susceptible to RNAi (Hussein et al., 2002; Aboobaker and Blaxter, 2003; Ciche and 

Sternburg, 2007; Ford et al., 2009). In the case of the gastrointestinal nematodes 

Haemonchus contortus and Ostertagia ostertagi, RNAi was effective against in 2 of 11, 

and 5 of 8 genes, respectively (Geldhof et al., 2006; Visser et al., 2006). Similar 

difficulties in eliciting an RNAi response in Heligmosomoides polygyrus have also been 

reported by Lendner et al. (2008).  

In contrast to human and animal parasitic nematodes, RNAi has been demonstrated as 

a feasible technique in different species of PPN (Urwin et al., 2002; Kimber et al., 2007; 

Dalzell et al., 2010a; Arguel et al., 2012). The first demonstration of RNAi in PPN was 

performed by Urwin et al. (2002). They soaked J2 of the cyst nematodes, Heterodera 

glycines and Globodera pallida, in a solution containing dsRNA of the target gene and 

a neurotransmitter, octopamine to stimulate feeding in the nematodes. Since PPN lack 

specific mutants and transformation systems, RNAi can be a possible approach to 

understand the function of the genes involved in complex host-nematode interactions.  

Today, RNAi as a tool for functional genomics has been demonstrated in a range of 

plant-parasitic nematode species including the sedentary endoparasitic nematodes 

Globodera pallida, Heterodera glycines and Meloidogyne incognita (Rosso et al., 2005; 

Vanholme et al., 2007; Dalzell et al., 2010a) as well as the migratory parasitic 

nematodes Radopholus similis (Haegeman et al., 2009) and Bursaphelunchus 

xylophilus (Park et al., 2008; Cheng et al., 2010; Kang et al., 2011).  
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In addition to dsRNA, siRNAs have also been used as triggers to induce RNAi. 

Recently, Dalzell et al. (2010a, b) used synthetic siRNAs to induce efficient gene 

silencing in G. pallida and M. incognita. However, these reports also showed that the 

efficacy of individual siRNAs targeting different regions of the same transcript was 

highly variable.  

Additionally Arguel et al. (2012) reported that siRNAs can trigger knock-down of the 

parasitism gene Mi-CRT, a calreticulin gene expressed in the esophageal glands of M. 

incognita, but the silencing event was not persistent. Nevertheless, current reports 

have revealed the potential advantage of increasing target specificity with the use of 

siRNAs for functional analysis (Arguel et al., 2012; Atkinson et al., 2013). 

1.7.2 Application of RNAi in PPN control 

Under current production methods, the management of PPN relies mostly on the use of 

chemical nematicides and to a lesser extent on the use of nematode resistant plants. 

The effectiveness of resistant cultivars is limited by high levels of genetic diversity both 

within and among nematode populations. . Additionally, selection pressure often results 

in resistance-breaking pathotypes within the population (Mitchum et al., 2007; 

Hershman et al., 2008).In addition to its use as reverse genetics tool, a number of 

research studies have proven that RNAi can also be utilized as a strategy for nematode 

control by genetically engineering plants to express PPN-transcript-specific dsRNA. 

The PPN takes up these dsRNAs or siRNAs generated by the host plant through its 

stylet while it feeds on the plant cells. The imbibed dsRNA/siRNAs induce the 

degradation of specific nematode genes. The silencing trigger inside the nematode is 

amplified with the help of RNA-dependent RNA polymerase (RDRP) (Chapman and 

Carrington, 2007; Gent et al., 2010; Shi et al., 2013).  
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Host-delivered RNAi is an ideal strategy for the obligate parasitic nematodes providing 

a means to silence genes that are essential to the parasites and also to characterize 

the function of the nematode genes. The feasibility and effectiveness of host-delivered 

RNAi for nematode control has been confirmed by different research groups. A 

significant suppression of nematode reproduction has been achieved by targeting 

different nematode genes including genes (Huang et al., 2006; Sindhu et al., 2009; Xue 

et al., 2013), responsible for the production of nematode secretory proteins essential 

for parasitism, developmental genes (Klink et al., 2009; Li et al., 2010) and 

housekeeping genes (Yadav et al., 2006; Li et al., 2010). The first demonstration of 

host-delivered RNAi was performed by Yadav et al. (2006) in the plant-parasitic 

nematode M. incognita by expressing the dsRNAs of two genes, which encode an 

integrase and a splicing factor in tobacco plants. Similarly nematode resistance was 

also achieved against four major RKN species by expressing of dsRNA of the 

parasitism gene 16D10 in Arabidopsis plants (Huang et al., 2006). Sindhu et al. (2009) 

observed 23% to 64% reduction in H. schachtii females when dsRNA of four parasitism 

genes were expressed in transgenic Arabidopsis lines.  

Recently, Hamamouch et al. (2012) also demonstrated that Arabidopsis plants 

expressing dsRNA and its processed small interfering RNA complementary to the 

Hg30C02 sequences exhibited a strong RNAi mediated resistance to infection by H. 

schachtii. The expression of dsRNAs of Hg-rps-3a, Hg-rps-4 and Hgspk-1, which are 

required for mRNA metabolism in H. glycines, in soybean roots also displayed 81%–

88% reductions in numbers of H. glycines cysts (Klink et al., 2009b). Similarly the 

importance of an mRNA splicing factor, Prp-17 in H. glycines has been demonstrated 

by Li et al. (2010) generating a host-derived RNAi in soybean plants.  
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Although a number of studies has reported a phenotype for nematodes parasitizing 

plants expressing dsRNAs, very few studies have clearly demonstrated that the 

phenotype is due to an RNAi effect.  

Some of the studies have confirmed that the nematode resistance generated was due 

to host-derived RNAi by showing a significant down regulation of target nematode 

genes from nematodes feeding on transgenic roots using real time RT-PCR analysis 

(Sindhu et al., 2009; Li et al., 2010a). The accumulation of target gene siRNAs in the 

transgenic plant roots was confirmed only in five studies (Huang et al. 2006; Steeves et 

al., 2006; Fairbairn et al., 2007; Sindhu et al., 2009; Li et al., 2010a). In some other 

cases, although siRNAs were not detected in the transgenic lines, low level of dsRNA 

was detected by northern blot analysis (Charlton et al., 2010). Some other studies also 

confirmed the presence of unprocessed transcript by amplifying intron or spacer region 

of the hairpin construct using RT-PCR (Patel et al., 2008; 2010). Charlton et al. (2010) 

further demonstrated that crossing of transgenic Arabidopsis lines expressing two 

different dsRNAs generates higher levels of resistance to M. incognita in F2 plants than 

either parent plant. Thus from the above reports, it is evident that it is necessary to 

have a large amount of dsRNAs or siRNAs at the delivery site between host and 

nematode to elicit effective host-derived RNAi against the nematodes.  

However, the traditional transformation methodologies, which take at least several 

months for most of the important plant species to produce stable transgenic lines, 

remain a bottleneck for host –derived RNAi approach in PPN. Many research groups 

have come up with, high-throughput composite or chimeric hairy root systems for rapid 

assessment of target genes in planta, including soybean (Klink et al., 2009; Li et al., 

2010b), sugar beet (Cai et al., 2003) and tomato (Remeeus et al., 1998).  
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1.8 Banana improvement for nematode resistance 

Cultivated bananas are natural selections originating from South East Asia, the centre 

of origin of the genus Musa (Simmonds, 1962).  

The edible types comprise a range of natural hybrids originating from the two species 

Musa acuminata (A genome) and Musa balbisiana (B genome). Most cultivars are 

triploids (AAA, AAB or ABB genomes), parthenocarpic and sterile. Banana is an 

important food crop, which is the fourth most important food crop in the developing 

world after rice, wheat and maize (Frison and Sharrock). Bananas are grown in 243 

countries with a total cultivated area of over 5 million hectares and total world 

production of 106 million metric tons in 2011 (FAOSTAT, 2011).  

It is of huge economic importance for many countries particularly the poorest countries 

of Africa, Latin America and Asia providing the main source of income for rural 

communities. While 15% of the crop is exported, 85% is consumed locally in these 

countries. In addition to being considered a basic product for export, constituting an 

important source of jobs and income in most developing countries, it is an important 

part of the daily diet of people in the developing countries of the world. Additionally, 

bananas are also rich in minerals and vitamins A, C and B6 (Chandler, 1995). These 

benefits notwithstanding, the production of bananas is limited due to several diseases 

and pests including bacteria, fungi, viruses, weevils and nematodes (Dubois and 

Coyne, 2009).  

One of the dramatic disease symptoms in banana plantations is the toppling of plants, 

mainly caused by R. similis. In addition to R. similis, P. coffeae, P. goodeyi, P. speijeri, 

M. incognita, Helicotylenchus multicinctus and Rotylenchulus reniformis have been 

also found to parasitize banana plants in the tropics (Gowen et al., 2005; Coyne, 2009; 

Khan and Hasan, 2010; DeLuca et al., 2012).  
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Crop losses caused by nematodes to banana are estimated at about 20% worldwide 

(Sasser and Freckman 1987). Considering the global importance of banana, there is a 

great need to develop nematode-free and high-yielding cultivars by genetic 

improvement of the plants.  

Conventional breeding in banana remains a difficult endeavour due to long generation 

times, sterility, triploidy, seedlessness and limited genetic variability (Tripathi, 2003). 

Compared with conventional breeding methods, genetic manipulation techniques 

provide new opportunities for the genetic improvement of banana (Arvanitoyannis et 

al., 2008).  

1.8.1 Genetic transformation of banana 

Genetic transformation of banana has become an important tool for crop improvement 

(Sagi et al., 1995; Cote et al., 1996; Kosky et al., 2002; Sipen et al., 2011).Screening 

for naturally occurring nematode resistance genes and introducing them into 

commercially cultivated varieties is one approach to develop nematode free banana 

cultivars. This approach allows single or combinations of genes associated with 

nematode resistance to be extracted from the genome of the source organism and 

transferred directly into the desired variety. This enables the variety to acquire the 

desired trait of resistance while retaining its original characteristics.  

Additionally, this approach has become very promising for the genetic improvement of 

banana, particularly for those cultivars that are not amenable to sexual hybridization 

(Jones 2000; Pillay and Tripathi 2007). Although some resistances have been identified 

against one of the most damaging nematode species, R. similis, limited sources of 

nematode resistance and tolerance are present in the banana gene pool (Collingborn 

and Gowen, 1997; Hartman et al., 2010). Alternatively, it is also possible to introduce 

nematode resistance in a cultivar by host- derived RNAi (Section 1.7.2).  
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Genetic transformation involves the introduction and stable integration of genes into the 

nuclear or chloroplast genomes with subsequent gene expression in transgenic plants. 

During the transformation, single or combinations of genes with desirable traits can be 

introduced into the plant system.  

In the production of transgenic banana plants, two transformation systems have been 

used: particle bombardment and Agrobacterium-mediated transformation. In the case 

of particle bombardment or biolistic transformation, micro projectiles (gold or tungsten) 

coated with DNA are used to deliver foreign genes into plant cells, which are then 

selected and regenerated into transgenic plants (Becker et al., 2000; Cote et al., 1996; 

Sagi et al., 1995). However, in the case of banana transformation, this technology is 

limited by the availability of cell cultures with a sufficiently high capacity for plant 

regeneration.  

In Agrobacterium-mediated transformation, the soil bacterium Agrobacterium 

tumefaciens is used to transform cell cultures of the plant by integrating a segment of 

its tumor-inducing plasmid, so-called T-DNA, which acts as a vehicle to introduce the 

desired gene(s) into the nuclear genome. A complex process regulated by numerous 

bacterial genes that are located outside the T-DNA enables the T-DNA transfer into the 

host plant (Gelvin, 2003). In this study Agrobacterium-mediated transformation of 

banana was used to induce resistance against R. similis based on host-derived RNAi 

approach. In the case of Agrobacterium-based banana transformation, wounded 

explants such as apical meristems, corm meristematic tissue (May et al., 1995) or 

embryogenic cell cultures (Ganapathi et al., 2001; Pérez -Hernandez et al., 2006) are 

co-cultivated with A. tumefaciens harboring the plant transformation vector in the 

presence of acetosyringone, an inducer of the Agrobacterium virulence genes. The 

transgenic lines that are antibiotic resistant are selected and regenerated.  
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The incorporation of the transgene into high molecular weight plant genomic DNA is 

confirmed by DNA hybridization ensuring that the transgene presence is not due to 

residual Agrobacterium persisting in the plants. The transgenic plantlets undergo 

multiple rounds of propagation maintaining the genotypic and phenotypic traits.  

This method offers remarkable advantages such as defined integration of transgenes, 

reduced copy number, fewer problems with transgene co-suppression and instability 

and preferential integration into transcriptionally active regions of the chromosome 

(Gheysen et al., 1998; Hansen and Wright, 1999; Shibata and Liu, 2000; Hiei et al., 

2000).  

Although a number of protocols has been developed for Agrobacterium-mediated 

transformation, currently most of the banana transformation protocols are based on cell 

suspension cultures (Sagi et al. 1995; Becker et al. 2000; Khanna et al. 2004; Perez-

Hernandez et al., 2006a). The use of cell suspension in banana transformation is, 

however, less attractive for routine use due to the requirement of a long time period to 

initiate and maintain the suspension cultures and thus it makes the transformation slow 

and more expensive.  

Recently, Subramaniam et al. (2011) developed a protocol for Agrobacterium 

tumefaciens-mediated genetic transformation system using suckers as explants. In this 

study, the techniques such as sonication of the explants and vaccum infiltration have 

been adopted to increase transformation efficiency. Nevertheless, regeneration and 

transformation is still necessary to obtain transgenic banana plants within a short time. 
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1.9 Somaclonal variation: A characteristic of tissue culture regenerated 

plants 

Variation displayed among somaclones (soma=vegetative, clone=identical copy) 

regenerated from in vitro culturing has been termed as somaclonal variations (Larkin 

and Scowcroft, 1981). It refers to phenotypic variation, either genetic or epigenetic in 

origin. The first observation of somaclonal variation was reported by Braun (1959). 

Variations may result from both pre-existing genetic variation within explants and 

variation induced during in vitro propagation (Evans et al., 1984; Vuylsteke et al., 

1996).  

Factors such as explant source, time of culture, time of subculture, number of 

subcultures, phytohormones, genotype, media composition, the level of ploidy and 

genetic mosaicism are capable of inducing in vitro variability (Silvarolla, 1992; 

Shepherd et al., 1996; Bairu et al., 2011). Although the causes of genetic instability are 

poorly understood, chromosome instability is believed to be one of the most common 

causes of tissue culture-induced variation (Roux et al., 2004).  

A number of reports have shown that variation in chromosome numbers and structures, 

and chromosome irregularities during in vitro differentiation and among regenerated 

somaclones results in the loss of genes or their function, the activation of genes 

previously silent, and the expression of recessive genes (Larkin and Scowcroft, 1981; 

Hao and Deng, 2002; Mujib et al., 2007). Additionally, it has also been demonstrated 

that transpositional events, such as the activation of transposable elements, putative 

silencing of genes and a high frequency of methylation pattern variation among single-

copy sequences, play a role in somaclonal variation (Hirochika, 1993; Barret et al., 

2006). 
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There are both benefits and disadvantages to somaclonal variation. Somaclonal 

variation can be found in karyotype, isozyme pattern, ploidy level, growth, yield, 

disease resistance and resistance to adverse soil and climatic conditions (Patil and 

Navale, 2000). The beneficial characteristics such as resistance to disease 

pathotoxins, herbicides and tolerance to environmental or chemical stress, as well as 

for increased production of secondary metabolites can be enriched in somaclonal 

mutants during in vitro culture. Somaclonal variation provides a valuable source of 

genetic variation for the improvement of crops through the selection of variants, which 

may show these beneficial characteristics (Mehta and Angra, 2000; Predieri, 2001; 

Unai et al., 2004).  

Hwang and Ko (1988) demonstrated the use of somaclonal variation to improve 

resistance against Fusarium oxysporum in a banana cultivar. To achieve better field 

performance, these clones were further improved by somaclonal variation (Hwang and 

Tang, 1996). Thus somaclonal variation can also be useful to produce pathogen free 

plants and widened the genetic variability of existing cultivars. Although somaclonal 

variation is an important tool for the improvement of banana germplasm, it is 

disadvantageous when clonal uniformity is required especially in the micropropagation 

of considered genotypes.  

The high incidence of "off-types" in the plants regenerated from in vitro culture is an 

important drawback for masspropagation of banana. Most off-types are inferior to the 

parental clone, because of undesirable features such as reduced growth, fertility, 

regeneration potential, which affects the overall performance of the plant. Somaclonal 

variants with different types of plant morphology such as dwarf, giant (Israeli et al., 

1991; Vuylsteke et al., 1991), thin and sickly looking tall plants, twisted and crinkly 

leaves, narrow and drooping leaves with mosaic like symptoms, abnormal bunch 
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orientation (Uma et al., 2002), green variants lacking anthocyanidin (Vidhya and 

Ashalatha, 2002) have been reported. 

The rate of variation can be correlated to the time the explants spent in tissue culture. 

Increasing the number of subcultures and their duration were found to be the factors for 

increasing the emergence of somaclonal variations especially in cell suspension and 

callus cultures (Reuveni and Israeli, 1990; Bairu et al., 2006; Bairu et al., 2010). 

However, there is a variation in susceptibility of Musa species to somaclonal variation, 

depending on the genotype (Israeli et al., 1991; Sahijram et al., 2003) and also the 

interaction between genotype and tissue culture environment (Martin et al., 2006).  

In order to reduce the variation induced by tissue culture in banana, it is necessary to 

select true-to-type plant material for propagation as well as to minimize the numbers of 

transfers in culture. A regeneration system requiring a minimum of time in culture, but 

still compatible with transformation might be a possible solution to reduce the 

variations. A tissue culture-free transformation method may be able to eliminate 

somaclonal variation in banana; however, this remains a future endeavor yet to be 

accomplished. 

1.10 Scope of study 

Research on plant–nematode interactions has mainly focused on the sedentary endo-

parasitic nematodes of the genus Globodera, Heterodera and Meloidogyne. Although 

the RNAi approach has been demonstrated in the migratory nematodes R. similis 

(Haegeman et al., 2009) and B. xylophilus (Park et al., 2008; Zhao et al., 2013) its 

feasibility in other species of migratory nematodes that are of considerable economic 

importance is still unknown.  
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Therefore the present study aims to determine the possibility of using RNAi in the 

control of the migratory endo-parasitic nematode P. coffeae and R. similis which are 

important root pathogens of banana in the tropics (Sundararaju, 2005).  

As an initial step to develop resistance against P. coffeae, the susceptibility of this 

nematode is tested by in vitro RNAi (Chapter 2). Further screening of the genes was 

limited due to unavailability of the EST data of P. coffeae. Therefore, transcriptome 

analysis of P. coffeae was performed in order to get more insight into the genes 

involved in parasitic success and nematode development (Chapter 3). Variable 

success has been reported in RNAi mediated silencing by soaking dsRNA as well as 

siRNA and also there is currently insufficient knowledge on the mechanisms of RNAi in 

plant parasitic nematodes. A study on RNAi effectors of P. coffeae, M. incognita, H. 

oryzae in comparison with C. elegans was carried out in order to elucidate the 

components of the RNAi pathway in these nematodes (Chapter 4). Furthermore, in 

order to investigate the reasons for the recovery of RNAi gene silencing, the influence 

of RNAi regulators such as eri-1 in the silencing of the target genes was tested in P. 

coffeae (Chapter 5).  

Finally, to check the feasibility of host derived RNAi as a control strategy in R. similis, 

an attempt was made to develop transgenic banana plants expressing dsRNA of target 

nematode genes involved in parasitism and cell development (Chapter 6). 
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Figure 1.8. Schematic outline of thesis 
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2.1 Abstract 

Many of the currently available nematicides used in nematode control are hazardous to 

the user, environment and beneficial non-target organisms. Therefore the need to 

develop alternative methods for nematode control such as the development of 

nematode-resistant crops through RNA-mediated interference (RNAi) holds great 

promise. The Caenorhabditis elegans genes, unc-87 and pat-10, are essential 

components of the body wall muscle and are thus required for nematode movement. 

The P. coffeae orthologs of these two genes, namely Pc-pat-10 and Pc-unc-87 were 

cloned and used to test RNAi in this migratory nematode. RNAi was performed by 

soaking P. coffeae in a solution containing dsRNA of either Pc-unc-87 or Pc-pat-10. 

The levels of both Pc-unc-87 and Pc-pat-10 mRNAs were significantly reduced in a 

sequence-specific manner in nematodes soaked for 24h. Nematodes incubated in Pc-

pat-10 dsRNA appeared straight and rigid while Pc-unc-87 resulted in nematodes that 

were coiled, in contrast to the regular sinusoidal movement of the control nematodes. 

While 88.4±3.9% of the control nematodes successfully migrated to the bottom of the 

sand column in 12 hours, only 6±1.3% and 7±2.3%, respectively, of the Pc-pat-

10(RNAi) and Pc-unc-87(RNAi) nematodes successfully migrated to the bottom. 

However a recovery in movement as well as transcript level was observed in both 

treatments when the nematodes were incubated in distilled water for 24h following the 

dsRNA soaking. The recovery rate was slower in Pc-unc-87 when compared to Pc-pat-

10. In summary, this study demonstrates the existence of the RNAi phenomenon in P. 

coffeae and shows that the function of unc-87 and pat-10 genes has been 

evolutionarily conserved among free-living and plant-parasitic nematodes. 
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2.2 Introduction 

Research on plant–nematode interactions has been mainly focused on the sedentary 

endo-parasitic nematodes of the genus Globodera, Heterodera and Meloidogyne. 

Although the RNAi approach has been demonstrated in the migratory nematodes R. 

similis (Haegeman et al., 2009) and B. xylophilus (Park et al., 2008) its feasibility in 

other species of migratory nematodes that are of considerable economic importance is 

still unknown. Therefore the present study aims to determine the possibility of using 

RNAi in the control of the migratory endo-parasitic nematode Pratylenchus coffeae 

which is one of the most important root pathogens of banana in the tropics 

(Sundararaju, 2005). Here we report the successful elicitation of RNAi against two P. 

coffeae genes, namely Pc-pat-10 and Pc-unc-87. These genes were chosen because 

they result in clearly different phenotypes and lethality. In C. elegans Pat-10 encodes 

body wall muscle troponin C, the calcium-binding component of the troponin complex 

of actin thin filaments, which is essential for muscle contraction and for completion of 

embryonic morphogenesis and elongation (Kagawa et al., 1997).  

The RNAi study of this gene in C. elegans has shown that the knock-down of pat-10 

leads to paralysis (‘walking stick’ phenotype), larval and embryonic lethality and 

maternal sterility in the nematode (Gottschalk et al., 2005). C. elegans unc-87 on the 

other hand encodes two proteins (generated through alternative splicing) that are 

required to maintain the structure of myofilaments in body wall muscle cells 

(Kranewitter et al., 2001). An RNAi study of Unc-87 in C. elegans demonstrated that 

the knock-down effect of this gene results in uncoordinated locomotion of the 

nematode (“coiled” phenotype) (Simmer et al., 2003). 
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A Heterodera glycines ortholog of C. elegans unc-87 was reported to be expressed 

more highly in mobile second stage juveniles than in sedentary stages of the nematode 

which indicates the importance of this gene in movement (Mathews et al., 2004). 

The successful knock-down of Pc-pat-10 and Pc-unc-87 in our study will be a stepping 

stone for applications of RNAi in root-lesion nematodes. 

2.3 Materials and methods 

2.3.1 Nematode collection 

A single population of P. coffeae (obtained from Prof. D. Dewaele, KuLeuven, collected 

from banana plantations in Ghana) was maintained and multiplied monoxenically on 

carrot discs at 28°C. After 8 weeks of culturing, all nematode stages (eggs, juveniles, 

female and male adults) were harvested from the carrot discs by maceration and 

sieving (Speijer and De Waele, 1997).  

2.3.2 Cloning of Pc-pat-10 and Pc-unc-87 from P. coffeae 

Due to the limited sequence information available at the start of the project two 

potentially essential P. coffeae genes were cloned on the basis of sequence and 

functional information available for C. elegans. The strategy was to search for genes 

that are sufficiently conserved for amplification using degenerate oligonucleotides as 

PCR primers. The second criterion was that the genes must be essential genes in C. 

elegans. Two C. elegans genes, namely pat-10 and unc-87 met both these criteria. The 

gene sequences from M. incognita, H. glycines, P. penetrans, G. rostochiensis and C. 

elegans were aligned and degenerate PCR primers were designed from two regions 

with sufficient sequence conservation. 
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Total RNA was extracted from the mixed life stages of P. coffeae using Tri-reagent 

(Sigma) according to the manufacturer’s protocol. The first strand cDNA was 

synthesized using 100 ng of RNA, 10 mM dNTP, 100 µM oligodT primer, 200 units of 

M-MLV Reverse Transcriptase (Promega) and 20 units of Recombinant RNasin® 

Ribonuclease Inhibitor (Promega). A 350-bp fragment of Pc unc-87 and a 448-bp of Pc 

pat-10 was amplified from the cDNA using Taq polymerase (Bangalore Genei) and the 

primers KS 1875 (5’- TCTCCCGGGTTGATGACCAACTTTGGTACG) and KS 1876 (5’-

TCTCCCGGGCATTYTGGTKGTCTCACGAC) for Pc-unc-87 and KS 1869 (5’-

TCTCCCGGGAYGGCTCCCAAATTGAGGA) and KS1873 (5’- 

TCTCCCGGGTCRCCGGCCCCATCARYTCCCA) for Pc-Pat-10. The PCR conditions 

were: 95°C for 5 min, followed by 35 cycles of 95° C for 15 sec, 55 °C for 30 sec and 

72 °C for 1 min, which was followed by incubation at 72 °C for 10 min. Amplified 

fragments were gel-purified and inserted at the Sma I site of pBluescript SK+ plasmid 

vector and introduced into the DH5α strain of Escherichia coli. Inserts in the 

recombinant plasmid DNA were confirmed by DNA sequencing (Figure. 2.1). The 

expression of Pc-pat-10 and Pc-unc-87 was also checked in eggs as well as mixed 

stages of juveniles and adults of P. coffeae. A pool of approximately 50 nematodes 

containing mixed stages of juveniles and adult stages of males and females and 

another pool of approximately 50 eggs were manually picked from a batch of freshly 

isolated nematodes. Total RNA was isolated and cDNA was synthesized as mentioned 

above. A PCR was performed on these cDNAs for 35 cycles under the same PCR 

conditions as described previously. 
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2.3.3 Synthesis of double stranded RNA  

The templates of sense and antisense DNA strands for generating the dsRNA of Pc-

pat-10 and Pc-unc-87 were amplified from the vector carrying the inserts of each target 

gene by PCR under standard cycling condition 95°C X 5min, followed by 35 cycles of 

95°C X 15s, 55°C X 30s, 72°C X 1min. The respective primers with the T7 promoter 

sequence incorporated at 5’end of either the sense or antisense strand were used for 

the PCR amplification. The PCR products were transcribed using the MEGAscript RNAi 

kit (Ambion, Huntingdon, UK) according to the manufacturer’s instructions. The 

transcription products were purified by phenol: chloroform extraction and double-

stranded RNA was made by incubating equimolar amounts of sense and antisense 

strand in boiling water for 5min, followed by 1hr at room temperature and subsequent 

treatment with DNase to remove the template. The dsRNA was quantified 

spectrophotometrically and the quality of the dsRNA was checked on a 1% agarose 

gel. To check dsRNA toxicity possibly affecting motility, the dsRNA of endo-1,4-beta-

glucanase (Pc-eng-1) from P. coffeae was used as a control.  

This gene was chosen as a dsRNA control because it does not have a direct impact on 

nematode motility as it encodes a cellulase enzyme involved in the breakdown of the 

plant cell wall during invasion. This made it possible to assess the non-specific action 

of dsRNA on nematode mobility. A fragment of 332bp from the 3’ region of the endo 

glucanase cDNA from P. coffeae (Kyndt et al., 2008) was used as the template for 

generating the sense and antisense strands of Pc-eng-1. The dsRNA was synthesized 

as described above. 
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2.3.4 In vitro RNAi on P. coffeae and analysis of mRNA levels by semi-

quantitative RT-PCR followed by gel-blot analysis 

Approximately 1000 juveniles and adults of P. coffeae freshly collected from a carrot 

disc culture were incubated for 24h in a 200µl solution containing 150µl of dsRNA 

(1µg/µl/), 50mM octopamine, 3mM spermidine and 5% gelatin. Nematodes incubated 

in the same solution but without the dsRNA (non-RNAi) or with dsRNA against Pc-eng-

1 served as negative controls. The nematodes were incubated at 28°C for 24h in 

silanized 1.5 ml microcentrifuge tubes. After incubation, the nematodes were washed 

thoroughly in distilled water and the total RNA extracted using Trizol reagent 

(Invitrogen, Carlsbad, CA, USA) according to manufacturer’s instructions. Equal 

amounts of RNA from each treatment were used in cDNA synthesis, which was done 

as previously described. The RNA was treated with DNase (Fermentas, St-Leon-Rot, 

Germany) to avoid DNA contamination.  

The cDNA was used as PCR template with the primers KS2702 (5’-

CGAACTCGATTTTCCCACTG and KS2703 (5’-CCCCAAATTGAGGAGTACC) for the 

amplification of Pc-pat-10 and KS2705 (5’-CCGGGTTGATGACCAACTT) and KS2811 

(5’-GCTCTGATCAATGCTGCGC) for the amplification of Pc unc-87. The amplification 

of Pc-eng-1 from the treated nematodes was performed using the primers KS2809 (5’-

TCTTCCCAAGAATGGTGGAC) and KS2810 (5’-ACCGAGATTGAGGCAGACA). The 

PCR conditions were the same as above except the number of cycles, which was 22 

for Pc-pat-10, 26 for Pc-unc-87 and 30 for Pc-eng-1. These cycle conditions were 

selected through a series of scoping studies to optimize the number of cycles at which 

the accumulation of the amplified product is in the exponential phase of the PCR cycle. 
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In order to obtain a better sensitivity and quantification of the transcript level, the PCR 

products were blotted and hybridized with radioactively labelled probe to Pc-pat-10 and 

Pc-unc-87 following standard protocols for Southern hybridization (Sambrook et al., 

1989). The templates for the production of DNA probes were generated by a PCR 

under conditions as described above on the plasmid pBluescript SK+ containing the 

cDNA clone of the corresponding sequences of Pc-pat-10 and Pc-unc-87. The 

amplified PCR products were gel purified and labeled using DecaLabel™ DNA 

Labeling Kit (Fermentas, St-Leon-Rot, Germany) according to the manufacturer’s 

instructions. The intensity of the hybridization signal was quantified using a phosphor 

imager (Bio-Rad Personal Imager Fx). The non-target genes were used as reference 

gene for the normalization of the cDNA, i.e. Pc-pat- 10 and Pc-eng1 were the 

references in the case of RNAi of Pc-unc-87 and vice versa. 

