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ARTICLE INFO ABSTRACT
Article history: The contourite paradigm was conceived a few decades ago, yet there remains a need to establish a sound connec-
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tion between contourite deposits, basin evolution and oceanographic processes. Significant recent advances have
been enabled by various factors, including the establishment of two IGCP projects and the realisation of several
IODP expeditions. Contourites were first described in the Northern and Southern Atlantic Ocean, and since
then, have been discovered in every major ocean basin and even in lakes. The 120 major contourite areas
presently known are associated to myriad oceanographic processes in surface, intermediate and deep-water
masses. The increasing recognition of these deposits is influencing palaeoclimatology & palaeoceanography,
slope-stability/geological hazard assessment, and hydrocarbon exploration. Nevertheless, there is a pressing
need for a better understanding of the sedimentological and oceanographic processes governing contourites,
which involve dense bottom currents, tides, eddies, deep-sea storms, internal waves and tsunamis. Furthermore,
in light of the latest knowledge on oceanographic processes and other governing factors (e.g. sediment supply
and sea-level), existing facies models must now be revised. Persistent oceanographic processes significantly
affect the seafloor, resulting in large-scale depositional and erosional features. Various classifications have been
proposed to subdivide a continuous spectrum of partly overlapping features. Although much progress has
been made in the large-scale, geophysically based recognition of these deposits, there remains a lack of unambig-
uous and commonly accepted diagnostic criteria for deciphering the small-scaled contourite facies and for
distinguishing them from turbidite ones. Similarly, the study of sandy deposits generated or affected by bottom
currents, which is still in its infancy, offers great research potential: these deposits might prove invaluable as
future reservoir targets. Expectations for the forthcoming analysis of data from the IODP Expedition 339 are
high, as this work promises to tackle much of the aforementioned lack of knowledge. In the near future, geolo-
gists, oceanographers and benthic biologists will have to work in concert to achieve synergy in contourite re-

search to demonstrate the importance of bottom currents in continental margin sedimentation and evolution.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
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1. Introduction of deep-sea bottom photographs of current ripples (Heezen and

Hollister, 1964; Hollister, 1967). Over the past few years, this research

The influence of bottom-water circulation in deep-sea sedimentation
(i.e. contourites) remains poorly understood. To address this issue,
researchers must establish a sound connection between contourite
deposits, basin evolution and oceanographic processes. The research on
contourites is presently maturing (Rebesco and Camerlenghi, 2008). In
fact, contourites were first identified nearly 50 years ago, on the basis
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topic has crystallised, as reflected by number of the publications and in-
ternational programmes dealing with it (see Section 2). However, many
uncertainties remain, such as lack of indisputable diagnostic criteria for
identifying contourites. This field is now advancing similarly to turbidite
research, which is now mature, progressed in the 1960s. Indeed, there is
a glaring disparity in knowledge between the former and the latter:
a recent (February 2014) online search for the term contourites yielded
256 results on Scopus and 17,300 on Google, whereas a similar search
for turbidites gave 3841 and 295,000 results, respectively—more than 15
times more in each case.

We are aware of the fact that contourites (sediments affected by
alongslope bottom currents), turbidites (sediments deposited by
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Fig. 1. Conceptual diagram showing the three main types of sedimentary processes operating in the deep sea (within the triangle) and the facies model of the respective depositional

products.

downslope density currents) and pelagites (sediments deposited by ver-
tical pelagic settling) simply represent extremes in a continuum of
deep-sea sedimentary facies (Fig. 1). In fact, putting aside mass-
transport deposits, the three main sedimentary processes that occur in
the deep sea comprise the settling of pelagic particles through the
water column, the predominantly alongslope flow of bottom currents (rel-
atively clean bottom-water masses), and downslope density currents
(turbid flows of predominantly terrigenous sediments). The first of
these represents a background process that becomes dominant only in
very remote abyssal areas. In contrast, episodic, high-energy density
flows are commonly superimposed over or interact with relatively per-
manent flows of bottom currents on many continental margins. Whilst
the application of turbidite models and concepts to the interpretation of
deep-sea facies remains challenging (e.g. the dominance of the turbidite
paradigm; criticised by Shanmugam, 2000), there is increasing recogni-
tion that contour currents are important transport and sedimentary
phenomena that control much of deep-sea sedimentation.

The study of contourites is now considered crucial for at least three
fields of fundamental and applied research (Rebesco, 2005, 2014):
palaeoclimatology & palaeoceanography; slope-stability/geological hazard
assessment; and hydrocarbon exploration (see Section 3). However,
despite the significance of contourites, the fact that they cover large
parts of present ocean floors and all of the Earth's continental margins
(see Section 4), and the fact that an increasing number of fossil occur-
rences are being documented (Huneke and Stow, 2008), they remain
poorly known amongst non-specialists. The widespread distribution of
contourites is connected to the pervasiveness of the transport vehicles
that control their deposition: bottom currents and associated

oceanographic processes (Fig. 2). In fact, water masses move through-
out the ocean basins and, as a general simplification, any “persistent”
water current near the seafloor can be considered to be a “bottom cur-
rent” (see Section 5).

Contourites are defined as “sediments deposited or substantially
reworked by the persistent action of bottom currents” (e.g. Stow et al.,
2002a; Rebesco, 2005, 2014). The term contourites, originally intro-
duced to specifically define the sediments deposited in the deep sea
by contour-parallel thermohaline currents, has subsequently been
widened to embrace a larger spectrum of sediments that are affected
to various extents by different types of current. Moreover, contourites
may occur interbedded with other sediment types and interaction of
processes is the norm rather than the exception.

On the basis of these considerations, we suggest to use the well-
established term contourite as a generic such as mass-wasting deposits
or gravity-flow deposits. Such family names include several kinds of sed-
iment that have more specific names (e.g. turbidites, debris-flow deposits,
or mudflow deposits). In the case of the deposits affected by bottom
currents, such specific names have not been formalised to the same
extent (apart from sensu stricto contourites, which are produced by
thermohaline-induced geostrophic bottom currents). Additionally, nu-
merous associated processes are related to the circulation of deep-
water masses and bottom currents (see Section 5), such as benthic
storms; overflows; interfaces between water masses; vertical eddies;
horizontal vortices; tides and internal tides; internal waves and
solitons; tsunami-related traction currents; and rogue or cyclonic
waves. Some of these processes are not well known and/or their conse-
quences have not been researched, although their associated energy
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Fig. 2. Schematic diagram summarising the principal bottom-current features.
Modified from work by Stow et al. (2008); with permission from Elsevier.

and influence in shaping the seafloor are very important (e.g. as is known
for internal waves). Thus further research aimed at distinguishing
between the various types of transport and depositional processes is
required and must incorporate the contributions of oceanographers and
geologists.

Elongated contourite drift (contourites)

Asymmetric moat and mound geometry

Dimensions larger
than average turbidite
channel-levees systems

Bottom currents are capable of building thick and extensive accumu-
lations of sediments. Although these sediment bodies have received
various names in the past, the term contourite drifts should be preferred.
Similarly to channel-levee systems generated by turbidity currents,
such large bodies normally have a noticeable mounded geometry,

Widespread regional
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Fig. 3. Schematic model showing ideal, large-scale differences between contourite drifts and channel-levee systems.
Modified from work by Rebesco (2005); with permission from Elsevier.
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which is generally elongated parallel, or lightly oblique to the margin
(Fig. 3). Bottom currents and associated processes also generate various
other depositional and erosional or non-depositional structures at
different scales (see Section 6).

A facies model for contourites (see Section 7) has been proposed for
some time, mainly for fine-grained contourites (Gonthier et al., 1984;
Stow and Faugeéres, 2008). However, unambiguous and commonly
accepted diagnostic criteria for contourites are still lacking. According
to most contourite researchers and based on countless core samples
(see, for example: Stow and Faugéres, 2008), extensive bioturbation is
generally the dominant feature. However, a minority of researchers
(see, for example: Huneke and Stow, 2008; Martin-Chivelet et al.,
2008; Shanmugam, 2008, 2012a; Mutti and Carminatti, 2012) interpret
some distinctly laminated sandy deposits as contourites. They observe
that traction structures are abundantly produced by bottom currents
on modern ocean floors and wonder whether the general absence of
these structures in sediment core studies might be explained by a bias
imposed by the limited scale of observation. Furthermore, these authors
highlight that extensive bioturbation is also abundant in areas unaffect-
ed by bottom currents and in turbidites. This controversy might
be down to different researchers having worked in different settings
(e.g. muddy contourites vs. sandy contourites or reworked turbidites).
Interestingly, there is still some debate over the facies model and
over the diagnostic sedimentological criteria for contourites. The forth-
coming results from the recent IODP Expedition 339, which specifically
targeted contourite deposits (for a preliminary preview, see Section 8),
might provide crucial clues to these questions. Further research is need-
ed to define a universally acceptable set of diagnostic criteria for
contourites. Such future research (see Section 9) should be aimed main-
ly at elucidating the processes involved in contourite formation.

2. Brief history

Since the seminal paper of Heezen and Hollister (1964) was
published in the first issue of this journal, the contourite paradigm has
progressed gradually, although much more slowly (Fig. 4) than has
the well-funded area of turbidite research (Rebesco and Camerlenghi,
2008). However, a comparison of the initial ideas on contourites with
their presently accepted definition and recorded occurrences reveals a
marked shift in researchers’ mind-sets: the definition of contourites
has shifted from meaning highly localised deposits created by thermo-
haline circulation in a deep-sea basin (Heezen et al., 1966), to meaning
multi-facetted deposits (Lovell and Stow, 1981; Faugéres et al., 1999)
originating from many possible physical drivers and several types
of currents (Rebesco and Camerlenghi, 2008) in the deep ocean
(Campbell and Deptuck, 2012; Uenzelmann-Neben and Gohl, 2012),
on continental slopes (Preu et al., 2012; Roque et al., 2012; Li et al,,
2013), in shallow margins (Verdicchio and Trincardi, 2008; Vandorpe
et al, 2011) and in lakes (Ceramicola et al., 2001; Gilli et al., 2005;
Heirman et al., 2012).

Although an initial phase of steady research growth witnessed a
few milestone papers (Stow, 1982; Stow and Holbrook, 1984; Stow
and Piper, 1984; Faugeres and Stow, 1993), it was not until 2002 that
the first dedicated book on contourites was published (Stow et al.,
2002a), as the major outcome of IGCP 432 on Contourites, Bottom
Currents and Palaeocirculation (1998 to 2002). This international geo-
science correlation programme firmly confirmed the contemporary
contourite paradigm and was successful in creating a “contourite com-
munity”, some of whose members published major books (see Viana
and Rebesco (2007) and Rebesco and Camerlenghi (2008)) and brought
contourites into the Encyclopaedia of Geology (Rebesco, 2005). Thus, the

success of IGCP 432 led to improved documentation and classification of
the plethora of contourite deposits, with a focus on the link between
processes and products.

Since IGCP 432, contourite research has benefitted from a
boost in technological and methodological advances in geophysics,
palaeoceanography and physical oceanography (Fig. 4) that have en-
abled numerous discoveries of contourite drifts and led to increasingly
detailed studies on possible driving forces behind contourite formation.
These advances also yielded better insight into the lateral and temporal
variability and connectivity of contourite processes, which in turn led to
the definition of the terms Contourite Depositional Systems (CDS) and
Contourite Depositional Complexes (Hernandez-Molina et al., 2004,
2008a; Rebesco and Camerlenghi, 2008). Much of this insight has
emerged from the study of contourite deposits influenced by the Medi-
terranean Outflow Water (MOW), which has served as a natural labora-
tory for more than 20 years (Gonthier et al., 1984; Nelson et al., 1993;
Llave et al., 2001; Mulder et al.,, 2003; Hernandez-Molina et al., 2006a;
Marchés et al., 2007; Llave et al., 2011; Roque et al., 2012; Brackenridge
et al,, 2013 amongst others). Moreover, this case not only applies for the
Gulf of Cadiz, but also applies further away, in the Bay of Biscay (Ercilla
et al, 2008; Van Rooijj et al., 2010; Hernandez-Molina et al,, 2011a) and
in the Porcupine Seabight (Van Rooij et al., 2003, 2009). From 2000 on-
wards, significant research efforts were made in relation to the MOW
and contourites adjacent to the Iberian Peninsula (Hernandez-Molina
et al., 2011a). Major contributors included the Spanish projects
CONTOURIBER (2009 to 2012) and MOWER (2013 to 2015), and the
European project EC FP5 HERMES (2005 to 2009), which enabled better
comprehension of the delicate interplay between bottom currents and
deep-water ecosystems, such as the association between the giant
cold-water coral mounds and the Porcupine CDS, off Ireland (Van
Roojj et al,, 2007a,b; Huvenne et al., 2009). In parallel, other continental
margins have been studied by researchers from various countries, seek-
ing to ascertain the Base of Slope (BOS) for determining the outer limits
of the juridical Continental Shelf, per the recommendations of the Unit-
ed Nations Convention on the Law of the Sea (UNCLOS; ABLOS, 2006).
These studies have revealed the abundance of contourites and associat-
ed sediments in deep-water settings and illustrated the importance of
these features in controlling the continental slope and rise morphology
(see, for example: Hernandez-Molina et al.,, 2009, 2010).

Momentum following IGCP 432 led to the first International Confer-
ence on Deep-water Circulation: Processes and Products, held in Baiona,
Spain (16 to 18 June 2010), resulting in a special issue of Geo-Marine
Letters (Hernandez-Molina et al.,, 2011b) and laying the groundwork for
the second edition, to be held in, Ghent, Belgium (September 2014). It
also led to proposal of a new IGCP, which began in 2012: IGCP 619
“Contourites: processes and products”. Some authors (Shanmugam,
2006; Mutti and Carminatti, 2012; Shanmugam, 2012a; Gong et al.,
2013; Shanmugam, 2013a,b) have proposed new concepts about
Bottom-Current Reworked Sands (BCRS), thus providing new perspec-
tives on deep-water research in terms of ancient records as well as recent
and present marine basins.

The primary aim in this new phase of improved comprehension is to
better correlate contourite processes to their products, through greater
cooperation amongst researchers from diverse disciplines. However,
the ultimate success of the Cadiz CDS natural laboratory is still to
come, through the exploitation of the data from IODP Expedition 339,
which acquired more than 5 km of core sample (Expedition 339
Scientists, 2012; Hernandez-Molina et al., 2013; Stow et al., 2013a).
Moreover, over the past decade, several IODP expeditions were
dedicated to drilling sediment drifts, focusing predominantly on the
palaeoceanographic potential of these drifts at strategic sites in areas

Fig. 4. Sketch showing the recent evolution of knowledge on contourite processes and products in the very general context of oceanography and marine geology development, including
the potential future challenges. Only those four American institutions that joined together to develop the JOIDES programme and the DSDP are shown; however, many other institutions

from around the world have contributed to this field of research.

Modified from work by Hernandez-Molina et al. (2011b); with permission from Springer.
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including the North Atlantic Ocean (IODP 303: Eirik and Gardar Drift;
I0DP 307: Porcupine CDS; and IODP 342: Newfoundland Drifts) and
the Pacific and Southern oceans (IODP 317: Canterbury Drift; and IODP
318: Wilkes Land Drift).