2.3.5 Qualitative and quantitative characterization of knock-down phenotype  

For a qualitative observation of the RNAi effect on the motility phenotype, the treated 

nematodes were washed with sterile water and observed using a microscope equipped 

with time-lapse video microscopy (Axioscope 2 mot plus) and recorded using an 

Axiocam HRm CCD camera and Axiovision software (all from Carl Zeiss). A 

quantitative estimation of the motility was obtained by measuring the number of 

nematodes that successfully migrated through a 3-cm long column of wet sand.  

Approximately 400 nematodes were added to the top of a sand column placed 

vertically in a collection vial containing chickpea root exudates. The numbers of 

nematodes that migrated through the columns into the collection vial were counted 

after a 12-h period. The result of the migration assay was analyzed by One-way 

ANOVA using GenStat Release 13 for Windows (VSN International Ltd).  
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Migration percentages of control nematodes (non-RNAi) were standardized to 100% 

and, subsequently, migration percentages of dsRNA-soaked nematodes were 

expressed relative to the non-RNAi controls  

2.4 Results 

2.4.1 High degree of sequence similarity of pat-10 and unc-87 among different 

nematodes 

Blastn analysis of Pc-pat-10 and Pc-unc-87 sequences 

(http://blast.ncbi.nlm.nih.gov/blast.cgi and http://nematode.net) showed that both 

sequences were highly nematode specific and have no similarity with plant or human 

sequences. The alignment of amino acid sequences retrieved from diverse groups of 

nematodes including plant-parasitic, animal and human parasitic nematodes as well as 

free-living and entomopathogenic nematodes  showed that both pat-10 and unc-87 

share high degrees of sequence similarity among these nematodes (Figure. 2.1).The 

Pc-pat-10 fragment showed significant similarity with sequences of troponin C-like 

proteins from P. penetrans (PE00200) as well as with those from other plant-parasitic 

genera such as H. glycines (HG02938) and M. incognita (MI02503). 

Additionally the pat-10 fragment from P. coffeae was also similar to the corresponding 

mRNA sequences of the animal parasitic and the human parasitic nematodes 

(Toxocara canis (TX00450) and B. malayi (BM00285) respectively) as well as the 

entomopathogenic and free-living nematodes (Heterorhabditis bacteriophora 

(Hbac_isotig 02222) and C. remanei (CR02338) respectively (Figure. 2.1A).  

http://blast.ncbi.nlm.nih.gov/blast.cgi
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Similarly, Blastn analysis of the amplified fragment for Pc-unc-87 against these group 

of nematodes also confirmed a very significant similarity with the mRNA sequence of 

the UNC-87 protein from P. penetrans (PE00222), H. glycines (HG03517) and M. 

incognita (MI02660) and with other parasitic nematodes, such as T. canis (TX00289) 

and H. bacteriophora (Hbac_isotig 01897) and B. malayi (XM_001901244.1) and also 

with free-living nematode, C. remanei (CR01939) (Figure. 2.1B). This indicates that 

these two genes are highly conserved among nematodes. We conclude that the cloned 

fragments indeed represent parts of the P. coffeae orthologs of the C. elegans genes 

pat-10 and unc-87.  
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Figure 2.1. Alignment of amino acid sequences of PAT-10 (A) and UNC-87 (B) 
from diverse group of nematodes. The C. elegans nucleotide sequences 
available at www.wormbase.org were used to search the nematode EST database 
available at http://nematode.net to identify the corresponding orthologs from 
different groups of nematodes. These sequences were translated into amino acid 
sequences and aligned with the amino acid sequences of RT-PCR products 
obtained from P. coffeae. The color shaded region shows 100% amino acid 
conservation in all aligned sequences. The Gene/Isotig/Contig ID for the pat-10 
orthologs are: P. penetrans – PE00200, H. glycines – HG02938, M. incognita – 
MI02503, C. remanei ˗ CR02338, H. bacteriophora - Hbac_isotig02222, T. canis –
TX00450, and B. malayi –BM00285. The Gene/Isotig/Contig ID for the unc-87 
orthologs are P. penetrans – PE00222, H. glycines – HG03517, M. incognita – 
MI02660, C. remanei ˗ CR01939, H. bacteriophora - Hbac_isotig01897, T. canis –
TX00289, GenBank ID for B. malayi –XM_001901244.1. The GenBank ID for C. 
elegans pat-10 and unc-87 are FO080890.1 and FO080807.1, respectively 
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2.4.2 Pc-pat-10 and Pc-unc-87 can be efficiently silenced by RNAi 

Semi quantitative RT-PCR on cDNA of P. coffeae showed that both genes were 

expressed in eggs as well as in mobile stages (Figure. 2.2).  

 
 
Figure 2.2. Amplification of Pc-pat-10 and Pc-unc-87 mRNA from mobile stages 
and eggs of P. coffeae. The mobile stages included juveniles, adult male and 
female nematodes that are migratory in nature. The PCR amplification was 
performed for 35 cycles in both cases. Pc- pat-10 and Pc-unc-87 were expressed 
in the eggs as well as in the mobile stages. gDNA contamination was checked by 
performing a PCR on DNase treated RNA samples (data not shown)  

In non-RNAi control nematodes we could readily detect Pc-pat-10 mRNA by 22 cycles 

of PCR amplification while Pc-unc-87 mRNA required 26 cycles to yield comparable 

signal intensity. The transcript levels of both genes were drastically reduced in 

nematodes incubated in the corresponding dsRNA-containing solution compared to the 

control soakings. The soaking with the dsRNA of Pc-pat-10 elicited a reduction only in 

the mRNA level of Pc-pat-10, but not in the expression of Pc-unc-87 (Figure. 2.3A) or 

Pc-eng-1. Similarly, the nematodes incubated in Pc-unc-87 dsRNA resulted in 

significant reduction only in the case of Pc-unc-87 mRNA (Figure. 2.3B). 
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Figure 2.3. Analysis of the mRNA level by semi-quantitative RT-PCR/gel blots 
following 24h of dsRNA treatment and 24h of recovery in water. (A) Following 
24h of incubation with dsRNA of Pc-pat-10; graphical representation of band 
intensity for each amplification (upper right) (B) Following 24h of incubation with 
dsRNA of Pc-unc-87; graphical representation of band intensity for each 
amplification (lower right). Non-RNAi: P. coffeae nematodes incubated in soaking 
solution without dsRNA; Pc-pat-10 RNAi: nematodes incubated in dsRNA of Pc-
pat-10; Pc-pat-10 24h recovery: the nematodes recovered in water for 24h 
following the dsRNA treatment with Pc-pat-10; Pc-unc-87 RNAi: nematodes 
incubated in dsRNA of Pc-unc-87; Pc-unc-87 24h recovery: the nematodes 
recovered in water for 24h following the dsRNA treatment with Pc-unc-87 . Each 
time the non-targeted gene was used as reference gene to show equal RNA 
loading. i.e. Pc-unc-87 has been used as the reference gene for equal cDNA 
loading in Pc-pat-10 RNAi and vice versa.The assay was repeated three times 
with consistent results. 
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Additionally, the RNAi treatment with the dsRNA of Pc-eng-1 did not elicit any cross 

silencing of neither Pc-pat-10 nor Pc-unc-87 and vice versa confirming that both genes 

were knocked down in a gene specific manner (Figure. 2.4). Consistent results 

showing a significant knock-down of both genes was obtained from five soaking assays 

that were performed independently keeping parameters such as dsRNA concentration, 

soaking duration, incubation temperature and soaking components constant.  

 
Figure 2.4. A semi-quantitative RT-PCR showing the transcript level of Pc-eng-1, 
Pc-pat-10 and Pc-unc-87 after 24h of treatment with the dsRNA of Pc-eng-1 (Pc-
eng RNAi). The optimized number of cycles at which the accumulation of the 
amplified product is in the exponential phase of the PCR cycle were 22 for Pc-
pat-10, 26 for Pc-unc-87 and 30 for Pc-eng-1. The dsRNA of Pc-eng-1 induced a 
significant reduction in the transcript level of Pc-eng-1 while the transcript level 
of Pc-pat-10 and Pc-unc-87 remained unaffected. The soaking was repeated 
twice with consistent results. 

2.4.3 Silencing of Pc-pat-10 and Pc-unc-87 generates an aberrant phenotype 

Pratylenchus coffeae nematodes soaked in non-dsRNA solution showed normal 

sinusoidal movement. In contrast, the silencing of Pc-pat-10 resulted in profound 

inhibition of motility in the nematodes.  
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While some of the nematodes incubated in dsRNA of Pc-pat-10 generated straight and 

rigid posture, others were very slow in movement (Figure. 2.5). Approximately 85% of 

the nematodes showed the ‘pat’ phenotype. Although dead nematodes were also 

straight, the aberrant phenotypes resulting from silencing were distinguished from dead 

nematodes by observing pharyngeal pumping and slight mobility in the head region. 

The mobile head that can bend in combination with the straight body gives a “walking 

stick” appearance. The nematodes incubated in dsRNA of Pc-unc-87 showed a coiled 

posture and were restricted in movement in contrast to the regular sinusoidal 

movement (Figure. 2.5). This phenotype resembled the typical ‘unc’ phenotype 

(uncoordinated) observed (approximately 82%) after knocking down unc-87 in C. 

elegans. The same kind of phenotype after the incubation with the dsRNA of Pc-pat-10 

and Pc-unc-87 was observed in all repetitions of the experiment. 
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Figure 2.5. RNAi phenotype observed using time-lapse video microscopy after 
24h of treatment with dsRNA of Pc-pat-10 and Pc-unc-87 and 24h of recovery in 
water after the dsRNA treatment. One snap-shot from the video are shown here. 
Arrows indicate the aberrant phenotype observed following the treatment. (Non-
RNAi) P. coffeae nematodes incubated in soaking solution without dsRNA; Pc-
pat-10 RNAi: nematodes incubated in dsRNA of Pc-pat-10; Pc-unc-87 RNAi: 
nematodes incubated in dsRNA of Pc-unc-87. The assay was repeated three 
times. Scale bar= 1mm 

Earlier reports on in vitro RNAi in Globodera pallida, a cyst nematode and Meloidogyne 

incognita, a root-knot nematode have shown that high concentrations of non-specific 

dsRNA induce profound phenotypic changes in the infective juveniles of these 

nematodes (Dalzell et al., 2009)]. Therefore, in order to confirm that the disruption in P. 

coffeae motility observed after RNAi is the result of specific gene silencing rather than 

any general toxic or inhibitory action of the dsRNA, Pc-eng-1 encoding an 

endoglucanase that is secreted from the pharyngeal gland cells of P. coffeae was 

chosen as an additional control. This endoglucanase helps the nematode to degrade 

plant cell walls during the invasion and is not involved in nematode motility.  
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Following soaking in dsRNA of Pc-eng-1, no differences were observed between the 

locomotion of these nematodes and the control nematodes that were incubated in non-

dsRNA solution while approximately 88% and 82% of the treated nematodes with 

dsRNA of Pc-pat-10 and Pc-unc-87 have shown ‘pat’ and ‘unc’ phenotypes, 

respectively.(Figure 2 6). This result confirms that the observed aberrant phenotypes 

are due to specific silencing of Pc-pat-10 and Pc-unc-87 rather than being caused by 

any non-specific action of the dsRNA. 

 
Figure 2.6. Checking the dsRNA specificity on aberrant phenotype using dsRNA 
of Pc-eng-1 as a negative control. Phenotype of P. coffeae following 24h of 
incubation in soaking solution without dsRNA (Non-RNAi) and dsRNA of Pc-eng-
1 (Pc-eng RNAi), Pc-pat-10 (Pc-pat-10 RNAi) and Pc-unc-87 (Pc-unc-87 RNAi). 
While Pc-eng and non-RNAi show similar phenotypes, Pc-pat-10 RNAi results in 
straight nematodes and Pc-unc-87 RNAi in wavy or coiled nematodes. The assay 
was repeated twice. Scale bar=1mm 
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2.4.4 RNAi of Pc-pat-10 and Pc-unc-87 impedes nematode migration through a 

sand column 

Pratylenchus coffeae incubated in 1 μg/μl Pc-pat-10 and Pc-unc-87 dsRNA for 24h 

were assessed for impaired motility by a migration assay using a wet sand column. The 

mean number of control nematodes that migrated was 88.4 ±3.9% after a period of 

12h. However, in the case of the nematodes incubated in dsRNA constructs of Pc-pat-

10 and Pc-unc-87 a significant reduction in the migration was noticed.  

After 12h, 6.0 ±1.3 % of the nematodes incubated in dsRNA of Pc-pat-10 and 7.4 % ± 

2.3% of those incubated in dsRNA of Pc-unc-87 successfully migrated through the 

sand column (Table 2.1).The assay was repeated twice and consistent results were 

observed in both cases. Thus the migration assay showed that the RNAi mediated 

knock-down of Pc-pat-10 and Pc-unc-87 induced 93.4% and 92.6% inhibition, 

respectively, in the migratory behaviour of the nematodes. Following the 24h of 

incubation in the dsRNA of Pc-eng-1, 87±2.9% of the treated nematodes were able to 

migrate through the sand column indicating that the dsRNA of Pc-eng-1 does not have 

any inhibitory influence on the migration of the nematodes at the concentration of 

1µg/µl as opposed to Pc-pat-10 and Pc-unc-87. 
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Table 2.1. Quantitative characterization of knock-down phenotype by sand 
column migration assay after 24 of treatment with dsRNA 

Treatment %Migration %Inhibition 

Non-RNAi 88.4 a 11.6 a 
Pc-pat-10 RNAi 6.0 b 94.0 b 
Pc-unc-87 RNAi 7.4 b 92.5 b 
Pc-eng RNAi 87.0 a 13.0 a 
significance (P)  < 0.001 < 0.001 
cv% 4.1 6.3 
s. e. d 1.771 1.771 
Nematodes were assayed for impaired migration using a sand column assay after 24h of 
incubation in dsRNA of Pc-pat-10, Pc-unc-87 or Pc-eng-1. The number of nematodes 
successfully completing migration (% Migration) was compared with control nematodes 
incubated in soaking solution without dsRNA (non-RNAi) to determine the degree to which 
normal migratory behavior was disrupted (% Inhibition). Values represent means from four 
replicates. Any two means in a column with a letter in common are not significantly (P ≤ 0.05) 
different according to Tukey’s multiple range test. The test was performed twice with similar 
results.cv and s.e.d represent the coefficient of variation and the standard error of sample mean 
differences respectively 

2.4.5 RNAi of Pc-pat-10 and Pc-unc-87 does not persist in P. coffeae. 

To investigate the durability of gene knock-down after 24h soaking with the dsRNA, the 

recovery of the P. coffeae nematodes in distilled water was observed under the 

microscope. While most of the nematodes (approximately 90%) that were incubated in 

dsRNA of Pc-pat-10 regained the normal sinusoidal movement after 24h recovery, a 

few nematodes (approximately 10%) were still seen as rigid and paralyzed (Figure. 

2.5). In the Pc-unc-87 treatment, very few nematodes could regain the regular 

movement after 24h recovery in water (Figure. 2.5). This recovery in nematode 

movement and posture was confirmed by RT-PCR/gel blot analysis (Figure. 2.3A and 

2.3B).  

The transcript level of Pc-pat-10 was completely recovered after 24h in water, but only   

50% recovery was observed in the transcript level of Pc-unc-87. Consistent with this 

observation, the sand column assay also yielded similar results. While 88±8.9 % of the 
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control nematodes migrated through the sand column after 24h of recovery in water, 

71±2 % and 56±9.8 % respectively of nematodes treated with Pc-pat-10 dsRNA and 

Pc-unc-87 dsRNA could migrate (Table 2.2).  

Thus the improved migration through the sand column after 24h recovery in sterile 

water indicates that the knock-down effect was wearing off following the removal of the 

dsRNA from the soaking solution. This observation is in contrast to earlier reports of 

RNAi in C. elegans where the knock-down effect persists throughout the life of the 

nematode exposed to the dsRNA and can be heritable to the F1 generation (Tabara et 

al., 1999). We conclude that the RNAi effect in P. coffeae is transient, and, in this 

respect, they are more similar to other endoparasitic nematodes than to the free-living 

C. elegans. 
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Table 2.2. Quantitative characterization of knock-down phenotype by sand 
column migration assay 24h post dsRNA treatment 

Treatment %Migration %Inhibition 

Non-RNAi 87.64
 b
 12.3

 b
 

Pc-pat-10 RNAi 70.5
 a b

 29.4
 a b

 

Pc-unc-87 RNAi 55.5
 a
 44.5

 a
 

significance (P) 0.002 0.002 

cv% 12.6 13.1 

s. e. d 6.33 6.33 

Nematodes were assayed for impaired migration using the sand column assay after 24h 
recovery post 24h incubation in dsRNA. The number of nematodes successfully completing the 
migration (% Migration) was compared with control nematodes incubated in soaking solution 
without dsRNA (non-RNAi) to determine the degree to which normal migratory behavior was 
disrupted (% Inhibition). The test was performed twice with similar results. The values represent 
means from four replicates. Different letters within a column represent significant (P ≤ 0.05) 
differences according to Tukey’s multiple range tests. cv and s.e.d represent the coefficient of 

variation and the standard error of sample mean differences respectively. 

2.5 Discussion 

The results presented here clearly establish that the migratory nematode P. coffeae 

has a functional RNAi machinery, and that a loss-of-function phenotype of individual 

genes can readily be obtained by soaking nematodes in dsRNA solution. Expression 

analysis on the nematodes incubated in dsRNA of Pc-pat-10 and Pc-unc-87 for 24h 

has shown that the transcript level of both genes was significantly and specifically 

reduced. The silencing effect and the specificity of RNAi were clearly visible in the 

phenotypes of the nematodes. It was observed that the pharyngeal pumping remained 

active in the paralyzed nematodes of P. coffeae following the Pc-pat-10 RNAi 

treatment. This is in agreement with reports by Terami et al. (1999) where pharyngeal 

pumping was found to be unaffected in Pat-10 mutants of C. elegans.  
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According to Nakae and Obinata (1993) the troponin C protein encoded by Pc-pat-10 is 

located in the body wall and other minor muscles, but not in the pharyngeal muscles of 

the nematode and thus, the pharyngeal pumping remained active even after the knock-

down of Pat-10. Although Pc-pat-10 and Pc-unc-87 gene products are both associated 

with thin filaments of body wall muscles, the RNAi phenotype of Pc-unc-87 is distinct 

from that of Pc-pat-10. PAT-10 is essential for the initial assembly of the sarcomere 

and is involved in the attachment of muscle cells to the basement membrane (Williams 

and Waterston, 1994). UNC-87 on the other hand serves as a structural component to 

maintain lattice integrity during contraction (Goetinck and Waterston, 1994)] and hence 

the knock-down of Unc-87 leads to disorganized body wall muscles affecting the 

contraction/relaxation cycle of the muscles (Uncoordinated movement).  

Recent reports have shown that it is necessary to design an optimal dose of RNAi for 

effectively knocking down the target genes without causing any non-specific inhibitory 

actions (Castanotto et al., 2007; Lilley et al., 2012). It has been shown that high doses 

of expressed short hairpin RNAs (shRNAs) cause mice mortality in a dose dependent 

manner (Grimm et al., 2006). There are several other reports showing that exogenous 

siRNAs and shRNAs can compete with each other or with endogenous miRNAs for the 

RNAi machinery (Castanotto et al., 2007; Koller et al., 2006). RNAi studies in M. 

incognita and G. pallida have also shown that even non-nematode derived double 

stranded RNAs induce profound phenotypic changes in these nematodes (Dalzell et 

al., 2009). In this study no abnormal phenotype or inhibitory action on movement were 

observed in the nematodes incubated in the dsRNA of Pc-eng-1 for 24h at the 

concentration of 1 µg/µl. The nematodes showed similar sinusoidal movement as seen 

in the control nematodes incubated in water.  
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Additionally, the RT-PCR results confirmed that the dsRNA of Pc- eng does not 

influence the transcript level of Pc-pat-10 and Pc-unc-87 while eliciting specific 

silencing of Pc-eng-1 at the same concentration. This further confirms the earlier 

statement that the observed ‘pat’ and ‘unc’ phenotypes were induced by the specific 

dsRNAs. It has been shown that the maximum dsRNA concentration to avoid non-

specific toxicity differs among nematodes. Toxicity of dsRNA to J2 of M. incognita was 

shown at 0.1µg/µl after 24h of soaking, while the same concentration had no effect on 

G. pallida (Dalzell et al., 2009). Our results agree with the RNAi study of the migratory 

nematode B. xylophilus where it was shown that a gene specific RNAi phenotype can 

be induced by the soaking nematodes with dsRNA of Bx-myo-3 and Bx-tmy-1 at a 

concentration of 1 µg/µl (Park et al., 2008). Only concentrations above 2µg/µl were 

found to be detrimental to B. xylophilus after 24h incubation with the control dsRNA 

(Cheng et al., 2010).  

It is possible that the discrepancy among different nematodes in their response to the 

dsRNA concentration may be due to the differences in their inherent ability to take up 

dsRNA and process these introduced dsRNAs. Genome annotation of various 

nematode species has revealed that diversity in the RNAi pathway components exists 

across various nematode clades e.g. B. malayi (Ghedin et al., 2007), M. incognita 

(Abad et al., 2008), Pristionchus pacificus (Dieterich et al., 2008), M. hapla (Opperman 

et al., 2008).  

Another observation from this study was the recovery of nematode movement and the 

transcript level of Pc-pat-10 and Pc-unc-87 following transfer of the nematodes from 

the dsRNA soaking solution into water. While most of the nematodes incubated in 

dsRNA of Pc-pat-10 had recovered after 24h, a slower recovery was noticed in the 

case of nematodes incubated in Pc-unc-87 dsRNA.  
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This was also reflected in the transcript level of the genes. The transcript level of Pc-

pat-10 was completely recovered after 24 h in water, but only 50% recovery was 

noticed in the transcript level of Pc-unc-87. This time–limited silencing effect has also 

been reported by Rosso et al. (2005) following the soaking of M. incognita juveniles in 

dsRNA of Mi-crt (calreticulin) or Mi-pg-1 (polygalacturonase).  

The silencing effect of Mi-crt lasted for 44h while the effect of Mi-pg-1 remained only for 

20h after soaking. In cyst nematodes a long durability of the RNAi effect (up to 14 

days) was noticed after silencing of the major sperm protein gene (Urwin et al., 2002) 

and in the case of N. brasiliensis 6 days for the acetylcholinesterase gene (Hussein et 

al., 2002). It appears that genes with high transcriptional activity have an RNAi effect of 

short duration (Rosso et al., 2005; Urwin et al., 2002; Hussein et al., 2002). In the 

present study Pc-pat-10 mRNA was readily detected by 22 cycles of PCR amplification 

whereas Pc-unc-87 mRNA required 26 cycles to yield comparable signal intensity. 

Presuming an equally efficient RT-PCR this suggests that the Pc-pat-10 mRNA is more 

abundant than Pc-unc-87 mRNA. The difference in transcription level and turnover 

could be an explanation for rapid recovery of the Pc-pat-10 transcript compared to Pc-

unc-87. 

It was noticed that the knocking down of Pat-10 persisted long after the removal of 

dsRNA trigger from C. elegans whereas the effect of RNAi wore out after removing 

dsRNA of Pc-pat-10 in the case of P. coffeae. There is the need to explore further the 

reasons for the difference in RNAi persistence between the free-living nematode C. 

elegans and the plant-parasitic nematode P. coffeae. It has been experimentally 

proven that the high efficiency of RNAi in C. elegans is mainly because of the 

amplification of primary silencing signals by an RNA dependent RNA polymerase 

(RdRP) encoded by rrf-1 (Sijen et al., 2001) and the systemic nature of the RNAi.  
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Thus, in the case of C. elegans a small amount of dsRNA trigger can result in profound 

silencing in the treated nematode as well as its progeny (Hannon, 2002; Cerutti, 2003; 

Zhuang and Hunter, 2012). However it has been shown that the accumulation of siRNA 

is negatively regulated by eri-1, a nuclease with siRNAse activity and also by rrf-3, 

another putative RdRP found in C. elegans (Simmer et al., 2002; Kennedy et al., 2004).  

In the transcriptome analysis of P. coffeae (Haegeman et al., 2011) rrf-1 and rrf-3 

homologs were not found in P. coffeae, but a homolog for eri-1 has been found in the 

nematode. Additionally the secondary Argonaute proteins (SAGOs) such as NRDE-2 

and NRDE-3 which are associated with secondary siRNAs and crucial for RNAi 

inheritance in C. elegans are poorly conserved in P. coffeae (Haegeman et al., 2011). 

This indicates that P. coffeae may be deficient in production of secondary siRNAs while 

the available primary siRNA to induce robust RNAi might be limited by the influence of 

antagonistic factors such as eri-1.  

 It has also been reported that some genes in C. elegans are effectively targeted by 

RNAi while others are resistant to RNAi. It is clear that there are multiple mechanisms 

behind the RNAi regulation and the most of the genes involved in the regulation have 

not been well explored and completely understood in PPN. It is envisaged that with a 

comprehensive understanding of RNAi regulatory genes in PPN, it might be possible in 

the future to enhance RNAi potency and persistence in these nematodes. In conclusion 

this study has demonstrated that P. coffeae is readily susceptible to RNAi and that the 

functions of Pc-pat-10 and Pc-unc-87 are evolutionarily conserved between the free-

living C. elegans and the plant-parasitic P. coffeae.  

However, the persistence of the RNAi effect of these genes is highly time limited in P. 

coffeae as opposed to the persistent effects in C. elegans.  
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It is therefore essential to have a greater understanding of the RNAi regulatory pathway 

in PPN to enhance the potency and persistence of RNAi. Alternatively, feeding the 

nematodes with in planta-produced dsRNA can provide continuous supply of siRNA in 

the nematodes and possibly result in a long lasting RNAi effect in the nematode. As 

BLASTn sequence analysis has shown that Pc-pat-10 and Pc-unc-87 are highly 

nematode specific, this minimizes the possibility of non-target effects on the plant or 

other organisms.  

Therefore, Pc-pat-10 and Pc-unc-87 could be potential targets for RNAi mediated 

nematode control by impeding the root damage caused by nematode migration. This 

successful application of RNAi in P. coffeae opens the door to the search for novel 

essential target genes for controlling these migratory nematodes.  
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3.1 Abstract 

To study interactions between plants and plant-parasitic nematodes, several –omics tools 

have nowadays become extremely useful. To improve the knowledge on migratory 

nematodes, the transcriptome of Pratylenchus coffeae was studied through generating 

expressed sequence tags (ESTs) on a 454 sequencing platform. Here the generation, 

assembly and annotation of over 325000 reads from P. coffeae are presented. After 

assembling these reads, 56325 contigs and singletons with an average length of 353 bp 

were selected for further analyses. Similarity searches revealed that 26% of these 

sequences had significant matches to the Swiss-Prot/trEMBL database and 36% had 

significant matches in nematode ESTs. Over 10000 sequences were successfully 

annotated, corresponding to over 6000 unique Gene Ontology identifiers and 5000 KEGG 

orthologs. Different approaches led to the identification of different sequences putatively 

involved in the parasitism process. Several plant cell wall modifying enzymes were 

identified, including an arabinogalactan galactosidase, so far identified in cyst nematodes 

only. Furthermore, homologs to chorismate mutase were found, suggesting that these 

parasitism genes have a wider occurrence in plant-parasitic nematodes than previously 

assumed. In conclusion, the generated transcriptome data of P. coffeae will be very useful 

further studies including; evolutionary studies of specific gene families, such as the plant 

cell wall modifying enzymes, the identification and functional analysis of candidate effector 

genes, the development of new control strategies, e.g. by finding new targets for RNAi and 

the annotation of the upcoming genome sequence. 
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3.2 Introduction  

Molecular analyses, especially transcriptome analyses by means of expressed sequence 

tags (ESTs), have recently been performed for several PPN. At the start of this study, 

approximately 175000 ESTs from PPN have been submitted to the NCBI database, all 

derived from traditional Sanger sequencing (December 2010). The sedentary root-knot 

nematodes (Meloidogynidae) have been extensively studied with the generation of over 

70000 ESTs and the sequencing of two complete genomes of Meloidogyne incognita 

(Abad et al., 2008) and Meloidogyne hapla (Opperman et al., 2008).  

The Pratylenchidae, a family of migratory nematodes, is the family most closely related to 

the Meloidogynidae (Van Megen et al., 2009). Approximately 15000 ESTs, of which less 

than 8000 are, derived from the genus Pratylenchus. A molecular comparison of members 

of the Meloidogynidae and Pratylenchidae could provide insights on the differences and 

similarities between sedentary and migratory nematodes. Further, in our previous study we 

observed that RNA interference can successfully be used as a tool to characterize the 

functions of genes in P. coffeae (Chapter 2). Functional characterization of other effectors 

involved in parasitism also requires additional information on EST data of the nematode. 

The analysis of transcriptome data might also help us to explore further on the reasons for 

discrepancy in RNAi response between P. coffeae and C. elegans. Keeping this in mind, 

we decided to characterize the transcriptome of a mixed-stage P. coffeae population by 

454 pyrosequencing.  



                                                                                                                               Chapter three 

 

 

79 

 

The latter technique has become a relatively rapid and cost-effective method for high-

throughput sequencing of ESTs of non-model organisms. 454 sequencing has been used 

to generate ESTs mainly from animal-parasitic nematodes (Cantacessi et al., 2010a; 

Cantacessi et al., 2010b; Cantacessi et al., 2010c). At the start of this study no reports on 

454 sequencing studies for PPN were available.  

One of the goals of this project was to identify putative effector genes by several 

approaches. More specifically, we wanted to determine whether P. coffeae possesses a 

similar arsenal of plant cell wall modifying enzymes as the Meloidogyne species. The latter 

enzymes are necessary for PPN to penetrate the rigid plant cell wall. Numerous enzymes 

have been identified in different families of PPN, such as endo-1,4-beta-glucanase, 

xylanase, pectate lyase, polygalacturonase, arabinogalactan galactosidase and arabinase 

(Danchin et al., 2010). These genes may have been acquired by horizontal gene transfer 

from bacteria and fungi (Jones et al., 2005). In Pratylenchus spp., so far only an endo-1,4-

beta-glucanase has been identified (Kyndt et al., 2008), although there is also EST 

evidence for an expansin, a protein known to loosen the cell wall non-enzymatically 

(Haegeman et al., 2010).  



Analysis of the transcriptome of the root lesion nematode, P. coffeae  

 

 

80 

 

3.3 Materials and methods 

 3.3.1 RNA extraction, cDNA synthesis and sequencing 

A P. coffeae population from Ghana was cultured on carrot discs at a constant 

temperature of 25°C. RNA was isolated from mixed stages using the TRI reagent (Sigma) 

according to the manufacturer’s instructions. First strand cDNA synthesis was done with 

the Super SMART PCR cDNA synthesis kit (Clontech, CA, USA) including an amplification 

step of 20 cycles as described in the manual. Subsequently, the amplified cDNA was 

purified using the Qiaquick PCR purification kit (Qiagen, Germany) and normalized using 

the TRIMMER kit (Evrogen). The normalized cDNA sample was sent to LGC Genomics 

(Berlin, Germany), where it was sequenced in two separate runs of ¼ of a picotiter plate 

on a 454 FLX Titanium platform (Roche, Branford, CT, USA) by a shotgun approach. The 

data are submitted to the NCBI Sequence Read Archive (SRA) with accession number 

SRA028814. 

3.3.2 Cleaning and assembly 

The resulting reads were processed with the CLC Genomics Workbench 4.0.2 software. 

SMART adapter sequences and 454 sequencing primers were trimmed from all reads. 

Additionally, low quality reads (<99.5% accuracy) and short reads (<50bp) were discarded. 

The assembly was done using standard settings. 

3.3.3 Similarity searches 

All contigs and singletons longer than 150 bp were blasted locally (Blastx) against Swiss-

prot and trEMBL (October 2010) with an E-value cut-off of 1e-4.  
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Additionally, all nematode ESTs were downloaded from the EST division of Genbank, and 

split into three different datasets according to the nematode’s lifestyle: animal-parasitic 

nematodes, PPN and free-living nematodes. A local tBlastx search (E<1e-4) looked for 

homologs for all sequences in these datasets. Since a lot of plant cell wall degrading 

enzymes in nematodes are thought to originate through horizontal gene transfer, we tried 

to identify HGT candidates. Therefore we did Blast searches against different datasets of 

plant, nematode and bacterial sequences. We downloaded the coding sequences of the 

following genomes from the RefSeq database of NCBI: C. elegans (NC_003279-

NC_003284), B. malayi (NZ_AAQA00000000), Arabidopsis thaliana (NC_003070-

NC_003075) and all completed genomes of plant pathogenic bacteria (Pectobacterium 

atrosepticum, NC_004547; Ralstonia solanacearum, NC_003295; Xylella fastidosa 9a5c, 

NC_002488; Agrobacterium tumefaciens, NC_003062; Xanthomonas campestris pv. 

campestris, NC_003902; Xanthomonas axonopodis pv. citri, NC_003919; Pseudomonas 

syringae pv. syringae, NC_007005; Xylella fastidosa Temecula 1, NC_004556; 

Pseudomonas syringae pv. tomato, NC_004578; Leifsonia xyli subsp. xyli, NC_006087; 

Pseudomonas syringae pv. phaseolicola, NC_005773; Xanthomonas campestris pv. 

campestris, NC_007086; Xanthomonas campestris pv. vesicatoria, NC_007508; 

Candidatus Phytoplasma asteris, NC_007716; Clavibacter michiganensis subsp. 

sepedonicus, NC_010407; Candidatus Phytoplasma mai, NC_011047; Dickeya dadantii, 

NC_012880; Dickeya zeae, NC_012912). 

All putative proteins from the genomes of M. incognita and M. hapla were downloaded 

from the projects’ websites (Abad et al., 2008; Opperman et al., 2008).  
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To look for orthologs, a reciprocal Blast strategy was used: the Pratylenchus sequences 

longer than 150 bp were blasted (Blastx, E<1e-5) against the Meloidogyne proteins as well 

as the opposite strategy (tblastn, E<1e-5). Only when both pairs of Blast hits were the 

same, they were considered as true orthologs. 

3.3.4 Annotation 

All Pratylenchus sequences longer than 150 bp were annotated based on the Blastx 

results against Swiss-prot and trEMBL. A sequence was annotated based on the top hit 

information, only if E<1e-5 and if the description of the top hit did not contain any terms 

that would suggest it is a hypothetical or unknown protein (“unknown”, ”putative”, 

“uncharacterized”, “hypothetical”, “similar”, “predicted”, “probable”). Gene Ontology terms 

were retrieved for all unique protein identifiers from annotated sequences using QuickGO 

from the EBI website (http://www.ebi.ac.uk/QuickGO/GAnnotation). KEGG orthologs were 

identified using the KEGG Automated Annotation Server (KAAS) with default parameters 

(Moriya et al., 2007). Subsequently, KEGG BRITE mapping was applied to find the most 

common classifications. 

3.3.5 Translation into putative proteins 

To predict putative proteins, the sequences longer than 150 bp were translated using 

OrfPredictor (Min et al., 2005). To look for putative parasitism genes, the presence of 

signal peptides was predicted with SignalP 3.0 (Bendtsen  et al., 2004) and 

transmembrane domains were predicted using TMHMM 2.0 

(http://www.cbs.dtu.dk/services/TMHMM/). 

http://www.ebi.ac.uk/QuickGO/GAnnotation
http://www.cbs.dtu.dk/services/TMHMM/
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3.3.6 Searching for specific genes 

As described above, three sequence sets putatively related to parasitism were retained: 

the first dataset was derived from homology to plant pathogenic bacteria and/or plants 

only, the second one was derived from homology to parasitic nematode ESTs exclusively, 

and the third one was derived from putative proteins with a signal peptide. The Blastx hits 

of these datasets were retrieved and manually searched for the presence of putative plant 

cell wall modifying enzymes. The sequences that showed similarity to these genes were 

locally blasted (tblastx, E<1e-5) against all Pratylenchus sequences longer than 150 bp to 

identify any additional family members.  

The following putative effector genes were retrieved from Genbank and used for homology 

searches: 10A06 (Hewezi et al., 2010), 14-3-3b (Jaubert et al., 2002), 16D10 (Huang et 

al.,2006), 7E12 (de Lima de Souza et al., 2011), acid phosphatase (Huang et al., 2003), 

annexin (Patel et al.,2010), calreticulin (Jaubert et al.,2002), chitinase (Gao et al 2002), 

chorismate mutase (Lambert et al., 1999), CLE peptide (Gao et al., 2003), ERp99 (Wang 

et al., 2001), galectin (Dubreuil et al., 2007), glutathione peroxidase (Jones et al., 2004), 

glutathione-S-transferase (Dubreuil et al., 2007), map-1 (Semblat et al.,2001) , nodL factor 

(Scholl et al., 2003), peroxiredoxin (Robertson et al., 2000), SPRYSEC RBP-1 (Sacco et 

al., 2009), RING-H2 zinc finger protein (Gao et al., 2003), fatty acid and retinol binding 

protein or SEC-2 (Prior et al., 2001), SKP1-like protein (Gao et al., 2003), SXP/RAL-2 

(Jones et al., 2000), transthyretin-like protein (Jacob et al., 2007), ubiquitin extension 

protein (Gao et al., 2003) and venom allergen protein (Ding et al., 2000). Accession 

numbers can be found in Table 3.4.  
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A tblastn search (E<1e-5) was used to identify possible homologs in the Pratylenchus 

sequences. Resulting hits were subsequently BLAST searched (Blastx, E<1e-5) against 

the Genbank nr database. 

3.4 Results  

3.4.1 Sequencing, cleaning and assembly 

cDNA was isolated from a mixed population of P. coffeae and EST sequences were 

generated by 454 sequencing technology. The sequencing run resulted in a total r of 

326950 reads with an average sequence length of 252 nucleotides. After adapter and 

quality trimming, 320703 reads remained. Assembly resulted in a total of 25987 contigs 

and 53179 singletons. An overview of the sequencing and assembly is presented in(Table 

3.1). The contigs have an average size of 458 bp, an average coverage of 4.2 and consist 

on average of 10.3 reads. The number of reads included in the contigs ranges from 1 to 

651 (Figure 3.1). The length of all sequences ranges from 50 to 3343 with an average of 

271 bp (Figure 3.1). When sequences smaller than 150 bp are removed, the average 

length increases to 353 bp. 

Table 3.1. Overview of sequencing run and assembly 

 Sequences Total bases Average 
length (bp) 

Total number of reads 326971 82445359 252 
High quality trimmed reads 320703 70752552 221 
Contigs 25987 11903837 458 
Singletons 53179 9559767 180 
Total  79166 21463604 271 
Total > 150 bp 56325 19908855        353 
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Figure 3.1. Visualization of contigs and singletons >150 bp (A) Contig size 
distribution showing the number of contigs with a particular number of reads (B) 
Frequency plot of the length distribution of the contigs and singletons 

3.4.2 Similarity searches 

Preliminary analyses showed that for sequences less than 150 bp it is difficult to find 

similarity. Therefore, we decided to continue the analysis with contigs and singletons 

longer than 150 bp, further referred to as the Pratylenchus sequences. A Blastx search 

(E<1e-4) was done locally against the Swiss-prot and trEMBL database.  
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This resulted in 14580 sequences with a significant hit (25.9%), of which 9346 were 

derived from contigs, while 5234 were from singletons. Of the 14580 best matches, 10087 

were unique. Another tblastx search identified sequences homologous to nematode ESTs 

(E<1e-4). Three different databases containing nematode ESTs were constructed: one 

with all free-living nematodes (FLN), one with all PPN and one with all animal-parasitic 

nematodes (APN). Of all sequences, 20325 had significant hits in one or more of these 

nematode databases (36.1%) while 36000 did not have any hits at all. The sequences 

which showed homology were classified according to the number of hits in each nematode 

EST database (Figure 3.2)). Approximately half (51.6%) of the sequences with homology 

to nematode ESTs had hits occurring in all three nematode EST databases, while 

approximately one quarter (23.7%) was specific to PPN species. 

 
Figure 3.2. Classification of sequences with significant homology to nematode ESTs 
(APN: animal-parasitic nematodes, PPN: plant-parasitic nematodes, FLN: free-living 
nematodes) 
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To look for potential genes related to plant parasitism, the predicted protein sequences 

were downloaded from different genomes: C. elegans, B. malayi, Arabidopsis thaliana and 

18 genomes of plant pathogenic bacteria. A Blastx search against these different datasets 

revealed that 13370 (23.7%) sequences have a hit against the C. elegans putative 

proteins, 12904 (22.9%) against B. malayi, 5503 (9.8%) against Arabidopsis and 2144 

(3.8%) against the plant pathogenic bacteria. Of these hits, 348 had hits in plant 

pathogenic bacteria exclusively, 101 in Arabidopsis exclusively and 72 in both the bacteria 

and Arabidopsis. Orthologs were identified in the genomes of M. incognita and M. hapla by 

a reciprocal Blast strategy. The P. coffeae sequences had 6196 true orthologs with M. 

hapla and 5119 with M. incognita. To compare, M. hapla and M. incognita had 6580 

orthologs according to this strategy, of which 2056 did not occur in P. coffeae. In total, 

2746 orthologs occurred in all three datasets. 

3.4.3 Annotation 

Annotation was done based on the Blastx search against Swiss-Prot and trEMBL. This 

resulted in 10219 annotated sequences, of which 7156 were unique. Gene Ontology 

identifiers were searched for these unique sequences. 114100 GO terms were retrieved 

(of which 6146 different ones), coupled to 6810 different protein identifiers (on average 17 

GO terms per protein identifier). The most abundantly present GO terms in the dataset are 

shown in Table 3.2. Using the KEGG Automatic Annotation Server, 5267 KEGG orthologs 

were identified, of which 2317 are unique. KEGG BRITE mapping revealed the most 

common classifications in the dataset (Figure 3.3). 
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Table 3.2. The ten most abundant Gene Ontology terms present in the dataset for 
the Cellular Component, Molecular Function and Biological Process categories 

Cellular Component % 

Nucleus 14.2 
Cytoplasm 12.8 

Membrane 11.5 

Integral to membrane 6.8 

Plasma membrane 4.5 

Mitochondrion 4.1 

Intracellular 2.8 
Nucleoplasm 1.9 

Cytosol 1.9 

Endoplasmic reticulum 1.8 

  

Molecular Function % 

Protein binding 11.4 

ATP binding 9.4 

Nucleotide binding 4.3 

DNA binding 3.3 

Metal ion binding 2.7 
Catalytic activity 2.7 

Hydrolase activity 2.4 

Oxidoreductase activity 2.1 

Transferase activity 2.1 

Zinc ion binding 2.1 

  

Biological Process % 

Protein phosphorylation 4.0 

Transport 3.6 
Embryo development ending in birth or egg hatching 3.3 

Oxidation-reduction process 3.2 

Metabolic process 2.4 

Transcription 2.2 

Translation 2.0 

Regulation of transcription 1.8 

Reproduction 1.6 
Nematode larval development 1.5 
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Figure 3.3. The ten most common KEGG BRITE hierarchies identified in the 
Pratylenchus sequences 

3.4.4 Translation and signal peptide prediction 

When translated into putative proteins, 805 of the sequences were predicted not to have 

an ORF. Of the 55520 sequences with ORF, 40100 coded for a putative protein longer 

than 50 amino acids. Only the proteins with a putative start methionine were included in 

signal peptide prediction. 2697 putative proteins were predicted to have a signal peptide, 

of which 1004 lacked a transmembrane domain.  

3.4.5 Plant cell wall modifying enzymes 

On a total of 56325 sequences, 667 sequences were similar to putative plant cell wall 

modifying enzymes (= 1.2 %) (Table 3.3). The most abundantly present enzymes are 

endo-1,4-glucanases or cellulases. The different contigs all show great similarity to other 

known GHF5 endoglucanases from nematodes, and one of the contigs appears to be the 

previously described gene Pc-eng-1 (Kyndt  et al., 2008).  
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Several contigs included, besides the GHF5 catalytic domain,  a carbohydrate binding 

module (CBM). The second most abundant plant cell wall modifying protein represented in 

the transcripts was expansin. The ten identified contigs encoded a protein consisting of a 

signal peptide coupled to an expansin-like domain. Apparently  none of the contigs had a 

CBM present. All putative proteins showed the highest similarity to an expansin-like protein 

from Globodera rostochiensis. Four contigs resembled pectate lyases. Three of them 

showed greatest similarity to cyst nematode pectate lyases, while one had a higher 

similarity to root-knot nematode pectate lyases. One contig shows high similarity to a 

xylanase from R. similis. It contains part of the catalytic domain and part of the CBM. 

Another contig and one singleton were similar to Heterodera arabinogalactan 

galactosidases. Finally one contig did not have similarity to any nematode genes, but 

shows similarity to some bacterial GHF5 proteins. 

Table 3.3. Overview of plant cell wall modifying proteins identified in the P. coffeae 
EST dataset. The table contains for each protein the family it belongs to, whether it 
has been found before in the Pratylenchidae family, and the number of contigs, 
singletons and reads 

Enzyme Enzyme 
family 

Previously found 
in 
Pratylenchidae? 

Number 
# 
contigs 

# 
singletons 

# 
reads 

Endo-1,4-beta-
glucanase 

GHF5 P. coffeae, R. 
similis, P. vulnus 
(ESTs) 

15 17 242 

Expansin-like protein  P. vulnus (ESTs) 10 2 183 
Pectate lyase PL3 - 4 0 120 
Xylanase GHF5-

GHF30 

R. similis 1 0 54 

Arabinogalactan 
galactosidase 

GHF53 - 1 1 10 

Polygalacturonase GHF28 - 2 0 7 
Putative protein GHF5 - 1 0 51 
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3.4.6 Plant-parasitic nematode proteins known to be secreted 

Several putative secreted nematode proteins have been identified in the last decade by 

transcriptome and proteome analyses on different nematode species. A selection of these 

proteins was used for homology searches against the Pratylenchus sequences (Table 

3.4). The resulting hits were examined carefully by blasting these against the non-

redundant database. This was necessary to make a distinction between homologs to 

secreted proteins and homologs to endogenous nematode proteins without function in 

parasitism. The number of sequences identified as possible homologs is listed in Table 

3.4. Of the 26 secreted proteins, 15 had putative homologs in the P. coffeae dataset. Two 

of them, chorismate mutase and SPRYSEC RBP-1 were previously only found in 

sedentary nematodes. The putative P. coffeae chorismate mutase contig showed highest 

similarity to chorismate mutases from bacteria from the genus Burkholderia (49% identity 

over 85% of the query), and the second highest similarity to nematode chorismate 

mutases (50% identity over 77% of the query). It had a significant match with an E-value of 

7e-12 (bit score of 48) to the PFAM family chorismate mutase type 2 (PF01817). The 

presence of signal peptide was not confirmed in the putative chorismate mutase because 

the 5’ part of the sequences were lacking. Four possible homologs of SPRYSEC were 

identified in the P. coffeae contigs (PF00622, E<1e-5). Two additional contigs showed 

highest similarity to SPRY domain containing proteins from other organisms. However, no 

signal peptide could be detected in the the putative SPRY domain containing proteins 

because the 5’ parts of all sequences are lacking. However, it is also possible that these 

proteins are not SPRYSEC effectors in the case of P. coffeae and not involved in 

parasitism. 
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Table 3.4. Results from a tblastn search of selected secreted nematode proteins 
against the P. coffeae sequences.  
secreted protein accession 

nr 
# 

contigs 
# singletons # 

reads 
E-value Presence 

of SP 

10A06 ACU12489              No true homologs  

14-3-3b AAL40719 2 0 80 4e-83 NA 

16D10 Q06JG6              No true homologs  

7E12 AAQ10021              No true homologs  

Acid phosphatase AAN08587 3 0 61 2e-67 NA 

Annexin AAN32888               No true homologs  

Calreticulin AAL40720 2 0 38 3e-79 NA 

Chitinase AAN14978               No true homologs  

Chorismate mutase AAD42163 1 0 9 2e-08 NA 

CLE peptide AAO33474               No true homologs  

ERp99 AAG21337 0 1 1 7e-18 YES 

Galectin AAB61596 1 0 6 2e-23 NA 

Glutathione 
peroxidase 

CAD38528 6 3 144 2e-77 NA 

Glutathione-S-
transferase 

ABN64198 8 0 155 2e-51 NA 

Map-1 CAC27774                No true homologs  

NodL factor MI01045                No true homologs  

Peroxiredoxin CAB48391 2 0 52 2e-71 NA 

Sprysec RBP-1 CAM33004 4 0 38 2e-15 NA 

RING-H2 zinc finger 
protein 

AAP30834                No true homologs  

SEC-2  CAA70477 2 3 89 7e-63 YES 

SKP1-like protein AAP30763                No true homologs  

SXP/RAL-2 CAB75701 1 0 8 5e-15 NA 

Transthyretin-like 
protein 

CAM84510 9 5 235 5e-46 NA 

Ubiquitin extension 
protein 

AAO33478 0 1 1 4e-18 NA 

Venom allergen 
protein 

AAD01511 3 0 88 3e-23 YES 

The accession numbers of the sequences used as query are from the Protein division of Genbank, 
except for nodL, which is a contig derived from EST data on www.nematode.net. The number of 
contigs and singletons of probable homologs are given, including the total number of reads and the 
best E-value. SP indicates signal peptide; NA stand for not applicable (Presence of SP in most of 
proteins could not be confirmed since 5’ part of the sequences were missing) 

http://www.nematode.net/
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3.4.7 Novel candidate parasitism/effector genes 

To search for novel putative nematode parasitism genes or effectors, three different 

database searching strategies were applied as shown in Figure 3.4. The first approach 

identified 1004 putative proteins with a signal peptide and without a transmembrane 

domain. The second approach identified 6495 sequences that had hits to parasitic 

nematode ESTs exclusively. In the third approach, Pratylenchus sequences were 

compared to all proteins of C. elegans, B. malayi, Arabidopsis thaliana and some selected 

plant pathogenic bacteria. 512 sequences had hits in plants and/or pathogenic bacteria 

exclusively. If we consider all three approaches separately, 7680 different sequences 

potentially involved in parasitism can be retained.  

To increase the chance of finding good candidates, two approaches can be combined, for 

example there are 161 candidates with a signal peptide and with hits to parasitic 

nematodes exclusively. If all three approaches were combined, only 4 candidates 

remained. When we examined the sequences retained in combined approaches, several 

genes known to be important in parasitism were present in the dataset, such as plant cell 

wall modifying enzymes, oxidoreductases and ubiquitin-like proteins. However, many other 

genes not known to be involved in parasitism were found (e.g. transport proteins, ethylene 

forming enzyme), as well as sequences with no significant homology and therefore 

unknown function. The latter sequences are interesting for further studies. 
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Figure 3.4. Three approaches to identify putative effectors/parasitism genes. The 
number of retained sequences is indicated in each step, and the final numbers are 
the number of sequences retained by two or three approaches combined  

3.5 Discussion  

Since the emergence of  454 sequencing technology, transcriptome analysis of non-model 

organisms by EST sequencing has become increasingly popular. To date, several EST 

studies of PPN have been published, most of them using the classic Sanger method 

(Popeijus et al., 2000; Dautova et al., 2001; Jacob et al., 2008; Haegeman et al., 2009; 

Kikuchi et al., 2007; McCarter et al., 2003; Huang et al., 2003; Mitreva et al., 2004: 

Furlanetto et al., 2005; Karim et al., 2009; Elling et al., 2009; Wubben et al., 2010b; Tyson 

et al., 2012). In animal-parasitic nematodes, three recent studies used 454 sequencing to 

study the transcriptomes of Trichostrongylus colubriformis, Necator americanus and 

Haemonchus contortus (Cantacessi  et al., 2010a; Cantacessi  et al., 2010b; Cantacessi  

et al., 2010c). Recently, Haegeman et al. (2012) have reported transcriptome analysis 

using 454 sequencing in M. graminicola.  
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Similarly, Maier et al. (2013) have also used 454 sequencing to elucidate transcriptome of 

esophageal gland cells from three different species of PPN, Globodera rostochiensis, 

Pratylenchus penetrans, and Radopholus similis.  

In this study, over 325000 ESTs were  derived from the migratory plant-parasitic nematode 

P. coffeae. The average read length of the reads was 252 bp, which is similar or slightly 

lower than reported in other studies using 454 technology (Cantacessi et al., 2010a; 

Cantacessi et al., 2010b; Bettencourt, 2010; Wang et al., 2009; Parchman et al., 2010). 

After the assembly, 56325 sequences longer than 150 bp remained with an average length 

of 353 bp. In a Blastx search against Swiss-prot and trEMBL, 26% of these sequences 

gave a significant hit and in total 18% of the sequences were successfully annotated. This 

percentage is relatively low, but due to the high amount of data generated, over 7000 

sequences were annotated with a unique identifier. Almost half of these annotated genes 

were classified as “enzymes” according to KEGG. Gene Ontology mapping revealed that 

the most genes have basic functions such as transport, transcription; protein synthesis or 

modification and developmental and metabolic processes. 

Potential orthologs to root-knot nematode genes were searched by comparing the 

Pratylenchus sequences to the putative protein sequences derived from the genomes of 

M. incognita and M. hapla. This revealed that 31% of the orthologs in common for M. 

incognita and M. hapla do not occur in the P. coffeae ESTs. Remarkably, recent upcoming 

data on P. coffeae genome has revealed that this nematode has a very small genome 

(19.7.Mb) and possesses only 50% of protein coding genes present in M. hapla 

(Opperman, C.H, 2013). Additionally, in comparison with C. elegans, P. coffeae has only 

33% of the gene complement which indicates that P. coffeae seems to have a minimal 
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genome for a nematode. Based on this data it seems that our data has covered a 

substantial proportion of P. coffeae genome. 

Several plant cell wall modifying proteins were identified in the Pratylenchus sequences. 

Previously, only an endoglucanase and some ESTs from an expansin-like protein were 

known in Pratylenchus spp (Kyndt et al., 2008;Haegeman et al., 2010). Our dataset 

extends the arsenal of enzymes in P. coffeae with xylanase, pectate lyase, 

polygalacturonase, arabinogalactan galactosidase and an unknown GHF5 protein. The 

presence of an arabinogalactan galactosidase is remarkable, since it has only been found 

in cyst nematodes so far, and it is not present in the available Meloidogyne genomes 

(Danchin et al., 2010; Vanholme et al., 2009a). Our search against the contigs from the  

Meloidogyne genome has also confirmed the absence of arabinogalactan galactosidase in 

the root-knot genome. Because the Pratylenchidae are more closely related to the 

Meloidogynidae than to the Heteroderidae, the most probable evolutionary explanation is 

that there must have been a HGT in the common ancestor of Heteroderidae and 

Pratylenchidae. According to the phylogeny of van Megen et al. (Van Megen et al., 2009) 

this common ancestry group contains Meloidogynidae, Pratylenchidae, part of the 

Telotylenchidae, Heteroderidae, Rotylenchulidae, Hoplolaimidae, Dolichodoridae and 

Belonolamidae. Probably several lineages, including the Meloidogynidae, have 

subsequently lost this gene during evolution. One sequence was identified with similarity to 

bacterial GHF5 proteins, but without significant similarity to known nematode GHF5 

endoglucanases. One nematode EST originating from Xiphinema index showed significant 

similarity to the putative new type of GHF5 proteins.  
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These two nematode sequences resemble putative proteins from two extremely halophilic 

Archaea, and two anaerobic bacteria. However, no predicted signal peptide is present in 

the genes of these bacteria, and none of these bacteria are involved in plant parasitism. 

Therefore, these new putative GHF5 proteins might not play a role in nematode 

parasitism.  

Next to the plant cell wall modifying enzymes, other nematode secreted proteins with 

putative functions in the plant have been described (Table 3.4). Several genes with 

similarity to these putative effectors were also identified in the P. coffeae dataset: 14-3-3b 

protein, acid phosphatase, calreticulin, chorismate mutase, ERp99, galectin, glutathione 

peroxidase, glutathione-S-transferase, peroxiredoxin, RBP-1, SEC-2, SXP/RAL-2, 

transthyretin-like protein, ubiquitin extension protein and venom allergen protein. For most 

of these secreted proteins, no clear functional data is available yet. Interestingly, 

sequences similar to chorismate mutase and RBP-1 (SPRYSEC) were found, although 

both were thought to occur in sedentary nematodes only, and in the latter case even in 

cyst nematodes only. A recent report on transcriptome analysis of Pratylenchus thornei, 

(Nicol et al., 2012) has also identified 46.7% identity of 12 P. thornei contigs to chorismate 

mutase of G. rostochiensis (Grcm-1) and H. schachtii (Hs-cm-1). The presence of a 

chorismate mutase in a migratory nematode supports the hypothesis that this gene has a 

general role in modulating the plant’s defense process rather than a role in nematode 

feeding site formation (Vanholme et al., 2009b; Jones et al., 2007). 

The SPRYSECs are probably also involved in reducing the plant’s defense responses as 

for one of the SPRYSECs it was shown that it can change the turnover rate of plant 

defense proteins (Rehman et al., 2009).  



Analysis of the transcriptome of the root lesion nematode, P. coffeae  

 

 

98 

 

Potential candidate parasitism genes or effector genes were identified by three database 

searching strategies. These genes are interesting for future studies to elucidate more 

about the function of these genes, or to use as a target in nematode control. One 

promising control strategy is to disrupt the function of specific genes by RNAi, which has 

proven to be effective against nematodes (Rosso et al., 2009).  

In conclusion, the transcriptome of P. coffeae is definitely useful to understand more about 

the biology of endoparasitic nematodes. It can be used for comparative and evolutionary 

studies as well as to select interesting new genes for functional studies. Moreover, the 

data will be valuable for the annotation of the upcoming genome (C. Opperman, personal 

communication). 
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4.1 Abstract 

Despite the successful application of RNA interference in the free-living nematode, C. 

elegans, parasitic nematodes have shown variable susceptibility and efficiency towards 

RNAi. The aim of the study described in this chapter is to test if the differences in RNAi 

effector complements between C. elegans and plant-parasitic nematodes could have an 

impact on this discrepancy. In this study, a primary sequence similarity survey for orthologs 

of 77 C. elegans RNAi pathway proteins in three different species of plant-parasitic 

nematodes, Pratylenchus coffeae, Meloidogyne incognita and Hirschmanniella oryzae, was 

performed using the available genomic or transcriptomic data set for these nematodes. The 

results from this comparative study showed that all the nematodes under the study possess 

the basic machinery required to facilitate an RNAi response. However, some of the core 

proteins in the RNAi pathway were not identified in these nematodes. The core components 

required for the initiation of RNAi, the proteins responsible for uptake of dsRNA and spread 

of silencing signal, proteins associated with amplification of secondary siRNAs and 

heritability of RNAi events were not found in the nematodes. However, Argonautes (AGOs) 

responsible for endogenous RNAi seems to be well conserved among the nematodes. 

Based on the observations from the study, possible impacts on RNAi efficiency due to 

presence or absence of RNAi effector components in the nematodes have been discussed 

in this chapter. The insight gained from this survey can be utilized to understand the 

differences in RNAi pathway components between these nematodes and C. elegans. 

Additionally, this study might be useful to manipulate the RNAi response in the parasitic 

nematodes in order to improve the potency and efficiency of RNAi. 
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4.2 Introduction 

RNA interference has been deployed as a successful tool to facilitate gene function studies 

in the free-living nematode, Caenorhabditis elegans. However, PPN have shown variable 

susceptibility and efficiency towards RNAi. While RNAi in C. elegans spreads throughout the 

organism and is transferred to its progeny, the RNAi effect in PPN is highly time limited. In 

our previous study (Chaper 2) the silencing effects of Pc-pat-10 and Pc-unc-87 were found 

to be transient whereas the silencing of these genes in C. elegans persists throughout the 

life of the nematode. This brings to the fore the need for further exploration on RNAi effector 

diversity among the PPN to give more insight into their inconsistent susceptibility and 

inefficiency to RNAi.  

Here we investigated the differences in key RNAi pathway components among three 

nematode species; Pratylenchus coffeae, Meloidogyne incognita and Hirschmanniella 

oryzae, utilizing existing genomic and transcriptomic datasets. An extensive study has 

already been done on the diversity of RNAi effectors across different species of nematodes 

(Dalzell et al., 2011). Here the same criteria were adopted in P. coffeae and H. oryzae to 

investigate the occurrence of RNAi components to gain more understanding on the disparity 

in RNAi persistence and efficiency between C. elegans and these nematodes. A primary 

sequence similarity survey was done using 77 C. elegans orthologs of RNAi pathway 

proteins as query sequences in these three nematode species. The insight gained from this 

survey can be utilized to understand the differences in RNAi pathway components among 

these nematodes and also to manipulate the RNAi response in parasitic nematodes in order 

to improve the potency and efficiency of RNAi. 
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4.3 Materials and Methods 

4.3.1 Reciprocal Blast methodology 

Seventy-seven C. elegans proteins known to be essential components in the RNAi pathway 

were identified from literature (Dalzell et al., 2011). These proteins were separated into five 

core functional groups; namely, small RNA biosynthesis, dsRNA uptake and spreading, 

AGOs and RISC, RNAi inhibitors, and nuclear effectors. The C. elegans coding sequences 

were retrieved from WormMart (www.wormbase.org; release WS227) and used as search 

strings. A local tblastx (E<1e-5) was done with the C. elegans coding sequences as query 

and the assembled ESTs from P. coffeae and H. Oryzae. (unpublished data, Bauters et al., 

2012). The genome database from M. Incognita 

(http://www.inra.fr/Meloidogyne_incognita/genomic_resources) was searched using Blastp to 

predicted protein sets, in addition to tblastn against the available contig assembly.To check if 

the resulting top hit was a true ortholog of the C. elegans gene, the resulting sequence was 

locally blasted (Blastx, E<1e-5) against all C. elegans proteins (wormpep release WS227). 

4.4 Results  

Each of the species considered possesses only a subset of the original search set of C. 

elegans RNAi proteins. Of the original 77 C. elegans search strings, P. coffeae and H. 

oryzae have 26 of the RNAi effector proteins while M. incognita possesses 30 of these 

proteins. This reduction could suggest that: (i) orthologs of the C. elegans protein may 

probably absent from these species; (ii) they may have diverged to such a degree that they 

are unrecognisable on a primary sequence level, or (iii) additional RNAi effector genes may 

await discovery in these species due to inadequate coverage.  

http://www.inra.fr/meloidogyne_incognita/genomic_resources


A Comparative study on RNAi effectors in the migratory endo–parasitic nematodes  

 

 

103 

 

The search results were placed in one of six functional groups based on the function of the 

genes in the RNAi pathway. 