3. Implications of contourites for palaeoclimate, slope stability, and
hydrocarbon exploration

For many years the research on contourites was the realm of a few
specialists. However, it has recently been garnering interest amongst
more and more scientists, in parallel to increasing awareness about
the effects of bottom currents and associated oceanographic processes
(see Section 5). Such processes occur almost everywhere in the oceans
and are crucial for shaping the seafloor. Many scientists, even those
who are not specialised in contourites, must deal with sediments affect-
ed by bottom currents in their own field of research. Contourites are
paramount in three areas: palaeoclimatology & palaeoceanography;
slope stability/geological hazard assessment; and hydrocarbon exploration.

3.1. Palaeoclimatology & palaeoceanography
Contouritic sediments are usually fairly continuous and yield tempo-

ral records of relatively high resolution, as the accumulation rates in
contourite drifts are higher than those in adjacent, condensed pelagic

sequences. Therefore, these sediments yield valuable information on
the variability of ocean circulation patterns, current velocities, oceano-
graphic history and basin interconnectivity. In polar areas these sedi-
ments provide information on ice-sheet stability and sea-ice coverage
(Camerlenghi et al., 1997a; Rebesco et al., 1998; Sagnotti et al., 2001;
Lucchi et al.,, 2002a,b; Griitzner et al., 2003; Rebesco, 2003; Villa et al.,
2003; Griitzner et al., 2005; Amblas et al., 2006). Seeking a better under-
standing of how the ocean affects the Earth's climate, researchers have
been extracting detailed palaeoclimate information from sediments
formed by persistent oceanic currents.

The history of ocean circulation and climate can be extracted from
contourite deposits, using discrete sampling analyses (with geochemi-
cal, faunal, sedimentological techniques), continuous geophysical-
chemical logging and seismic imaging. The latter enables visualisation
of drift geometry, internal reflections configuration and seismic facies,
thereby providing palaeoceanographic information on palaeo-current
pathways and on changes in current energy and direction, on timescales
from tens of thousands to millions of years. In particular, high-quality
3D seismic data collected by the petroleum industry and made available
to the academic community over the past few have enabled detailed
morphological reconstructions of contourite drifts (Fig. 5).

Contourite research addresses a broad range of time scales
and Earth-system processes that range from millions of years (tectonic;
e.g. the opening of the oceanic gateways) to tens of years (human;

Fig. 5. Reconstruction of palaeocurrent patterns across the West Shetland Drift. (A) 3D seismic data isochrone map between an internal Pliocene reflector and the basal unconformity
(P and B, respectively, in the seismic profile below). The dark-blue area corresponds to sediment thicknesses > 150 m, whereas the light blue area represents non-deposition. (B) Seismic
profile (the thin line in A) showing along-slope SW progradation of internal reflections and downlap/onlap onto the erosional basal unconformity (Late Miocene to Early Pliocene).

Modified from work by Knutz (2008); with permission from Elsevier.
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Fig. 6. Comparison of palaeoclimate records from Greenland Ice Sheet Project Two (GISP2) and core MD99-2339 from the Gulf of Cadiz over the last 48 calendar kyr. The MOW variation
correlates exactly with Heinrich events (H1 to 5) and D/O cycles during MIS 3. (A) GISP2 §'80 temperature record (5'®0ice; Stuiver and Grootes, 2000); (B) MD99-2339 planktonic 6'0
record (6'®0pla), indicative of water temperature. (C) MD99-2339 mean grain size (gs) < 63 um, which reveal changes in the strength of the MOW; (D) MD99-2339 magnetic suscepti-
bility, which reveals changes in the concentration of ferromagnetic grains and therefore, depict hydrodynamic changes (stronger bottom currents led to increased deposition of lithic and
consequently, ferromagnetic grains); (E) MD99-2339 benthonic 5180 record (5'®0be), which is a proxy of sea-level/Ice volume; (F) MD99-2339 epibenthic 5'8C data (5'Cbe), which is a
function of decay of organic matter and enables reconstruction of the deep-water circulation (ventilation). Numbers above the GISP2 !0 record indicate Dansgaard-Oeschger intersta-
dials 1 to 13, H1 to H5 below Heinrich events 1 to 5 (also marked by grey squares). The triangles at the bottom indicate age-control points based on “C dates (black) with tuning points to
the GISP2 chronology (grey). The arrows on the top show periods of Marine Isotope Stages (MIS) 2 and 3. VPDB: Vienna PeeDee Belemnite; VSMOW: Vienna Standard Mean Ocean Water.

Modified from work by Voelker et al. (2006); with permission from Elsevier.

e.g.rapid ocean-climate variability in the North Atlantic) (Knutz, 2008).
The reconstruction of leads and lags between various parameters of
ocean-climate changes at multi-decadal time scales can be measured
in the records from rapidly accumulating muddy contourite deposits.
This information, whose resolution approaches that of ice-core archives
(e.g. Llave et al., 2006; Voelker et al., 2006; Knutz et al., 2007; Toucanne
et al., 2007, Fig. 6), is crucial for elucidating the global teleconnections,
feedback thresholds and forcing mechanisms that determined the past
climate systems and are dictating the present one.

3.2. Slope-stability/geological hazard assessment

The stability of submarine slopes commonly relates to the distribu-
tion, composition and physical properties of contourites (Solheim

et al., 2005, Fig. 7), including some of the largest known ones (Bryn
et al., 2005). The spatial and temporal variations in sediment erosion,
transport and deposition generate sedimentary successions that are
prone to becoming gravitationally unstable (Laberg et al., 2005). Fine-
grained, low-permeability, high pore-water content contourites favour
the formation of over-pressurised gliding planes (Rebesco, 2005).

According to Laberg and Camerlenghi (2008) contouritic sediments
tend to fail because of five main factors:

(a) Geometry and location: Contourites (as opposed to sheeted turbi-
dites) form large sediment mounds on inclined continental
slopes that are prone to mass wasting (often large due to broad
areal distribution of contourites resulting from ample extent of
geostrophic currents, Rebesco et al., 2002, 2007).
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Fig. 7. Seismic profile from Storegga Slide, offshore Norway showing palaeo-slide S, infilling contourite drift and palaeo-slide R. The glide plane of palaeoslide S is indicated by the
green horizon, and that of palaeo-slide R, by the pink horizon labelled P Slide 2 Base. The latter follows the top of the drift deposits and is parallel with the internal reflections of
the drift. CD: contouritic drift deposits; SD: slide debris; TNU: top Naust unit U reflection; INS2: intra Naust unit S reflection 2; TNR: top Naust unit R reflection. For further discussion,

see Solheim et al. (2005).
Modified from work by Laberg and Camerlenghi (2008); with permission from Elsevier.

(b) Low shear-strength: This results from relatively high sedimentation
rates (Mulder et al., 2003; Laberg and Vorren, 2004) and well-
sorted grain-size (Wilson et al., 2004), both of which imply high
water content (Kvalstad et al., 2005).

(c) Under-consolidation and excess pore pressure: These are especially
generated in low-permeability, fine-grained contourites, and
high-porosity siliceous ooze layers (Volpi et al., 2003).

(d) Loading: For contourites on continental slopes this can be rapid
(e.g. glacigenic sediments on high-latitude margins; see: Laberg
and Vorren, 2004) and cyclic (earthquakes), causing liquefaction
(see: Sultan et al., 2004).

(e) Gas charging: This includes dissociation of gas hydrates after
ocean-warming by thermohaline currents (Mienert et al., 2005)
and migration of gases from relatively high organic-carbon con-
tent produced by water masses.

3.3. Hydrocarbon exploration

Contour currents affect petroleum systems in many ways, including
reservoir geometry and quality, and the distribution of sealing
rocks (Shanmugam, 2006; Viana et al., 2007; Viana, 2008; Mutti and
Carminatti, 2012; Shanmugam, 2012a; Brackenridge et al., 2013;
Shanmugam, 2013a,b; Stow et al., 2013a,b). Changes in the seafloor
topography produced by erosion or deposition induced by bottom
currents can lead to the re-adjustment of the sediment accommodation
space and to the creation of sub-basins, which act as sediment traps
or as gateways for sediment transfer (Viana, 2008; Campbell and
Deptuck, 2012). Furthermore, coarse-grained contourites deposited by
robust flows can represent hydrocarbon reservoirs, whereas fine-
grained contourites accumulated by weak bottom currents can provide
sealing (and source) rocks (Rebesco, 2005).

3.3.1. Coarse-grained contourite reservoirs

Rippled, top-truncated, fine-to-medium-grained, sand-rich oil-
bearing beds of Eocene age in the Campos Basin comprise contourite
sands (Souza Cruz, 1995, 1998; Viana and Faugeéres, 1998; Viana, 2008;
Mutti and Carminatti, 2012). Contourite reservoirs have also been de-
scribed in the North Sea (Enjorlas et al., 1986). Traction-dominated
deep-water sand deposits in the Gulf of Mexico that show very good po-
tential as reservoirs (high porosities and high permeability values) have

been interpreted as sandy contourites by Shanmugam et al. (1993b).
However, they were later interpreted as fine-grained turbidites by Stow
et al. (1998a), since they were not considered to unequivocally exhibit
characteristics of contourites. Large volumes of sand transported and
re-deposited by persistent and efficient hydrodynamic regimes have
been reported for the Carnegie Ridge (Lonsdale and Malfait, 1974), the
upper slope of the Campos Basin (Viana and Faugeres, 1998), the lower
Mississippi Fan (Kenyon et al., 2002), the Gulf of Cadiz (Habgood et al.,
2003; Llave et al., 2005; Hernandez-Molina et al., 2006a; Brackenridge
et al.,, 2013; Stow et al., 2013a,b; Hernandez-Molina et al., 2014), and
the Faroe-Shetland Channel (Wynn et al., 2002; Masson et al., 2004;
Akhmetzhanov et al., 2007). In most cases, the occurrence of sandy
contourites with potential for hydrocarbon exploration depends on the
vicinity of a sand-rich area prone to sweeping by contour currents
(Fig. 8).

3.3.2. Fine-grained contourite sealing rocks

Fine-grained contourites, which are related to sealing facies/
permeability barriers and to source-rock accumulation, play an impor-
tant role in the characterisation of deep-water petroleum systems. For
instance, in the Santos Basin excellent sealing rocks of bottom-current
origin have been found overlying the oil-bearing sandstones (Duarte
and Viana, 2007); and in the Campos Basin fine-grained, extremely
bioturbated sediments related to the action of bottom currents act as
important permeability barriers and internal heterogeneities within
thick packages of oil-rich sandstones (Moraes et al., 2007). Understand-
ing the distribution and thickness of these rocks is fundamental
for water-injection and recovery projects. Although the potential of
contourites as source rocks is generally low, due to the ventilation in-
duced by contour currents, contourite deposits have frequently been as-
sociated with accumulations of gas hydrates and of free gas (Viana,
2008; Mosher, 2011).

Despite the economic significance of contourites, the number
of publications dealing with this topic is rather low. According to
Viana et al. (2007), this might be explained by various factors: the
early establishment of gravity-flow accumulation models; the volumet-
ric predominance of sandy gravity-flow deposits; a lack of unequivocal
sedimentological criteria; and poorly investigated oceanography
aspects for contourite identification. However, the greater access to
high-resolution seafloor imaging techniques and industrial 3D seismic
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Fig. 8. Seismic-amplitude map of a subcropping Late Pleistocene turbidite/contourite complex. The warm colours (yellow and red) correspond to coarse-grained sediments, and the green,
to fine-grained sediments. Low-sinuosity channels flow diagonally across the image, from NW to SE. Laterally to this system, to the South, occurs a fan-shaped body corresponding to a
complex of avulsion lobes, distally reworked by contour currents developing a fringe of irregular patch-like small sedimentary bodies.

Modified from work by Viana (2008); with permission from Elsevier.

data that academic researchers have been enjoying is providing 2011; Mutti and Carminatti, 2012; Shanmugam, 2012a; Brackenridge
them with a deeper understanding of contourite deposits and confirming et al,, 2013; Hernandez-Molina et al., 2013; Shanmugam, 2013a,b; Stow
that these deposits are important constituents of petroleum systems et al., 2013a,b). This new perspective is crucial for understanding the
(Shanmugam, 2006; Viana et al., 2007; Viana, 2008; Brackenridge et al., origin of deep-water sandstones and for predicting the distribution of

I:I Present / recent depositional features = = @ Depositional features in the ancient record

Fig. 9. Occurrence of large contourite deposits in the present (recent) ocean basins (yellow areas) and in the ancient sedimentary record (black points). This compilation was done
specifically for the present review, but was subsequently archived and visualised by Claus et al. (in press) on the Marine Regions website (http://www.marineregions.org). The numbers
and letters in each area of the Figure refer to the key references in Appendix A.
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these sediments in future petroleum exploration and production endeav-
ours worldwide (Shanmugam, 2013b).

The most recent findings on contourites in the context of hydrocar-
bon exploitation have been provided by IODP Expedition 339, which
verified the presence of clean, well-sorted contourite sands (thickness:
up to 10 m) from high-quality potential hydrocarbon reservoirs, that are
completely different from the turbidite sands from deep-water oil and
gas plays (see Section 8). These sands are associated with very thick
contourite muds that are moderately rich in organic carbon and could
provide potential suitable seals and/or source rocks. These new findings
could herald a paradigm shift in deep-water targets for hydrocarbon
exploration (Expedition 339 Scientists, 2012; Hernandez-Molina et al.,
2013; Stow et al., 2013b).

4. The occurrence of contourites

Since the pioneering work of McCave and Tucholke (1986) and of
Faugeres et al. (1993), contourites have been described mainly in
the North and South Atlantic basins, predominantly associated to the
deeper water masses (e.g. NADW and AABW). However, over the past
2 decades, contourite features have been described in other areas in
the Atlantic Ocean as well as in the Mediterranean, Indian, Pacific, Arctic
and Antarctic realms. Fig. 9 shows an updated compilation demonstrat-
ing that contourite features are ubiquitous within the oceanic basins.
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The figure shows some 116 identified areas, including the major,
published contourite features from the present or recent past (as
in Fig. 10), but excluding very minor features and unpublished data.
New findings have been observed in different settings and associated
to either deep (e.g. Borisov et al., 2013; Martos et al., 2013), intermediate
(e.g.VanRooij et al., 2010; Rebesco et al., 2013) or shallow water masses
(e.g. Vandorpe et al., 2011). Most of the described large contourite
depositional and erosional features are located in the western side of
the largest oceanic basins, and around the Antarctic and Arctic oceans
(Fig. 9). They extend from the upper slope/outer shelf to the abyssal
plains (Fig. 10). However, the absence of contourites does not necessar-
ily imply an absence of depositing density currents, since many years of
accumulation can be erased by highly intermittent or episodic oceano-
graphic processes (see Section 5).

Faugeres et al. (1993) reported significant differences in the distri-
bution of different types of drift between the North Atlantic and the
South Atlantic, suggesting that giant marginal elongate drifts were the
prominent drift type in the former, whereas contourite sheets and
channel-related drifts were more typical in the latter. They considered
the morphological pattern, and its interaction with bottom water, as
the major factors that had controlled the style of contourite accumula-
tion. However, according to current knowledge, their findings probably
stemmed from the fact that in the North Atlantic researchers had exten-
sively studied the continental slopes, whereas in the Southern Atlantic
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Fig. 10. Examples of three large contourite drifts: A) Eirik Drift, Greenland margin, northern hemisphere; B) Faro-Albufeira Drift, Gulf of Cadiz margin, northern hemisphere (Llave et al.,
2001; Brackenridge et al., 2013; Stow et al., 2013a, Seismic line provided by REPSOL Oil for this work); and C) Agulhas Drift, Transkei Basin, southern hemisphere.
Panel A: from Hunter et al. (2007b) and Hernandez-Molina et al. (2008b); with permission from Elsevier; Panel C: Niemi et al. (2000), with permission from Elsevier.
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Fig. 11. Ancient contourite outcrops (A & B) of the Lefkara Formation, Cyprus (courtesy of D.A.V. Stow, Heriot-Watt University, UK).

researchers had studied mainly the abyssal plains. New discoveries have
confirmed that contourite features are very common on many slopes,
continental rises, abyssal plains and around banks, seamounts, etc.
(see the compilations in Herndndez-Molina et al., 2008a,b). Drift types
(see Section 6) are significantly controlled by the physiographic and
geological setting in which they develop and by different water masses
that flow at different depths, different velocities and in the same or op-
posite directions.

Recognising contourite deposits in ancient sedimentary series
(Fig. 11) that are presently exposed on land is not trivial (Stow et al.,
1998a,b; Huneke and Stow, 2008). Moreover, there is some controversy
surrounding the recognition and interpretation of bottom-current
deposits and of (contour-current) reworked turbidites in ancient
series (Stanley, 1988; Pickering et al., 1989, 1995; Stow et al., 1998a,b;
Shanmugam, 2000; Stow et al., 2002a; Martin-Chivelet et al., 2003;
Huneke and Stow, 2008; Martin-Chivelet et al., 2008; Stow et al.,
2008; Mutti and Carminatti, 2012; Shanmugam, 2012a, 2013b). The di-
agnostic criteria for these features comprise their facies, structures,
ichnofacies, texture, sequences, microfacies, and composition (Huneke
and Stow, 2008). Furthermore, sedimentary structures of ancient
contourites are also “diagnostic indicators” of the currents from which
they were derived; however, interpretation of these contourites re-
quires consideration of their full context—particularly, the genetic asso-
ciation between them and other structures, and the palaeogeographic
framework (Martin-Chivelet et al., 2008, 2010). Fieldwork and observa-
tion (where permitted by exposure) of medium-scale criteria, such
as the recognition of hiatuses and condensed deposits, or of variation
in the thickness of depositional units, geometry, palaeowater depth or
geological context, can be definitive for contourite recognition. Large-
scale diagnostic criteria, including palaeoceanographic features and
continental margin reconstructions, are essential, although their appli-
cation to outcrops is generally problematic (Huneke and Stow, 2008).
Thus any gain in knowledge on ancient contourite deposits will require
a better understanding of the present and recent contourite processes
and products, as well as better comprehension of the palaeogeography
of ancient oceanic basins and of the past water-circulation model. Over
the past few years examples of contourites in ancient rock series in dif-
ferent areas were published (see tentative compilation in Fig. 9). These
range in age from Cambro-Ordovician to Neogene and their distribution
denotes that most of them are located following an east-to-west trend,
which is probably associated to evolution of the Palaeo Tethys Ocean.

5. Oceanographic processes that affect contourite formation

The deep waters of the oceans are formed primarily in marginal seas
or shallow shelf regions where the water is made cold and dense by
cooling and/or ice formation (Fig. 12), or highly saline upon strong
evaporation (e.g. Ambar and Howe, 1979; Dickson and Browne, 1994;
Price and Baringer, 1994; Girton and Sanford, 2003; Rahmstorf, 2006;
Kuhlbrodt et al.,, 2007). The relatively dense water formed there flows
into the ocean via narrow or shallow straits, or via the continental mar-
gin; in the Northern Hemisphere, it is steered to the right by the Earth's
rotation (Fig. 12). Once the water is no longer constricted by the topog-
raphy, it reshapes into a wider structure that adjusts to the forces of
gravity, Earth's rotation, and bottom friction. The distribution of salt
and heat in the deep ocean is strongly related to these dense currents
and to the rates at which they descend to greater depths and subse-
quently mix with ambient fluid (Munk and Wunsch, 1998; Wells and
Wettlaufer, 2005; Wahlin and Cenedese, 2006; Legg et al., 2009;
Akimova et al.,, 2011). Since the deep waters of the oceans are formed
by atmospheric forcing, their existence and properties give information
on the regional climate of the areas in which they are formed (Bartoli
et al, 2005; Rogerson et al., 2012) and in some cases, also on the global
climate (Broecker, 1991; Rahmstorf, 2006; Kuhlbrodt et al., 2007; Legg
et al., 2009).

The Earth's rotation tends to steer bottom currents to flow parallel to
large-scale bathymetry (e.g. along the continental margins). Small-scale
topographic features such as seamounts, ridges, straits, mounds, banks
and canyons can disrupt and accelerate the flow. Once the current veloc-
ity becomes sufficiently high, the sediment erodes, and as the velocity
later decreases, the sediment is deposited (Stow et al., 2002a; Rebesco
and Camerlenghi, 2008). Fig. 13 is a sketch of some of the processes
that affect erosion and deposition in continental margins and deep basins.

Currents can be either barotropic or baroclinic. Barotropic flows are
currents with constant pressure surfaces parallel to surfaces of constant
density (e.g. the well-mixed shallower [shelf] part of the ocean; see
Shanmugam, 2013a). In general, these flows are driven by pressure
gradients caused by sloping sea surface. Examples of barotropic flows
include tides, wind-driven currents and surface waves. In contrast,
baroclinic flows are currents with constant pressure surfaces that are
not parallel to surfaces of constant density (e.g. a cold dense plume
flowing into a warmer, lighter ocean environment). These flows are
usually driven by pressure gradients caused by horizontal density
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Fig. 12. A) Global distribution of the marine basin during the Eocene (56-33.9 Ma.), illustrating the closing and opening of the main gateways, which have determined drastic changes
in the deep-water circulation. B) Global thermohaline circulation. Red: surface currents; Light blue: deep water; White: bottom water; Orange: main sites of deep-water formation. In
the Atlantic, warm and saline waters flow northward from the Southern Ocean into the Labrador and Nordic seas. In contrast, there is no deep-water formation in the North Pacific,
whose surface waters are consequently fresher. Deep waters formed in the Southern Ocean become denser than those from the North Atlantic and therefore spread at deeper levels.
Note the small, localised deep-water formation areas in comparison to the widespread zones of mixing-driven upwelling. Wind-driven upwelling occurs along the Antarctic Circumpolar

Current.

Panel A: Adapted from Seibold and Berger (1993); Panel B: Adapted from Rahmstorf (2006) and Kuhlbrodt et al. (2007); reproduced with permission of Elsevier. The base maps from A & B
are from Ron Blakey, Colorado Plateau Geosystems (http://cpgeosystems.com/mollglobe.html).

differences and fronts. Baroclinic currents are found along the ocean
floor of continental slopes and in submarine canyons (Fig. 13)
(Robertson and Ffield, 2005; Allen and Durrieu de Madron, 2009;
Shanmugam, 2012a, 2013a), amongst other locations. Examples of
baroclinic flows include internal waves and internal tides that propa-
gate on density surfaces (pycnoclines) in stratified waters.

Bottom currents are typically baroclinic: their velocity typically
correlates to the strength of their density gradient. The water velocity
at the seafloor can also be affected by barotropic currents (Stow et al.,
2002a; Rebesco, 2005; He et al., 2008), tides (Gao et al., 1998; Stow

et al., 2013a) or intermittent processes such as giant eddies (Serra et al.,
2010), deep sea storms (Hollister et al., 1974; Hollister, 1993), vortices
(Preu et al., 2013), internal waves and tsunamis (Shanmugam, 2012b,
2013a,b). Most of these phenomena are associated with stronger
currents and therefore, are likely to induce erosion. However, they can
also be associated with transport of sediment-laden water and conse-
quently, with deposition of sediments (as in the case of tsunamis).
Below, some of these processes are overviewed and their possible influ-
ence in the formation of erosional and depositional seafloor features is
discussed.
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(for further explanations, see text).

5.1. Density-driven currents

Density-driven currents that are wider than a few tens of km tend
to flow in geostrophic balance parallel to depth contours (see, for exam-
ple: Wahlin and Walin, 2001; Legg et al., 2009). The density forcing can
be maintained by cooling, evaporation or a combination of both, in
which case the current is said to be thermohaline. These currents are re-
sponsible for the deposition of sensu stricto contourites. Density-driven
bottom currents (Figs. 12 and 14) can be found in various areas, such as
the Denmark Strait (e.g. Smith, 1975; Girton and Sanford, 2003; Kdse
et al., 2003; Karcher et al., 2011); Faeroe-Bank channel (Borends and
Lundberg, 2004; Mauritzen et al., 2005; Riemenschneider and Legg,
2007; Darelius et al., 2011); Gulf of Cddiz (Smith, 1975; Borenais et al.,
2002; Johnson et al., 2002); Red Sea (Peters et al., 2005; Matt and
Johns, 2007), the South China Sea (Gong et al., 2013); Weddell Sea
(Orsi et al., 1999; Naveira Garabato et al., 2002a,b, 2003; Foldvik et al.,
2004; Nicholls et al., 2009); and Ross Sea (Carter et al., 2008; Capello
et al., 2009; Muench et al., 2009a,b).

The bottom currents in the North Atlantic are the sources for one of
the major deep-water masses on Earth (Fig. 12): the North Atlantic
Deep Water (NADW) (Dickson and Browne, 1994). The combined over-
flows in the Southern Ocean form the Antarctic Bottom Water (AABW)
(Nicholls et al., 2009; Kida, 2011), the other major and the densest
deep-water mass on Earth in the present-day climate. The Mediterra-
nean Outflow Water (Fig. 12) contributes to a relatively warm and
salty water mass found at intermediate depths (ca. 1000 to 1500 m)

in the Atlantic (Ambar and Howe, 1979; Baringer and Price, 1997).
Most density-driven bottom currents are ultimately created by atmo-
spheric processes (e.g. Kida et al., 2009). For example, the Mediterra-
nean and the Red Sea Outflows are caused by high evaporation in the
warm regional climates of the Mediterranean and Red Seas (Ambar
and Howe, 1979; Arnone et al., 1990; Baringer and Price, 1997; Peters
etal, 2005), whereas the North Atlantic and Southern Ocean overflows
are characterised by cold and salty water produced by surface cooling
and/or freezing (Dickson and Browne, 1994; Rahmstorf, 2006;
Kuhlbrodt et al., 2007; Carter et al., 2008; Nicholls et al., 2009). Regard-
less of their mechanisms of formation, all of these currents exit, through
a narrow or shallow strait, into a larger ocean. Upon exit, the dense
water is steered to the right (in the Northern Hemisphere) by the
Earth's rotation. Once the water is no longer constricted by the topogra-
phy (Figs. 13 and 14), it reshapes into a wider structure in which the
scale speed is proportional to the slope of the bottom and to the density
difference between the density current and the overlying water mass
(e.g. Price and Baringer, 1994; Borends and Wahlin, 2000; Cenedese
et al., 2004; Kida et al., 2009; Legg et al., 2009; Akimova et al., 2011),
according to:

_ga

Uy 7

(1)

whereby g’ = gﬁ—s is the reduced gravity (in which g is the gravitational
acceleration; and Ap = p—p, is the difference in density between the
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Fig. 14. A) Map showing the relationship between kinetic energy and suspended load, indicating the areas with higher suspended load in deep basins (Bearmon, 1989; Pickering et al.,
1989). The position of main gravity currents by type is also indicated (O: Overflow across a topographic barrier from a regional basin into the open ocean; B: Open-ocean overflow
into an isolated regional basin; C: Cascade of dense water from a continental shelf). Not shown: numerous overflows across multiple sills of the mid-ocean ridge system, within the series
of basins of the western South Pacific; and the cascades of shelf water over the slope of the Arctic Sea (adapted from Legg et al., 2009). The base map is from Ron Blakey, Colorado Plateau
Geosystems by (http://cpgeosystems.com/mollglobe.html). B) Physical processes acting in overflows (adapted from Legg et al., 2009). C) Sketch of a dense overflow showing the coordi-
nate system and some of the notations used (ambient density: p; plume density: p + Ap; reduced gravity: g’; bottom slope: ¢; Coriolis parameter: f; and Nof velocity: Uy). Also shown are
the Ekman layer and the benthic Ekman transport (see, for example: Pedlosky, 1996; Wdhlin and Walin, 2001).

density current [p] and the ambient water [po]); a is the slope of the
bottom; and fis the Coriolis frequency (Fig. 14).

Table 1 lists the properties of some of the major dense outflows after
they enter onto the continental slope. As observed in the table, the flows
are wide (as compared to the Rossby radius of deformation) but thick
(as compared to the frictional boundary layer). Consequently, they are
expected to be geostrophically balanced to lowest order (i.e. to have
the average velocity [1] [also called the Nof velocity]). The velocity
(1) is also the speed at which cold eddies translate along the slope

(Nof, 1984) and at which the leading front of a dense water mass prop-
agates (Wahlin, 2004).

Entrainment of bottom water, bottom friction, and inertial accelera-
tions modify the bottom current on the slope (Fig. 14). Bottom friction in-
duces an Ekman transport in the bottom boundary layer (e.g. Pedlosky,
1996; Wadhlin and Walin, 2001), which in the Northern Hemisphere is
directed to the left of the flow velocity. Although the frictional transport
is confined to a thin layer next to the bottom, the Ekman boundary layer,
it affects the entire water column. The dense water adjusts to the
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Key properties of some of the large dense outflows. The parameters at the bottom of the table show that whilst rotation has varying degrees of influence, in all the overflows the Froude

number can exceed 1 in regions associated with entrainment.
Adapted from Legg et al. (2009).

Denmark Mediterranean
Parameters Faroe Bank Strait Ross Sea Weddell Sea Red Sea Sea
E Potencial temperature °C 0 0.25 -1.9 -1.9 22.8 14
< -
3 Salinity 34.92 34.81 34.8 34.67 39.8 38.4
w
2 Density (o,) 28.07 27.94 27.9 27.8 27.7 28.95
=2
2 sill depth (m) 800 500 600 500 200 300
E Potencial temperature °C 3.3 21 -1.0 -1.0 21.7 11.8
wn| <
3 = Salinity 35.1 34.84 34.72 34.67 39.2 36.4
[
9 ] Density (o,) 27.9 27.85 27.85 27.75 27.48 276
[a]
E 2 Depth (m) 3000 1600 >3000 2000 750 850
=
O 5 Source 1.8 2.9 0.6 1.0 0.3 0.8
w| 5=
wn 2o
Z| £ Product 3.3 5.2 2 5 0.55 23
. = . .
w Ew Source 1 0.7 1 1 0.55 1
O 3%
g §§ Product 05 0.4 0.5 0.4 Small 1
[72]
w0 Source 200 200 150 100 100 200
Ol =€
| YU
el T Product 150 200 250 300 140 200
[
i | TRANSIT TIME SOURCE TO
s PRODUCTS (Days) 3-5 4-7 1 1 3.5 3-5
§ TIDAL CURRENT (m [ s) 0.2 0.1 0.3 0.2 0.8 0.1
Q.| REDUCED GRAVITY (g) 2x107  2x107  2x107  14x10°  16x107
v FROUDE NUMBER (Fr) 1 03-1.2 09-11 1 0.6-13 1
Fr=U/[gH/f
ENTRAINMENT RATE (W, /U) s5x10*  1x10° 6x10° 2x10*
CORIOLIS PARAMETER f(s”) 13x10* 1x10* 13x10° 13x10° 1.3x10
DEFORMATION RADIUS (km) 30 5 7 7 40
Le=\fg'H/f

divergence of the frictional transport, which acts as a horizontal diffusive
process, minimising the curvature of the dense interface. The lower (sea-
ward) edge moves downhill as the Ekman transport from the interior is
expelled from the Ekman layer (e.g. Condie, 1995; Wahlin and Walin,
2001). At the upper (landward) edge, the dense interface instead
becomes nearly horizontal, with low geostrophic velocities and minor
frictional transport (e.g. Jungclaus and Backhaus, 1994; MacCready,
1994; Wahlin and Walin, 2001). The combined frictional effect over the
entire outflow causes it to gradually widen (Fig. 14), keeping the upper
horizontal boundary at a nearly constant depth (e.g. Jungclaus and
Backhaus, 1994; Price and Baringer, 1994; Borends and Wahlin, 2000).
If these processes occur over a laterally varying bottom slope, they can
split the flow into two or more cores and branches, as has been suggested
for the Mediterranean Outflow (Borends et al., 2002; Serra et al., 2010),
amongst other cases. The inertial accelerations induce waves and eddies
in the overflow (Fig. 14). The stability of a dense current flowing along
a sloping bottom has been analysed by Griffiths and Linden (1981) and
by Sutherland et al. (2004). Their results suggest that, if friction is
disregarded, these flows are nearly always unstable, and that this insta-
bility breaks the dense current up into a train of dense eddies. This effect
has also been studied in the outflow from the Red Sea (Nof et al., 2002).