4.4.1 Small RNA biosynthesis 

Proteins that are grouped under this dataset include RNase III enzymes (drosha, DRSH-1; 

pasha, PASH-1; Dicer, DCR-1), RNA helicases (Dicer-related helicases DRH-1 and -3), and 

exportins (XPO-1 and -3). They are essential components of small RNA-based genetic 

regulatory pathways and perform nuclear biosynthesis, nuclear export and cytoplasmic 

processing of small RNAs such as miRNAs and siRNAs. Of the nine proteins associated 

with this functional grouping in C. elegans, five orthologs were identified in P. coffeae and H. 

oryzae while seven were identified in M. incognita. Although most of the core proteins related 

to small RNA biosynthesis are well conserved in P. coffeae, the orthologs for Dicer related 

helicases, DRH-1 and 3, the dsRNA binding protein and Dicer-complex co-factor, RDE-4 

and exportins, XPO-3 were not identified in P. coffeae (Table 4.1). However, the ortholog of 

DRH-3 was identified in H. oryzae, but the RNAse III enzyme required for nuclear 

biosynthesis, PASH-1 was not found in H. oryzae (Table 4.1). Notably, M. incognita was also 

found to be deficient in rde-4 and xpo-3 as in the other two nematode species. 
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Table 4.1. Small RNA biosynthetic proteins 

 C. elegans orthologs 

 Species drh-3 drsh-1 xpo-1 xpo-2 dcr-1 drh-1 pash-1 rde-4 xpo-3 

1 P. coffeae nd x x x x nd x nd nd 

2 H. oryzae x x x x x nd nd nd nd 

3 M. incognita x x x x x x x nd nd 

X’ indicates presence of ortholog. nd’ indicates not determined. 

Table 4.2. SiRNA amplification and dsRNA uptake and spreading proteins 

 C. elegans orthologs 

  Amplification Proteins Spreading Proteins 

 Species smg-2 smg-6 ego-1 rrf-3 rrf-1 smg-5 rsd-2 rsd-3 sid-1 rsd-6 sid-2 

1 P. coffeae x x x nd nd nd nd nd nd nd nd 

2 H. oryzae x nd x nd nd nd nd nd nd nd nd 

3 M. incognita x x x x x nd nd x nd nd nd 

X’ indicates presence of ortholog. nd’ indicates not determined. 
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4.4.2 Secondary siRNA amplification  

Six C. elegans proteins involved in siRNA amplification were included under this 

subgrouping (Table 4.2). Interestingly, orthologs for the amplification proteins were not found 

in P. coffeae and H. oryzae. The RNA dependent RNA polymerase (RdRP), RRF-1 which is 

one of the core proteins responsible for siRNA amplification in somatic cells was not 

identified in P. coffeae and H. oryzae but was found in M. incognita. The RdRP, RRF-3 

which is commonly referred to as an inhibitory RdRP of somatic RNAi was not identified in P. 

coffeae and H. oryzae, but was well conserved in M. incognita. Even though RRF-3 is 

considered as a potential RNAi inhibitor in exogenous RNAi, it has recently been proven to 

be required for biogenesis of 26G siRNAs in the endogenous RNAi pathway.  

The ortholog of EGO-1, another RdRP expressed in germ cells of C. elegans was found in 

all three species studied. EGO-1 is an RdRP with core functions in transcription of ‘‘WAGO’’ 

(worm-specific AGO, Gu et al., 2009) -interacting 22G-RNAs responsible for silencing events 

involved in genome surveillance (Smardon et al., 2000; Vasale et al., 2010) and with 

additional roles in germline development (Vought et al., 2005), heterochromatin assembly 

(Maine et al., 2005; She et al., 2009), holocentric chromosome segregation (Claycomb et al., 

2009), and P-granule function (Updike et al., 2009). The proteins involved with nonsense-

mediated decay (NMD) such as SMG-2 (Suppressor with Morphological effects on Genitalia 

2), -5, and -6 have an important role in the induction and maintenance of secondary 

amplification (Mango, 2001). Notably, SMG-2 and SMG-6 were well conserved in P. coffeae 

and M. incognita (Table 4.2). The ortholog for only one SMG protein (SMG-2) was found in 

the case of H. oryzae. However, the orthologs for SMG-5 was not identified in any of the 

three species. 
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4.4.3 dsRNA uptake and spreading 

Five C. elegans genes putatively associated with dsRNA uptake and spread are included 

under this functional grouping. When rsd-2, -3, and -6 are considered as the mediators of 

intercellular spreading of dsRNA, sid-1 and -2 are required for cell/environmental dsRNA 

uptake (Winston et al., 2002; Winston et al., 2007). Interestingly, none of the proteins were 

identified in P. coffeae and H. oryzae. However, the ortholog for rsd-3 was found in M. 

incognita (Table 4.2). 

4.4.4 Argonautes and RNA-induced silencing complex components 

In C. elegans, 27 Argonautes (AGOs) that constitute the central effectors of the RNA 

Inducing Silencing Complex (RISC) have been identified. All of the nematode species in our 

dataset showed good conservation in AGOs including the miRNA interacting ALG-1 

(Argonaute Plant–Like Gene), endo-siRNA (22G-RNA)-interacting WAGOs, R06C7.1 and 

also the worm-specific AGOs which mediate the exo-siRNA pathway, C04F12.1. However, 

some members of the PIWI-clade of AGOs, such as PRG-1 (Piwi-Related Gene 1), PRG-2, 

ERGO-1 (Endogenous RNAi deficient Argonaute 1) and the AGO/PIWI-clade secondary 

AGOs SAGO-1 and SAGO-2, are not well conserved in all three species of nematodes in the 

study.  

Although the 26GRNA-interacting ALG-4 and T22H9.3 were identified in M. incognita, the 

orthologs for both AGOs were not recognized in P. coffeae and H. oryzae. , RDE-1, one of 

the main AGO involved in exogenous RNAi in C. elegans, was not identified in P. coffeae 

and H. oryzae. Additionally, the AGOs T23D8.7, T23B3.2, Y49F6A.1 were also not present 

within our parasite dataset (Table 4.3a).  
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Thus our study showed that the AGOs responsible for endogenous RNAi are well conserved 

in P. coffeae, H. oryzae and M. incognita while the AGOs required for exogenous RNAi are 

not well conserved among these nematodes. Interestingly, ERGO-1 which is involved in the 

function of endogenous siRNA populations in C. elegans (Gent et al., 2010) was not 

identified in all three nematode species.  

RNAi persistence and heritability in C. elegans are mainly because of NRDE-3 which is 

responsible for nuclear translocation of RNAi triggers. The current study could not identify 

the ortholog for NRDE-3 in P. coffeae and M. incognita while it is well conserved in H. oryzae 

(Table 4.3b).The RISC proteins which comprise multiple dsRNA-binding proteins and 

exonucleases were not well conserved across the species analysed (Table 4.3b). Although 

an ortholog for TSN-1 (Tudor Staphylococcal Nuclease -1) (Caudy et al., 2003) was well 

conserved in all three species of nematodes, the orthologs for VIG-1 which regulates 

transition between larval and adult cellular fates through interaction with the let-7 miRNA 

(Chan et al., 2008) was not identified in any of them. Among the ALG-interacting proteins 

which are responsible for targeting miRNA-bound ALGs to P bodies, AIN-1 (Ding et al., 

2005; Zhang et al., 2007) was identified in H. oryzae and M. incognita while AIN-2, a 

paralogue for AIN-1, was completely absent from the three species. 
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Table 4.3a. Argonautes  

C. elegans orthologs 
                                                                                                   Argonautes 
 species alg-

1 
R06C
7.1 
 

C04F
12.1 
 

F58G
1.1 
 

alg-
4 

rde
-1 
 

C16
C10.
3 

ppw
-1 
 

sago-
1 

T22B
3.2 
 

T22H
9.3 
 

alg-
2 
 

ergo
-1 
 

prg-
1 
 

F55
A12
.1 

T23
D8.
7 

1 P.  
coffeae 

x x x x nd nd nd nd nd nd nd x nd nd nd nd 

2 H.  
oryzae 

x x x nd nd nd nd nd nd nd nd nd nd nd x nd 

3 M. 
incognita 

x x x x x x nd nd nd nd x x nd nd nd nd 

X’ indicates presence of ortholog. nd’ indicates not identified 
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Table 4.3b Argonautes and RISC proteins 

 C. elegans orthologs 

                                                                         Argonautes RISC 

 species nrde-3 
 

sago-2 
 

T23B3.
2 

Y49F6
A.1 

zk1248.
7 

prg-2 
 

C06A1.
4 

C14B
1.7 

 tsn-1 ain-1 
 

vig-1 
 

ain-2 
 

1 P.  coffeae nd nd nd nd x nd nd nd  x nd nd nd 

2 H.  
oryzae 

x nd nd nd x nd nd nd  x x nd nd 

3 M. incognita nd nd nd nd nd nd nd nd  x x nd nd 

X’ indicates presence of ortholog. nd’ indicates not identified 
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4.4.5 RNAi inhibitors 

Nine C. elegans proteins with RNAi inhibiting function are grouped under this dataset. 

Only two RNAi inhibitor orthologs, the DEDDh-like siRNA exonuclease ERI-1 (Kennedy 

et al., 2004) and the miRNA exonuclease XRN-2 (XRN RiboNuclease related 2), were 

fully conserved across all the parasitic species in question. However, an ortholog for 

the adenosine deaminases ADR-2 was found only in H. oryzae. The orthologs for other 

inhibitors such as ADR-1, LIN-15b, ERI-3, -5 and -6/7 were not identified in any of the 

three nematode species (Table 4.4). 

Table 4.4. RNAi inhibitors 

 C. elegans orthologs 

 species eri-
1 

xrn-2 adr-2 xrn-1 adr-1 lin-
15b 

eri-5 eri-6/7 eri-3 

1 P. 
coffeae 

x x nd nd nd nd nd nd nd 

2 H. 
oryzae 

x x x nd nd nd nd nd nd 

3 M. 
incognita 

x x nd nd nd nd nd nd nd 

X’ indicates presence of ortholog. nd’ indicates not identified 

4.4.6 Nuclear effectors 

Nuclear effectors comprise those proteins that are involved with silencing events inside 

the nucleus. Of the 15 nuclear effectors identified in C. elegans, orthologs for 7 

effectors were identified in the three parasitic nematode species in our study (Table 

4.5).  
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We found that the nuclear effectors EKL-1 (Enhancer of KSR-1 Lethality-1 [KSR-1 is a 

Ras-ERK signaling scaffold protein] and EKL-4, CID-1 (Caffeine Induced Death 

homolog), GFL-1 (an ortholog of human GLIOMA-AMPLIFIED SEQUENCE-4), MES-2 

(Maternal Effect Sterile-2) and RHA-1(orthologous to human RNA Helicase A) were the 

most highly conserved between species while EKL-5 and -6, MUT-7 (Mutator- 7) and -

16, MES-3 and RDE-2 (RNAi Defective-2) were not found in the three species. It has 

been shown that MUT-7 and RDE-2 have a functional role in the amplification step of 

the RNAi pathway in C. elegans (Tops et al., 2005). An ortholog of MES-6 was 

identified in P. coffeae and H. oryzae but not in M. incognita. While a paralog of MUT-2 

was found in H. oryzae, the ortholog of this effector was identified in P. coffeae. 

However, MUT-2 was not found in M. incognita. An ortholog of ZFP-1 (Zinc Finger 

Protein -1) which is associated with chromatin and required for RNAi (Chen et al., 

2005a) was identified only in P. coffeae among the three species. 
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Table 4.5. Nuclear effectors 

 C. elegans orthologs 

 species mut-7 cid-1 ekl-1 gfl-1 mes-2 ekl-4 mes-
6 

rha-1 ekl-6 zfp-1 mut-
2 

ekl-5 mes-
3 

mut-
16 

rde-2 

1 P. coffeae nd x x x x x x x nd x x nd nd nd nd 

2 H. oryzae nd x x x x x x x nd nd pg nd nd nd nd 

3 M. incognita nd x x x x x nd x nd nd nd nd nd nd nd 

X’ indicates presence of ortholog. nd’ indicates not identified and ‘pg’ indicates presence of paralog 
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4.5 Discussion 

Based on the comparative study of RNAi effectors it is evident that the migratory 

nematodes P. coffeae and H. oryzae possess the basic machinery required to facilitate 

an RNAi response. However some of the core proteins in the RNAi pathway were not 

identified in these nematodes. The core components required for the initiation of RNAi, 

RDE-1, a dsRNA binding protein and RDE-4, a PAZ-PIWI/Argonaute protein were not 

identified in P. coffeae and H. oryzae. RDE-4 is essential for recognition of the foreign 

dsRNA and the processing of dsRNAs into primary siRNAs. Together with RDE-1 it 

forms a complex with Dicer (DCR-1), a dsRNA specific RNaseIII ribonuclease, which is 

responsible for cleaving dsRNA into 21-25 nt siRNAs (Tabara et al., 2002; Meister and 

Tuschl, 2004). The absence of RDE-4 from the three nematode species could raise a 

question on their ability to channel dsRNAs through a typical RNAi response. However, 

it is known that the rde-4 mutant of C. elegans is not completely RNAi-defective. It is 

known that it is still possible to elicit an RNAi response in the rde-4 mutant of C. 

elegans by introducing a higher concentration of the dsRNA trigger (Habig et al., 2008). 

Sid-1 and -2 have been shown to be essential for systemic RNAi by promoting dsRNA 

uptake and subsequent spread of dsRNA between cells. It has also been proven that 

rsd-3 is involved in intercellular spread because rsd-3 null mutants are able to take up 

dsRNA from gut lumen but they are not able to distribute this dsRNA into the germ line 

(Tijsterman et al., 2004). These core determinants of systemic RNAi were not identified 

in any of the three nematodes under the study.  

Similarly, other effectors essential for RNAi spreading such as rsd-2 and -6 were also 

not identified in these nematodes. However, our previous study demonstrated high 

susceptibility of P. coffeae to RNAi by dsRNA soaking (Chapter 2). We have observed 
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efficient silencing of the genes expressed in different cells such as muscular and 

secretory gland cells. A number of studies have also demonstrated the successful 

application of RNAi in M. incognita. Similarly a recent study in Drosophila S2 cells, 

which lack sid-1, has shown that an efficient RNAi response can be induced in these 

cells by the uptake of dsRNA from the environment. In Drosophila this is possible 

because of an endocytic pathway that requires components such as clathrin heavy 

chain and V-ATPase (Saleh et al., 2006). This suggests that alternative uptake proteins 

or mechanisms might be involved in PPN also. Further poorly characterized 

morphological differences can be other factors which enable these nematodes to take 

up the dsRNA from the environment. 

The highly efficient RNAi in C. elegans is possible because of the amplification of the 

silencing signals by two RNA directed RNA Polymerases (RdRPs). While rrf-1 is 

required for production of secondary siRNA in the somatic cells (Sijen et al., 2001), 

ego-1 plays a similar role in the germ line (Smardon et al., 2000). Interestingly, in our 

comparative study on the transcriptome the ortholog of rrf-1 is not identified in P. 

coffeae and H. oryzae whereas an ortholog for ego-1 is identified in these nematodes. 

Additionally, the C. elegans proteins MUT-7 and RDE-2 which are required for efficient 

RNAi (Tabra et al., 1999) are also not recognized in the transcriptome of P. coffeae 

and H. oryzae. The research study in C. elegans shows that the absence of either 

MUT-7 or RDE-2 leads to the reduced accumulation of siRNAs in vivo (Tijsterman et 

al., 2002; Sijen and Plasterk, 2003).  

The other key components required for intercellular spreading of secondary siRNAs 

such as RSD-1, -2 and -6 and secondary siRNAs specific AGOs (SAGO-1 and-2) were 

also not identified in P. coffeae. Therefore it might be possible that the migratory 

nematodes P. coffeae and H. oryzae may lack an efficient siRNA amplification 

mechanism in somatic cells.  
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However, the amplification of the silencing signal may occur to some degree due to 

presence of ego-1 in the germ cell of these nematodes. Additionally we observed that 

the RNAi of Pc-pat-10 and Pc-unc-87 in P. coffeae was time limited because both 

transcripts were recovered gradually 48h post dsRNA soaking (Chaper 2). Contrary to 

this, in C. elegans, the RNAi effect is even inherited to the F1 progeny (Chaper 2) and 

the silencing effect is usually stronger in progeny than in parents (Fire et al., 1998). 

Further the heritability of RNAi in C. elegans is also influenced by the occurrence of 

other factors such as NRDE-3. These proteins which are responsible for the heritability 

of silencing events are not identified in P. coffeae. This supports the notion that the 

silencing events may not be passed between the generations of P. coffeae unlike in C. 

elegans. 

Among the proteins that constitute the RISC complex, only the gene for TSN-1 was 

found in the transcriptome of P. coffeae. PPW-1, the AGO essential for germ line RNAi 

which belongs to PAZ-PIWI subfamily, was also not found in P. coffeae. These two 

genes involved in exogenous RNAi were also not found in the H. oryzae and M. 

incognita datasets. However, dsRNA soaking in P. coffeae and M. incognita has 

resulted in successful RNAi response in those nematodes in spite of a few AGO 

components in those nematodes.  
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This could indicate the existence of gene redundancy in the function of individual AGOs 

in C. elegans while a reduced functionality in the parasitic nematodes. However, it is 

also possible that other uncharacterized AGOs with similar functional roles as those 

AGOs that are unidentified in the present study may exist in each nematode or it was 

not found just because of incomplete transcriptome. Although the AGOs responsible for 

endogenous regulation of gene expression such as ALG-1, R06C7.1, C04F12.1 and 

F58G1.1 are well conserved among the three studied nematodes, the AGO which has 

a key role in the function of endogenous siRNA population was not found in P. coffeae. 

This could imply that a population of small RNAs which is different from C. elegans 

might be present in the nematodes presented in the study. 

Only two effectors antagonizing RNAi, eri-1 and xrn-2 are well conserved in the three 

nematode species studied here. One of the factors limiting RNAi in C. elegans, ADRs 

was not well conserved among the three analysed nematodes. However the absence 

of ADRs may not enhance exogenous RNAi in these nematodes because mutations in 

these genes did not enhance the sensitivity of RNAi triggered by exogenous dsRNA in 

C. elegans. Another antagonizing factor of RNAi, lin-15B which encodes Rb complex 

proteins was also not found in the three nematode species. Recent studies in C. 

elegans show that the absence of lin-15B enhances RNAi responses particularly in the 

nervous system (Wang et al., 2005).  

It is known that highly differentiated neuronal cells are resistant to RNAi in C. elegans. 

The presence of RNAi inhibiting proteins in neuronal cells such as ERI-1, RRF-3 and 

LIN-15B is one of the reasons for this RNAi resistance in C. elegans (Asikainen et al., 

2005; Calixto et al., 2010). Interestingly, rrf-3 and lin-15B were not found in the 

transcriptome of P. coffeae and H. oryzae.  

In addition, unlike in C. elegans the flp genes expressed in neuromuscular cells are 

readily susceptible to RNAi in the plant-parasitic nematode G. pallida (Kimber et al., 
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2007). However, it has been shown that RNAi sensitivity can be a property of the 

particular neuronal cell depending on the expression of other antagonizing factors such 

as eri-1, lin-15B or the factor required for systemic RNAi, sid-1 in the cells (Asikainen et 

al., 2005; Calixto et al., 2010; Zhuang and Hunter, 2011b). This implies the necessity to 

understand the cellular location of the proteins influencing RNAi in the parasitic 

nematodes.  

Besides, our study displays a greatly contracted suite of RNAi effector proteins in the 

three nematode species presented here. For example, only one RdRP, EGO-1, which 

is required for germline RNAi is present in P. coffeae and H. oryzae. However, it is 

possible that EGO-1 can act redundantly in somatic tissues like RRF-1 in these 

nematodes because it has been shown that EGO-1 can function redundantly in somatic 

tissues of C. elegans when LIN-15B is absent from the nematode (Wang et al., 2005). 

Notably LIN-15B was not found in P. coffeae and H. oryzae. This indicates the need for 

a careful characterization of RNAi effectors in PPN to understand their expression level 

and distribution to see if it is different from C. elegans.  

The study on the genes that impinge on the RNAi process shows the complexity of 

RNAi and its many cell biological roles, which will remain a subject for future study. 

With the information obtained from C. elegans to identify and deduce the function of 

genes involved in RNAi and the identification of its orthologs in PPN, it might be 

possible to manipulate the RNAi process in PPN. The expression of a gene could be 

enhanced or inhibited or restricted by cell type or time for improving the potency and 

persistence of the RNAi response. 
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5.1 Abstract 

RNA interference is extensively used as sequence-specific tool in a wide variety of 

organisms to investigate the function of a gene by generating a knock-down 

phenotype. Although RNAi has greatly accelerated the analysis of loss-of –function 

phenotypes in the free-living nematode C. elegans, variable levels of success in RNAi 

have been observed across parasitic nematode species. The identification of genes 

that are essential for RNAi or that modulate the RNAi process has made it possible to 

manipulate and enhance the RNAi process. In the present study we attempted to 

analyze an exogenous RNAi inhibitor, Pc-eri-1 and an RNAi enhancer, Pc-gfl-1 that 

affect siRNA accumulation and RNAi effectiveness in the plant-parasitic nematode 

Pratylenchus coffeae. Therefore the method of combinatorial RNAi was used for 

simultaneously targeting two genes. The dsRNA of Pc-eri-1 or Pc-gfl-1 were co-

introduced with dsRNA of the target genes, Pc-pat-10, Pc-unc-87 or Pc-eng-1 as a 

means of enhancing RNAi persistence in P. coffeae. Our results demonstrated that an 

enhanced RNAi persistence of Pc-pat-10 can be achieved when Pc-eri-1 is co-

silenced. However, the silencing of Pc-eri-1 did not show similar impact in the other 

genes tested and hence the down regulation of Pc-eri-1 may only enhance the RNAi of 

some specific genes. Similarly to Pc-eri-1, the impact of Pc-gfl-1 on RNAi was also 

gene-specific. Among the target genes tested here, only Pc-pat-10 seems to be 

positively regulated by Pc-gfl-1. In summary, our findings presented here suggest that it 

might be possible to enhance RNAi persistence of specific genes by down regulating 

eri-1 along with the target gene. Additionally the combinatorial RNAi can be a possible 

approach to characterize genes involved in the RNAi pathway and also a means to 

manipulate the RNAi response in PPN. 
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5.2 Introduction 

Contrary to the high efficiency of RNAi in C. elegans, RNAi experiments in parasitic 

nematodes have also shown inefficient and inconsistent transcript knock-down of the 

target genes (Geldhof et al., 2006a; Haegeman et al., 2009b; Lilley et al., 2012). 

Further, differences in the susceptibilities of individual genes to RNAi have also been 

observed within the same nematode genus (Kimber et al., 2007). It has been shown 

that dsRNA vary in their ability to trigger RNAi and some mRNA sequences are not 

effectively targeted for dsRNA-guided degradation (Cutter et al., 2003; Timmons et al., 

2001). This shows that a better understanding of all the factors that influence 

successful gene silencing is still required to achieve further progress in the application 

of RNAi technology in nematodes.  

A number of factors can be suggested to explain the intrinsic resistance and variable 

susceptibility to RNAi which includes variation in in vitro delivery methods, 

characteristics of inducing molecules and differences in RNAi effector protein 

functionality and complement of RNAi effectors between nematodes (Maule et al, 2011; 

Lendner et al, 2008; Viney and Thompson, 2008). The comparative genomic analysis 

between C. elegans and parasitic nematodes has identified differences in key 

components of the RNAi pathway between the parasitic nematodes and C. elegans 

(Rosso et al, 2009; Dalzell et al., 2011). The present study utilizes the existing 

information on components of RNAi effectors in P. coffeae to explore the influence of 

the RNAi regulators on effective knock-down of the target genes. 

The previous study (Chapter 2) demonstrated that Pc-pat-10 and Pc-unc-87, orthologs 

of C. elegans genes that are required for muscle function and locomotion, are highly 

susceptible to RNAi. The down regulation of these genes in P. coffeae resulted in loss-

of-function phenotypes showing impaired locomotion.  
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However, the nematodes gradually recovered from the RNAi effect after removal of the 

dsRNA which is in contrast with dsRNA-treated C. elegans nematodes where RNAi 

effect persists throughout the life of the worm. The efficacy and persistence of RNAi in 

C. elegans is partly due to transitive RNAi in which the silencing spreads along the 

target mRNA from the primary RNAi trigger and the production of secondary siRNAs by 

RNA dependent RNA polymerase (RdRP) (Chapter 1, Section 1.6.1). Additionally, it 

has been shown that mutation of some genes (Eri genes) enhances RNAi efficiency in 

C. elegans. (Chapter 1, Section 1.6.1.3) The transcriptome data of P. coffeae (Chapter 

4) shows that P. coffeae seems to have ortholog for only eri-1 among the Eri class 

genes while orthologs for rrf-1, which encodes an RdRP in somatic cells was not 

recognized in the transcriptome analysis.  

In C. elegans the eri-1 mutant shows an enhanced RNAi response to different dsRNA 

against neuronal and non-neuronal gene targets (Kennedy et al., 2004; Zhuang and 

Hunter, 2011b). Therefore we reasoned that if eri-1 is down regulated, the RNAi 

response in P. coffeae can be enhanced and as a result the silencing effect may 

persist for a longer period of time. To verify this hypothesis we used the method of 

combinatorial RNAi for simultaneously targeting two genes. In our present study, the 

dsRNA of Pc-eri-1 was co-introduced with dsRNA of the target genes, Pc-pat-10, Pc-

unc-87 or Pc-eng-1 as a means of enhancing RNAi persistence in P. coffeae. 

Additionally, we also checked the requirement of Pc-gfl-1, an ortholog of the C. elegans 

nuclear RNAi effector, for effective silencing in P. coffeae.  

The gfl-1 of C. elegans encodes an ortholog of human Gloma-Amplified-Sequence-41 

which is predicted to be associated with chromatin. It has been shown that the loss of 

gfl-1 results in decreased RNAi in C. elegans (Dudley et al., 2002).  
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The co-introduction of dsRNA of Pc-gfl-1 with the dsRNA of the target genes may result 

in suppression of RNAi of the target gene. It has been proven in C. elegans and 

Drosophila that introduction of multiple dsRNAs can be used as an efficient method to 

identify genes involved in RNAi (Dudley et al., 2002; Geldhof et al., 2006b; Hammond 

et al., 2000; Schmid et al., 2002). Although Bakhetia et al. (2008) tested the possibility 

of silencing two different genes expressed in dorsal esophageal glands of H. glycines 

simultaneously to check the additive phenotype effect using combinatorial RNAi; this is 

the first report of using this method in a plant-parasitic nematode to analyze the role of 

RNAi regulators in efficient RNAi. At present we know very little of the relative 

importance of the primary and secondary RNAi responses and its regulation in parasitic 

nematodes. Therefore our attempt to analyze RNAi regulators that affect siRNA 

accumulation and RNAi effectiveness may help to understand the underlying 

mechanism that influences the RNAi efficiency in P. coffeae. 

5.3 Materials and methods 

5.3.1 Nematode collection, RNA isolation and cDNA synthesis 

A P. coffeae population from Ghana was maintained and multiplied as described in 

Chapter 2, Section 2.3.1. All the stages of nematodes including eggs, juveniles, female 

and male adults were collected from the discs. RNA was extracted from the mixed 

stages with Trizol (Invitrogen) according to the manufacturer’s instructions. The RNA 

was treated with DNase (Fermentas, St-Leon-Rot, Germany) to avoid DNA 

contamination. 

 First strand cDNA was synthesized using Super ScriptIII Reverse Transcriptase 

(Invitrogen). The reaction mixture contained 4mM dNTPs, 0.5µM oligodT primer, 10mM 
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DTT, 3mM MgCl2 and 200U Super ScriptIII Reverse Transcriptase. The mixture was 

incubated for 2h at 42°C. 

5.3.2 Synthesis of dsRNA and siRNA 

Utilizing existing information of P. coffeae EST data, parts of five target genes namely 

Pc-pat-10 (448bp); Pc-eri-1 (222bp), Pc-gfl-1 (206bp), Pc-unc-87 (350bp) and Pc-eng-

1 (332bp) were amplified from cDNA of the nematodes freshly isolated from the carrot 

discs with the following cycling conditions: 95°C X 5min, followed by 35 cycles of 95°C 

X 15s, 55°C X 30s, 72°C X 1min. The target sequences were cloned into the pGEM-T 

vector and confirmed by sequencing. The templates of sense and antisense DNA 

strands for generating dsRNA were amplified from the vector carrying the inserts of 

each target gene by PCR under standard conditions using the respective primers with 

the T7 promoter sequence incorporated at the 5’end of either the sense or antisense 

strand (Table 5.1).  

The PCR products were transcribed in vitro and the dsRNAs of each target gene were 

synthesized using the MEGAscript RNAi kit (Ambion, Huntingdon, UK) following the 

manufacturer’s instructions. The dsRNA was quantified spectrophotometrically and the 

quality of the dsRNA was checked on a 1% agarose gel. Three different siRNAs (21bp) 

against Pc-pat-10 namely Pc-patS1, Pc-patS2 and Pc-patS3 were selected from the 

sequence region that was used for dsRNA (Table 5.2). A 21 bp sequence starting with 

motif ‘AA’ and of G+C content between 35-60% was selected for the construction of 

siRNAs. The sequences were also blasted against the existing EST data to check the 

specificity of the sequence to avoid off target effects. The siRNAs were synthesized by 

in vitro transcription using the Silencer siRNA construction kit (Ambion, Huntingdon, 

UK) according to manufacturer’s instructions. The quantity and quality of siRNA was 

measured spectrophotometrically. 
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Table 5.1. Primers used for amplifying dsRNA templates and semi-quantitative 
RT-PCR 

Primers                     Sequence 

Pc-patT7F TAATACGACTCACTATAGGGAGACGAACTCGATTTTCCCACTC 

Pc-pat R CCCCAAATTGAGGAGTACCA 

Pc-patF CGAACTCGATTTTCCCACTC 

Pc-patT7R TAATACGACTCACTATAGGGAGACCCCAAATTGAGGAGTACCA 

Pc-patF1 GGCCATCAACTCCCAGAAT 

Pc-unc T7F TAATACGACTCACTATAGGGAGACCGGGTTGATGACCAACTT 

Pc-unc R TTTGCGAGTCGAATTTGTTG 

Pc-uncF CCGGGTTGATGACCAACTT 

Pc-uncT7R TAATACGACTCACTATAGGGAGATTTGCGAGTCGAATTTGTTG 

Pc-uncF1 GCTCTGATCAATGCTGCGC 

Pc-engT7F TAATACGACTCACTATAGGGAGATCTTCCCAAGAATGGTGGAC 

Pc-engR ACCGAGATTGAGGCAGACAC 

Pc-engF TCTTCCCAAGAATGGTGGAC 

Pc-engT7R TAATACGACTCACTATAGGGAGAACCGAGATTGAGGCAGACAC 

Pc-engR1 GGTGAATCCCGTGTCTTGAT 

Pc-eri-1T7F TAATACGACTCACTATAGGGAGAAACAGGAATTACACAGG 

Pc-eri-1R GCG CAA ATC GTG GGG CA 

Pc-eri-1F AACAGGAATTACACAGG 

Pc-eri-1T7R TAATACGACTCACTATAGGGAGAGCG CAA ATC GTG GGG CA 

Pc-eri-1F1 GCAGTGGTATCAACGCAGAG 

Pc-gfl-1T7F TAATACGACTCACTATAGGGAGAGAGACTGGATGGGGCGAATT 

Pc-gfl-1R ATC AAA GCC CGA TAC ATC GGC 

Pc-gfl-1F GAGACTGGATGGGGCGAATT 

Pc-gfl-1T7R TAATACGACTCACTATAGGGAGAATC AAA GCC CGA TAC ATC GGC 

Pc-gfl-1R1 TCACGCAATGTCCTCTTCAG 

Pc-actinF CCTCTTCCAGCCTTCCTTCT 

Pc-actinR CACCGATCCAGACGGAGTAT 

5.3.3 In vitro RNAi Analysis 

Approximately 700 nematodes (juveniles and adults) of P. coffeae freshly isolated from 

carrot discs (not older than 2 months) were soaked in 1µg/µl dsRNA diluted with 

sterilized water to 50µl total volume along with 50mM octopamine and 3mM 

spermidine. As a negative control the nematodes were incubated in the same solution 

but without dsRNA (non-RNAi).  