As dense water passes from its site of formation, through an over-
flow and into the open ocean, it mixes with overlying water (Figs. 13
and 14). This mixing determines the hydrographic properties and
volume of the produced water mass (Dickson and Browne, 1994; Kida
et al,, 2009). Laboratory experiments (see, for example: Ellison and
Turner, 1959; Turner, 1973; Cenedese et al., 2004) have shown that
if the speed of the dense water exceeds the phase speed of a long inter-
nal wave, then the flow becomes unstable and starts to overturn.
This induces mixing between the dense water and the overlying
water mass, which is rarely resolved in models and nearly always
needs to be parameterised. Most of the presently used entrainment
parameterisations have forms in which the entrainment rapidly transi-
tions into a high-entrainment flow, when the velocity exceeds that of
the speed of a long internal wave. Cenedese et al. (2004) found that in
overflows and in dense currents the presence of eddies and waves can
further enhance the vertical mixing.

Expression (1) is a rule-of-thumb for the large-scale average velocity.
Locally, the velocity can reach much higher values: for instance, when it
encounters small-scale topographical features such as submarine canyons
(e.g. Wahlin, 2004; Allen and Durrieu de Madron, 2009; Muench et al.,,
2009a,b), ridges (Darelius and Wahlin, 2007) or seamounts (Kennett,
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Fig. 15. A. Examples of combining physical oceanographic data with geologic/geophysical data, showing the relationship amongst the long-term current regime, the seafloor morphology
and the sub-bottom sediment geometry. A) Western Spitsbergen margin; B) Argentine margin, North of the Mar del Plata Canyon; and C) Gulf of Cadiz, from the exit of the Strait of Gi-
braltar. The black numbers and lines in (A) refer to current velocity (cm/s), but in (B) and (C) they refer to isopycnals and neutral density (kg/m?). Legend for water masses, in alphabetical
order (AAIW: Antarctic Intermediate Water; BC: Brazil Current; ENCW: Eastern North Atlantic Central Water; MC: Malvinas Current; Modified AAIW: Modified Antarctic Intermediate
Water; MOW: Mediterranean Outflow Water [MU: Upper Core, and ML: Lower Core]; NADW: North Atlantic Deep Water; NSDW: Norwegian Sea Deep Water; SAW: Surface Atlantic

Water; UCDW: Upper Circumpolar Deep Water; WSC: West Spitsbergen Current).

Panel A: Rebesco et al. (2013), with permission from Elsevier; Panel B: Preu et al. (2013), with permission from Elsevier; Panel C: Hernandez-Molina et al. (2014), with permission from

Geological Society of America.

1982; McCave and Tucholke, 1986; Hernandez-Molina et al., 2004,
2006b; Stow et al., 2009; Hernandez-Molina et al., 2011a). Such regional
variations are important to the formation of sediment deposits (Fig. 15A),
since they can locally erode the seafloor and keep particles in suspension
for longer periods. Thus, the velocity of deep currents, including
any small-scale variations, affects the lateral transport of sediment.
An example of this is the deep western boundary currents, which on
average, flow with the large-scale velocity (1), but locally can reach
velocities that are many times higher (Table 1). The amount of
suspended particulate matter can be ten times greater in the deep west-
ern boundary currents than in overlying water masses (Ewing et al.,

1971; Kennett, 1982; Gao et al., 1998; Tucholke, 2002). Other examples
of sedimentary structures induced by bottom currents are erosional
features (see Section 6). The thickness of the nepheloid layer is gen-
erally 150 to 1500 m, and the average concentration of suspended
matter is ca. 0.01 to 0.5 mg L™ ! (McCave, 2008). The residence time
for particulate material in deep nepheloid layers is estimated to last sev-
eral days to weeks for the first 15 m above the seafloor, and weeks to
months for the first 100 m above the seafloor (Kennett, 1982; Gao
et al.,, 1998).

An active bottom current, acting for a prolonged period of time, will af-
fect the seafloor, leading to processes generated from winnowing of fine-
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grained sediments up to large-scale erosion and deposition (Heezen,
1959; Stow and Lovell, 1979; Kennett, 1982; Pickering et al., 1989;
Seibold and Berger, 1993; Stow, 1994; Einsele, 2000; Shanmugam,
2006; Rebesco and Camerlenghi, 2008; Stow et al., 2009). The generation
of large depositional and/or erosional features requires a bottom
current that is persistent on geological time scales (i.e. millions
of years; Hernandez-Molina et al., 2008a,b). An example of this
is the main CDS that, in many cases, began to grow around the
Eocene/Oligocene boundary (ca. 32 Ma) and were later reactivated
in the Middle Miocene (Kennett, 1982; Sykes et al., 1998; Niemi et al.,
2000; Uenzelmann-Neben, 2001; Flood and Giosan, 2002; Pfuhl and
McCave, 2005).

5.2. Processes in the interface between water masses

The interface between two overlying water masses of different
density is called a pycnocline (Fig. 13). It can be sharp and well-
defined, or diffuse with a gradual transition from one water mass to
the other. The pycnocline is maintained by stratifying processes that
are caused by a regional positive buoyancy flux at the surface, and it
becomes eroded by turbulent mixing between the water masses, such
as that caused by tides. The relative strength of these two effects
determines how well defined the pycnocline is in different regions
and at different times of year. The interface often tilts in one direction
(e.g. Reid et al,, 1977) but can be locally and temporarily displaced by
eddies (e.g. Piola and Matano, 2001; Arhan et al., 2002, 2003) and inter-
nal waves (i.e. waves that travel on the interface). Pycnoclines are
characterised by energetic current patterns associated with these
waves and eddies (Reid et al., 1977), which can shape the seafloor
(e.g. Hernandez-Molina et al.,, 2009, 2011a; Preu et al., 2013. Fig. 15B)
and result in erosion and re-suspension of sediments (Dickson
and McCave, 1986; van Raaphorst et al., 2001; Bonnin et al.,, 2002;
Cacchione et al., 2002; Hosegood and Van Haren, 2003; Shanmugam,
2013a). Hence, the detection and characterisation of pycnoclines and
of their historical records are important for multidisciplinary research
in modern oceans (Hernandez-Molina et al., 2011a; Preu et al., 2011,
2013).

5.3. Deep-water tidal currents

Tides are generated at the surface and therefore, are barotropic
(Fig. 13). However, tidal energy can transfer to a baroclinic wave, in
what are known as baroclinic tides (Fig. 13). Baroclinic tides can move
tidal energy away from its region of origin such that it dissipates, for ex-
ample, on abrupt topography miles away. This mechanism provides a
substantial part of the ocean mixing that is required for sustaining the
global meridional overturning circulation (Munk and Wunsch, 1998).
Barotropic and baroclinic tides both influence the bottom-water circu-
lation in deep-water environments (Dykstra, 2012). Tidal currents
change direction with phase, describing an elliptical flow path often
aligned along bathymetric features. Tidal energy tends to be elevated
within submarine canyons and adjacent areas (e.g. Shepard, 1976;
Shepard et al., 1979; Petruncio et al., 1998; Viana et al., 1998a; Kunze
et al., 2002; Garrett, 2003; Shanmugam, 2012b; Gong et al., 2013;
Shanmugam, 2013b) and in some contourite channels (Stow et al.,
2013a). Shanmugam (2012a) has proposed that barotropic tide cur-
rents affect land- or shelf-incising canyons whose heads are connected
to rivers or estuaries, but that baroclinic tide currents affect slope-
incising canyons with no clear connection to a major river or estuarine
system. Inversion of the bottom current direction by tidal influence has
been reported outside these canyons (Kennett, 1982; Stow et al.,
2013a). Deep-marine tidal bottom currents have velocities that com-
monly range from 25 to 50 cm/s (but that can reach 70 to 75 cm/s)
and periods of up 1 to 20 h (Shanmugam, 2012b).

5.4. Deep-sea storms

One intermittent deep-water process that is closely related to eddy
formation is the generation of deep-sea storms (also called benthic
storms or abyssal storms), which remains poorly understood. These
storms involve the periodic intensification of normal bottom-current
flow alongslope or following the isobaths (Fig. 13), where their mean
flow velocity typically increases by two to five times, especially close
to boundaries of strong surface currents. The HEBBLE project was the
first to document the occurrence of benthic storm events and demon-
strated their importance in the winnowing, transport and redistribution
of sediments (Hollister et al., 1974; Nowell and Hollister, 1985;
Hollister, 1993). Once ripped up by the erosional effects of increased
bottom shear, sediments can be transported by bottom currents and
deposited in quiet regions downstream (Hollister and McCave, 1984;
Flood and Shor, 1988; Von Lom-Keil et al., 2002). In some cases, the
flow has a velocity exceeding 20 cm/s, a very high concentration of
suspended matter (up to 5 g L™ '), and strong erosional capability.
Although benthic storms typically last from 2 to 20 days (most often,
3 to 5 days), they can have much longer-lasting effects on the suspen-
sion of bottom sediment, production of plankton blooms, and supply
of considerable amounts of organic matter to the drifts (Richardson
et al, 1993; Von Lom-Keil et al., 2002). The regions subjected to partic-
ularly intense deep-sea storms can also exhibit significant erosion in
their continental slopes and produce large submarine slides (Pickering
et al,, 1989; Stow et al., 1996; Gao et al., 1998; Einsele, 2000).

5.5. Eddies

The generation of vortices is commonly associated to the lateral dis-
tribution of water masses (Serra et al,, 2010), and appears to be a signif-
icant mechanism for both the formation of nepheloid layers and the
long-distance transport of sediment (Fig. 13). Eddies can arise when a
water mass interleaves into a stratified environment, or when a current
flows along a seafloor irregularity such as a canyon, seamount, or cape
(Roden, 1987; Rogers, 1994; Arhan et al., 2002; Serra et al., 2010). In
some regions, large eddies on the seafloor span thousands of kilometres,
such as in the Argentine Basin (Cheney et al., 1983; Flood and Shor,
1988; Arhan et al., 2002; Hernandez-Molina et al., 2009), the Weddell
and Scotia Seas (Hernandez-Molina et al., 2008a), Mozambique slope
(Preu et al., 2011), and the Gulf of Cadiz and the margins west off
Portugal (Serra et al., 2010).

5.6. Secondary circulation

The main current-cores of dense water masses are usually parallel
to the isobaths (Fig. 13 and 15). These cores have been associated
with certain contourite erosional elements such as moats and channels
(e.g. McCave and Tucholke, 1986; Faugeres et al., 1993; Faugéres et al.,
1999; Rebesco and Stow, 2001; Stow et al.,, 2002a; Rebesco and
Camerlenghi, 2008; Stow et al., 2009; Faugéres and Mulder, 2011).
They are often associated with deposition on the downslope side, and
erosion on the upslope side, and their origin has been linked to a helicoi-
dal flow path (i.e. in the bottom-current there is the core flow plus a
clockwise circulation). In geophysics, this type of flow structure is
called a horizontal eddy (Davies and Laughton, 1972; Roberts et al.,
1974; Roden, 1987; Rogers, 1994; McCave and Carter, 1997;
Hernandez-Molina et al.,, 2008a; Serra, 2004; Zenk, 2008). Although re-
searchers have inferred a helicoidal flow from the morphology of the sea-
floor features, they have yet to explain these features based on
quantification of the relevant oceanographic processes and morphologi-
cal results—work that should pose an interesting research challenge for
oceanographers and sedimentologists. Nonetheless, these features likely
result from the Coriolis forces that focus the vortex against the adjacent
seafloor of the slope, erode the right flank (in the Northern Hemisphere)
of the channel and deposit sediment (drift) on the left side, where the
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current velocity is lower (Faugéres et al., 1999; Llave et al., 2007). Due to
the combined effects of Coriolis force and bottom friction (Fig. 14C) a sec-
ondary circulation is nearly always created in large-scale bottom cur-
rents. The secondary flow has fluid moving downhill comparatively fast
in a thin bottom layer and advected back uphill at slower speeds through-
out the full layer (for selected examples, see Wahlin and Walin, 2001;
Muench et al., 2009a,b; Cossu et al., 2010). Together with the main flow
this creates an asymmetric helical flow path which has been visualized
in the lab (see e.g. Fig. 11 in Darelius, 2008) and observed e.g. in the Baltic
Sea (see Fig. 8 in Umlauf and Arneborg, 2009). This is coherent with ero-
sion at the upper side and deposition/drift formation at the lower side as
observed (Faguéres et al, 1999; Llave et al, 2007).

5.7. Dense shelf water cascading

Cascades are a type of buoyancy-driven current in which dense
water formed by cooling, evaporation or freezing in the surface layer
over the continental shelf descends the continental slope, down to a
greater depth (Fig. 13). Dense shelf water cascading (DSWC) is an inter-
mittent process and a component of ventilation of intermediate and
deep waters; hence, it affects the generation of turbidity currents and
bio-geochemical cycles (Huthnance, 1995; Shapiro et al., 2003; Legg
et al., 2009). Cascades propagate along-slope and across-slope under
the influence of gravity, the Earth's rotation, friction and mixing
(Shapiro et al., 2003). Cascades can be found in the Southern Ocean
(Baines and Condie, 1998), the Arctic shelves (Aagaard et al., 1981;
Turrell et al., 1999) and the Gulf of Lion (Canals et al., 2006; Gaudin
et al,, 2006; Palanques et al., 2006, 2008). Dense shelf water cascading
varies spatially and temporally. The dense water masses that result
from it are likely to be comprise of mesoscale individual cold/salty lenses
perched on the slope (Saunders, 1990); dense plumes with significant 3D
structure (Shapiro and Hill, 2003), which can generated massive sand
beds within submarine canyon (Gaudin et al., 2006); downslope
currents, that pass mainly through canyons until reaching their hydro-
static equilibrium level (Canals et al., 2006; Palanques et al., 2008;
Rib6 et al., 2011); and along-slope currents, by the formation of spiral
waves, meanders and eddies (Shapiro et al., 2003).

5.8. Internal waves and solitons

Internal waves are gravity waves that oscillate along the interface
between two water masses of different densities (Farmer and Armi,
1999; Apel, 2000, 2004). They can be generated by any disturbance
that penetrates the pycnocline (Fig. 13). Internal waves have been de-
scribed off California (Emery, 1956), in the Sea of Japan (Navrotsky
et al,, 2004), in the Indian Ocean (Santek and Winguth, 2005) and on
the Iberian Margin (Hernandez-Molina et al., 2011a). They typically
have much lower frequencies (periods from several hours to days)
and higher amplitudes (up to hundreds of metres) than do surface
waves, because the density difference between the two water layers is
lesser than that between water and air. The energy associated with
internal waves is particularly high close to the continental margins
(maximum horizontal velocities up to 200 cm/s and vertical velocities
of 20 cm/s, Shanmugam, 201243, 2013a), and they have been postulated
as a major mechanism in the production of along-slope and across-slope
processes and in the maintenance of intermediate and bottom nepheloid
layers (McCave, 1986; Dickson and McCave, 1986; Cacchione et al., 2002;
Puig et al., 2004), as well as in the erosion of contourite terraces
(Hernandez-Molina et al., 2009; Preu et al., 2013, Fig. 15).

Internal waves that correspond to periods of tides are called internal
tides (Shepard, 1976; Garrett and Kunze, 2007; Shanmugam, 2012a,b,
2013a). Baroclinic tidal currents are commonly generated above areas
of steep bathymetric variation such as the shelf break, as in the Bay of
Biscay (Baines, 1982) and the Sea of Japan (Matsuyama et al., 1993). In-
ternal solitary waves (or solitons) comprise large-amplitude, non-linear
internal waves, whether single or in groups (Hyder et al., 2005), as in

the equatorial Atlantic (Brandt et al., 2002) and the Bay of Bengal
(Hyder et al., 2005). In the Strait of Gibraltar, the Camarinal and Spartel
sills produce solitons with amplitudes of 50 to 100 m and wavelengths
of 2 to 4 km (Armi and Farmer, 1988; Farmer and Armi, 1988; Brandt
et al., 1996; Jackson, 2004). These solitons extend at least 200 km into
the Western Mediterranean and last for more than 2 days, before
decaying to background levels (Apel, 2000; Jackson, 2004). Similar ob-
servations have been made along the north-western coast of the Iberian
Peninsula and around the Galicia Bank (Correia, 2003; Jackson, 2004).

5.9. Tsunami-related traction currents, rogue waves and cyclonic waves

Tsunamis comprise a wave or series of waves that have long wave-
lengths and long periods (Fig. 13), caused by an impulsive vertical dis-
placement of the water by earthquakes, landslides, volcanic explosions
or extra-terrestrial (meteorite) impacts (Shanmugam, 2006, 2011,
2012b). Tsunami waves carry energy through the water, but do not
move the water itself, nor do they transport sediment. However, during
the transformation stage, the tsunami waves erode and incorporate
sediment into the incoming wave. Therefore, tsunami-related traction
currents can transport large concentrations of sediment in suspension.
In addition, they are important triggering mechanisms of sediment fail-
ures (Wright and Rathje, 2003).

Rogue waves and cyclonic waves have been proposed as intermit-
tent processes similar to tsunami waves and therefore, should also be
considered in the context of contourites (Shanmugam, 2012b). They
can trigger bottom currents as well as submarine mudflows and slope
instabilities, thereby accelerating deep-water sedimentation. However,
it is not possible to differentiate between deposits generated by tsu-
namis and those generated by cyclonic waves (Shanmugam, 2011).

6. Depositional and erosional features

Persistent bottom-current systems and associated oceanographic
processes (see Section 5) strongly affect the seafloor, ultimately confer-
ring it with pervasive erosional and depositional features (Fig. 15).
These features can be isolated, but when alongslope processes domi-
nate, are more likely to be form part of a Contourite Depositional System
(CDS), which is an association of various drifts and related erosional fea-
tures (Hernandez-Molina et al., 2003, 2008a, 2009). Similarly, distinct
but connected CDS within the same water mass can be considered to
be a Contourite Depositional Complex (CDC) (Hernandez-Molina et al.,
2008a). However, contourites also occur interbedded with other deep-
water facies types, and do not necessarily form individual sedimentary
bodies. The erosional and depositional features produced by bottom
currents are found at various scales: they range from small bedforms
to large sediment drifts.

6.1. Large depositional and erosional features

Bottom currents are known to construct large accumulations of sed-
iments, known as contourite drifts. Over the past 50 years, researchers
have studied numerous drifts (Fig. 9) using a combination of tech-
niques, finding that drifts vary greatly in location, morphology, size, sed-
iment patterns, construction mechanisms and controls (Faugeres and
Stow, 2008).

Contourite drifts are most easily recognised when they have an along-
slope, elongated mounded shape, and an adjacent concave moat (see
Erosional Features, below). They can be more than 100 km wide, several
(up to tens) hundreds of kilometres long, up to 2 km thick and have a
relief of up to 1.5 km. Similarly to deep-water down-slope turbidity de-
posits, they range in dimensions from ca. 100 km? (small patch drifts,
equivalent in size to isolated turbidite lobes) to >100,000,000 km?
(giant elongated drifts matching the size of the largest deep-sea fans).

A three-tiered classification of contourite drifts, based on drift depth,
was proposed over a decade ago by Viana et al. (1998a) and by Stow
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et al. (2002a). However, this system now appears irrelevant, especially
for non-recent drifts, whose palaeodepth is often unknown (Rebesco,
2005). Other classification systems, based on drift morphology or loca-
tion, have also been conceived (McCave and Tucholke, 1986; Faugéres
et al., 1993, 1999; Rebesco and Stow, 2001; Rebesco, 2005; Faugéres
and Stow, 2008). Pragmatically speaking, there is some overlap
amongst different drift types, such that they are actually within a con-
tinuous spectrum of deposits.

All contourite drifts are characterised by a variable degree of
mounding and somewhat evident elongation (Fig. 16). The largest elon-
gated mounded drifts (giant elongated mounded drifts) are generally
found on the lower slope and can be divided into two types: separated
and detached. Separated drifts are most associated with steeper slopes,
from which they are separated by a distinct erosional/non-depositional
moat (Fig. 10B) along which the flow is focused (e.g. North Iberian mar-
gin, Van Rooij et al., 2010). Detached drifts typically present an elongation
that deviates from the adjacent slope against which it first began to form.
Such a drift development can result from a change in the margin's trend
(e.g. Eirik Drift, Fig. 10A, Hunter et al., 2007a,b). Sheeted drifts, most
commonly found on abyssal plains, are characterised by a broad,
faintly mounded geometry, with very slight thinning towards the mar-
gins (e.g. Gulf of Cadiz; see Llave et al., 2001, 2007; Hernandez-Molina
et al., 2008b). They show a fairly uniform thickness and a predominant-
ly aggradational stacking pattern. Plastered drifts are generally more
subdued and smaller than giant, elongated mounded drifts (Fig. 15A

and B), but are more mounded and located in shallower positions
than are sheeted drifts (e.g. Preu et al., 2013; Rebesco et al., 2013).
Given their location along a gentle slope swept by relatively low-
velocity currents, in the classification of Fig. 16 they are included
along with the sheeted drifts, but in other classifications (e.g. Faugéres
and Stow, 2008) they are considered along with the giant drifts. Some
plastered drifts can actually be considered as sheeted drifts, whereas
others must be considered as mounded, elongated drifts; regardless,
there is a continuity of examples in between these two end members.
Channel-related drifts lie in gateways in which currents are constrained
and flow velocities are higher (e.g. Antarctica, Maldonado et al., 2005
or Vena Channel, Brazil, Mézerais et al., 1993). Confined drifts are
mounded, with distinct moats along both flanks, and elongated parallel
to the axis of a relatively small confining basin (e.g. Lake Baikal,
Ceramicola et al., 2001). Patch drifts are small, elongated-to-irregular
drifts characterised by a random (patchy) distribution controlled
by the interaction between bottom currents and irregular seafloor
morphology (Hernandez-Molina et al., 2006b). Infill drifts typically
form at the head of a scar and are characterised by a moderate relief
and extension, as well as a mounded geometry that progressively infills
the topographic depression (Laberg et al., 2001). Fault-controlled drifts,
characterised by the influence of faulting in their development, develop
either at the base or at the top of a fault-generated basement relief in re-
sponse to perturbations in the bottom-current flow pattern (Rebesco,
2005). Mixed drifts are those that involve the significant interaction of
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along-slope contour currents with other depositional processes in the
building of the drift body, as in the Antarctic Peninsula (Camerlenghi
et al, 1997b; Giorgetti et al., 2003; Hillenbrand et al., 2008), the
Argentine slope (Hernandez-Molina et al., 2009) and the Gulf of Cadiz
(Llave et al., 2007). The many interrelated and overlapping factors
that control drift morphology (Faugéres et al., 1993; Rebesco, 2005;
Ercilla et al., 2008; Faugéres and Stow, 2008; Ercilla et al,, 2011) include
physiographic and tectonic settings, current regime, sediment input,
interacting processes, and changes in climate and in sea level, as well
as the length of time that these processes have operated.

Large-scale erosional features are also common in CDS, although
they have not been as well studied as have depositional ones. They
typically occur in association with contourite drifts (Faugeéres et al.,
1999; Stow and Mayall, 2000), but can also be found in a broad area
of continental slopes (Viana, 2001; Hernandez-Molina et al., 2003,
20063, 2009; Ercilla et al., 2011). The authors of this present review
propose a preliminary reconsideration (Fig. 17) of the only systematic
classification of large-scale erosional features that has been attempted
to date (Hernandez-Molina et al., 2008b; Garcia et al., 2009). Two
main types of large-scale erosions are considered: areal and linear.

Areal erosional features are further subdivided into two types:
terraces and abraded surfaces. Terraces are broad, low-gradient, slightly
seaward-dipping, along-slope surfaces produced by erosional as well
as depositional processes (Fig. 15B). They are generally found on the
upper and middle slopes relative to the position of the interfaces be-
tween different water masses, but could be identified at any depth
over continental slopes (e.g. Viana, 2001; Viana et al., 2002a,b;
Hernandez-Molina et al., 2009, 2014; Brackenridge et al., 2011; Preu
et al., 2013). Abraded surfaces are localised areas eroded by strong tabu-
lar currents. They are often found in association with scours, sediment
waves, dunes and sand banks (Hernandez-Molina et al., 2011a; Ercilla
etal, 2011; Sweeney et al., 2012).

Large, linear erosional features have been further subdivided by
Hernandez-Molina et al. (2008b) and Garcia et al. (2009) into three
types: contourite channels, moats, and marginal valleys. Contourite chan-
nels are elongate erosional depressions formed mainly by the action of
bottom currents. They are characterised by the presence of truncated
reflections and can be along-slope trending, or sinuous and oblique rel-
ative to the slope. Moats are channels parallel to the slope and originat-
ed by non-deposition and localised erosion beneath the core of the
bottom current, accentuated by the Coriolis force. Hernandez-Molina

etal. (2008b) suggest that the term moat be used only for those features
that have a genetic relationship with giant, elongated, mounded
contourite drifts of separated type (Fig. 10B and 15B and C); Marginal
valleys (or scours) are, according to the aforementioned authors, those
elongated erosional channels that are generated by the effects of a
bottom current impinging against and around topographic obstacles
(e.g. seamounts, diapiric ridges, and mud volcanoes). Furrows are
set apart in this contribution and included within bedforms (see
Section 6.2), as they are much narrower and less incised than are
contourite channels. However, since in exceptional cases they can reach
lengths of up to a few tens of kilometres, they should be mentioned
together with the large-scale erosional features. Their origin has been
associated to small, detached filaments of flow separated from the main
bottom current (possibly as a result of topographic effects).

These distinctions, developed mainly from observations in the Gulf
of Cadiz, Antarctica and Argentine basins, can likely be identified in
many other margins. Nonetheless, more detailed knowledge on ero-
sional features and associated oceanographic processes is required.
Many other areas have yet to be analysed to improve this preliminary
classification, as well as to clarify the genetic spatial and vertical rela-
tionships between the erosional features and the adjacent depositional
features within a CDS.

6.2. Bedforms

Various depositional and erosional bedforms are generated by
bottom currents. These bedforms can occur in a wide range of deep-
water environments, but are often found in association with contourite
drifts or with large scale erosions in gateways, channels or adjacent to
seafloor obstacles (Stow et al., 2013a). They are highly variable in
terms of sediment composition, morphology and dimension (Wynn
and Masson, 2008), with the latter ranging from decimetres (detected
with bottom photographs) to kilometres (detected with seafloor imag-
ing and other high-resolution geophysical tools). The detection of
bedforms can be important for the reconstruction of bottom-current
velocity (Stow et al., 2009, Fig. 18) and for geohazard assessment
(where bedforms are indicative of velocities higher than 1 m/s, which
can damage seafloor infrastructure, including pipelines and telecommu-
nication cables).

Bottom-current bedforms can be divided into two types, based on
their spatial relationship to the flow: longitudinal, which are elongated
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Modified from work by Stow et al. (2009), with permission from the Geological Society of America.

parallel to the flow and are essentially erosional; and transverse, which
are mostly depositional. However, these longitudinal and transverse
bedforms can both be related to the velocity range of the bottom
current, in function of the mean grain size of sediments (Stow et al.,
2009, 20133, Fig. 18).

6.2.1. Longitudinal bedforms

Low-relief, sub-parallel surface lineations range from millimetre-
spaced silt streaks to decimetre-spaced gravel stringers (e.g. Hollister
and McCave, 1984). Groove and ridge is used to describe a cohesive,
muddy substrate that shows decimetre-to-metre-spaced, distinctly
erosive grooves between remnant or depositional ridges (also called
longitudinal triangular ripples; e.g. Flood, 1981). Crag and tail refers to
the centimetre-to-decimetre-sized, elongated depositional mound
(the tail) downstream of an obstacle (the crag) (Heezen and Hollister,
1964). At higher flow velocities, these can be substituted with comet
scours, metre-to-hectometre-long, crescentic-to-elongate, erosional
scour marks that occur around, and extend downstream from, an obsta-
cle (Masson et al., 2004). Without an associated obstacle, erosional
scour crescents, irregular pluck marks, and/or or tool marks can be

found. Ribbon marks are elongated mounded filaments of sand that are
up to 500 m wide and several kilometres long, often merge into or di-
verge from broad sand sheets, and are produced by deposition following
erosion and winnowing (Viana et al., 2007). Erosional furrows are elon-
gate sub-parallel lineations that are somewhat regularly spaced, typical-
ly a few kilometres in length, a few tens of metres wide, and a few tens
of centimetres deep. In some cases they are cut into coarse gravel
and sand substrates (Masson et al., 2004; Stow et al., 2013a) or into
fine-grained cohesive sediments (Flood, 1983). Kilometre-scale sub-
circular-to-oval scour hollows, or elongate-to-irregular erosional
scours, are attributed to vertical spouts of water and to catastrophic,
high-energy, bottom-current flow (Bulat and Long, 2001; Holmes
et al., 2003; Stoker et al., 2003).

6.2.2. Transverse bedforms

Transverse bedforms exist in different sizes and shapes. The
smallest ones are ripples, which have wavelengths of a few
decimetres, heights of a few centimetres, and exhibit straight, sinu-
ous, and linguoid trends (Stow, 2005). Larger transverse bedforms
are dunes, which can be sinuous-crested and barchanoid in planform
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(Wynn et al., 2002), and sand waves, generally flatter and sinuous-
crested (Kuijpers et al., 1993). They range from tens to hundreds of
metres in wavelength, and from a few decimetres to a few metres
in height. Sediment waves (or mud waves) belong to a continuum of
bottom-current features that fall somewhere between ripples and
contourite drifts. They can have wavelengths ranging from 0.5 to
10 km in length, heights usually up to 50 m (occasionally, up to
150 m), and wave crests that are often longer than 10 km (Wynn
and Stow, 2002; Stow et al., 2013a).