For the combinatorial RNAi, an equal amount of dsRNA of the target genes was used 

keeping the final concentration at 1µg/µl in a total volume of 50µl. The juveniles of P. 

coffeae were soaked for 24h in a solution containing dsRNA of the gene of interest 

such as Pc-pat-10/Pc-unc-87/Pc-eng-1 and also in combination with the dsRNA of Pc-
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eri-1/Pc-gfl-1. Following 24h of exposure of the nematodes to the dsRNA, they were 

allowed to recover by transferring them into water on a rotator in the dark for 48h. This 

assay was repeated three times. In a different set up, the nematodes were soaked with 

dsRNA of Pc-eri-1 for 24h prior to the incubation with Pc-patS1 siRNA for 24h at 27°C 

in the dark.  

The same methodology was followed for the soaking assay with other siRNAs. The 

soaking was done at three concentrations of siRNA, 50ng/µl, 100ng/µl and 200ng/µl in 

a total volume of 50µl and repeated two times. The soaking was also done in 

combination with the siRNA of eri-1 for all treatments keeping the final concentration at 

200ng/µl, this was repeated three times. RNA extraction and cDNA synthesis were 

carried out as mentioned above. The expression levels of the target genes were 

measured by a semi quantitative RT-PCR on the nematodes after 24h exposure to 

dsRNA and after 48h recovery in water and the transcript levels compared between the 

control (non-RNAi) and dsRNA-treated nematodes.  

As a reference gene for normalizing the quantity of cDNA in each sample Pc-actin was 

amplified using the primers Pc-actinF and Pc-actinR. Primers were designed to bind 

outside the dsRNA region were used for amplifying each target gene. For checking the 

expression level of Pc-pat-10, the combination of the primers Pc-patF1 and Pc-patR 

was used while Pc-unc-87 was amplified using Pc-uncF and Pc-uncF1. The 

amplification of Pc-eng-1 and Pc-eri-1 was done using the primer combinations Pc-

engF and Pc-engR1, Pc-eri-1F and Pc-eri-1R, respectively.  

The primers Pc-gfl-1F and Pc-gfl-1R1 were used for the amplification of Pc-gfl-1 from 

the treated nematodes (Table5.2). The number of PCR cycles was optimized for each 

gene product to detect the exponential phase of the reaction. The resulting PCR 

products were separated on a 0.5X TAE gel containing 1.5% agarose. 
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Table 5.1. Short interfering sequences (siRNAs) selected against Pc-pat-10 for 
RNAi in P. coffeae 

siRNA sequence GC% Homo
logy 

    Sense strand Antisense 
strand 

Pc-patS1 AACTCCCAG
AATTCCTCG
AAC 

47.6 C .elegans 
and P 
.vulnus 

CUCCCAGAAU
UCCUCGAACU
U 
 

GUUCGAGGAA
UUCUGGGAGU
U 
 

Pc-patS2 AATTCGTCG
AATTCGATT
TTG 

33.3 M. 
incognita 

UUCGUCGAAU
UCGAUUUUGU
U 
 

CAAAAUCGAA
UUCGACGAAU
U 
 

Pc-patS3 AATTTGCGA
ATCAATTTTC
GC 

33.3 NS UUUGCGAAUC
AAUUUUCGCU
U 
 

GCGAAAAUUG
AUUCGCAAAU
U 

 

5.3.4 Scoring of RNAi impact on phenotype and nematode movement 

Approximately 1500 active nematodes freshly isolated from carrot discs (juveniles and 

adults) were incubated in dsRNA of Pc-pat-10, Pc-eng-1, and Pc-eri-1 and also with 

dsRNA combinations of Pc-pat-10 and Pc-eri-1 as mentioned above. Pc-eng-1 and Pc-

eri-1 dsRNAs were used as negative dsRNA controls for checking non-specific 

inhibitory action of dsRNA on nematode motility. Additionally the nematodes were 

soaked in the same solution but without dsRNA as non-RNAi control. The soaking 

assay was also done with siRNA of Pc-patS1 at a concentration of 200ng/µl. Following 

the incubation, the nematodes were washed and diluted to 500µl with sterile water. 

Five aliquots (5µl) were taken for each sample and observed under an S8APO 

stereomicroscope (Leica). The pharyngeal pumping of the nematode was observed to 

distinguish dead and paralyzed (pat) nematodes. The percentage of the nematodes 

showing ‘pat’ phenotype was counted in each treatment. The experiment was repeated 

two times.  
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5.4 Results 

5.4.1 RNAi of Pc-pat-10 persists after 48h of recovery following the combinatorial 

soaking with Pc-eri-1 dsRNA 

In previous experiments (Chapter 2) RNAi was observed to be transient in P. coffeae. 

In contrast to C. elegans, the RNAi effect did not persist in the nematodes after 

withdrawal of dsRNA of Pc-pat-10 and Pc-unc-87. Both transcript levels showed a 

significant transcript recovery within 24 hours of removal of dsRNA. To test the 

influence of Pc-eri-1 on the persistence of RNAi, in vitro RNAi was performed with 

individual dsRNA of Pc-pat-10 in combination with the dsRNA of Pc-eri-1.  

The semi-quantitative RT-PCR showed that when the nematodes were treated with the 

dsRNA of Pc-pat-10 alone, Pc-pat-10 mRNA level was significantly reduced after 24h 

in contrast to non-RNAi controls, however, recovery of the transcript was observed 

after 48h recovery in water (Figure. 5.1A).  

On the other hand, when the nematodes were treated in a combinatorial soaking with 

dsRNA of Pc-pat-10 and Pc-eri-1, the transcript level of Pc-pat-10 was drastically 

reduced not only after 24h of dsRNA exposure but also after 48h of recovery. The 

mRNA level of actin (Figure. 5.1) and Pc-unc87 (data not shown) remained unaffected 

in all treatments indicating a gene specific RNAi effect on Pc-pat-10. In the 

combinatorial soaking, there was no clear reduction in the transcript level of Pc-eri-1 

after 24h of dsRNA exposure but a significant down regulation of Pc-eri-1 was 

observed after 48h of recovery. However, in the treatment with the dsRNA of Pc-pat-10 

alone, a slight up regulation of Pc-eri-1 mRNA level was observed after 48h of 

recovery.  
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Figure 5.1. (A). RT-PCR showing the mRNA level of Pc-pat-10 after soaking with 
dsRNA of Pc-pat-10 alone and in combination with dsRNA of Pc-eri-1. (B) RT-
PCR showing the mRNA level of Pc-eri-1 after soaking with dsRNA of Pc-pat-10 
alone and in combination with dsRNA of Pc-eri-1. (24h) and (48h) indicate the 
soaking assays with dsRNA for 24h and recovery in water without dsRNA for 48h 
following the soaking assay, respectively. The soaking experiment was repeated 
twice 5.4.2. RNAi of Pc-eri-1 enhanced the sensitivity of Pc-pat-10 to siRNA. 
 

5.4.2. RNAi of Pc-eri-1 enhanced the sensitivity of Pc-pat-10 to siRNA. 

As a next step experiments were performed to compare dsRNA mediated silencing and 

siRNA mediated silencing and the influence of eri-1. For this purpose three 

concentrations of the S1 siRNA (50ng/µl, 100ng/µl, and 200ng/ml) of Pc-pat-10 were 

tested following the same methodology as for the dsRNA soaking. There was no 

significant degree of knock-down in Pc-pat-10 expression at any of the tested 

concentrations (Figure. 5.2A). In the next step experiment, three different siRNAs 

against the target gene were used and soaking was done with individual siRNAs as 

well as with all combinations of siRNAs for checking the knock-down efficacy.  

The RT-PCR on cDNA of the nematodes from all treatments showed that there was no 

significant reduction in the mRNA level of Pc-pat-10 (Figure. 5.2B) and very few 
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nematodes with abnormal phenotype were observed after 24h of soaking with the 

siRNA.  

Since the combinatorial soaking with dsRNA of Pc-eri-1 enhanced the RNAi 

persistence, the down regulation of eri-1 prior to siRNA soaking might improve the 

RNAi efficacy. The soaking with dsRNA of Pc-eri-1 alone for 24h showed significant 

reduction in the transcript level of the Pc-eri-1 and the knock-down effect was still very 

clear after 48h of recovery in water (Figure. 5.2C). Therefore the nematodes were 

treated with Pc-patS1 at the concentration of 200ng/µl following the soaking with 

dsRNA of Pc-eri-1 for 24h. Notably, a significant knock-down of Pc-pat-10 was 

observed after the siRNA soak (Figure. 5.2D). Thus silencing of Pc-eri-1 has 

considerably enhanced the knock-down efficacy of Pc-pat-10 siRNA. However, the 

silencing of Pc- eri-1 did not influence the silencing efficacy of Pc-patS2 and Pc-patS3 

(data not shown) 
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Figure 5.2. (A) RT-PCR showing amplification of Pc-pat-10 at three 
concentrations of Pc-patS1 siRNA (50ng/µl, 100ng/µl and 200ng/µl) (B) RT-PCR 
showing amplification of Pc-pat-10 in all combinations of siRNAs at 200ng/µl; 
(S1,S2,S3,S1.2,S1.3,S2.3,S1.2.3) indicate all combinations of the three siRNAs of Pc-pat-
10 (C) RT-PCR showing amplification of Pc-eri-1 after 24h of dsRNA soaking with 
dsRNA of Pc-eri-1 and a 48h recovery period. (D) RT-PCR showing amplification 
of Pc-pat-10 after soaking with Pc-patS1 alone for 24h and also in combination 
with dsRNA of Pc-eri-1. Each soaking assay was done two times 

5.4.3 Recovery from the RNAi-induced pat phenotype is delayed following the 

combinatorial soaking of Pc-pat-10 and Pc-eri-1 dsRNAs. 

To check if the RNAi persistence of the Pc-pat-10 transcript level after combinatorial 

soaking with Pc-eri-1 is also reflected in the prolongation of the RNAi phenotype after 

48h recovery, another independent soaking assay was done.  



                                                                                                                                         Chapter five 

 

 

131 

 

Earlier reports on in vitro RNAi in G. pallida, a cyst nematode and M. incognita, a root-

knot nematode have shown that high concentrations of non-specific dsRNA impair 

movement of the nematodes (Dalzell et al., 2009). Therefore, we included a control by 

soaking nematodes in, a gene that is expressed in the subventral glands and encodes 

an endoglucanase. As shown in Table 5.3, nematodes soaked in dsRNA of Pc-eng-1 

did not show any difference from the control nematodes in water. 

Table 5.2. Visual scoring of 'pat' phenotype estimating the effect of Pc-pat-10 
dsRNA 

Incubation period  dsRNA/siRNA                                   %score ‘pat’ phenotype 

24h Water                                                                   - 

48h Water                                                                   - 

24h Pc-pat-10 dsRNA                                           65.2±8.3 

48h Pc-pat-10 dsRNA                                           32.5±8.5 

24h Pc-eng-1 dsRNA                                                  - 

48h Pc-eng-1 dsRNA                                                  - 

24h Pc-pat-10+Pc-eri-1dsRNA                             63.5±6.4 

48h Pc-pat-10+Pc-eri-1dsRNA                             57.3±8.1 

24h Pc-pat-10 siRNA                                            12.0±4.1 

48h Pc-pat-10 siRNA                                            10.0±4.5 

24h Pc-eri-1 dsRNA                                                    - 

48h Pc-eri-1 dsRNA                                                    - 

  

Nematodes were incubated in dsRNA of Pc-pat-10, Pc-eng-1, and Pc-eri-1 and also with 
dsRNA combinations of Pc-pat-10 and Pc-eri-1 for 24h and recovered for 48h in water without 
dsRNA and other soaking components. The percentage of the nematodes showing ‘pat’ 
phenotype was estimated in each treatment. The experiment was done twice keeping all 
parameters consistent. Pc-eng-1 and Pc-eri-1 dsRNAs were used as negative dsRNA controls 
for checking non-specific inhibitory action of dsRNA on nematode motility. Additionally the 
nematodes were soaked in the same solution but without dsRNA as non-RNAi control. Since 
the soaking assay with Pc-pat-10 siRNAs did not elicit a significant knock-down effect, the 
soaking assay was also done with the siRNA, Pc-patS1 at a concentration of 200ng/µl as an 
additional reference for scoring the phenotype. Approximately 700 nematodes were used for 
each treatment. The experiment was repeated two times. 

As indicated in Table 3, 65.2±8.3% of the nematodes incubated in dsRNA of Pc-pat-10 

alone for 24h, and 63.5±6.4% of the nematodes incubated with dsRNA of Pc-pat-10 

and Pc-eri-1 showed the ‘paralyzed’ phenotype.  
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While 32.5±8.5% of the nematodes treated with dsRNA of Pc-pat-10 showed the RNAi 

phenotype after the 48h recovery period, 57.3±8.1% of the nematodes treated with 

dsRNAs of Pc-pat-10 and Pc-eri-1 showed the ‘paralyzed phenotype. This indicates 

that about 50% of the nematodes recovered from the RNAi effect in the treatment 

without the silencing of Pc-eri-1 whereas only approximately 10% of the nematodes 

were able to recover when Pc-eri-1 was down regulated. The incubation of the 

nematodes in water or in dsRNA against Pc-eng-1 and Pc-eri-1 did not elicit any 

inhibitory effect on nematode phenotype. The transcript level of both genes was 

checked by semi quantitative RT-PCR (data not shown) and the results were similar to 

the experiment described above. 

5.4.4 A decline in Pc-gfl-1 expression suppresses the RNAi of Pc-pat-10 

If Pc-gfl-1 is a requisite for RNAi in P. coffeae, the silencing of Pc-gfl-1 might influence 

the RNAi of Pc-pat-10.To test this hypothesis, the nematodes were subjected to 

combinatorial soaking with dsRNA of Pc-gfl-1 and Pc-pat-10. The nematodes were 

soaked for 24h in the dsRNA solution, removed and allowed to recover for 48h in 

water. The expression of Pc-pat-10 and Pc-gfl-1 was measured by semi-quantitative 

PCR.  

The expression of Pc-gfl-1 mRNA was significantly down regulated after 24h of 

soaking. The transcript was still severely silenced after 48h of recovery. However, there 

was no significant reduction in the transcript level of Pc-pat-10 either after 24h or after 

48h of recovery (Figure. 5.3). This suggests that dsRNA of Pc-gfl-1 is a potent 

suppressor of Pc-pat-10 RNAi and hence Pc-gfl-1 itself could be an enhancer of RNAi. 
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Figure 5.3. RT-PCR showing the mRNA level of Pc-pat-10 and Pc-gfl-1 after 
soaking with dsRNA of Pc-pat-10 in combination with dsRNA of pc-gfl-1. (24h) 
and (48h) indicates the soaking assays with dsRNA for 24h and recovery in water 
without dsRNA for 48h following the soaking assay, respectively. As a reference 
gene for normalizing the quantity of cDNA in each sample Pc-actin was 
amplified. The soaking assay was done two times. 

5.4.5 The silencing of Pc-eri-1 and Pc-gfl-1 did not influence RNAi of Pc-eng-1 

To determine whether the silencing of Pc-eri-1 and Pc-gfl-1 has similar influence on 

RNAi of other target genes, the combinatorial soaking assay was repeated with dsRNA 

of Pc-unc-87 and also with Pc-eng-1. The soaking with dsRNA of Pc-eng-1 alone and 

also in combination with dsRNA of Pc-eri-1 as well as Pc-gfl-1 was done as mentioned 

previously. The semi quantitative RT-PCR was done on the cDNA isolated from the 

nematodes incubated in the dsRNA for 24h and also from those incubated in water for 

48h of recovery. A very strong reduction in the mRNA level of Pc-eng-1 was found after 

24h of soaking with dsRNA of Pc-eng-1 alone and this silencing effect strongly 

persisted even after 48h of recovery.  

This was in contrast with the observation in the RNAi of Pc-pat-10 where a significant 

recovery of the transcript was found after 48h of recovery.  
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The combinatorial soaking with Pc-eri-1 also showed significant silencing of Pc-eng-1 

following the 24h of soak as well as 48h of recovery (Figure. 5.4A). However, this result 

does not allow coming to a conclusion on a possible influence of Pc-eri-1 on the 

silencing of Pc-eng-1. The combinatorial soaking with dsRNA of Pc-gfl-1 also resulted 

in pronounced knock-down of Pc-eng-1 (Figure. 5.4B). Thus, dsRNA of Pc-gfl-1 was 

not able to suppress the silencing of Pc-eng-1 despite the silencing of Pc-gfl-1. 

Similarly the experiment was repeated for dsRNA of Pc-unc-87 and the silencing of 

neither Pc-eri-1 nor Pc-gfl-1 did influence the RNAi of Pc-unc-87 (results not shown).  

 

Figure 5.4. (A) RT-PCR showing the mRNA level of Pc-eng-1 after soaking with 
dsRNA of Pc-eng-1 alone and in combination with dsRNA of Pc-eri-1.(B) RT-PCR 
showing the mRNA level of Pc-eng-1 and Pc-gfl-1 after soaking with dsRNA of 
Pc-eng-1 in combination with dsRNA of Pc-gfl-1. (24h) and (48h) indicates the 
soaking assays with dsRNA for 24h and recovery in water without dsRNA for 48h 
following the  soaking assay, respectively. The assay was performed two times. 
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5.5 Discussion 

The susceptibility to RNAi has been tested across various species of PPN including 

sedentary endoparasitic and migratory nematodes (Cheng et al., 2010; Dalzell et al., 

2010a; Haegeman et al., 2009b; Kang et al., 2011; Vanholme et al., 2007; Visser et al., 

2006). In our previous study (Chapter 2) it was demonstrated that the migratory 

nematode P. coffeae has a functional RNAi machinery by silencing two P. coffeae 

orthologs of C. elegans genes, namely pat-10 and unc-87. We have shown that the 

introduction of dsRNA, through soaking, results in significant reduction of the targeted 

mRNA, and this reduction is sufficient to cause loss-of-function phenotype. However, a 

profound recovery of the two targeted transcripts and the RNAi phenotype in both 

cases was observed after 24h of recovery in water.  

To identify the possible involvement of RNAi effectors in this recovery we investigated 

the influence of two P. coffeae orthologs of C. elegans genes involved in RNAi 

regulation, namely eri-1and gfl-1. 

Our hypothesis to explain the recovery mechanism in P. coffeae was that the 

generation of secondary siRNAs may not be very efficient in somatic cells of the 

nematode because most of the proteins linked to the amplification of secondary 

siRNAs in soma are poorly conserved in P. coffeae. Consequently, siRNA population 

available for the effective silencing is probably limited and the nematode may require a 

high dose of siRNAs to elicit an efficient silencing. By down regulating Pc-eri-1 it might 

be possible to enhance RNAi efficiency by increasing the siRNA population available 

for the silencing machinery as observed in C. elegans. Hence the influence of Pc-eri-1 

was tested on RNAi of different genes located in different tissues of the nematode such 

as body wall muscles and secretory gland cells. 
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In the combinatorial RNAi with Pc-pat-10 and Pc-eri-1, the nematode showed 

enhanced sensitivity to RNAi by prolonging the Pc-pat-10 silencing effect even 48h 

after the withdrawal of dsRNAs from the soaking solution. Consistent with the knock-

down level of the Pc-pat-10 transcript the scoring of phenotypes showed a significant 

persistence of the ‘pat’ phenotype in the nematodes even after 48h of recovery by co-

silencing Pc-eri-1. To confirm further the influence of Pc-eri-1 on siRNA accumulation, 

the RNAi efficiency was compared in a soak with siRNA of Pc-pat-10 and in the 

combinatorial RNAi after silencing Pc-eri-1. The pronounced enhancement in RNAi 

efficiency during the soak with siRNA (Pc-patS1) following the silencing of Pc-eri-1 in 

the nematode clearly indicates that the RNAi of Pc-pat-10 is negatively influenced by 

eri-1.  

Although eri-1 was isolated in a screen mainly for enhanced neuronal RNAi in C. 

elegans and its expression is restricted to neurons and gonads, it has been shown that 

loss of eri-1 activity causes a generalized increase in the efficacy of RNAi in most 

tissues. Kennedy et al. (2004) and Zhuang and Hunter, (2011b) demonstrated that the 

eri-1 mutation in C. elegans enhances RNAi for mRNAs expressed in non-neuronal 

tissues such as body wall muscle, pharynx, intestine, muscle, and cuticle. Our results 

demonstrating the improved RNAi of Pc-pat-10 expressed in body wall muscles of P. 

coffeae when eri-1 is co-silenced are consistent with these observations in C. elegans. 

However, the silencing of Pc-eri-1 did not show similar impact in the case of Pc-eng-1 

and Pc-unc-87. This implies that the silencing of Pc-eri-1 only enhances the RNAi of 

specific genes. Zhuang and Hunter (2011b) also pointed out that RNAi sensitivity 

among eri mutants differs among different tissues as well as the genes expressed in 

the same tissue. 
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Based on current understanding, the mode of action of Eri class genes on regulation of 

exogenous RNAi is indirect by a cross regulation between exogenous and endogenous 

RNAi (Chapter 1, Section 1.6.1.3). The mutation of Eri genes reduces activity of other 

endogenous RNAi pathways, resulting in elevation of critical components of the RNAi 

machinery such as Dicer, RRF-1, SAGOs (Lee et al., 2006; Pavelec et al., 2009; 

Zhuang and Hunter, 2012). The general enhancement of RNAi irrespective of Pc-eri-1 

location and tissue/ gene specific RNAi sensitivity also supports that the influence of 

Pc-eri-1 on exogenous RNAI might be indirect. And probably the competition for 

limiting resources may differ among the tissues due to tissue specific components of 

competing small RNA pathways and thus a tissue specific enhancement to RNAi has 

been observed when Pc-eri-1 is co-silenced (Zhuang and Hunter 11b). However, 

based on the transcriptome analysis, we expect that the limiting resources for 

competing RNAi pathways in P. coffeae might be, mainly, DCR-1 because other 

components were not identified in the analysis. 

RNAi of Pc-eng-1 was very strong and the influence of Pc-eri-1 RNAi on Pc-eng-1 

expression was not very clear from the results obtained in the study. Compared to 

RNAi of Pc-pat-10 and Pc-unc-87, the individual soaking with corresponding dsRNAs 

produced a more efficient knock-down effect and persistence of RNAi in the case of 

Pc-eng-1, which shows that RNAi may not be always transient in P. coffeae and it can 

be gene specific. Similar to Pc-eri-1, we observed that the impact of Pc-gfl-1 on RNAi 

was also gene-specific. Among the target genes tested here, only Pc-pat-10 seems to 

be positively regulated by Pc-gfl-1 while Pc-eng-1 and Pc-unc-87 were not influenced 

by the silencing of Pc-gfl-1. From our present data it is clear that only Pc-pat-10 is more 

sensitive to the regulatory action of Pc-eri-1 and Pc-gfl-1 compared to the two other 

target genes.  
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The gene specific influence of these RNAi regulators underscores the need for their 

careful characterization for better utilization of these regulators as RNAi tools in P. 

coffeae. 

We also observed that the RNAi induced by dsRNA is more efficient than by siRNA in 

P. coffeae. This is in contrast with the observation in other PPN where a very efficient 

knock-down effect by siRNA was found even at a low concentration (Dalzell et al., 

2010b). However, the RNAi susceptibility to siRNA varies among parasitic nematodes 

(Issa et al., 2005). In our study a reduction in mRNA abundance of the target gene in P. 

coffeae was not observed at low concentration (50ng/µl and 100ng/µl).  

Coupled with the down regulation of Pc-eri-1, the siRNA at the concentration of 

200ng/µl induced a significant degree of knock-down effect in the nematode. In C. 

elegans rde-4 (an RNAi pathway component essential for the processing and 

accumulation of primary siRNA) mutants have been found to accumulate higher levels 

of primary siRNAs after exposing the nematode to a higher concentration of dsRNA. 

This supports the notion that an RNAi response in the nematode varies with different 

conditions (Habig et al., 2008). Although PPN are less efficient in taking up substantial 

amount of dsRNA as compared to C. elegans, we also expect that the optimal dose of 

siRNA to trigger RNAi for the target genes might differ among the parasitic nematode 

species depending on the RNAi regulatory mechanism of the nematode. Notably, 

based on transcriptome analysis of P. coffeae, P. coffeae is probably also rde-4 

deficient (Haegeman et al., 2011) and hence it is possible that the absence of RNAi 

effectors such as rrf-1,rde-4 may also have some influence on the concentration of 

silencing trigger used to elicit a significant RNAi response in P. coffeae.  

The approach of combinatorial RNAi has been successfully used in C. elegans to 

identify genes with potential roles in RNAi (Dudley et al., 2002; Geldhof et al., 2006b; 
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Min et al., 2010; Timmons, 2004). The combinatorial RNAi has also been demonstrated 

in Drosophila as a tool for functional genomics by co-injecting multiple dsRNAs 

(Schmid et al., 2002). However it has been reported that the use of combinatorial RNAi 

targeting two genes concurrently in H. glycines produced unexpected elevation in the 

mRNA level of one of the target genes after the RNAi (Bakhetia et al., 2008). 

Therefore it was indeed necessary to use a threshold level of dsRNA concentration for 

the treatment so that it would result in a phenotype with high penetrance without 

generating non-specific toxicity. In our study a significant reduction in the mRNA level 

of both target genes simultaneously was obtained by using a total concentration of 

dsRNA in the soaking solution to 1µg/µl. 

The earlier reports have also shown that even non-nematode derived double stranded 

RNAs can induce profound phenotypic changes in M. incognita and G. pallida (Dalzell 

et al., 2009). Hence to confirm that the observed effect on mobility is the result of 

specific target silencing of Pc-pat-10, dsRNA of Pc-eri-1 and Pc-eng-1, genes that do 

not have any influence on nematode movement in P. coffeae were used as negative 

control (see also Chapter 2). In addition, the use of relatively high dose of siRNA 

compared to the concentration used in M. incognita and G. pallida did not generate any 

inhibitory phenotype in P. coffeae. The juveniles incubated in all siRNAs including 

against Pc-eng-1 and a non-nematode gene (gfp) have shown normal sinusoidal 

movement at the three tested concentrations of siRNA. Hence the threshold level of 

dsRNA concentration to generate a phenotype with high penetrance without generating 

nonspecific toxicity may be comparatively higher in P. coffeae while compared to 

Globodera and Meloidogyne.  

In the present study, although we see that co-silencing of Pc-eri-1 enhanced the RNAi 

efficiency in Pc-pat-10 RNAi, it is necessary to test this influence on more target genes 



Silencing Pc-eri-1 can improve the efficiency and persistence of Pc-pat-10 RNAi in P. coffeae 

 

 

140 

 

expressed in different tissues. However, consistent with our results, Hong et al. (2005) 

proved that the rapid disappearance of siRNA was linked to up regulation of eri-1 and 

adar-1 in mice and this rebound effect of siRNA was eliminated by co-transfection of 

another siRNA against eri-1. Additionally, the notion that eri-1 may modulate 

exogenous RNAi in P. coffeae as it does in C. elegans may be biologically significant, 

as this nematode does not encode currently recognizable RdRPs such as RRF-1, 

required for secondary siRNA amplification in somatic cells.  

The current study raises a series of interesting questions yet to be addressed. For 

example, in C. elegans, the expression of eri-1 is restricted to gonads and a subset of 

neurons and almost all genes expressed in these tissues are refractory to RNAi. 

Strikingly, in the plant-parasitic nematode G. pallida the neuronal gene Gp-flp-12 is 

highly susceptible to RNAi. Furthermore, only two RNAi inhibitor orthologs of C. 

elegans genes, eri-1 and xrn-2, the miRNA 5’-3’ exonuclease are fully conserved in P. 

coffeae and other PPN (Dalzell et al., 2011). It is yet to be seen if the expression level 

and distribution of eri-1 and/or other RNAi pathway components in P. coffeae vary from 

that of C. elegans. Further understanding of these issues may give us more insight on 

RNAi regulation in P. coffeae and other PPN. In order to improve the efficiency and 

potency of RNAi the influence of other RNAi pathway components on the modulation of 

the RNAi response in PPN should also be analyzed.  

In summary, our findings presented here suggest that it might be possible to enhance 

RNAi potency and persistence by down regulating eri-1 along with the target gene. 

Additionally the combinatorial RNAi can be a possible approach in PPN to characterize 

genes involved in the RNAi pathway.  
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6.1 Abstract 

Application of host-derived RNAi as control strategy against different species of 

parasitic nematodes has been reported by different research groups. However, the 

feasibility of its application in other economically important migratory nematodes 

species has not been efficiently studied. An in vitro RNAi screening as a preliminary 

requirement for host derived RNAi has been performed to select optimal targets that 

are susceptible to RNAi in Radopholus similis, one of the major parasitic nematode of 

banana. The in vitro RNAi results from this study showed that RNA interference can be 

induced in R. similis by feeding with dsRNA as reported previously in other PPN. 

However, a variable level of the silencing effect was observed among the targets 

tested in the study. The selected target genes have also been tested for their role in 

inducing parasitic success of the nematode by in vitro infection test on a host plant, 

Medicago truncatula. Vectors for dsRNA production in banana against R. similis were 

constructed for a parasitism gene, Rs-eng1B and a housekeeping gene essential for 

nematode development, Rs-icd-1 using the gateway recombinational cloning system. 

Banana plants were transformed using the dsRNA vectors and the presence and 

integration of the target genes were confirmed by PCR and Southern hybridization. 

However screening of the transgenic banana plants for nematode resistance by 

infection test was not performed due to poor establishment of transgenic plants. 