7. Contourite types and facies models

Specific bottom-current facies have been described by many authors
(e.g. Stow and Lovell, 1979; Stow and Holbrook, 1984; Stow and Piper,
1984; Pickering et al., 1989; Faugeres and Stow, 1993; Gao et al.,
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1998; Faugéres et al., 1999; Stow et al., 2002a; Rebesco, 2005;
Llave et al., 2006; @vrebeg et al., 2006; Shanmugam, 2006; Stow and
Faugéres, 2008; Shanmugam, 2012a, 2013b; Stow et al., 2013b). Some
of them are overviewed below.

7.1. Small-scale characteristics

The characterisation of contourite facies is based primarily on
their small-scale characteristics, as identified on descriptions of cores
and/or outcrops.

7.1.1. Lithology

Contourites vary widely in their lithology (Stow et al., 1996, 1998a,b,
2002b; Shanmugam, 2006; Stow and Faugeres, 2008; Shanmugam,
2013b), exhibiting different grain sizes (from clay to gravel) and
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Fig. 19. Main types of sedimentary structures in contourite deposits.
From Martin-Chivelet et al. (2008); with permission from Elsevier.
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composition (terrigenous, biogenic, volcanic and/or mixed). Although
some contourites exhibit a rather homogeneous composition (e.g.
mid-ocean drifts, which are more than 90% pelagic biogenic material;
and high-latitude drifts, which are more than 90% glaciomarine
hemipelagic material), most bottom-current deposits show a character-
istically mixed composition (Stow et al., 2008). Within the present-day
ocean basins, they usually contain a mixture of biogenic, terrigenous,
volcanoclastic and authigenic components (Gao et al., 1998). Compared
to adjacent pelagic or hemipelagic sediments, they can have identical
composition but differ in their texture and fabric. The most common
contouritic deposit is a rather poorly sorted, mud-rich (between 5 and
40 pm) facies, which is intensively bioturbated, intercalated by thinner
horizons of fine-grained sands and silt, and typically shows a somewhat
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rhythmic bedding (Stow et al., 2002b). Sandy contourite deposits are
less common, albeit more commonly than initially thought, and have
been reported on the Brazilian margin (Viana et al., 2002a), in the Gulf
of Mexico (Shanmugam, 2006, 2012a, 2013b) and in the Gulf of Cadiz
(Hanquiez et al., 2007; Hernandez-Molina et al., 2012; Brackenridge
et al., 2013; Stow et al., 2013a; Hernandez-Molina et al., 2014). Also,
reworked sandy turbidites have been reported in different areas
(Stanley, 1993; Shanmugam, 2006; Gong et al., 2012; Shanmugam,
2012a, 2013b). At high latitudes, contourites can contain much gravel-
sized material, brought in as ice-rafted debris. Moreover, gravel-lag
contourites are found near oceanic gateways, shallow straits and
moats in all latitudes.
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Fig. 20. Traction features interpreted as an indication of bottom-current reworked sands (BCRS).
Modified from work by Shanmugam et al. (1993b) and by Shanmugam (2008), with permission from Elsevier.


image of Fig.�20

134 M. Rebesco et al. / Marine Geology 352 (2014) 111-154

Fig. 21. Core photographs of representative sedimentary structures related to bottom-current reworked sands (BCRS): A) Discrete thin sand layers with sharp upper contacts (top red
arrow). Traction structures include horizontal laminae, low-angle cross-laminae, and starved ripples (Middle Pleistocene, Gulf of Mexico) (according to Shanmugam et al., 1993b;
reprinted with permission of the AAPG, whose permission would be required for further use); B) Rhythmic layers of sand and mud, inverse grading, and sharp upper contacts of sand layers
(red arrow) (Palaeocene, North Sea) (Shanmugam, 2008; with permission from Elsevier); C) Horizontal lamination with gradational upper contact. Note the faint normal grading
(Pliocene sand. Edop Field, offshore Nigeria) (Shanmugam, 2012a; with permission from Elsevier); D) Convex-up laminae (hummocky cross-stratification [HCS]?) and concave-up
laminae (wave ripples) in fine-grained sand (Eocene, North Sea) (Shanmugam, 2012a; with permission from Elsevier); E) Flaser bedding. Note the presence of mud in ripple
troughs. Core photograph showing double mud layers (arrow) (Pliocene sand. Edop Field) (Shanmugam et al., 1993b; with permission from AAPG); and F) Double mud layers
(white arrow) (Pliocene sand. Edop Field) (Shanmugam, 2003, 2012a; with permission from Elsevier).

7.1.2. Sedimentary structures

Various sedimentary structures have been described for contourites
in present and ancient deposits (Martin-Chivelet et al., 2003;
Shanmugam, 2006; Martin-Chivelet et al., 2008; Stow et al., 2008;
Shanmugam, 2012a). However, in areas of intense bioturbation from
benthic activity, the preservation potential of some of these structures
can be low. The small-to-medium-scale sedimentary structures
described for contourite deposits comprise (Figs. 19-21) ripples and
cross-laminations (mainly in fine sandy deposits); flaser and lenticular
beddings (fine sands, silt and clays); horizontal, sub-horizontal and sinu-
soidal laminations; parallel laminations; large scale cross-stratification;
erosive scarps (and associated structures); gravel lags; grading; symmetric
ripples; and longitudinal triangular ripples (Martin-Chivelet et al., 2003,
2008; Stow and Faugeres, 2008; Stow et al., 2009). Most of these struc-
tures are also present in other deep-water deposits (e.g. turbidites),
but some have been suggested to be a clear diagnostic feature
for bottom-current deposits, such as (Figs. 19 and 21): negative grading
(Shanmugam et al., 1993a,b; Shanmugam, 2012a, 2013b); longitudinal
triangular ripples (Heezen and Hollister, 1964; Flood, 1981; Tucholke,
1982; McCave et al., 1984); and double mud layers and sigmoidal cross-
bedding, which are unique to deep-water tidal deposits in submarine
canyons (Shanmugam, 2006, 2012a). Sedimentary structures and
grain size can facilitate decoding of the bottom current intensity
(e.g. Wynn et al., 2002; Stow et al., 2009). A bedform-velocity matrix
for deep-water bottom-currents has been proposed by Stow et al.
(2009). It might be practical for local studies, although if it is applied,
then certain other aspects must also be considered (Shanmugam, 2012a).

7.1.3. Biogenic structures

The activity of benthic organisms is common in contourite deposits,
and effective for destroying the original sediment fabric and structures.
The dominant processes and structures are bioturbation (mottling) and
organic traces, respectively (Wetzel et al., 2008). Contourites have been
with very low (Shanmugam et al., 1993b), medium (Martin-Chivelet
et al., 2003) and very high (Faugéres and Stow, 1993) bioturbation
that has been described. Ichnofacies associations for the fodinichnia
(feeding traces), pascichnia (shepherding traces) and dominichnia
(living traces) types have been described, defining a continuum within
sub-to-well-oxygenated conditions (Ekdale and Mason, 1988).

7.1.4. Palaeontological content

Frequently, the palaeontological content of contourite deposits is
rather similar to that of the surrounding pelagic and/or hemipelagic de-
posits. It usually comprises planktonic and benthic foraminifera, ostra-
cods, nannoplankton, etc. and sometimes contains parts of molluscs,
echinoderms and brachiopods, although reworked contourites also con-
tain shallow-water fauna and flora (Martin-Chivelet et al., 2003, 2008).

7.2. Classifications for contourite deposits

Initially, contourite deposits were classified exclusively according to
their lithology and texture (Stow and Lovell, 1979; Gonthier et al., 1984;
Stow and Holbrook, 1984), which led to the definition of four types of
facies: clays, mottled silts, sand, and gravel lags. Other, complementary
classification systems were later proposed (Stow and Lovell, 1979;
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Fig. 22. Classification of contourite deposits. Types of deposits, grain size, general characteristics, common sedimentary structures, and a representative example of each type are included.
Bottom current reworked sands (BCRS), as defined by Shanmugam (2006, 2012a), within sandy contourites are also considered here.

Adapted from Stow and Faugéres (2008).

Stow, 1982; Faugeres and Stow, 1993; Stow et al., 1996; Gao et al., 1998;
Stow and Faugeéres, 2008). The most recent integrated classification for
contourites, proposed by several authors and summarised in Stow and
Faugéres (2008), is briefly compiled and described here (Fig. 22), taking
into consideration certain ideas from other authors (e.g. Shanmugam,
2006, 2012a,b, 2013b).

7.2.1. Clastic contourites

7.2.1.1. Muddy contourites. These are homogeneous and highly biotur-
bated deposits, often with an indistinct mottled appearance, and can
also show distinct burrows of varied ichnofacies. They are typically
>50% clay, have an average grain size ranging from 5 to 11 &, poor
sorting (typically 1.4 to 2 &) and <15% of sand. Bioclastic and/or carbon-
ate components can be present, generally at a maximum of 20 to 30%;
these include planktonic and benthic calcareous and siliceous organisms
that are frequently broken and are impregnated with iron oxides. On rare
occasions, muddy contourites can exhibit a primary lamination, which is
often characterised by a colour change or by irregular winnowed concen-
trations of coarser material. The composition is dominantly siliciclastic.

These deposits occur in thick units and are rather difficult to differentiate
from hemipelagic deposits. The components are partly local (they include
a pelagic contribution) and are partly far-travelled.

7.2.1.2. Silty contourites. Although these deposits are very similar
to muddy contourites, they represent a transitional point between the
latter and sandy contourites, and are commonly interbedded between
these types. Silt is the dominant grain size (between 40 and 60%) and
certain traction sedimentary structures, as well as bioturbational mot-
tling and ichnofacies, are frequently present. The range of grain sizes
(3 to 11 ®) can be still wider than for muddy contourites; thus, the
sorting can be very poor (>2 &) and there can be some evidence of in-
distinct discontinuous lamination (partly destroyed by bioturbation).
This typically comprises silty layers with sharp to irregular tops and
bases, together with thin lenses of coarser material.

7.2.1.3. Sandy contourites. These contourites, in which sand-sized com-
ponents predominate, are characterised by well-sorted deposits with
lamination and/or tabular-to-wedge bedding, from a few centimetres
to several metres in thickness. The mean grain size does not normally
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Slumps and debris-flow deposits

Basal erosional bounding surface of CCS

Bottom-current reworked sands

Fig. 23. A) Three-dimensional (3D) coherence volume showing unidirectionally migrating deep-water channels (C1 to C7). B) Facies and architecture within unidirectionally migrating
deep-water channel 3 (C3). Five channel-complex sets (CCS1 to CCS5), are identified, each of which comprises bottom-current reworked sands (BCRS) in the lower part, grading upward
into slumps and debris-flow deposits and, finally, into shale drapes. The BCRS are represented by subparallel and high-amplitude reflections with external lens shapes and are systemat-
ically nested in the direction of channel migration (Gong et al., 2013; with permission from the AAPG).

exceed that of fine sand (apart from coarser-grained horizons and lags),
and sorting is mostly poor to moderate (0.8 to 2 &), which is partly due
to bioturbational mixing. Both positive grading and negative grading
can be present. The sediment has a mixed siliciclastic/biogenic compo-
sition, with evidence of abrasion, fragmented bioclasts and iron-oxide

staining. In sandy contourites, traction sedimentary structures (e.g. hor-
izontal structures and cross-laminations) become dominant. Neverthe-
less, they can be bioturbated throughout, with common sub-vertical
burrows, and can appear as massive (structureless) at first sight. The
layering can have gradational or erosive contacts.
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7.2.1.4. Bottom-current reworked sands. Shanmugam (2006, 2012a,
2013b) emphasised the consideration of bottom-current reworked
sands (BCRS) from previous turbiditic deposits as a pragmatic alterna-
tive to the application of conventional turbidite concepts, and as a
new concept for understanding the origin and predicting the distribu-
tion of deep-water sandstones. Several authors have determined the
general characteristics of BCRS: rhythmic layers of fine-grained sands
and silts, in which the sand is well sorted (Hubert, 1964; Hollister,
1967; Hollister and Heezen, 1972; Bouma and Hollister, 1973; Unrug,
1977; Stow and Lovell, 1979; Lovell and Stow, 1981; Shanmugam,
1990, 2000; Ito, 2002; Gong et al., 2013; Stow et al,, 2013b). BCRS fre-
quently contain different seismic facies (Fig. 23; see Gong et al., 2013)
and sedimentary structures (Fig. 21; see Shanmugam, 2012a, 2013b),
such as horizontal laminations, low-angle cross laminations, lenticular
beddings, mud-offshoots in ripples, mud drapes, flaser beddings and
various traction structures. The sand usually coarsens upwards at differ-
ent scales and frequently exhibits a sharp-to-gradational bottom con-
tact and a sharp (non-erosional) upper contact. Shanmugam (2006,
2012a, 2013b) also distinguished between sands reworked by three
types of bottom current: thermohaline, wind-driven (in which traction
structures are dominant), and tidal. Deep-marine BCRS deposits are
characterised by sand-mud rhythmites, double mud layers, climbing rip-
ples, mud-draped ripples, alternation of parallel and cross-lamination,
sigmoidal cross-bedding with mud drapes, internal erosional surfaces,
lenticular bedding, and flaser bedding. These features represent alternat-
ing events of traction and suspension deposition.

7.2.1.5. Gravel contourites. Gravel-rich and gravel-bearing contourites
are commonly found in drift deposits, as the result of winnowing and
seafloor erosion under strong bottom-currents that yield irregular
layers and lenses of poorly-to-very-poorly-sorted (1 to >2 &), sandy
gravel-lag. At high latitudes, the gravel and coarse sandy material
from ice rafting remains as a passive input into muddy, silty or sandy
contourite deposits and is not subsequently reworked to any great
extent by bottom currents. Similar coarse-grained concentrations
and gravel pavements develop locally in response to high-velocity
bottom-current activity in shallow straits, narrow contourite moats,
and passageways.

7.2.1.6. Volcaniclastic contourites. These contourites are similar to the
siliciclastic facies described above, except that they are made up mostly
of volcaniclastic material.

7.2.1.7. Shale-clast or shale-chip layers. These layers can develop in
muddy and sandy contourites, as the result of substrate erosion by
strong bottom currents, under conditions in which erosion has reached
a firmer substrate and, in some cases, in which burrowing on the
non-depositional surface has helped break up the semi-firm mud. The
shale clasts are generally millimetre-sized, and occur with their long
axes sub-parallel to the bedding and, presumably, to the current direc-
tion as well.

7.2.2. Calcareous contourites

7.2.2.1. Calcareous muddy and silty contourites. Calcareous contourites
commonly occur in regions with a dominant biogenic input (including
open-ocean sites), beneath areas of upwelling, or down-current from
a source of biogenic/bioclastic material. The bedding is usually indis-
tinct, but can be enhanced by cyclic variations in composition and/or
grain size. Primary sedimentary structures are poorly developed or
absent, partly due to bioturbation, but some parallel-to-sub-parallel,
indistinct primary lamination may be preserved. The mean grain size
usually ranges from silty clay to clayey (and/or sandy) silt. The grain is
poorly sorted and in some cases, exhibits a distinct sand-sized fraction
that comprises coarser pelagic biogenic particles. The typical composition
is pelagic-to-hemipelagic, and includes nannofossils and foraminifers as

dominant elements, but in some cases the deposits can contain large
amounts of reworked shallow-water carbonate debris from off-shelf or
off-reef supplies. There is a variable admixture of siliciclastic or
volcaniclastic material.

7.2.2.2. Calcareous sandy contourites. Calcareous sandy contourites
are the calcareous equivalent of sandy contourites. In thinner beds,
primary sedimentary structures can be affected by bioturbation, but
thin-bedded, cross-laminated foraminiferal contourites are also de-
scribed. Thicker beds can preserve more structures, although lenticularity,
non-depositional surfaces, hardgrounds and burrowing also commonly
appear in this facies. The mean grain size is sand, and both poorly sorted
and well-sorted examples are recognised. These coarse-grained biogen-
ic particles can derive from pelagic, benthic, off-shelf and off-reef
sources, and may comprise a variable admixture of siliciclastic,
volcaniclastic and siliceous biogenic material. The bioclasts are often
fragmented due to transport and iron-stained due to oxidation.

7.2.2.3. Calcareous gravel-lag contourites. Calcareous gravel-lag
contourites, including those comprising calcilutite microclasts or chips
derived from the erosion of the substrate are not well known from the
modern record. Thus, they have been inferred and described from
ancient contourite successions.

7.2.2.4. Siliceous bioclastic contourites. Siliceous bioclastic contourites
of mud, silt or sand are also described from modern systems. Both
muddy (siliciclastic) and calcareous (bioclastic) contourites can be rela-
tively rich in diatomaceous and radiolarian material, particularly at
higher latitudes, but are rarely dominated by siliceous bioclastic materi-
al. Cross-laminated radiolarian-rich contourite sands are only known
from ancient contourite successions.

7.2.3. Chemogenic contourites

Chemogenic contourites are those in which chemical precipitation
directly from seawater occurs in association with contourite deposition
and/or erosion (hardgrounds) and hiatus surfaces.

7.2.3.1. Manganiferous contourites. These contourites contain mangani-
ferous or ferro-manganiferous horizons, expressed as very fine dis-
persed particles; a coating on individual particles of the background
sediment; fine encrusted horizons or laminae; and micronodules. Bio-
turbation and burrowing are particularly evident in such cases, where
they form a tiered ichnofacies assemblage in the sediment below the
non-depositional surface. Extensive areas with larger ferro-manganese
nodules on the seafloor as well as pavements are well known.

7.2.3.2. Chemogenic gravel-lag contourites. Where deep-water chemo-
herms (chemical-biogenic precipitates) of metal-carbonate chimneys,
mounds, and encrustations occur in the path of bottom currents,
the seafloor is strewn with the fallen and/or eroded debris of the
chemoherm material. Locally, this has clearly been winnowed and
aligned into chemogenic gravel-lag contourites.

7.3. Contourite facies model

The creation of a definitive facies model for contourites poses major
challenges. Obviously, the knowledge on the regional oceanographic/
physiographic setting is crucial, but this information is very difficult to
obtain for ancient systems. A better understanding of the oceanographic
processes related to CDS is needed. In particular, reconciliation between
theory and observations will require greater collaboration between
physical oceanographers and geologists (see Section 9).

The standard contourite facies model sequence was first proposed
by Gonthier et al. (1984) and by Faugeres et al. (1984), and was derived
from the Faro Drift within the middle slope of the Gulf of Cadiz. This
model implies a cyclic trend, encompassing three main facies:
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Fig. 24. Standard facies model of contourite sequence, linked to variation in contour-current velocity.
From Stow and Faugeéres (2008), based on the original figure from Gonthier et al. (1984); with permission from Elsevier.

homogeneous mud; mottled silt & mud; and sand & silt. These facies are
typically arranged in a coarsening-up/fining-up cycle that defines the
standard bi-gradational sequence for contourites (Fig. 24). Similar se-
quences have been illustrated in other margins, in recent and present-
day contourite deposits, as on the Brazilian margin (Viana and
Faugeres, 1998) and the Irish margin (@vrebg et al., 2006), as well as
in the ancient record (e.g. China outcrops, Gao et al., 1998). Other au-
thors have also reported that partial or incomplete sequences are
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common (Howe et al., 1994; Stoker et al., 1998; Shanmugam, 2000;
Howe et al., 2002; Stow et al., 2002a, 2013a; Mulder et al., 2013). A
few subsequent modifications (Stow et al., 2002a; Stow, 2005) have
demonstrated that the facies and facies sequences associated to
contourites vary greatly, making any singular, systematic characterisa-
tion of facies rather difficult for the moment. Stow et al. (2002b) slightly
modified the standard sequence by using five principal divisions (C1-
C5, Fig. 24), and Stow and Faugeres (2008) later proposed a model for
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partial sequences (Fig. 25), which are equally or more common than the
full bi-gradational sequence.

In theory, the general model for contourites includes two shifts in
the strength of the bottom-current flow: from weak to strong, and
then back to weak (Stow and Holbrook, 1984; Stow et al., 2002a;
Huneke and Stow, 2008). Very recently, Mulder et al. (2013) demon-
strated that this sequence of facies is only partly related to changes in
bottom-current velocity and flow competency, and that it might also
be related to the supply of a coarser, terrigenous particle stock. They
suggest that the stock could be provided by either increased erosion of
indurated mud along the flanks of confined contourite channels (mud
clasts), or by increased sediment supply through rivers (quartz grains)
and downslope mass transport on the continental shelf and upper
slope. These results are consistent with the hypothesis of Masson et al.
(2010), who determined that the classical contourite depositional
sequence proposed by Gonthier et al. (1984) had to be interpreted
with greater care and in the context of the regional sedimentological
background.

The main criticism for considering the Faro Drift deposits as the
standard contourites facies sequence relates to two facts: this drift is
predominantly muddy, and it is located in the distal part of a huge
CDS. Moreover, other facies in other parts of the same depositional sys-
tem have recently been reported (e.g. Hernandez-Molina et al., 2012,
2013; Mulder et al., 2013; Stow et al., 2013a; Hernandez-Molina et al.,,
2014), but it is difficult to apply the conceptual model to them. In fact,
Mulder et al. (2013) showed that most of the contacts between the clas-
sical contourite facies (mottled, fine sand, and coarse sand) are sharp
rather than transitional (Fig. 26), which is agreement with the ideas of
Shanmugam (2006, 20124, 2013b).

Given the aforementioned findings, the proposed facies sequence
for the Faro Drift could be considered a good model for fine-grained
contourite deposits and pervasive bioturbation would be a diagnostic
feature of muddy/silty contourites. However, this sequence is not repre-
sentative for other types of contourite deposits (Martin-Chivelet et al.,

2008; Shanmugam, 2012a; Mulder et al., 2013; Shanmugam, 2013b).
Authors working in contourite settings in which sandy deposits
are more common (Shanmugam et al., 1993a,b, 1995; Shanmugam,
2000, 20123, 2013b) have reported that bottom currents prevail over
burrowing. They emphasise the importance of traction sedimentary
structures as diagnostic indicators of the bottom currents from which
they derive. Nevertheless, until the full context of these structures is un-
derstood (particularly, the genetic association with other structures,
and the palaeogeographic and palaeoceanographic frameworks), inter-
pretation of them should be based only on the processes, rather than on
the type of sedimentary events or environments (Martin-Chivelet et al.,
2008). Laminated, barren, glacigenic muddy contourites observed
on Polar margins are often non-bioturbated (Anderson et al., 1979;
Pudsey et al., 1988; Mackensen et al., 1989; Grobe and Mackensen,
1992; Pudsey, 1992; Gilbert et al., 1998; Anderson, 1999; Yoon et al.,
2000; Lucchi et al., 2002a,b). This particular type of glacigenic contourite
facies appears associated to glacial times only, and has been interpreted
as resulting from unusual, climate-related, environmental conditions of
suppressed primary productivity and oxygen-poor deep waters (Lucchi
and Rebesco, 2007).

The controversy over which feature—primary traction structures,
or bioturbation—should be the basic diagnostic criterion for the recogni-
tion of contourite deposits, might have limited significance, since differ-
ent authors have worked in different settings. Regardless, the previous
research on this issue holds two important lessons: firstly, that there
is no unique facies sequence for contourites; and secondly, that traction
sedimentary structures are also common within contourites (Carter
et al,, 1996; Masson et al,, 2002; Wynn et al., 2002; Shanmugam, 2006;
Martin-Chivelet et al., 2008; Shanmugam, 2012a, 2013b). In recent
work, Mutti and Carminatti (2012) have addressed this variability and
proposed a preliminary contourite facies tract inferred from core obser-
vation in deep-water sands of the Brazilian offshore basins. They have
proposed the following six types of facies: muddy fine sand with abun-
dant mudstone clasts (CFA); metre-thick, well-sorted, horizontally-
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laminated fine and very fine sand (CFB); metre-thick, well-sorted fine
and very fine sand with large ripples containing internal sigmoidal lami-
nae (CFC); alternating centimetre-thick packages of ripple-laminated
fine-grained sand and bioturbated muddier units with sand streaks
(CFD); centimetre-thick packages of lenticular rippled sand and sand
streaks alternating with mudstones, in which bioturbation is very com-
mon; (CFE); and highly bioturbated, terrigenous, mixed and biogenic
(calcareous) mudstones (CFF). Of these facies types, only CFE corre-
sponds to the classic contourite model from Gonthier et al. (1984),
Stow et al. (2002a) and Stow and Faugéres (2008).

The facies sequence reported by Mutti and Carminatti (2012)
demonstrates a greater spectrum of contourite facies than that which
had previously been reported, especially for cases in which bottom cur-
rents strongly contributed to the reworking and redistribution of turbi-
dite fine sands derived from basin margins (thereby generating mixed
turbidite/contourite depositional systems). A better understanding of
the CDS and related oceanographic processes is needed, that would
describe the small-scale and the large-scale features, as well as their as-
sociated facies. Given the economic importance of mixed turbidite/
contourite systems, considerable research efforts will have to be made
to elucidate their geometry and facies distribution patterns. Indeed,
completion of this work will provide the optimal conditions required
for proposing standard facies sequences for the variety of contourite
deposits.

7.4. Contourites versus turbidites: differentiation and diagnostic criteria

The differentiation between contourites and turbidites has been a con-
troversial issue in sedimentology research since the 1970s (Hollister,
1967; Bouma, 1972; Hollister and Heezen, 1972; Piper, 1972; Bouma,
1973; Bouma and Hollister, 1973). There is no general agreement
on which structures can be used to distinguish contourites from other
deep-sea deposits such as fine-grained turbidites. Moreover, contourite
processes can trigger certain gravity processes and formation of subma-
rine lobes, as occurs in the Gulf of Cadiz (Habgood et al., 2003; Hanquiez
et al., 2010), or rework previous turbiditic deposits (Shanmugam et al.,
1993a,b; Shanmugam, 20123, 2013b). Therefore, contourite and turbiditic
processes can be linked both vertically and laterally. Consequently,
distinction of their products (i.e. mixed deposits) will pose a challenge
in future research.

Presently, there is a lack of commonly accepted criteria to distin-
guish between the contourite components and the turbidite compo-
nents in mixed deposits at a small scale (cores and outcrops on the
basis of lithologic facies), although the difference between them is
very clear at a large scale (depositional systems, on the basis of seismic
facies; see Figs. 3 and 10). Some authors (Lovell and Stow, 1981; Stow
and Piper, 1984) have already considered that contourite deposits can
be differentiated from fine turbiditic deposits based on three factors:
certain characteristics of the former (widespread burrowing; bioturba-
tion; a lack of a vertical sequence of structures; and a low likelihood of
preservation of primary sedimentary structures); and the fact that
palaeocurrents are a good criterion for distinguishing between along-
slope (i.e. contourite) and down-slope (i.e. turbidite) systems. However,
as mentioned above, traction sedimentary structures are present in
contourites and are considered by some authors to be viable diagnostic
criteria (Carter et al., 1996; Wynn et al., 2002; Martin-Chivelet et al.,
2003; Shanmugam, 2006; Martin-Chivelet et al., 2008; Shanmugam,
2012a, 2013b). Also the presence of laminations, enhanced by shell
fragments and the concentration of quartz grains, has been reported
as resulting from a discrete grain (sortable silt) input as bed load at
the base of the contour current (McCave, 2008; Masson et al., 2010;
Mulder et al., 2013). This confirms that bed-load transport is a major
characteristic of contour current deposition (Shanmugam, 2012a), and
explains the superior sorting of sandy contourites relative to sandy
turbidites, as has been suggested by Shanmugam (20123, 2013b).

Presently, the scale of observation is essential for differenti-
ating contourites from turbidites, since the overall geometry,
the stratigraphic stacking pattern and facies association differ
greatly in each case. Further information could come from
more detailed studies in clearly recognised modern CDS, based
not only on sediment core analysis, but also on visual (ROV-
assisted) analysis of local outcrops on the seafloor (e.g. channel
flanks and slide scarps), and on comparison with the ancient re-
cord facies, through coring (IODP, etc.) of their facies and facies
sequences.

8. Most recent understandings from IODP Expedition 339

Of the 5.5 km of core recovered during IODP Expedition 339 in the
Gulf of Cadiz and west off Portugal (http://iodp.tamu.edu/scienceops/
expeditions/mediterranean_outflow.html), at least 4.5 km belongs to a
CDS (Expedition 339 Scientists, 2012; Hernandez-Molina et al., 2013;
Stow et al., 2013b). The predominant sedimentary facies includes
pelagites, hemipelagites, contourites, turbidites, debrites and slump
deposits (Fig. 27). Contourites are the dominant sediment type, com-
prising 95% of the Quaternary and ca. 50% of the recovered Pliocene suc-
cession. This facies group includes sand-rich, muddy sand, silty-mud
and mud-rich contourites, all of which were deposited at moderate
(20 to 30 cm/ky) to very high (>100 cm/ky) rates of sedimentation.
The recovered contourites are remarkably uniform in composition and
textural attributes. These contourites feature intense continuous biotur-
bation throughout, and the muddy and silty contourite deposits are dis-
tinguished by a conspicuous absence of primary sedimentary structures.
They are characterised by bi-gradational sequences from inverse to
normal grading with numerous partial sequence types (Fig. 27). These
preliminary results are in agreement with the previously proposed
idea that there is a greater variety of facies sequences for bottom-
current deposits than what is presently represented in the most com-
monly accepted contourite facies model (Shanmugam et al., 1993a;
Martin-Chivelet et al., 2008; Shanmugam, 2012a; Hernandez-Molina
et al., 2013; Mulder et al., 2013; Shanmugam, 2013b; Stow et al.,
2013b). Moreover, this illustrates that there have been massive spatial
and temporal changes in the facies of the same CDS. Therefore, the
contourite facies model must be refined: for example, the sand-silt con-
tributions and the role of sediment supply in it must be incorporated.
An enormous quantity and extensive distribution of contourite sands
(and bottom-current-modified turbidite sands) have been reported
(Expedition 339 Scientists, 2012; Hernandez-Molina et al.,, 2013; Stow
et al., 2013b) (Fig. 27), especially in the proximal part of the CDS close
to the Strait of Gibraltar, where traction sedimentary structures have
been found in very thick, sandy contourite layers (>10 m) that had
been drilled (Hernandez-Molina et al., 2013, 2014).