Nevertheless, the present study has demonstrated the possibility of using RNAi-

mediated silencing of the genes involved in parasitism or nematode development in the 

control of R. similis parasitism. 
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6.2 Introduction 

The application of RNAi for functional analysis of genes has been reported by several 

research groups in different species of PPN (Chapter 1, Section 1.7.1). As described in 

Chapter 2 and 5, the nematodes are exposed to dsRNA /siRNA to a limited period of 

time when the nematodes are soaked in the soaking solution and hence the resulting 

RNAi effect can be time limited. As an alternative approach to maximise the RNAi 

effect, dsRNA/siRNAs can be continuosly introduced into the feeding PPN by 

generating RNAi within the host plants. Additionally, this approach of host-generated 

RNAi can be an effective control strategy to suppress the parasitic success of 

nematodes within the host plants (Chapter 1, Section 1.7.2). 

Several studies have shown extremely promising results in controlling nematode 

infection by host-derived RNAi approach. Almost complete resistance against root-knot 

nematodes was achieved by expressing hairpin RNAs targeting essential genes of the 

nematodes (Yadav et al., 2006; Li et al., 2010). In addition to this, studies have also 

shown that a high level of resistance to root-knot nematodes and cyst-forming 

nematodes can be obtained by targeting parasitism genes expressed in the subventral 

gland cells of the nematodes (Huang et al., 2006; Steeves et al., 2006; Sindhu et al., 

2009; Klink et al., 2009; Xue et al., 2013).  

However, as compared to RKN, a strong suppression of nematodes was not detected 

in the case of cyst nematodes. While a significant reduction in female number of 

between 23-64% was observed in cyst-forming nematodes, the transgenic lines 

expressing dsRNA of RKN genes displayed a significant reduction between 63-90% 

(Huang et al., 2006). Limited study has been done to determine the efficiency of RNAi 

in the migratory endoparasitic nematodes.  
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Haegeman et al. (2009b) showed that soaking of R. similis in dsRNA of xylanase gene 

resulted in 60% reduction in subsequent infection of Medicago truncatula. The 

efficiency of host-delivered RNAi has yet to be tested against migratory endo parasitic 

nematodes. RNA interference is used in this study in an attempt to engineer host 

resistance against the migratory parasitic nematode R. similis. In this chapter, the 

susceptibility of R. similis to RNAi is first tested by in vitro soaking as demonstrated in 

Chapters 2 and 5 for P. coffeae. The second aim of this study is to assess the 

feasibility of using RNAi to control R. similis in banana.  

Migratory nematodes invade the roots and move intercellularly and intracellularly 

through the root by breaking down the cell wall. By knocking down nematode genes 

that encode cell wall-degrading enzymes (e.g. β-1, 4-endoglucanase) the invasion and 

subsequent establishment of the nematode in the plant could be prevented. Four 

different endoglucanases of the glycosyl hydrolase family 5 were identified in R. similis 

(Haegeman et al., 2008). Here, two of these genes, Rs-eng2 and Rs-eng1B, are used 

as targets for in vitro RNAi experiments. Rs-eng1B encodes for a protein with a 

catalytic domain and an additional Carbohydrate Binding Module (CBM), whereas Rs-

eng2 is devoid of a CBM. In addition to these β-1, 4 endoglucanase genes specific to 

parasitic nematodes, the orthologs of the C. elegans housekeeping genes, Rs-icd-1 

(Inhibitor of cell death-1), Rs-rpl-1 (Ribosomal protein large subunit), Rs-iff-2 [Initiation 

Factor Five (eIF-5A) homolog] and Rs-integ (Integrase) are also targeted for silencing. 

By down regulating the genes that play important roles in embryonic and larval 

development or nematode locomotion, the complete progression of pathogenesis could 

be adversely affected.  

Based on this hypothesis the proposed study aims to develop an alternative control 

strategy against migratory nematodes by knocking down the abovementioned 
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parasitism or housekeeping genes. The chosen strategy is to deliver dsRNA to the 

nematodes through in planta routes by expressing the dsRNA of the target genes in 

banana plants. So far, this in planta route has not been reported for migratory 

nematodes. The present study, therefore, aims to test the feasibility of in planta RNAi 

for control of migratory nematodes. 

6.3 Materials and methods 

6.3.1 Nematode culturing, RNA isolation and cDNA synthesis 

Radopholus similis was maintained on carrot discs in small petri dishes (ᴓ 35 mm) at a 

constant temperature of 25°C as described by Moody et al. (1973). Nematodes were 

harvested by rinsing the petri dishes with sterile demineralised water 6-8 weeks after 

inoculating the discs with approximately 50 nematodes. The collected nematodes were 

either used immediately or stored as a pellet for RNA extraction (Chapter 5, 

Section.5.3.1) at 4°C following centrifugation at 12000rpm for 2min. The cDNA was 

synthesised as described in Chapter 5 (Section.5.4.1). 

6.3.2 Selection of the target genes, synthesis of dsRNA, soaking and semi-

quantitative RT-PCR 

In addition to the nematode parasitism genes Rs-eng1B and Rs-eng2, the orthologs of 

four housekeeping gene, namely Rs-rpl-1, Rs-iff-2, Rs-icd-1 and Rs-integ, which have 

shown a lethal RNAi phenotype in C. elegans (http://www.wormbase.org), have been 

selected. The similarity of these targets with other parasitic nematodes like 

Meloidogyne sp and Pratylenchus sp and plants was checked using Blast searches 

through the NCBI database (http://www.ncbi.nlm.nih.gov/BLAST/) to ensure that the 

selected genes are specific to parasitic nematodes.  
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The target gene fragments, Rs-eng1B (292bp), Rs-eng2 (221bp), Rs-integ (269bp), 

Rs-icd-1 (267bp), Rs-iif-1 (259bp) and Rs-rpl-1 (233bp) were amplified from cDNA of 

nematodes freshly isolated from  carrot discs using the primer combinations mentioned 

in Table 6.1a with the following cycling conditions: 94°C for 2 min, followed by 35 

cycles of 94°C for 25 s, 50°C for 25 s, 72°C for 50 s. The target sequences were 

cloned into the pGEM-T vector (Promega) and confirmed by sequencing. The 

templates of sense and antisense DNA strands for generating dsRNA were amplified 

from the vector carrying the inserts of each target gene by PCR under standard 

conditions using the respective primers with the T7 promoter sequence incorporated at 

the 5’end of either the sense or antisense strand (Table 6.1a). The green fluorescent 

protein (GFP) was used as a negative control to determine the non-specific action of 

dsRNA. The in vitro transcription and dsRNA assembly of each target gene was 

performed using the Megascript RNAi kit (Ambion, Huntingdon, UK) according to the 

manufacturer’s instructions. The dsRNA was quantified spectrophotometrically and the 

quality of the dsRNA was checked on a 1% (w/v) agarose gel. 

Approximately 1000 nematodes (juveniles and adults) of R. similis freshly isolated from 

carrot discs were soaked in a soaking solution (200µl) containing dsRNA of the target 

gene (1 µg/µl), 50 mM octopamine and 3 mM spermidine in separate 2 ml eppendorf 

tubes for each treatment. As a negative control the nematodes were incubated in the 

same solution but without dsRNA (non-RNAi) in addition to the gfp-dsRNA control.  

The tubes were covered with aluminium foil and placed on a rotary incubator for 24h at 

room temperature. After soaking, nematodes were centrifuged for 2 min at 1000 rpm, 

sterilized with 0.33% (v/v) of Hospital Antiseptic Solution (HAC) for 1 h on a rotator and 

room temperature and subsequently, washed three times with sterile water prior to the 
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infection test (Section 6.3.3). Approximately 500 soaked nematodes were used for 

semi-quantitative RT-PCR.  

The RNA extraction and cDNA synthesis were done as described in Chapter 2. The 

primers used for the amplification of each target gene are listed in Table 6.1b. The 

amount of cDNA used as template for each reaction and the number of PCR cycles 

were optimised for each gene product to detect the exponential phase of the reaction. 

The optimised number of PCR cycles for Rs-eng 1B and Rs-eng2 were 32 and 28 

cycles, respectively whereas the amplification of other target genes, Rs-integ, Rs-icd-1, 

Rs-iff-2 and Rs-rpl-1 was optimized at 35 cycles. The products from the PCR reactions 

were separated on a 0.5x TAE (20 mM Tris acetate, 1 mM EDTA) 1.5% gel. 
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Table 6.1a. Primers used for cloning and in vitro RNAi experiments 

Target 
gene 

Primer 
name 

Sequence (5’ to 3’) Tm(o

C) 

 
Primers used for cloning 

 

Rs-integ Rs-integ-F 
Rs-integ-R 

ATCAAAAGTCGTGGGAGTGC 
GTCCACCAGAGACTGATTGC 
 

52 
52 

Rs-iif-2 
 

Rs-iff2-F 
Rs-iff-2-R 

TTTGCTTGCAAAACGAAGG 
TTCGAAGACCGGTAAACACG 
 

50 
53 

Rs-rpl-1 
 

Rs-rpl-1-F 
Rs-rpl-1-R 
 

GCGCCCAATCAGTAGAGG 
AAAAGGACAAGCGTTTCAGC 

52 
52 

Rs-icd-1 Rs-icd-1-F 
Rs-icd-1-R 

GCTCTCCTATTCGTTCACAACC 
GATGAACTTTCTCGTCGATGG 

54 
53 

Primers used for template amplification for in vitro transcription  

 
Gfp 

Gfp-F 
Gfp-R 
Gfp-T7F 
Gfp-T7R 

ATCCGCCACAACATCGAGG 
TTGTACAGCTCGTCCATGC 
TAATACGACTCACTATAGGGATCCGCCACAACATCG 
TAATACGACTCACTATAGGGTTGTACAGCTCGTCCA 
 

53 
51 
65 
64 

Rs-eng2 EG8start 
EG8start-T7 
EG8-R 
EG8-T7R 

GTCAGCGCCACTTACCAGTC 
ACGTCCTGGGACCATGTG 
TAATACGACTCACTATAGGGGTCAGCGCCACTTACCAGTC 
TAATACGACTCACTATAGGGACGTCCTGGGACCATGTG 
 

56 
53 
68 
67 

Rs-
eng1B 

EG2-CBD-F 
EG2Stop 
EG2-CBD-T7F 
EG2Stop-T7  

CTCAGTGACCGCTTCGGTGTC 
TCAGCATCCACTGGTGGACACAATT 
TAATACGACTCACTATAGGGCTCAGTGACCGCTTCGGTGTC 
TAATACGACTCACTATAGGGTCAGCATCCACTGGTGGACACA 

58 
58 
69 
68 

Rs-icd-1 Rs-icd-1-T7F3 
Rs-icd-1-T7R3 
Rs-icd-1-F3 
Rs-icd-1-R3 

TAATACGACTCACTATAGGGAGACCATTTCAACAATCCGAAGG 
TAATACGACTCACTATAGGGAGATTTGTTCCATCGTCAACAGC 
CCATTTCAACAATCCGAAGG 
TTTGTTCCATCGTCAACAGC 

66 
66 
50 
51 

Rs-integ Rs-integ-F3 
Rs-integ-T7F3 
Rs-integ_R3 
Rs-integ-T7R3 

CCTTGTTCCACTCCTTCAGC 
TAATACGACTCACTATAGGGAGACCTTGTTCCACTCCTTCAGC 
GGCAAAAATGTGTTCACAGG 
TAATACGACTCACTATAGGGAGAGGCAAAAATGTGTTCACAGG 
 

53 
68 
49 
66 

Rs-iff-2 Rs-iif-2-F3 
Rs-iif-2-T7F3 
Rs-iif-2-R3 
Rs-iif-2-T7R3 

CATCCTCCTCCATTTTCACC 
TAATACGACTCACTATAGGGAGACATCCTCCTCCATTTTCACC 
ATGAGGACGGTTTTGTCAGC 
TAATACGACTCACTATAGGGATGAGGACGGTTTTGTCAGC 

50 
67 
52 
66 

Rs-rpl-1 Rs-rpl-1-F3 
Rs-rpl-1-R3 
Rs-rpl-1-T7F3 
Rs-rpl-1-T7R3 

CGGGATCTGTTTGATCAGC 
AAAAGGACAAGCGTTTCAGC 
TAATACGACTCACTATAGGGAGACGGGATCTGTTTGATCAGC 
TAATACGACTCACTATAGGGAGAAAAAGGACAAGCGTTTCAGC 

51 
52 
67 
66 

Rs-integ, Rs-icd-1, Rs-iff-2 andRs-rpl-1 indicate C. elegans orthologs of integrase, icd-1, iff-2 
and rpl-1, respectively. A fragment from CBM domain of Rs-eng1B and a fragment from 
catalytic domain of Rs-eng2 were amplified. 
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Table 6.1b. Primers used for semi quantitative RT-PCR and Gateway cloning 

Target 
gene 

Primer name Sequence (5’ to 3’) Tm 
(oC) 

Primers used for semi quantitative PCR 

Rs-actin Rs-act-R 
Rs-act-F 

GACCTCACTGACTACCTGATGAAGATTC 
ACTTCATGATCGAGTTGTAGGTGGACTCG 

59 
61 

Rs-icd-1 Rs-icd-1-R4 
Rs-icd-1-F2 

CCTTCGGATTGTTGAAATGG 
GCTCTCCTATTCGTTCACAACC 

58 
56 

Rs-eng1B EG2 Sp-R 
EG2 Sp-F 

TGATTGGGTTCGCGGATGCGACTT 
TCGCCTCAGCCACTGCATTGACT 

59 
58 

Rs-eng2 EG8down 
EG8stop 

ACTGCCGACGGAAATGGCTACGTG 
TCAGCAGCTCACACCGTTCTTTTGG 

60 
59 

Rs-integ Rs-integ-F3 
Rs-integ-R2 

CCTTGTTCCACTCCTTCAGC 
GTCCACCAGAGACTGATTGC 

58 
56 

Rs-iff-2 Rs-iif-2-F3 
Rs-iif2-R2 

CATCCTCCTCCATTTTCACC 
TTCGAAGACCGGTAAACACG 

56 
58 

Rs-rpl-1 Rs-rpl-1-F3 
Rs-rpl-1-R1 

CGGGATCTGTTTGATCAGC 
AGCGCAGGAAAAGAAGCG 

56 
60 

Primers used for Gateway cloning 

Rs-eng1B EG2CBDF-
Gw 
EG2stop-Gw 

AAAAAGCAGGCTCTCAGTGACCGCTTCGGTGTC 
AGAAAGCTGGGTTCAGCATCCACTGGTGGACACAATT 

62 
67 

Rs-icd-1 Rs-icd-1-GwF 
Rs-icd-1-GwR 

AAAAAGCAGGCTCCATTTCAACAATCCGAAGG 
AGAAAGCTGGGTTTTGTTCCATCGTCAACAGC 

62 
63 

Mi-integ Mi-Integ-GwF 
Mi-Integ-GwR 

AAAAAGCAGGCTATGTCAAAGGCAACGTATGGA 
AGAAAGCTGGGTTTCAGCAATCATTTCAGGGG 

62 
63 

Mi-integ indicates ortholog of integrase from M. incognita while Rs-integ indicates the ortholog 
of integrase from R. similis. 

6.3.3 In vitro Infection Test and Analysis 

Medicago truncatula L.var Jemalong was used as a model plant for in vitro infection 

studies to analyse the RNAi effect on nematode invasion. Medicago seeds were 

obtained from the United states Department of Agriculture (USDA).  

The seeds were scarified by soaking in concentrated anhydrous H2SO4 for 8 min, 

followed by 4 times rinsing in water, and subsequent incubation in 5% (w/v) NaCl for 3 

min. After rinsing the seeds again in water 6 times, they were kept at 4°C for 36 h. 

Following thorough rinsing with sterilized water, the treated seeds were transferred 

onto a Petri-dish lid using sterile micropipettes and distributed evenly on the plate 

(each seed in a drop of sterile water). The lid was carefully flipped over, placed on the 
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Petri-dish and kept in the dark for 2 days. Two day old seeds were randomly placed on 

Modified Strullu Romand (MSR) medium in six-well tissue culture plates, with each 

plate containing one seed (Elsen et al., 2000). Each treatment consisted of 10 

biological replicates. Seedlings were grown at 25°C with a 16 h light/8 h dark cycle.  

Three weeks old seedlings with a well-developed root system were inoculated with 50 

dsRNA treated nematodes per plant. The soaked nematodes were inoculated on the 

culture medium close to the root tip of the plant. The infected plants were kept in a 

plant room at 25°C with light intensity, 80-100 µmol.m-2.s-1 and photoperiod, 16h/8h 

(light/dark) for 10 days when the roots were separated from the medium for selective 

staining of the penetrated nematodes using the method described by Byrd et al. 

(1983). Roots in six-well tissue culture plates were soaked in diluted sodium 

hypochlorite bleach [0.9% (v/v) NaOCl] for 4 min, thoroughly rinsed with demineralized 

water, covered with acid fuchsin solution (30x stock solution: 3.9 g fuchsin, 750 ml 

water, 250 ml acetic acid) and heated twice for 10 s in the microwave. The stained 

roots were transferred into the oven (56°C) for 30 min and subsequently allowed to 

cool for 1 h 30 min. Further, the roots were destained by replacing the stain with 

acidified glycerine (8 drops of HCl/100ml glycerine). This procedure stains the 

nematodes that have penetrated the roots and the number of nematodes invaded the 

roots were counted, while the nematodes in the media were counted by cutting the 

media into small pieces and soaking them in glycerol for 24 h.  

The resultant suspension was put into a counting dish and the nematodes were 

counted and recorded as the number of the nematodes that were present outside the 

roots.  
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The results were analysed by One-way ANOVA using GenStat Release 13 for 

Windows (VSN International Ltd). The entire experiment was repeated twice for each 

target gene. 

6.3.4 Construction of plant transformation vectors 

Vectors for dsRNA production in the plant against R. similis were constructed for Rs-

eng1B and Rs-icd-1. Additionally, a vector was constructed for dsRNA to Mi-integ, an 

integrase gene from M. incognita (Yadav et al., 2006) as a positive control and gfp 

(received from VIB, Gent) as a negative control. The vectors were constructed using 

the gateway recombinational cloning system described by Karimi et al (2007). The 

cDNA of the target gene was cloned in sense as well as antisense directions into the 

Gateway entry vector pK (Hells) 8-GW-I-WG-UBIL (VIB, Gent, Belgium) under the 

control of a maize ubiquitin (UBIL) plant promoter and separated by an intron (Figure 

6.1) to generate a hairpin construct.  

The fragment of each target gene was generated by PCR amplification using the 

primer combinations listed in Table 6.1b with the following cycling conditions: 94°C for 

2 min, followed by 5 cycles of 94°C for 35 s, 45°C for 25 s, 72°C for 30 s and additional 

25 cycles of 94°C for 35 s, 54°C for 25 s, 72°C for 30s. The amplified fragments were 

cloned up (sense) and downstream (antisense) of the Pdk and cat (reverse) introns 

(Table 6.2) according to the manufacturer’s instructions (Invitrogen). The presence and 

orientation of the target gene fragments were confirmed by restriction digestion and 

sequencing. 
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Figure 6.1. Example of a transformation vector showing the hairpin construct of 
the integrase gene of Meloidogyne incognita (Mi-integ). The , 285 bp integrase 
gene fragment (position +10 to +635 of the integrase gene); Nos, nopaline 
synthase; UBIL, maize ubiquitin long promoter; Spec, Spectinomycin resistance; 
Pdk, pyruvate dehydrogenase kinase; cat, chloramphenicol acetyltransferase 
intron; OCS, Octopine Synthase; NPTII, neomycin phosphotransferase II coding 
region; attB1, attB2 and attB3, recombination sites. 
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Table 6.2. Size and position of the target gene fragments in the transformation 
vector 

Target gene Fragment size (bp) Fragment position in the 
target gene 

Rs-eng1B 250 +1913 to +2451 

Rs-icd-1 317 +297 to +614 

Mi-integ 285 +10 to +635 

Rs-eng-1B and Rs-icd-1 represent the target genes,
 
β-1, 4-endoglucanase and icd-1, from R. 

similis, respectively; Mi-integ represents the target gene; integrase from M. incognita 

6.3.5 Agrobacterium mediated transformation of banana, selection and 

regeneration of transgenic lines 

Transgenic shoots of banana were obtained by Agrobacterium-mediated 

transformation as described by Perez Hernandez et al. (2006a). Agrobacterium 

tumefaciens strain EHA101 harbouring vector pFAJ3000 carrying the gusAINT reporter 

gene under control of the 35S promoter (De Bondt et al., 1994) and those harbouring 

the dsRNA vectors targeting Rs-eng1B, Rs-icd-1, Mi-integ and gfp were used for 

transformation. The selectable marker gene, the neomycin phosphotransferase II 

(nptII) gene which confers resistance to geneticin, is driven by the Nos promoter.  

Embryogenic cell suspension (ECS) of the triploid AAA dessert banana variety ‘Grande 

Naine’ (obtained from The Laboratory of Tropical Crop Improvement, KU Leuven, 

Belgium) was used for transformation. The transformation protocol is briefly described 

below. The Agrobacterium strains carrying the respective vectors were plated on 

selective semi-solid YM medium supplemented with appropriate antibiotics (100 mg/l 

spectinomycin and 300 mg/l streptomycin for pFAJ3000 and 50 mg/l kanamycin for the 

other vectors) and incubated at 28°C for 48 h.  

Single bacterial colonies were cultured in selective liquid YEP medium and incubated 

at 210 rpm and 28°C for approximately 24 h to give an OD600 of 1.2. ECSs of 33% (w/v) 
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Settled Cell Volume (SCV) were infected with agrobacteria that had been adjusted to 

an OD600 of 0.4 in liquid ZZ medium (half strength MS medium supplemented with 5 µM 

2,4-D and 1 µM zeatin; pH 5.6) supplemented with 200 µM acetosyringone (AS). A 

bacterial suspension of 1 ml was mixed with 200 µl of 33% (w/v) SCV ECS in each well 

of 24-well plates and the plates were incubated for 6 h at 25°C and 25 rpm in the dark. 

The cells were then evenly spread on a 50 µm sterile polyester mesh (approximately 2 

x 2 cm per sample)and cocultivated for 6 days on 10 ml semi-solid ZZ medium (pH 5.8) 

containing 200 µM AS in a 5 cm Petri-dish at 21°C in the dark. 

The transformed cells were selected by transferring them to semi-solid ZZ medium (pH 

5.8) supplemented with geneticin (50 mg/ml) and timentin (200 mg/ml). The plated 

cultures were incubated at 25±2°C in the dark for approximately three months with a bi-

weekly subculture. Independent transgenic cell colonies were picked from each plate 

using fine forceps and transferred onto selective embryo induction medium (RD1: half 

strength MS medium supplemented with 100 mg/l myo-inositol). These plates were 

further incubated for 2 months at 25±2°C in the dark with a monthly subculture. The 

differentiated cultures were transferred onto RD2 medium (half strength MS medium 

supplemented with 10 µM N6-benzylaminopurine or BAP) in 5 cm Petri-dishes to 

induce shooting and incubated in the dark. In addition to the antibiotic selection, the 

transgenic cell colonies were screened by PCR to confirm the presence of the 

transgene. Total DNA was isolated from a group of independent colonies per vector 

using a modified protocol of Dellaporta et al. (1983) and 100 mM Tris-HCl (pH 8.0), 50 

mM EDTA (pH 8.0), 500 mM NaCl and 1% (w/v) DTT as extraction buffer. The DNA 

pellet was finally dissolved in 20 µl sterile water.  

The quality and quantity of the DNA was determined spectrophotometrically using the 

Nanodrop® ND-1000(Isogen Life sciences). The target gene was amplified using the 
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primer combinations mentioned in Table 3 with the following cycling conditions: 95°C 

for 2 min, followed by 35 cycles of 95°C for 20 s, 60°C for 20 s, 68°C for 20 s with a 

final elongation step at 68°C for 2 min. The 20 µl PCR mix contained 2 µl of buffer (10x 

NEB), 2 µl 0f dNTPs (2 mM of each dNTP, Fermentas), 0.5 µl of forward primer and 

0.5 µl of reverse primer (each at 20 µM), 0.5 µl of Taq polymerase (0.5U/µl, NEB)), 

13.5 µl of water and 1 µl of (50 ng) of total DNA. The transformed vectors were used as 

positive controls (10 ng per PCR reaction), whereas DNA of non-transformed cell 

colonies and a blank sample were used as negative control for each gene tested. 

6.3.6. Multiplication of transgenic lines 

Individual shoots or shoot clumps originating from transgenic somatic embryos or 

globular cultures (via organogenesis) were transferred to sterile 50 ml growing glass 

test tubes containing semi-solid regeneration (REG) medium [full-strength  MS basal 

medium including vitamins, 10 mg/l ascorbic acid, 1 μM Indole-3-acetic acid (IAA), 1 

μM BAP, 30 g/l sucrose and 3 g/l phytagel, pH 5.80] and incubated at 25±2°C and 16-h 

photoperiod of 1000 lux to regenerate rooted in vitro plantlets. Each individual embryo 

or globular culture represents an independent transgenic line and all shoots derived 

from one embryo or globular cultures are genetically identical (Pérez-Hernández et al., 

2006b). A total of 31 controls (non-transformed), 26 gfp, 56 icd, 36 eng1B and 40 mi 

independent lines were maintained in test tubes, and in the second subculture 6 lines 

with robust full-grown plantlets from each of the constructs were selected for further 

multiplication.  

To multiply the cultures to the desired number of plants, the shoots were grown in 

sterile 50 ml glass test tubes containing semi-solid proliferation (PROL) medium which 

is identical to REG medium except for a tenfold higher BAP concentration (10 μM). The 
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rooted plantlets were maintained and kept healthy by regular subculture to fresh REG 

medium after every 4-6 weeks. 

6.3.7 Histochemical GUS assay 

The ECS samples that were transformed with pFAJ3000 were tested histochemically 

for transient GUS expression after 6 days of Agrobacterium co-cultivation as described 

by Jefferson et al. (1987). All samples were incubated for at least 4 h at 37°C in the 

assay buffer [0.1 M phosphate buffer (50 mM Na2HPO4 and 50 mM KH2PO4 at pH 7.0), 

10 mM Na-EDTA, 5 mM K-ferricyanide, 5 mM K-ferrocyanide, 0.1% (w/v) Triton X-100; 

Mendel et al., 1989] containing 1 mg/ml 5-bromo-4-chloro-3-indolyl-β-D-glucoronic acid 

cyclohexylammonium salt (X-gluc; Duchefa, Haarlem, The Netherlands). The number 

of blue foci was counted. Non-transformed ECS were included as negative control. 

6.3.8 Molecular characterization of transgenic lines 

Total DNA was isolated from 30-60 mg of leaf tissue according to a modified protocol 

by Dellaporta et al. (1983). The samples for DNA extraction were collected from in vitro 

as well as greenhouse plants. The leaf samples were macerated and cells lysed in an 

extraction buffer [100 mM Tris-HCl (pH 8.0), 50 mM EDTA (pH 8.0), 500 mM NaCl and 

1% (w/v) DTT]. The resulting DNA was precipitated in an equal volume of isopropanol 

and washed in 500 μl 70% (v:v) ethanol to remove excess salts.  

Finally, the air-dried DNA pellet was re-suspended in 20 μl of sterile water. The 

quantity and quality of the isolated DNA were measured using the Nanodrop® ND-

1000 (Isogen Life Science) spectrophotometer.  

The presence of the target gene in the transformed samples was determined by PCR 

amplification of the target gene sequence of the hairpin constructs or part of the 
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ubiquitin promoter and the target gene sequence. The plasmid DNA (50 ng) harbouring 

the hairpin construct was used as positive control, while a blank sample and a DNA 

sample from an untransformed line were used as negative controls. The 20 µl PCR mix 

contained 2 µl buffer (10x NEB), 2 µl of dNTPs (2 mM of each dNTP), 0.5 µl each of 

forward and reverse primer (20 μM each), 0.5 µl of Taq polymerase (0.5 U/ µl, NEB), 

13.5 µl of water and 1 µl of (50 ng) of DNA sample. The list of primers used for the 

analysis is shown in Table 6 3. The PCR amplification was performed under the 

following cycling conditions: 95°C for 2 min, followed by 35 cycles of 95°C for 20 s, 

60°C for 20 s, 72°C for 20 s with a final elongation step at 72°C for 5min The resulting 

PCR products were separated on 2% (w/v) agarose gel for 25 min at 300 V in a sodium 

borate buffer [10 mM NaOH, pH 8.5 set using H3BO3 as described by Brody and Kern 

(2004)].  
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Table 6.3. Primers and the expected product sizes for PCR analysis of transgenic 
banana plants 

Target 
gene/promoter
-target genea 

Primer 
(5’ to 3’) 

 

Expected 
product 
size(bp) 

Sequence Tm(oC) 

Mi-integ Mi-Promo-F
d
 

Mi-Gs-R1 
285 TTTAGCCCTGCCTTCATACG 

AGGCCATTCTTTTCCAAAGC 
52 
50 

PUbi-Mi-integ UbiL 
Mi-Gs-R1 

237 GGGCCCGGTAGTTCTACCTTC  
AGGCCATTCTTTTCCAAAGC 

58 
50 

Rs-eng1B Eng-Gs-R1 
Mi-Promo-F 

250 GTTCCAAATGCTCGAGATGG 
TTTAGCCCTGCCTTCATACG 

52 
52 

Rs-icd-1  Rs-icd-1-R3 
Rs-icd-1-F3 

315 TTTGTTCCATCGTCAACAGC 
CCATTTCAACAATCCGAAGG 

50 
50 

PUbi
b
-icd-1  UbiL

d
 

Rs-icd-1-F3 
380 GGGCCCGGTAGTTCTACCTTC  

CCATTTCAACAATCCGAAGG  
58 
50 

Pnos
c
-nptII  Neo-R2  

pNOS-S3  
149 TAGCCGAATAGCCTCTCCAC  

AATTCCCCTCGGTATCCAAT  
54 
45 

gfp GFP-F 
GFP-R 

215 ATCCGCCACAACATCGAGG 
TTGTACAGCTCGTCCATGC 

53 
51 

Mi-integ represents the target; integrase from M. incognita; Rs-eng-1B and Rs-icd-1 represent 
the targets,

 
β-1, 4-endoglucanase and icd-1 from R. similis, respectively. Gfp represent the 

gene encoding green fluorescent protein (negative control).
 

a 
Presence of the target gene (i.e. the sequence used for silencing of the corresponding 

nematode gene or the selectable marker gene NPTII) or promoter-target gene was investigated 
in the regenerated plants.  
b
 Maize ubiquitin promoter  

c 
Nopaline synthase promoter  

d 
Mi-Promo F and UbiL anneals in different sites of UBIL promoter 
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The stable integration of the T-DNA was confirmed by Southern hybridization analysis 

of four transgenic lines (mi-55, mi-90, eng1B-54 and eng1B-103) as well as one non-

transgenic line (control-123) using a digoxigenin (DIG) labelled probe. Total DNA was 

isolated from 1 g of leaves according to Khayat et al. (2004) with some modifications 

Following the grinding of the leaf tissues in liquid nitrogen, the cells were lysed in the 

extraction buffer consisting of 4% (w/v) CTAB, 100 mM Tris-HCl pH 8.0, 1.4 M NaCl, 

50 mM Na-EDTA pH 8.0 and 1% (w/v) DTT. The DNA was precipitated, washed and 

re-suspended in 100 μl of sterile water.  

The genomic DNA (11 µg) was digested to completion with SacI which has a single 

restriction site in the T-DNA (in eng1B vector -at position 12426 and in mi vector at 

11802) and separated on a 0.8% (w/v) agarose gel for 6 h at 40 V in 1x TAE (40 mM 

Tris acetate, 1 mM EDTA ) buffer. The digested sample DNA (10 µg) was loaded per 

lane including the untransformed sample as the negative control and two plasmid 

vector samples as positive controls at the concentration of 1 and 5 copies per triploid 

genome, respectively. The DIG-labelled DNA marker III (Roche) was also loaded (50 

ng). The DNA was blotted overnight by downward capillary transfer in 20x SSC (3 M 

NaCl, 0.3 M sodium citrate, pH 7.0) onto a positively charged nylon membrane (Roche) 

as described (Zhou et al., 1994) and fixed by UV crosslinking at 120,000 J/cm2.  

Hybridization and detection was done according to Remy et al. (2005) with some 

modification. Briefly, the membrane was prehybridized in 20 ml Clontech Express Hyb 

buffer containing 50 μg/ml yeast tRNA for 1 h. The membrane was kept overnight for 

hybridization in the same buffer containing the DIG-labelled probe and yeast tRNA at 

20 ng/ml and 50 μg/ml, respectively.  

The probes for eng1B (primers Eng GsR1 and Mi-Promo F), mi (primers Mi-Promo- F 

and Mi- GsR1) and nptII (primers Neo5 and NeoSHR,) genes were generated using 
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the PCR DIG-DNA Labeling Mix (Roche, Vilvoorde, Belgium). Following the 

hybridization, the membranes were washed twice in 2x washing buffer (2x SSC: 0.3 M 

NaCl, 0.03 M Na-citrate and 0.1% SDS, pH 7.0) for 5 min on the shaker (70 rpm) at 

68°C. Subsequently, the membrane was washed twice with 0.1x washing buffer (0.1x 

SSC: 0.015 M NaCl, 0.0015 M sodium citrate, pH 7.0) for 15 min. During detection the 

following solutions were used: buffer 1 [0.1 M maleic acid, 3 M NaCl pH 8 and 0.3% 

(v/v) Tween 20 added after autoclaving]; buffer 2 [buffer 1 containing 0.5% (w/v) 

blocking reagent, which is prepared at 10% (w/v) by dissolving 10 g blocking reagent in 

100 ml buffer 1 by several heat pulses in the microwave oven avoiding boiling]; buffer 3 

(0.1 M TrisHCl pH 9.5, 0.1 M NaCl, autoclaved].  

The hybridized membrane was incubated in buffer 2 for 1 min and then for exactly 30 

min in 40 ml of antibody solution [1:10,000 dilution or 4 μl Anti-DIG –AP (alkaline 

phosphatase; 75 U/ml) in 40 ml buffer 2]. Subsequently, the membrane was washed 

twice in buffer 1 each time for 30 min. Finally, the membrane was equilibrated in 20 ml 

buffer 3 for 10 min and then treated with 5 ml buffer 3 containing 50 μl of CSPD 

(Roche) substrate solution with gentle shaking for 5 min. The membrane was sealed in 

a plastic bag and incubated for 30 min at 37°C to bring the chemiluminescent reaction 

at the steady state.  

The signals were detected by a liquid nitrogen-cooled slow-scan CCD camera 

(Versarray 512 B LN camera, Roper Scientific, Vianen, the Netherlands) at an 

exposure time of 1 min and 20 min and the images were processed by using image 

analysis software (MetaMorph® 5.0r3, Universal Imaging, USA).  
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The membrane was stripped by washing twice for one minute in MilliQ water, then 

incubated for 10 min in pre-warmed (37°C) alkaline probe stripping solution (0.2N 

NaOH, 0.1% SDS) before being rinsed twice for 10 min in 2x SSC solution. Re-

hybridisation with the nptII probe was essentially done as described above. 

6.3.9 Greenhouse infection and screening experiment 

A total of 13 independent lines with at least 12 rooted plantlets per line were 

transferred to the greenhouse for the infection experiment. The plantlets were carefully 

removed from the test tubes and gently washed in tap water to remove the semi-solid 

medium. The plants were then planted in the soil mixture prepared by mixing sand and 

soil composite (BRIL, Type 3) at the ratio of 2:1 in 12 diameter pots containing about 

1000 cm3 soil. The plants were kept under plastic frames at 26/18°C day/night 

temperature and additional artificial light of 200-700 lux for 12 h until their 

establishment (new leaf and root formation) was noted.  

The established plants were watered 2-3 times a week depending on the temperature 

and moisture content. Fertilization commenced when the plants were established with 

50 ml of diluted liquid NPK (7:3:6) at the ratio of 1:8 per pot once every week. Three 

independent lines for each constructs, Rs-icd-1 (line 30, 41 and 45), Mi-integ and Gfp 

(line 6, 8 and 24) along with three independent lines from untransformed plants (line 8, 

28 and61) were selected for the screening experiment for nematode resistance. Due to 

insufficient number of established plants, only one line for Rs-eng1B (line 71) was 

selected for the screening. Six plants from each transgenic and non-transgenic line 

were maintained for the infection with M. incognita or R. similis according to which 

nematode the dsRNA present in the plants is targeted.  
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In addition, six plants from each line were kept uninfected to assess the susceptibility 

of the transgenic lines by determining the differences in root necrosis (R. similis) or root 

galls (M. incognita) between the infected and uninfected plants. The nematode 

inoculum of M. incognita required for the infection was maintained on transformed 

tomato roots in vitro (Verdejo et al., 1988) as well as on the tomato plants grown in soil 

in the greenhouse to rear high numbers of the nematodes. The inoculums for R. similis 

was maintained on carrot discs as described above. 

6.4 Results 

6.4.1 In vitro RNAi analysis 

To assess the feasibility of RNAi for nematode control and to select suitable target 

genes for dsRNA constructs, mixed stages of R. similis were soaked for 24 h with 

dsRNA of each gene separately following the methodology of Urwin et al. (2002). 

Soaking the nematodes with dsRNA of Rs-eng1B resulted in a significant reduction of 

the transcript level compared to control experiments with water (Non-RNAi) or dsRNA 

of gfp (Gfp-RNAi) (Figure 6.2A). There was, however, no significant reduction in the 

transcript level of Rs-eng2 in comparison to the controls (Figure 6.2B). 
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Figure 6.2. Analysis of the mRNA level by semi-quantitative RT-PCR following 24 
h of treatment with (A) dsRNA of Rs-eng1B or controls and (B) dsRNA of Rs-
eng2 or controls, Non-RNAi: R. similis nematodes incubated in soaking solution 
without dsRNA; Rs-eng1BRNAi: nematodes incubated in dsRNA of Rs-eng1B; 
Rs-eng2RNAi: nematodes incubated in dsRNA of Rs-eng2; Gfp-RNAi: nematodes 
incubated in dsRNA of gfp as a dsRNA control. Transcription level of Rs-eng1B 
(567bp) (A) or Rs-eng2 (261bp) (B) from each treatment (lane 1-3). DNA Marker 
(100 bp, Gene ruler, Fermentas) (M). Transcription level of Rs-actin (196bp) from 
each treatment (lane 4-6). The experiment was done two times. 

Moreover, the knock-down effect was gene specific and no cross-silencing was 

observed. The dsRNA of Rs-eng1B did not elicit a knock-down effect of Rs-eng2 and 

vice versa (data not shown). Similarly, a significant reduction in transcript level was 

seen in the case of two other target genes, Rs-icd-1 and Rs-integ, while the 

transcription of targets Rs-iff-2 and Rs-rpl-1 was not affected by RNAi soaking (Figure 

6.3). 
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Figure 6.3. Analysis of the mRNA level of Rs-icd-1 (A), Rs-iff-2 (B), Rs-rpl-1 (C) 
and Rs-integ (D) by semi-quantitative RT-PCR following 24 h of soaking with the 
corresponding dsRNAs. The top panel refers to the transcription level of Rs-
actin (196 bp product) from each treatment, whereas the bottom panel refers to 
the transcription level of the target gene ,Rs-icd-1 (267 bp product), Rs-iff-2 (408 
bp product), Rs-rpl-1(306 bp product) or Rs-integ (399 bp product). Non-RNAi 
(lane 1): R. similis nematodes incubated in soaking solution without dsRNA. Gfp-
RNAi (lane 2): nematodes incubated in dsRNA of gfp as a dsRNA control. Rs-icd-
1RNAi (lane 3): nematodes incubated in dsRNA of Rs-icd-1. Rs-iif-2RNAi (lane 3): 
nematodes incubated in dsRNA of Rs-iff-2. Rs-rpl-1RNAi (lane 3): nematodes 
incubated in dsRNA of Rs-rpl-1. Rs-integ RNAi (lane 3): nematodes incubated in 
dsRNA of Rs-integ. The experiment was done two times 
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6.4.2 Infection test 

The in vitro R. similis infection of Medicago truncatula with the dsRNA treated 

nematodes confirmed the importance of the target gene for nematode infectivity. In 

agreement with the above semi-quantitative RT-PCR results (section 6.4.1), no 

significant difference (P>0.05) in the number of penetrated nematodes and egg 

production was observed in the case of the Rs-eng2 dsRNA treatments compared to 

the control treatments (Figure 6.4A). However, a significantly lower number of 

nematodes was seen inside the roots in Rs-eng1B dsRNA treatments (P<0.05) as 

compared to the control treatments dsRNA of gfp (Gfp-RNAi) and no dsRNA (Non-

RNAi) (Figure 6.4A). By contrast, the silencing of Rs-eng1B also resulted in 80% 

reduction in egg production compared with the control treatments (Figure 6.4A). 

Similarly, the down-regulation of Rs-icd-1 significantly (P<0.05) reduced nematode 

invasion and egg production compared to the control treatment with dsRNA of gfp 

(Figure 6.4B). 
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A 

 
 

B 

 
 
Figure 6.4. Down-regulation of Rs-eng1B and Rs-icd-1 in Radopholus similis 
reduces root invasion of the nematodes in Medicago truncatula. (A) The number 
of nematodes and eggs observed inside the plant roots at 10 days post infection 
following 24 h soaking of the nematodes with dsRNA of Rs-eng1B and Rs-
eng2.(B) The number of nematodes and eggs observed inside the plant roots at 
10 days post infection following 24 h soaking with dsRNA of Rs-icd-1. Each plant 
was infected with 50 nematodes of mixed stage. Each treatment consisted of 10 
biological replicates. The experiment was repeated twice. Any two means in a 
column with a letter in common are not significantly (P ≤ 0.05) different 
according to Tukey’s multiple range test. 6.4.3 Transient GUS assay. 
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6.4.3 Transient GUS assay 

ECS samples of dessert banana ‘Grande Naine’ were transformed with the four 

different vectors containing the hairpin constructs and the control vector pFAJ3000 to 

assess transformation frequency. After six days co-cultivation, histochemical GUS 

analysis showed that transient GUS expression was absent in the control, non-

transformed cell clusters but was present in pFAJ3000 transformed banana cell 

clusters (Figure 6.5A and 6.5B, respectively). Quantification by counting the number of 

blue foci revealed an average ±SDEV (n=6) of 1545±830 blue foci per sample 

(approximately 50 mg fresh weight cells).  

 
 
Figure 6.5. Histochemical GUS staining of ‘Grande Naine’ control, non-
transformed (A) and EHA101 (pFAJ3000) transformed (B) cell clusters after 6 
days co-cultivation. Meshes with cells were saturated with X-Gluc (1 mg/ml) 
solution and incubated for 4 h at 37°C. Size bar represents 1 mm. 

6.4.4 Selection, regeneration and multiplication of transgenic banana  

The transgenic cell colonies from ZZ selective medium (50 mg/l geneticin and 200 mg/l 

timentin were transferred individually to selective RD1 medium after three months 

selection (Figure 6.6), to obtain 120 independent lines per construct.  



Application of RNAi as a control strategy in R. similis 

 

 

168 

 

Embryo formation was successfully induced after two months and subsequently, the 

differentiated cultures were transferred to non-selective RD2 medium for shoot 

induction. Transgenic roots were obtained 8-10 months after transformation following 

transfer of shoots to REG medium.  

Although a minimum of 6 independent regenerated lines were obtained per construct, 

plants of some lines showed poor establishment in the media (Figure 6.7). 

Approximately 20 plants per line were produced for the infection experiment after 2-3 

months of multiplications on PROL and REG media. 

 

Figure 6.6. Differentiating cell cultures of transformed banana cells on selective 
(50 mg/l geneticin and 200 mg/l timentin) RD1 medium. Each image shows an 
independent line: Rs-icd-1 (A), Mi-integ (B), untransformed control (C), gfp (D) 
and Rs-eng1B (E). Pictures were taken using a Spot RT Microscope Digital 
camera. Size bar represents 2 mm.  
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Figure 6.7. Regeneration and multiplication of transgenic banana plantlets in 
vitro. A sufficient number plantlets for each line was obtained by multiplication 
on REG/PROL media for 2-3 months. (A). Plants from two independent lines of 
control and two independent lines carrying dsRNA construct for gfp and Rs-icd-
1. (B). Plants from two independent lines of control and two independent lines 
carrying dsRNA construct for Rs- eng1B and Mi-integ, Differential growth 
patterns were observed among the transgenic lines. 

6.4.5 Presence and integration of the gene silencing cassettes 

The presence of the target gene sequence for silencing was checked in the in vitro and 

greenhouse plants by PCR. The diagnostic products of gfp (215 bp), Mi-integ (285 bp), 

Rs-icd (315 bp) and Rs-eng1B (215 bp) were amplified using their specific primers 

from all transformed in vitro and greenhouse banana plants as well as in their 

corresponding plasmids, while in the non-transformed control lines they were absent 

(Figure 6.8.A, B and C). However, the PCR for the lines transformed with the Mi-integ 

silencing constructs showed a non-specific signal (Figure 6.8C) and sometimes results 

were inconsistent (data not shown). An additional product of approximately 420 bp in 

addition to the expected product size of 285 bp was seen.Further PCR screening to 

demonstrate the efficiency and reliability of the transformation and the resulting 

transgenic plants was conducted by testing for the presence of the nptII and promoter–

target gene sequences in both in vitro and greenhouse (Table 6.4) lines. 
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Figure 6.8. PCR screening of the in vitro transgenic banana plants for the 
presence of the target and control gene sequences used for silencing nematode 
genes in leaf samples using gene specific sequence primers. Panel A: target 
genes Rs-icd-1 (left) and Rs-eng1B (right) of R. similis: lane 1, 100 bp Smart 
ladder (Eurogentec); lane, 2 blank (water) PCR control; lane 3, non-transformed 
control line 8; lane 4, positive Rs-icd-1 RNAi vector control; 5 to 8: four 
independent Rs-icd-1 lines (icd-9, -31, -41 and -45); lane 9, 100 bp Smart ladder; 
lane 10, blank (water) PCR control; lane 11, non-transformed control line 28; lane 
12, positive Rs-engIB RNAi vector control; lanes 13 to 16: four independent Rs-
eng1B lines (eng1B-54, -95, -103 and -104); lane 17, 100 bp Smart ladder. Panel 
B: gfp RNAi lines: lane 1, 100 bp Smart ladder; lane 2 blank (water) PCR control; 
lane 3, non-transformed control line 48; lane 4, gfp RNAi vector control; lanes 5 
to 8: four independent gfp lines (gfp-6, -8, -24, -111); lane 9, 100 bp Smart ladder. 
Panel C: target gene Mi-integ of M. incognita: lane 1, 100 bp Smart ladder; lane 2, 
blank (water) PCR control; lane 3, non-transformed control line 123; lane 4, 
positive Mi-integ RNAi vector control; lanes 5 to 8: four independent Mi-integ 
lines (mi-21, -55, -77 and -90); lane 9, 100 bp Smart ladder. 



                                                                                                                                         Chapter six 

 

 

171 

 

No amplification product was obtained in non-transformed lines. We can therefore 

conclude that all target and control genes, Rs- eng1B, Rs-icd-1, Mi-integ and gfp were 

present in the genomic DNA of the transgenic banana plants. 

Table 6.4. In vitro lines and green house grown lines analysed by PCR for the 
presence of the silencing cassette 

 
Line tested  

Target gene sequence or promoter-target sequence 
 

Silencing  
constructa 

Pnos-nptII promoter-target 
sequenceb 

Control-8 - - - 
Control-28 - - - 
Control-48 - - - 
Control-61 - - - 
Control-123 - - - 
Gfp-6 + + NA 
Gfp-8 + + NA 
Gfp-24 + + NA 
Gfp-90 + + NA 
Gfp-111 + + NA 
mi-21 + + + 
mi-55 + + + 
mi-77 + + + 
mi-90 + + + 
Icd-9  + + + 
Icd-30 + + + 
Icd-31 + + + 
Icd-41 + + + 
Icd-45 + + + 
Eng1B-54 + + NA 
Eng1B-71 + + NA 
Eng1B-95 + + NA 
Eng-1B-103 + + NA 
Eng-1B-104 + + NA 
a 

Primers specific for the silencing hairpin sequences; Mi; Mi (Promo-F and Mi-GsR1); eng1B; 
(EngGsR1 and Mi- Promo- F); icd-1; (Rs-icd-1-R3 and Rs-icd-1-F3); gfp; (GFP-F and GFP-R)  
b 
Promoter-target sequence PUbi-Mi (UbiL and Mi-Gs-R1) or PUbi icd-1 (UbiLd and Rs-icd-1-F3). 

NA indicates ‘not applicable’. 
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To analyse the integration pattern of the transformed cassettes, Southern hybridization 

was performed on some selected lines. Two inserts of the Rs-eng1B target gene 

sequence are present in the line eng1B-54, while in the line eng1B-103 no signal was 

detected (Figure 6.9A). The double insertion in line eng1B-54 was also revealed when 

the hybridization was repeated with the nptII probe, while in the line eng1B-103 a 

single insertion was observed confirming its transgenic nature (Figure 6.9B). The 

hybridization analyses also confirmed transgene absence in the untransformed line. 

Integration of the Mi target sequence in line mi-55 and mi-90 could not be confirmed 

due to the high background (data not shown), while with the nptII probe the signal was 

too weak to decisively conclude integration of the selectable marker gene (Figure 

6.9C).  

   
 
Figure 6.9. Southern hybridization analyses to verify integration of the Rs-eng1B 
target gene sequence (A), the nptII gene in Rs-eng1B transformants (B) and the 
nptII gene in the Mi-integ transformants (C). Genomic DNA digested with SacI 
was hybridised with a DIG labelled probe. Panel A: Lane 1, DIG DNA marker II; 
lane 2, untransformed control line 123; lane 3-4, Rs-engIB transformed banana 
plant lines 54 and 103; lane 5-6, Rs-eng1B plasmid vector 1 and 5 copies, 
respectively. Panel B: Lane 1, DIG DNA marker II; lane 2, untransformed control 
line 123; lane 3-4, Rs-eng1B transformed banana plant lines 54 and 103; lane 5-6, 
Rs-eng1B plasmid vector 1 and 5 copies, respectively. Panel C: Lane 1, DIG DNA 
marker II; lane 2, untransformed control line 123; lane 3-4, Mi-integ transformed 
banana plant lines 90 and 55; lane 5-6, transformation Mi-integ plasmid vector 1 
and 5 copies, respectively. 
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6.4.6 Plant phenotypes and infection 

A very poor growth and root development of the in vitro plantlets was observed after a 

few multiplication rounds and maintenance. Only 4 independent lines with a well-

established root system and 2-3 leaves were finally available for Rs-icd-1, Mi-integ, gfp 

and control plants, whereas only one line of Rs-eng1B was sufficiently  developed for 

the greenhouse infection experiment. A total of 13 independent lines with at least 12 

plantlets per line were obtained. Growth and development were evaluated weekly by 

measuring plant height and number of leaves from seven weeks onwards.  

The initial assessment of the plantlets at the time of planting indicated that only two 

lines, namely control-61 and mi-90, were robust with well-established root systems 

compared to the other lines of which the plants were rather small with few roots. The 

majority of the plants evaluated at the standard time of inoculation (eight weeks after 

planting) were less than 10 cm in height (Figure 6.10A, B and C). Most of them showed 

a stunted growth, tip dieback and had very poor root growth. A first attempt was made 

to get a better growth by testing different soil conditions. The plants were also grown in 

compost media alone without mixing with sand. Although the plants grown in compost 

media showed a better survival as compared to sand: compost mix (2:1), the plants 

didn’t show any significant improvement in plant growth and rooting (Figure 6.10D). 

This status of growth was sustained in the majority of the lines even after four months 

of maintenance in the greenhouse. A second attempt was made to check the possibility 

for obtaining better root growth under in vitro conditions. The regenerated shoots (3 

independent lines from each construct) were transferred to rooting media with half 

strength MS media without plant growth regulators.  

However, the rooting remained very weak (data not shown) and therefore, the infection 

of the plants with the nematode inoculum could not be performed. 
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Figure 6.10. Green house plants 6 weeks after planting. (A). Plants from control 
line 61. (B). Plants from Mi-integrase line 90. (C). A comparison on plant growth 
among four lines of control, Mi-integ, Rs-eng1B and gfp. (D). A comparison on 
plant growth between two plants from Rs-eng71 lines in two different soil media. 
Plants showed slow development with poor growth of pseudostem/leaves and 
roots. Most of the lines showed very poor growth. The different growth media did 
not influence the plant growth significantly. 

6.5 Discussion 

The in vitro RNAi results show that RNA interference can be induced in the migratory 

endoparasitic nematode R. similis by feeding with dsRNA as reported previously in 

root- knot (Rosso et al., 2005) and cyst nematodes (Vanholme et al., 2007). 

However, the silencing effect was not at the same level in all the targets: Rs-eng 1B, 

Rs-icd-1 and Rs-integ showed a significant reduction in the transcript expression while 

Rs-eng2, Rs-rpl-1 and Rs-iff-2 did not show a significant knock-down effect after 

dsRNA soaking.  
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This shows that not all genes were affected by RNAi or that the specific target 

sequences were not suitable for efficient RNAi. A previous study by Chen et al. (2005b) 

demonstrated that a 244-bp dsRNA targeting an amphid secreted protein of Globodera 

rostochiensis induced greater silencing than a 309-bp dsRNA targeting the β-1, 4-

endoglucanase as assessed by semi quantitative RT-PCR. This can be due to a 

number of factors including differences in spatial expression patterns, level and 

turnover rate of the endogenous transcript, or length or sequence of the dsRNA. 

Moreover, some genes might be less susceptible due to the influence of antagonising 

factors of RNAi or other RNAi effectors as demonstrated in the in vitro RNAi study of 

Pratylenchus coffeae (Chapter 5). 

The infection tests have shown a high nematode mortality and reduced egg production 

after Rs-eng1B RNAi and Rs-icd-1 RNAi soaking treatments. The results from this 

study indicate that the cell wall-degrading enzyme Rs-eng1B may play an important 

role in the parasitic behaviour of R. similis within the roots. Our results also show that 

the down-regulation of Rs-icd-1 significantly reduces nematode penetration. A number 

of reports also have shown that the knock-down of nematode essential genes results in 

significant reduction in number of nematodes within the host plants (Yadav et al., 2006; 

Klink et al., 2009). A study in C. elegans showed that RNAi of icd-1 generates a 

locomotion variant exhibiting deviations in self-propelled movement on a solid medium 

compared to control animals (Simmer et al., 2003). The knock-down of icd-1 also 

resulted in slow growth, larval arrest, embryonic lethality as well as morphological and 

developmental defective in C. elegans (Simmer et al., 2003)  

Hence, it is possible that the down-regulation of Rs-icd-1 might have an adverse effect 

on nematode locomotion or its growth and development resulting in reduced capability 

to penetrate and establish within the plant roots.  
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The in vitro RNAi study showed that the Rs-eng2 transcript level was not affected by 

dsRNA soaking and hence, the nematode could penetrate the root tissue and could 

establish well inside the roots. 

A key challenge and essential step for the RNAi-based crop protection strategies is 

identification of the right targets. The optimal candidates of pathogenicity–related 

genes are involved in parasitism, detoxification or essential for development meaning 

that their knocking out leads to a lethal phenotype. Additionally these targets should be 

more specific to the target organism and should not be present in the host plant or 

consumer. Our soaking assay showed that infection of R. similis can be effectively 

controlled by the use of RNAi-mediated silencing of the genes involved in the 

parasitism or development of the nematodes. These targets are highly nematode 

specific and hence, Rs-eng 1B and Rs-icd-1 can be potential target genes to control 

these nematodes. 

As a control strategy against R. similis, we made an attempt to deliver dsRNA in planta 

to the nematodes. The number of blue foci per sample obtained in the transient gus 

assay was in agreement with the expected number for a 35S promoter driving the gusA 

gene (Sági et al., 1995; Arinaitwe et al., 2004). This demonstrates that T-DNA transfer 

was highly successful during the transformation. Additionally, the PCR results also 

indicated the presence of the target genes in the plants and Southern hybridization 

results have shown the integration of the transformed cassette in some lines. However, 

the experiment could not be finalised due to the poor establishment of the plants.  

Although different soil composition and growth conditions in vivo and in vitro were 

tested, the plants did not grow beyond 10 cm with very poor to no rooting in all the 

plants including transgenic and non-transformed control plants. Consequently, 

transformation itself was not the cause behind this improper development.  
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The in vitro plants as well as the greenhouse plants showed abnormality in leaf growth 

and root development indicative of somaclonal variation. Such a phentoype with erect 

narrow leaves is not new and can occur after in vitro culture, especially when the in 

vitro culture process has taken long time (Dhed’a et al., 1991; Cote et al., 1996; 

Vuylsteke et al., 1988, 1996; Stross et al., 2006). We therefore propose that this variant 

type is due to the in vitro culture and not due to the transformation events. Considering 

the long time period for developing a new cell suspension (approximately 1.5 years) 

and new transgenic lines, the experiment was not repeated. Nevertheless, the stable 

integration of the T-DNA in the transgenic lines was confirmed except in the case of Mi-

integ. The PCR results for Mi-integ lines were sometimes inconsistent and an 

additional larger band besides the expected band was observed using the plasmid 

vector of Mi-integ as template which may indicate the instability of the RNAi vector.  

Although the hpRNA expressing vectors based on the Gateway system have been 

used widely for constructing transgenic plant lines, an alternative  high-throughput 

system for making hairpin RNA constructs has recently been developed (Xiao et al., 

2006; Chen et al., 2009; Yan et al., 2009; Xu et al., 2010; Yan et al., 2012).  

Yan et al. (2012) have demonstrated the utility of the RNAi constructs generated with 

the pRNAi-GG vector for the effective silencing of various genes individually as well as 

two genes simultaneously using one-tube restriction-ligation and one-step 

transformation. The application of the RNAi vectors such as pSAT-RNAi vector and 

pRNAi-GG vector for multiple gene silencing (Dafny-Yelin et al., 2007; Yan et al., 2012) 

may provide a novel and high-throughput platform for developing an efficient control 

strategy against nematodes as well as for large scale analysis of nematode functional 

genomics.  
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One of the concerns of using long dsRNA derived vectors for in planta RNAi can be 

non-specific (off-target) gene silencing (Scacheri et al., 2004; Lin et al., 2005; 

Ossowski et al., 2008). In mammalian cells highly selective RNAi has been achieved 

by using siRNA expression vectors (Shi, 2003). The application of this approach may 

be an alternative control strategy against PPN by highly selective RNAi avoiding non-

specific target silencing. However, the success of this approach among different 

species of PPN is still uncertain. Although a significant silencing effect has been 

observed in M. incognita by siRNA soaking against Mi-CRT, the effect was not 

persistent throughout the subsequent infection using the soaked nematodes (Arguel et 

al., 2012), whereas the migratory nematode P. coffeae was less susceptible to the 

siRNAs tested (Pc-pat-10, Pc-eng-1) (Chapter 5). However, the co-silencing of the 

RNAi inhibitor eri-1 can enhance the persistence of siRNA-mediated silencing in P. 

coffeae (Chapter 5). An approach based on dual or multiple target genes RNAi against 

the nematodes can be an efficient system to restrict the reproduction of plant parasitic 

nematodes.  

The efficacy of the RNAi approach as a control strategy may also depend upon the use 

of a promoter sufficiently strong to transcribe hairpin RNA that fulfils the requirement 

for a high dsRNA input to induce efficient silencing in the nematodes (Fairbairn et al., 

2007). Zheng et al. (2004) have reported the development of a dual promoter siRNA 

expression system that allows facile in vivo transcription of multiple siRNAs in a high-

throughput manner in mammalian cells. Adopting these approaches in plants can 

create a platform for efficient and stable expression of siRNA to induce a highly specific 

RNAi and hence the development of a high-throughput system for host-derived 

resistance against nematodes.  
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Transformation of the host plant remains a bottleneck in developing transgene 

resistance against nematodes and a quick means for testing gene functions without 

going through the lengthy process of producing stable transgenic plants is highly 

desirable. The production of a hairy root system for the crops which require a longer 

period of time for generating stable transgenic plants can be a feasible and faster 

approach in functional genomic study (Li et al., 2010b) although it has some 

disadvantages such as wide variation in root morphology and proliferation ability 

among different hairy root lines. This may result in variability in nematode infection 

consequently not allowing to accurately determining nematode resistance level in each 

transgenic line that is producing a specific dsRNA. By selecting lines with uniform size 

and vigour, the hairy root system can be used to evaluate the efficacy of dsRNA of 

nematode genes in suppressing nematode population (Klink et al., 2009; Charlton et 

al., 2010).  

However, further research is needed to evaluate the possibility of maintaining the 

RNAi-mediated nematode resistance in the target crop plant in the field at a sufficient 

level. The main objective to test the efficacy of RNAi-mediated transgenic resistance 

against R. similis in banana was not achieved in the present study and thus, a future 

attempt to generate transgenic resistance in banana against the migratory parasitic 

nematodes is necessary to deliver proof-of-concept. in a commercial crop 

. 
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The importance of using RNAi approaches as a versatile tool for gene discovery has 

been demonstrated in a wide variety of organisms (Grimm et al., 2010; Lee et al., 

2010; Miyoshi et al., 2010; Pontier et al., 2012; Avgousti et al., 2012). In addition, it has 

also found application as an effective control strategy against various crop pest 

including viruses, insects, parasitic plants as well as nematodes (Aly et al., 2009; Gu et 

al., 2013; Kumar and Sarin, 2013; Lilley et al., 2012; Qu et al., 2007). Although the use 

of RNAi has been demonstrated in a number of plant parasitic nematode (PPN) 

species, the feasibility of its application in other economically important nematodes 

species such as the migratory P. coffeae and R. similis had not been previously 

studied. This study was therefore initiated to assess the feasibility of RNAi in the root 

lesion nematode P. coffeae, a major pest in banana plantations together with R. similis 

and the feasibility of using RNAi as a control strategy in their management.  

7.1 Selection of optimal RNAi target for a broader nematode resistance 

In order to choose optimal candidates for developing RNAi mediated resistance in the 

host plants, it was necessary to perform a preliminary screen for the nematode genes, 

which are susceptible to RNAi as well as genes that impact on the parasitic success of 

the nematode. A set of target genes was screened in P. coffeae and R. similis by in 

vitro RNAi soaking of the mobile stages of nematodes in corresponding dsRNA 

solutions of the selected genes for 24h. During the initial stages of this study, the 

sequence information of the genes in P. coffeae was very limited. Hence profiting from 

the data extrapolated from the RNAi screens of C. elegans, two candidate genes, Pc-

pat-10 and Pc-unc-87, P. coffeae orthologs of C. elegans genes were cloned by PCR 

using degenerate primers based on conserved regions from different species of 

nematodes (Chapter 2).  
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The selected sequence for the experiment was found to be highly conserved among 

diverse groups of nematodes including the plant, animal and human parasitic 

nematodes as well as free-living and entomopathogenic nematodes and did not show 

any significant similarity in non-nematode species. This use of degenerate PCR 

primers can be useful approach to clone the candidate gene when the sequence 

information is limited in the target nematode. It is, however, necessary to have 

sufficient sequence information for the target gene from multiple species of nematodes 

and also have conserved region of adequate size to design the primers (Delgado et al., 

2012; Haegeman et al., 2008).  

Developing resistance against a single nematode species in plants that are host to 

multiple species such as banana,  may not be an efficient control strategy as this will 

reduce inter specific competition and allow the remaining nematode pests to multiply 

exponentially.  The selection of a dsRNA or siRNA from a nematode specific and highly 

conserved sequence among diverse group of parasitic nematode species can be a 

possible approach to develop resistant plants against multiple nematode species. The 

targets selected against P. coffeae in this study could thus be optimal candidates for 

host derived RNAi mediated resistance against multiple species associated with 

banana roots. 

7.2 Factors influencing enhanced RNAi in P. coffeae 

Although the results from the in vitro RNAi experiment have shown that the migratory 

endo-parasitic nematode, P. coffeae has a functional RNAi machinery, the rebound 

effect of Pc-pat-10 and Pc-unc-87 RNAi observed in P. coffeae was in contrast to C. 

elegans where the knocking down effect of Pat-10 persists even in the progeny long 

after the removal of the dsRNA trigger (Chapter 2).  
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The results from the combinatorial RNAi experiments indicated an enhancement of the 

persistence of RNAi of Pc-pat-10 when co-silenced with Pc-eri-1, although, this effect 

was not observed for all genes tested (Chapter 5).  

The persistence or otherwise of the RNAi effect of Pc-unc-87 was not influenced by the 

co- silencing with Pc-eri-1, and for Pc-eng-1, a clear conclusion could not be reached. 

This was because the silencing effect persisted after 48h of recovery even without the 

co-silencing of Pc-eri-1. Additionally, there is the possibility that the semi quantitive 

PCR method used might not have detected slight enhancement of the knock-down 

after the co-silencing with the Pc-eri-1 or that the recovery Pc-eng-1 occurs at a time 

later than the period observed in this study (> 48h). Further studies to assess the co 

silencing effect of Pc-eri-1 on Pc-eng-1 expression at different time points of recovery 

(durations over 48h) with additional cycles of PCR or Q-PCR may be necessary to 

determine more precisely if any reduction in the transcript level occurs. 

Zhuang and Hunter, (2011b) showed that tissue-specific difference in RNAi sensitivity 

exists among the eri mutants of C. elegans and that RNAi can be a property of a 

particular cell type (Asikainen et al., 2005; Calixto et al., 2010). Hence it is important to 

evaluate the RNAi responses of different genes expressed in the same tissue as well 

as different tissues to confirm the cell to cell or gene to gene variation in RNAi 

response by targeting more genes along with the co- silencing of Pc-eri-1 in P. coffeae. 

The potency of RNAi in C. elegans is a result of transitive RNAi, which refers to the 

spread of RNAi silencing specificity in cis along a target mRNA to target sequences not 

in the original trigger dsRNA. This transitive RNAi is the product of secondary siRNAs 

produced by RNA directed RNA polymerase (RdRP) and these secondary siRNAs can 

target other mRNA transcripts in trans resulting in a robust RNAi (Pak et al., 2012).  
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The long term persistence of knock-down effect in Pc-eng-1 (RNAi) compared to Pc-

pat-10 and Pc-unc-87 raises more questions regarding the RNAi mechanism in P. 

coffeae. While the gene encoding RdRP, rrf-1, required for the amplification step in 

somatic cells were also not recognized in the transcriptome of P. coffeae and H. 

oryzae, ego-1 encoding the RdRP in germline was identified in these nematodes. 

However, RdRP homologs have never been found in insect species where robust RNAi 

has been reported (Tomoyasu et al., 2008). Hence it is also possible that P. coffeae 

may have RdRP-like activity via alternative enzymes as occurs in Drosophila cells or 

RdRP independent amplification may exist in P. coffeae. The presence of secondary 

siRNA in P. coffeae has yet to be confirmed. More insight into these factors can be 

obtained by complete genome sequencing of P. coffeae as well as by the sequencing 

of small RNAs in response to exogenous RNAi.  

The competition model for enhanced RNAi phenotype proposes that the efficacy of 

exogenous RNAi is determined by the availability of enzymes utilized by both 

endogenous and exogenous RNAi pathways, such as DCR-1, SAGO-1, SAGO-2 and 

NRDE-3 (Yigit et al., 2006; Zhuang et al., 2013) in the eri mutants of C. elegans. The 

transcriptome analysis of P. coffeae did not reveal orthologs for SAGOs and NRDE-3.  

Hence based on the current competition model of genes regulation and transcriptome 

analysis, it can be postulated that the silencing of Pc-eri-1, which is required for 

endogenous RNAi may result in a reduced flux through the endogenous pathway, this 

in turn allows for increased access to limiting resources, mainly, DCR-1 in P. coffeae 

resulting in an enhanced RNAi response. Additionally, Zhuang et al. (2013) discovered 

that PGL-1 is also another candidate for the limiting resources required for enhanced 

RNAi associated with eri-1.  
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The presence of PGL-1 and its influence in RNAi, however, is not yet known in P. 

coffeae. Zhuang et al. (2013) also reports that the genes that are NRDE-3 dependent 

are found to be PGL-1 independent and vice versa. It has also been found that when 

both pgl-1 and nrde-3 are lost simultaneously, it results in a depletion of RNAi 

enhancement even in the eri-1 mutant background (Zhuang et al., 2013) suggesting 

that these two genes define the totality of eri-1. Consequently it is also possible that the 

presence or absence of nuclear RNAi components such as NRDE-3 and PGL-1 or 

other unknown effectors may have influence on the enhanced RNAi induced by the 

silencing of Pc-eri-1 in P. coffeae. Additionally, the presence of these limiting resources 

required for enhanced RNAi can vary from tissue to tissue as observed in C. elegans 

and this might have been responsible for the variation in the response to the silencing 

of Pc–eri-1 among the genes as observed in P. coffeae. 

7.3 Nuclear effectors influencing RNAi in P. coffeae 

Nuclear RNAi plays an important role in enhanced RNAi silencing phenomena in C. 

elegans. Although NRDE-3 (an essential component of transcriptional gene silencing 

which induces long term effect of RNAi in C. Elegans) was not recognized in the P. 

coffeae transcriptome, some of the nuclear RNAi effectors associated with 

transcriptional gene silencing such as zfp-1, gfl-1, alg-1, tsn-1, mes-2 and mes-6 were 

found in P. coffeae (Chapter 4). Additionally, the results from combinatorial RNAi 

(Chapter 5) have shown that the co-silencing of Pc-gfl-l attenuates the RNAi effect in 

Pc-pat-10 (RNAi), which indicates the requirement of Pc-gfl-1 in exogenous RNAi. 

However, the co-silencing of Pc-gfl-1 did not influence the silencing of Pc-unc-87.  
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Thus there is the possibility that the expression of Pc-pat-10 is sensitive to nuclear 

RNAi and dependent on Pc-gfl-1 while Pc-unc-87 and Pc-eng-1 expression is 

independent of Pc-gfl-1. There is, however, the need for further exploration on the role 

of other nuclear RNAi effectors in RNAi of different genes to better understand the 

RNAi mechanism in P. coffeae. 

7.4 Need for a careful characterization of RNAi effectors in P. coffeae 

Considering gene specific RNAi response in P. coffeae, it is necessary to understand 

the cellular location of the proteins influencing RNAi in the parasitic nematodes. The 

comparative study on RNAi effectors in P. coffeae (Chapter 4) displays a greatly 

contracted suite of RNAi effector proteins in the nematode. For example, based on 

transcriptome analysis, P. coffeae seems to have only one RdRP, EGO-1, which is 

required for germline RNAi. Additionally, among the proteins, such as SMG-2, -5, and -

6, which have an important role in the induction and maintenance of secondary 

amplification (Mango, 2001); SMG-2 and SMG-6 were well conserved in P. coffeae 

(Chapter 4). It is also possible that EGO-1 can act redundantly in somatic tissues like 

RRF-1 in these nematodes and hence, amplification of the silencing signal may exist to 

some extent enabling profound silencing of the genes. There is a need for a careful 

characterization of RNAi effectors in P. coffeae to understand their expression level 

and distribution to get more insight in RNAi regulation in P. coffeae. 
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7.5 Factors influencing the dsRNA dose required for efficient RNAi in P. 

coffeae 

In the soaking assay with P. coffeae, it was observed that a higher dose of dsRNA 

(1µg/µl), which was found to be toxic in the case of other parasitic nematodes such as 

root-knot and cyst nematodes, did not cause any non specific action in P. coffeae 

(Chapter 2). In addition, the use of relatively higher dose of siRNA compared to the 

concentration used in M. incognita and G. pallida did not generate any inhibitory 

phenotype in P. coffeae (Chapter 5). A single soaking with 500ng/µl of dsRNA of Pc-

pat-10 did not show efficient RNAi in P. coffeae as compared to the single soaking with 

1µg/µl of dsRNA (data not shown). Additionally, when dsRNA was removed from the 

solution, the knock-down effect was recovered within 24h. But in the case of 

combinatorial RNAi, the concentration of dsRNA of Pc-pat-10 in the total solution was 

kept at 500ng/µl (50% of dsRNA dose used in single soaking) and the RNAi effect 

persisted even after 48h of recovery at this concentration. This may indicate that the 

co-silencing with Pc-eri-1 enhances the RNAi potency in P. coffeae at lower dose of 

Pc-pat-10 dsRNA. . 

In C. elegans it has been shown that in RNAi defective mutants, a high concentration 

of dsRNA can compensate for the weak RNAi-defective phenotypes. For this reason, it 

is possible that the discrepancy among different nematodes in their response to the 

dsRNA concentration may be due to the differences in their inherent ability to take up 

dsRNA and process these introduced dsRNA which is in turn dependent on the 

presence of RNAi pathway components. In C. elegans it has been shown that RNAi 

phenotypic penetrance is sensitive to the dsRNA dose. Zhuang and Hunter (2011a) 

pointed out that RNAi penetrance versus dsRNA dose show a sigmoidal relationship. 
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In C. elegans, most nematodes do not respond to low dsRNA dose. Additionally, it is 

necessary to use the maximum possible dose to get high phenotypic penetrance 

during functional characterization of nematode genes.  

Nevertheless, the optimal dose for dsRNA or siRNA should be determined based on 

the nematode and gene targeted as well as the use of appropriate controls to detect 

non-specific RNAi effects.  

7.6 Possibility for alternative RNAi effectors or mechanism in P. coffeae 

A search for the RNAi pathway components in P. coffeae, M. incognita and H. oryzae 

has shown that P. coffeae and H. oryzae possess the basic machinery required to 

facilitate an RNAi response as in M. incognita (Chapter 4) although, some of the core 

proteins in the RNAi pathway were missing from the transcriptome of these 

nematodes. In vitro RNAi studies have also demonstrated high susceptibility of P. 

coffeae to RNAi by dsRNA soaking (Chapter 2).  

Although P. coffeae seems to lack systemic RNAi effectors, an efficient silencing of the 

genes expressed in different cells such as muscular and secretory gland cells has 

been observed in this study. A number of studies have also demonstrated the 

successful application of RNAi in M. incognita, and Drosophila S2 cells, which lack sid-

1. This suggests that alternative uptake proteins or mechanisms might be involved in 

PPN. There is also the possibility that the transcription of the unidentified RNAi 

effectors might be too low to be detected by the analysis. However, upcoming genomic 

data of P. coffeae revealed that the RNAi pathway is partially conserved in the genome 

and it has reduced numbers in multi-gene families compared to C. elegans and other 

more specialized PPN such as M. hapla (personal communication, Opperman, C.H, 

2013). Among the three RdRPs, only one RdRP, EGO-1 has been found in the 
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transcriptome of P. coffeae. Similarly P. coffeae possesses only a subset of putative 

AGO orthologs relative to C. elegans. Identification of genes based on gross sequence 

similarity may underestimate functional diversity of the gene. The function and 

expression profile of identified RdRP or AGOs in P. coffeae may be different from that 

of C. elegans. It is also possible that alternative proteins, which have similar functional 

role as unidentified C. elegans gene complement, may exist in P. coffeae. 

7.7 Discrepancy in silencing efficiency in R. similis 

The in vitro RNAi mediated by dsRNA soaking in R. similis was performed under the 

same soaking conditions as in the case of P. coffeae. Although the susceptibility to 

RNAi was not efficient in some of the genes targeted in R. similis, a significant level of 

knock-down effect was observed in some of genes tested in this study. While Rs-eng 

1B showed a significant knock-down effect Rs-eng2 did not. Similarly, Rs-rpl-1 and Rs-

iff-2 did not show a significant silencing effect, while Rs-icd-1 and Rs-integ were 

significantly downregulated following the dsRNA soaking. This is an indication that not 

all genes may be affected by RNAi or that the specific sequences were not suitable for 

efficient RNAi. This can be due to a number of factors including differing spatial 

expression patterns, level and turnover rate of the endogenous transcript, or length or 

sequence of the dsRNA. Additionally, some genes might be less susceptible due to the 

influence of antagonising factors of RNAi or other RNAi effectors as demonstrated in 

the in vitro RNAi study of P. coffeae (Chapter 5).  

In this study, a significant RNAi effect was not noticed in the genes encoding ribosomal 

proteins such as rpl-1. Contrary to this, however, there are reports that have 

demonstrated successful knock-down of the ribosomal genes affecting nematode 

parasitic success in the plants (Alkharouf et al., 2007).  
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It might be possible to obtain an efficient knock-down of these target genes by testing 

different dsRNA sequences of the same gene or optimizing the dsRNA dose for each 

target. Nevertheless the present study results have demonstrated the possibility of 

using RNAi-mediated silencing of the genes involved in parasitism or nematode 

development in the control of R. similis.  

7.8 Perspectives and recommendation for future study 

In this study, the successful application of RNAi in the migratory nematodes, P. coffeae 

and R. similis has been demonstrated. Some of the potential targets suitable for 

parasitic control based on host-derived RNAi have also been identified in both 

nematodes. However, there is the need to explore the molecular data available for 

these nematodes and identify more target genes involved in parasitism, cell 

development or metabolism via in vitro RNAi screening.  

This study has also shown variable RNAi efficacy among the target genes. This 

indicates the necessity to optimize various factors influencing RNAi efficacy depending 

on the target gene and nematode species. The identification of genes those are 

essential for RNAi or that modulate the RNAi process such as Eri genes have made it 

possible to manipulate the RNAi process in C. elegans. Mutations to these genes in 

other organisms such as mice have also been shown to have some endogenous 

defects, but assays in RNAi efficacy have not been thoroughly performed outside C. 

elegans. The present study has demonstrated that RNAi can also be manipulated in 

the plant-parasitic nematode, P. coffeae. Using the information on RNAi effectors in P. 

coffeae and the data documented in C. elegans, further experiments using 

combinatorial RNAi targeting different genes located in different cells should be 

conducted. As demonstrated in Chapter 4, EST analysis for detecting all genes used in 

parasitism or the RNAi pathway might be limited by the inadequate coverage of 
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transcriptome. Further search for unidentified genes should be performed based on the 

genomic sequence data. This was also illustrated in the case of M. incognita when 

novel cell wall modifying enzymes (not present in EST data) such as arabinase were 

discovered by the analysis of genomic data (Abad et al., 2008).  

The comparative study of the migratory and sedentary nematodes based on available 

genomic data could provide useful insights on evolution of parasitism genes as well as 

RNAi effectors among the PPN. In addition to the identification of the RNAi effectors, 

the expression profile of these effectors will be useful for further manipulation of the 

RNAi response in these nematodes. 

Although an attempt has been made in this study to generate transgenic banana with 

resistance against R. similis, this task could not be completed. It will be worthwhile to 

test the efficacy of host derived nematode resistance in banana using the selected 

targets. Based on the transcriptome analysis of P. coffeae, an efficient RNAi can be 

expected in germline cells due to the presence of RdRP required for siRNA 

multiplication in the germline. Therefore, it will also be interesting to test the effect of 

RNAi on the genes involved in germcell development and the impact of this knock-

down on reproductive fitness of the nematode.  

Despite the overall progress made in the management of nematodes using transgenic 

plants expressing nematode dsRNA, some hurdles are still to be overcome. One of the 

main challenges is to deliver a sufficient amount of siRNA in the right cells and at the 

right time to obtain durable and strong post transcriptional silencing. There is also a 

necessity for optimizing plant RNAi constructs for enhancing knock-down efficiency. 

Future strategies incorporating more features in construct design might help to develop 

a high throughput system for nematode control.  
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For example, incorporation of multiple gene fragments for a broad resistance using 

multiple shRNA expression methods, use of artificial microRNA constructs, which have 

been proven very efficient in generating silencing in animal RNAi research and plant 

research (Mcintyre et al., 2011a; Ossowski et al., 2008; Wu et al., 2013; Warthmann et 

al., 2013), can be some of the useful strategies to be adopted in PPN control based on 

RNAi. 

In mammalian RNAi research, short hairpin RNAs (shRNAs) with short stem length of 

19 or 21bp (<30bp) have also been used efficiently for silencing the target genes (Li et 

al., 2007; Mcintyre et al., 2011a; Zhou et al., 2005). Using short hairpin constructs 

which produce siRNAs more efficiently might also be an alternative strategy to obtain 

specific and broader resistance against nematodes. However, the properties such as 

stem length, the GC content and thermodynamic properties of the stem sequences are 

some of important factors that should be considered during the construction of shRNA 

for increasing the siRNA production (Hirari and Kodama, 2008; Mcintyre et al., 2011b; 

Zhou et al., 2005). Additionally, a key feature for an efficient RNAi effect may be the 

amplification of the primary signal in the host plant. The nematodes which lack efficient 

secondary amplification may require a higher dose of siRNA input to induce an efficient 

silencing. When the dsRNA of a nematode gene is produced in plant cells, the 

amplification of the signal may not occur because the host lacks cognate target 

sequencing. Therefore, the co-transformation with native target genes may be helpful 

to trigger the RNAi amplification cascade (Valentine et al., 2007).  

As discussed previously, the plant rhizosphere is colonized by different species of 

nematodes implying that species specific regulation of RNAi may not give complete 

protection for the host plant from other species of nematodes.  
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The selection of highly conserved sequences among diverse group of parasitic 

nematode species can be a possible approach to develop resistant plants against 

multiple species of nematodes.  
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Summary 

RNA interference has extensively been applied as a tool to analyze the function of 

different genes in a wide range of organisms. In C. elegans this technique has been 

very succesful and the phenotypes resulting from the knockout of these genes have 

been well documented. Significant progress has been made in the development of 

novel control strategies against some species of plant-parasitic nematodes (PPN) 

based on RNAi. However, the feasibility of this approach in some economically 

important migratory endo-parasitic nematodes species has not been previously 

studied. The studies outlined in this thesis are thus focused on the application of RNAi 

in the root lesion nematode Pratylenchus coffeae, a major pest in banana plantations 

together with Radopholus similis. The aim was to study the function of some nematode 

genes and the feasibility of using RNAi as a control strategy in nematode management. 

Additionally, transcriptome analysis of P. coffeae was performed in order to get more 

insight into the genes involved in parasitic success, development and RNAi in P. 

coffeae.  

In this thesis, P. coffeae orthologs for two C. elegans genes, pat-10 and unc-87 namely 

Pc-pat-10 and Pc-unc-87, which encode body wall muscle proteins, were tested for 

their susceptibility to RNAi. Additionally, the gene encoding endo-1, 4-beta-glucanase 

(a plant cell wall degrading enzyme), Pc-eng-1, and some effectors involved in the 

RNAi pathway such as Pc-eri-1 and Pc-gfl-1 were also selected for the study. RNAi 

was performed by soaking mobile stages of P. coffeae in a solution containing dsRNA 

of the target gene for 24h. The persistence of the RNAi effect was checked by 

recovering the treated nematodes in water for 24h or 48h.  

A significant down regulation of Pc-pat-10 and Pc-unc-87 in a sequence-specific 

manner was observed following soaking the nematodes with the dsRNA of the target 
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genes. The knocking down of these genes resulted in abnormal phenotypes: Pc-pat-10 

RNAi generated straight and rigid nematodes while Pc-unc-87 RNAi resulted in a coiled 

phenotype in contrast to the regular sinusoidal movement of the control nematodes. 

Thus this study demonstrated the existence of the RNAi phenomenon in P. coffeae and 

indicates that the function of Unc-87 and Pat-10 genes has been evolutionarily 

conserved among free-living and plant-parasitic nematodes. The RNAi effect of Pc-pat-

10 and Pc-unc-87 was found to be transient in P. coffeae contrary to its persistence in 

C. elegans. This transient RNAi effect was, however, not observed for all P. coffeae 

genes tested. The silencing effect of endo-1, 4-beta-glucanase (Pc-eng-1) and Pc-gfl-1 

was not recovered even 48h after dsRNA soaking showing that the transient effect of 

RNAi in P. coffeae might be gene specific. 

In this study, the influence of Pc-eri-1, a negative regulator of exogenous RNAi, on the 

RNAi persistence was evaluated using the combinatorial RNAi approach by 

simultaneously targeting two genes. The dsRNA of Pc-eri-1 or Pc-gfl-1 was co-

introduced with dsRNA of the target genes, Pc-pat-10, Pc-unc-87 or Pc-eng-1. The 

results revealed that co-silencing of Pc-eri-1 enhanced the persistence of RNAi of Pc-

pat-10, however, the silencing of Pc-eri-1 did not show a similar impact on the other 

genes tested. This may be an indication that the downregulation of Pc-eri-1 only 

enhances the RNAi of some specific genes. Additionally, the soaking assays in P. 

coffeae showed that contrary to other parasitic nematodes such as root-knot and cyst 

nematodes, P. coffeae does not show an abnormal phenotype at a higher dose of 

dsRNA. This is an indication of a species-specific response to dsRNA dosage. 

Another migratory nematode, R. similis was also used for RNAi studies. Some 

parasitism genes as well as genes that are required for development were targeted by 

in vitro RNAi. The results showed that the infection of R. similis can effectively be 
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controlled by RNAi-mediated silencing of nematode genes. The silencing effect was, 

however, not at the same level in all targets: Rs-eng 1B showed a significant RNAi 

effect by soaking. Rs-eng2, Rs-rpl-1 and Rs-iff-2 did not show a significant knock-down 

effect after dsRNA soaking while Rs-icd-1 and Rs-integ transcripts were significantly 

decreased. When M. truncatula plants were infected with nematodes following the 

soaking with dsRNA of Rs-eng-1B and Rs-icd-1, a significant reduction in nematode 

invasion was observed. This result shows that Rs-eng1B and Rs-icd-1 can be optimal 

candidates for host-delivered RNAi approach against R. similis. Vectors for dsRNA 

production in banana against R. similis were constructed for these genes using the 

gateway recombinational cloning system. Banana plants were transformed using the 

dsRNA vectors and the presence and integration of the target genes were confirmed by 

PCR and Southern hybridization. However screening of the transgenic banana plants 

for nematode resistance by infection test was not performed due to poor establishment 

of transgenic plants. Nevertheless, the present study results have demonstrated the 

possibility of using RNAi-mediated silencing of the genes involved in parasitism or 

nematode development in the control of R. similis. 

The transcriptome analysis of P. coffeae identified several plant cell wall modifying 

proteins such as xylanase, pectate lyase, polygalacturonase and arabinogalactan 

galactosidase. In addition to this, other nematode secreted proteins with putative or 

proven functions in the plant such as 14-3-3b protein, acid phosphatase, calreticulin, 

chorismate mutase, ERp99, galectin, glutathione peroxidase, glutathione-S-

transferase, peroxiredoxin, RBP-1, SEC-2 were also identified in the transcriptome 

data set. Additionally, the search for the RNAi pathway components in the P. coffeae 

transcriptome showed that P. coffeae possesses the basic machinery required to 

facilitate an RNAi response as in M. Incognita. However, the search revealed that 

some of the core proteins in the RNAi pathway such as RDE-1, RDE-4, PAZ-
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PIWI/Argonaute protein were not identified in the nematode’s transcriptome. 

Additionally, none of the effectors involved in systemic RNAi were found in the P. 

coffeae data set. The genes encoding RdRps such as rrf-1 and rrf-3, required for the 

siRNA amplification step in somatic cells were also not recognized in the transcriptome 

of P. coffeae. The information obtained from the transcriptome analysis can be useful 

for comparative and evolutionary studies as well as to select interesting genes for 

functional studies.  

In summary, this study has shown the feasibility of RNAi as a functional tool and a 

promising control strategy in two migratory nematodes. Elucidation of RNAi pathway 

components using transcriptomic/genomic data can be useful to understand the factors 

influencing the RNAi response in parasitic nematodes. Although the complex RNAi 

pathway is not fully understood in plant-parasitic nematodes, it is possible to 

manipulate the RNAi response in PPN based on the information obtained from RNAi 

screens in C. elegans and insight from the nematode genome. The results from the 

study also point out that there is a clear potential for engineering host derived RNAi-

mediated nematode resistance against migratory nematodes by targeting optimal 

candidate genes. However, it is necessary to gain more insight into the approaches for 

further improvement of the technology in order to achieve broader and durable 

nematode resistance. 
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Nederlandse samenvatting 

RNA-interferentie is een heel belangrijke methode voor de functionele analyse van 

verschillende genen in een brede waaier van organismen. Bovendien is er significante 

voor tuitgang geboekt in het gebruik van RNAi voor de controle van bepaalde 

pathogenen zoals planten-parasitaire nematoden (PPN).  

Bij de aanvang van dit doctoraat was er echter geen kennis over de bruikbaarheid van 

RNAi voor de studie en controle van migratorische endoparasitaire nematoden, en 

daarom vormde dit de belangrijkste doelstelling van dit onderzoek. Bovendien werd 

ook een transcriptoomanalyse uitgevoerd op Pratylenchus coffeae om meer inzicht te 

krijgen in de genen die belangrijk zijn voor ontwikkeling, parasitisme en RNAi.  

In deze thesis werden twee orthologen van C. elegans genen geïsoleerd uit P. coffeae, 

namelijk Pc-pat-10 en Pc-unc-87, die coderen voor spiereiwitten van de lichaamswand. 

Deze genen werden getest op hun RNAi-gevoeligheid. Daarnaast werden ook nog een 

aantal andere genen uitgetest, namelijk een gen voor een celwandafbrekend enzyme, 

endo-1, 4-beta-glucanase (Pc-eng-1), en genen voor eiwitten die een rol spelen in het 

RNAi-proces, Pc-eri-1 and Pc-gfl-1. RNAi werd uitgevoerd door incubatie van 

gemengde P. coffeae stadia in dsRNA. Een specifieke en significante neerregulatie 

van RNA van Pc-pat-10 en Pc-unc-87 werd geobserveerd, samen met de typische 

abnormale fenotypes van verlamming die ook in C. elegans voorkomen. Pc-pat-10 

RNAi veroorzaakte gestrekte wormen terwijl Pc-unc-87 RNAi resulteerde in gekrulde 

wormen.  
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In tegenstelling tot een langdurig RNAi effect in C. elegans was het effect in P. coffeae 

48 uur later al veel verminderd. RNAi op endo-1, 4-beta-glucanase (Pc-eng-1) en Pc-

gfl-1 bleek na 48 uur wel nog effect te hebben wat erop wijst dat de duur van het RNAi-

effect genafhankelijk is. In een gecombineerde RNAi waarbij tegelijk Pc-eri-1, een 

negatieve regulator van RNAi uitgeschakeld werd, bleek RNAi of Pc-pat-10 langer te 

werken. Op silencing van de andere genen was er echter geen effect.  

RNAi werd ook uitgetest in Radopholus similis door incubatie van de nematoden in 

dsRNA. Silencing werd waargenomen maar het effect was genafhankelijk. RNAi werkte 

beter op Rs-eng 1B dan op Rs-eng2. Rs-rpl-1 en Rs-iff-2 vertoonden weinig verschil, 

terwijl Rs-icd-1 en Rs-integ significant neergereguleerd werden op RNA-niveau. 

Wanneer M. truncatula planst geïnfecteerd met nematoden na inweken met dsRNA of 

Rs-eng-1B en Rs-icd-1, werd een significante vermindering van nematode invasie 

waargenomen. Dit resultaat toont aan dat de Rs-eng1B en Rs-icd-1 kan optimaal zijn 

kandidaten voor host-geleverde RNAi aanpak tegen R. similis. Vectoren voor dsRNA 

productie banaan tegen R. similis werden geconstrueerd voor deze genen met de 

gateway recombinatorische kloneringssysteem. Banaan planten werden 

getransformeerd met de vectoren dsRNA en de aanwezigheid en integratie van de 

doelgenen werd bevestigd door PCR en Southern hybridisatie. Echter screening van 

de transgene bananenplanten voor nematode resistentie door infectie test werd niet 

uitgevoerd vanwege de slechte instelling van transgene planten. Niettemin hebben de 

onderhavige studieresultaten heeft de mogelijkheid om RNAi-gemedieerde silencing 

van genen betrokken bij parasitisme of nematode ontwikkeling in de controle van R. 

similis aangetoond. 
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De transcriptoomanalyse van Pratylenchus coffeae identificeerde meerdere 

plantencelwandmodificerende eiwitten zoals xylanase, pectaatlyase, polygalacturonase 

en arabinogalactangalactosidase. Verschillende eiwitten met hypothetische functies in 

de plant werden ook gevonden zoals 14-3-3b protein, acid phosphatase, calreticulin, 

chorismate mutase, ERp99, galectin, glutathion peroxidase, glutathion-S-transferase, 

peroxiredoxin, RBP-1 en SEC-2. Ook werden componenten van de RNAi-pathway in P. 

coffeae gevonden alhoewel er in vergelijking met M. incognita een aantal 

basiscomponenten lijken te ontbreken zoals RDE-1, RDE-4, PAZ-PIWI/Argonaute. 

Geen enkele van de factoren belangrijk voor systemische RNAi werden gevonden in P. 

coffeae. De genen die coderen voor RdRps zoals rrf-1 en rrf-3, belangrijk voor siRNA-

amplificatie werden ook niet gevonden in het transcriptoom van P. coffeae. De 

informatie bekomen via de transcriptoomanalyse zal ook nuttig zijn voor vergelijkende 

en evolutionaire studies. 

Samenvattend kunnen we besluiten dat deze studie de haalbaarheid van RNAi 

aantoonde als een analysemiddel van, en voor de controle van, migratorische 

nematoden. Opheldering van de RNAi-pathwaycomponenten zal nuttig zijn om de 

werking van RNAi in deze nematoden beter te begrijpen en te optimaliseren.  
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