Additionally, remarkable interactions between contourite and turbi-
dite processes have been reported that are completely new and differ-
ent from the current facies models. Therefore, the results and
forthcoming data analysis from IODP Expedition 339 Scientists will
be very important for the future use of contourite systems in
palaeoceanographic studies. Additionally, the drilled sandy contourites
in the aforementioned proximal part of the CDS are completely different
deep-water sands than the turbidite sands that are currently dominant
as deep-water oil and gas plays. They seem to be formed in different de-
positional settings, have different depositional architectures, and are
clean and well sorted. Deeply buried sediments with these characteris-
tics would be high quality potential reservoirs. Additionally, the associ-
ated contourite muds are very thick, rapidly deposited, and moderately
rich in organic carbon (up to 2 wt.%). They could provide potential
source rocks in the subsurface, as well as suitable seals in stratigraphic
traps. These new findings could herald a paradigm shift for exploration
targets in deep-water settings (Hernandez-Molina et al., 2013; Stow
et al., 2013b).
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Fig. 27. Examples of the principal sedimentary facies for the contourites recovered during IODP Expedition 339.

From Hernandez-Molina et al. (2013).

9. Insight and perspectives for the future

As in many marine sciences, most of the future perspectives in
contourite research strongly depend on continuous technological ad-
vances, which are enabling more and more accurate and detailed stud-
ies, both on the seafloor, and on samples retrieved from contourite
deposits. More than ever, synergy amongst various datasets (Palomino
et al., 2011; Preu et al.,, 2013; Hernandez-Molina et al., 2014) will be
needed to enable better recognition of the interactive roles of the indi-
vidual drivers. One essential task is to establish connections between
contourite features, their temporal and spatial evolution, and the ocean-
ographic processes that form them. Scale will be a especially important
factor in this quest to better discriminate amongst products and to un-
derstand their different processes. Firstly, albeit most of the large CDS
have already been extensively mapped, the use of advanced “predic-
tive” and diagnostic knowledge, and of high-resolution geophysical sur-
veying, will enable identification of smaller contourite deposits (in all
domains, both marine and lacustrine), which in turn will elucidate the
interplay amongst ambient processes and will enable high-resolution
palaeoclimatological and palaeoceanographic studies. Secondly, in-
creased resolution will enable improved documentation of the detailed

spatial and temporal variability within a single contourite deposit,
thereby providing a more realistic view on the nature and variability
of the responsible formation processes. Finally, from a larger-scale
perspective, it may be necessary to take a step back and to provide an
overarching view on contourite drifts or CDS in the same basin, created
by the same water masses or at the same time scale. One possible ben-
efit of such an approach would be to elucidate the growth mechanisms
of the North and/or South Atlantic CDS.

More specifically, with respect to the driving processes, a more inten-
sive collaboration between physical oceanographers and geologists is
highly encouraged. Only such concerted effort will enable reconciliation
between theory and experimental observations of contourite deposition
and erosion. This work will help to provide a new understanding of
contourite development from the combined perspective of sedimentolo-
gy and fluid dynamics. Here, the use of numerical or sand-box (analogue)
modelling could yield significant advances to understand CDS evolution.
In fact, such an approach has already been employed to model turbidite
processes (Salles et al., 2008; McHargue et al., 2011) and tectonics
(Morley et al., 2011), but remains underrepresented in the study of
alongslope depositional and erosional processes. Nevertheless, improved
modelling of contourite deposits will also require more-detailed, high-
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resolution in situ observations (van Haren et al., 2013). Special attention
should be paid to the future development of seismic oceanography
(Pinheiro et al., 2010; Carniel et al., 2012), which will enable combined
use of these in situ observations to 2D (or even 3D) insight into the
oceanographic processes. An integrated acoustic approach coupled with
oceanographic data (e.g. CTD or (L)ADCP; see: Preu et al., 2011, 2012;
Hernandez-Molina et al., 2014) and moorings (Rebesco et al., 2013)
will be essential for identifying oceanographic processes and for correlat-
ing these processes with seafloor morphologic features (Fig. 15).
Advances in palaeoceanography will likely assist in deconvolution of
the contourite record, which is not a straightforward task. For example,
the fingerprinting of water masses using isotopic tools such as Nd isotope
ratios from the authigenic ferromanganese oxide component, available
in bulk sediment and foraminifers (Frank, 2002; Khelifi et al., 2009;
Piotrowski et al., 2012), and in cold-water corals (Copard et al., 2011),
is a steadily expanding technique that will likely become standard in
the future. Similarly, ferromanganese nodules could provide interesting
palaeoceanographic data (e.g. Gonzalez et al., 2010). Lastly, better inter-
pretation and evaluation of grain-size techniques will be necessary
(Mulder et al,, 2013).

Better characterisation of the contourite products will be fully linked
to advances in marine geophysics, making high-resolution 3D seismics
(Campbell and Deptuck, 2012), multibeam and backscatter data
(Palomino et al., 2011; Sweeney et al., 2012) more readily available
for academic purposes, and enabling even more-detailed observations
from Automated Underwater Vehicles (AUV). This in turn will improve
the further refining of depositional models for CDS and contourite ero-
sive features that involve the initiation, processes, seismic facies and ar-
chitectural elements of these structures. Interestingly, Brackenridge
et al. (2011) have already made a first attempt to fit contourites into a
sequence stratigraphic framework, which could ultimately benefit
from elucidation of the different orders and types of vertical contourite
sequence, especially in high-resolution seismic profiles. Furthermore,
the interpretation of these geophysical datasets will require more-
accurate “hard” geological data and direct access to these data. Such
data include those documented by gradual rollout of the IODP Expedi-
tion 339 results (Hernandez-Molina et al., 2013) or by its associated
MOWER Project (Hernandez-Molina et al., 2014). This does not only
concerns the ground-truthing of seismic geometries or amplitude
anomalies, but also applies to backscatter anomalies on multibeam
data that are often used as a proxy for sediment texture. Moreover,
the sedimentary analyses of facies and structures are now providing
better insight, thanks to state-of-the-art imaging techniques such as
indurated thin sections (Mulder et al., 2013), Ichnological Digital
Analysis Images Package (IDIAP, Dorador et al., 2013, 2014), and
Computerised Tomography (CT) scanning (Flisch and Becker,
2003), which already has been successfully applied in oceanic cores
for contourite research (Mena et al., 2011; Mena, 2014) and other
sedimentological studies (Pirlet et al., 2012). This work might also
elucidate the geotechnical properties of contourites, with respect to
slope stability on continental margins. Only high-resolution studies,
dedicated coring, and geotechnical analyses can provide more in-
sight into the occurrence of weak layers within contourite deposits
that could lead to sediment failure.

Another aspect of contourite processes and products that is poised
to receive more attention is their economic potential in the context of
hydrocarbon exploration: for example, further exploration of the data
from IODP Expedition 339, which suggests an extensive distribution of
clean and well-sorted sands (Expedition 339 Scientists, 2012;
Hernandez-Molina et al., 2013; Stow et al., 2013b). This will enable
better evaluation of the potential of sandy contourite systems as
reservoirs for oil and gas, as well as the potential of muddy
contourites both as source rocks for hydrocarbons and as unconven-
tional reservoirs (Viana, 2008; Shanmugam, 2012a; Brackenridge et al.,
2013; Shanmugam, 2013a,b; Stow et al., 2013b). Moreover, the fre-
quent association of contourite deposits, both sandy and muddy with

cold-water coral mounds (Huvenne et al., 2009; Van Rooij et al.,
2011), could also be regarded as a very interesting unconventional res-
ervoir (Henriet et al., 2014). Therefore, the role of deep-water circula-
tion, and of its variability due to climate, on the ecological health
status of deep-water ecosystems (e.g. reefs) must be elucidated. An
emerging field that requires more insight into deep bottom-water cir-
culation is the renewed exploration phase for manganese nodules
(Hoffert, 2008; Rona, 2008). More knowledge on their formation with
respect to bottom currents and seafloor morphology will be required
for predictive mapping of these marine resources.

Finally, contourite processes and products should be considered for
reclassification under international law, since many continental slopes
do not coincide with conceptual models and/or the recommendations
of the United Nations Convention on the Law of the Sea (UNCLOS;
ABLOS, 2006). In fact, important changes in the slope gradient trend
are due to the occurrence of large contourite depositional or erosional
features, in some case at the base of the slope (e.g. Hernandez-Molina
et al., 2009, 2010).

The advances expected in contourite research should lead to the es-
tablishment of better diagnostic criteria for contourite identification.
This will require cooperation and synergy amongst researchers from
all involved disciplines, in order to bridge gaps between theory
and experimental observations, and between physical oceanography
(present, “short time-scale” processes) and geology (past, “long time-
scale” products).

10. Conclusions

Fifty years after contourites were discovered and this journal began,
research on the recognition, occurrence, palaeoceanography, and
sedimentology of contourite deposits and their related processes
has advanced considerably. The term contourite has since grown to en-
compass all marine and (some) lacustrine sedimentary basins. Since the
1990s, several specialised articles have been published by researchers
seeking to better define diagnostic criteria and to improve facies
models. However, this work is far from being finished, as clearly illus-
trated in the present review. The main points to be addressed in future
research are described below.

1. Contourite processes are not as simple as initially thought. As reported
in Rebesco and Camerlenghi (2008), the main contourite processes
are linked to the bottom-current dynamics. However, bottom cur-
rents can be driven by myriad oceanographic processes, most of
which are not fully understood.

2. Given the complexity of contourite processes, the contourite nomencla-
ture might need to be reconsidered (e.g. when dealing with internal
waves, and other episodic processes that affect the seafloor).

3. The contourite model originally proposed by Gonthier et al. (1984) re-
mains valid for muddy deposits. However, new models will need to be
considered for other types of bottom-current deposits. This does not
mean that the previously proposed models are wrong: there is sim-
ply too great a variety of deposits affected by bottom currents to be
described using a single model. These deposits must be documented,
and new associations of facies and facies models must be established,
based on present-day marine data and outcrops.

4. More work is needed to understand sandy contourites and their differ-
ences with bottom-current reworked turbidite sands. The economic po-
tential of these deep-water deposits should be explored and evaluated.

5. Integrated studies drawing on specialists from geology, oceanography
and benthic biology will be essential for providing a holistic perspective
on, and further advancing, contourite research.

6. Given that bottom current-controlled depositional and erosional
features are very common in marine basins, at different depths and in
various settings, the hitherto underestimated pervasiveness of bottom-
water circulation and associated processes in shaping the seafloor and
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in controlling the sedimentary stacking pattern on continental margins
must be reconsidered.
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Appendix A

This appendix includes the legend for the numbers and letters
in each area in Fig. 9, showing large contourite deposits in the present
(recent) ocean basins and in the ancient sedimentary record. Though
only a selection of critical references (taken from amongst many others)
for each area has been included, numerous references were used to
compile Fig. 9. The contourite drifts in present basins were specifically
complied for the present work, and later archived and visualised
under the “Global Contourite Distribution” in the Marine Regions website
(http://www.marineregions.org), under the Thematic Gazetteer (Claus
et al., in press).

[) Contourite drifts in present (recent) oceanic basins:

: Fram Strait (Eiken and Hinz, 1993; Howe et al., 2008);

: Spitsbergen (Rebesco et al., 2013);

: Vesteralen (Laberg et al., 2002, 2005);

: Lofoten (Laberg et al., 2002; Laberg and Vorren, 2004);

: Nyk (Laberg et al., 2001, 2002)

: Skagerrak Strait (Hass, 1993; Kuijpers et al.,, 1993);

: North Sea (Knutz, 2010; Kilhams et al., 2011);

: Faroe-Shetland (Howe et al., 2002; Stoker et al., 2003; Masson
et al.,, 2004);

O N U A WN =

9: Hebrides slope (Armishaw et al., 1998, 2000; Howe et al., 2002;
Knutz et al., 2002a,b; Masson et al., 2002);

10: Rockall Trough (Stoker et al., 1998, 2001; Akhurst et al., 2002;
Howe et al., 2002; Masson et al., 2002; Howe et al., 2006);

11: Rockall-Porcupine region (Van Rooij et al., 2003; @vrebg et al.,
2006; Van Rooij et al., 2007a,b);

12: Feni (McCave and Tucholke, 1986; Stoker et al., 2005; Hassold
et al,, 2006);

13: Hatton (McCave and Tucholke, 1986; Faugéres et al., 1993; 1999;
Stoker et al., 2005; Sayago-Gil et al., 2010);

14: Gardar (McCave and Tucholke, 1986; Faugeres et al., 1993, 1999;
Hassold et al., 2006);

15: Bjorn (McCave and Tucholke, 1986; Faugéres et al.,, 1993, 1999;
Stoker et al., 2005);

16: Snorri (McCave and Tucholke, 1986; Faugéres et al., 1993, 1999);
17: Eirik (McCave and Tucholke, 1986; Hunter et al., 2007a,b;
Miiller-Michaelis et al., 2013);

18: Gloria (McCave and Tucholke, 1986; Faugéres et al., 1993, 1999);
19: David Strait (Nielsen et al., 2011);

20: Baffin Bay (Knutz et al.,, 2010);

21: Labrador/Orphan (Faugéres et al., 1993; Piper and Gould, 2004;
Piper, 2005);

22: Flemish Cap (Faugeres et al., 1993, 1999);

23: New Foundland (McCave and Tucholke, 1986; Faugeres et al.,
1993, 1999);

24: Nova Scotia rise/Canada (Hollister and Heezen, 1972; Campbell,
2011; Campbell and Deptuck, 2012);

25: Hatteras (McCave and Tucholke, 1986; Locker and Laine, 1992;
Faugeéres et al., 1993, 1999);

26: Bermuda rise (McCave and Tucholke, 1986; Faugéres et al., 1993,
1999);

27: Blake Blake-Bahama (McCave and Tucholke, 1986; Faugeres
et al., 1993, 1999; Flood and Giosan, 2002);

28: Caicos (McCave and Tucholke, 1986; Tucholke, 2002);

29: Antilles (McCave and Tucholke, 1986; Tucholke, 2002);

30: Florida Strait (Gardner et al., 1989; Faugeres et al., 1999);

31: Gulf of Mexico (Shanmugam, 2012a; Shanmugam et al., 1993a);
32: Bawihka Channel (Hine et al., 1992, 1994);

33: Cap Ferret (Faugeres et al., 1998);

34: Le Danois (Ercilla et al., 2008; Van Rooij et al, 2010;
Hernandez-Molina et al., 2011a);

35: Ortegal (Jané et al., 2010a,b; Hernandez-Molina et al., 2011a;
Maestro et al,, 2013);

36: Galicia Bank (Ercilla et al., 2011);

37: Galicia margin (Bender et al., 2012);

38: W Portugal (Alves et al., 2003; Hernandez-Molina et al., 2011a);
39: Gulf of Cadiz (Kenyon and Belderson, 1973; Gonthier et al., 1984;
Nelson et al., 1993, 1999; Faugeéres et al., 1999; Habgood et al., 2003;
Mulder et al., 2003; Hernandez-Molina et al., 2006a; Mulder et al.,
2006; Hanquiez et al., 2007; Llave et al., 2007; Marchés et al., 2007;
Hernandez-Molina et al., 2011a; Llave et al., 2011; Roque et al,,
2012; Brackenridge et al., 2013; Stow et al., 2013a,b);

40: Strait of Gibraltar (Kelling and Stanley, 1972; Esteras et al., 2000;
Herndndez-Molina et al., 2012);

41: Ceuta (Ercilla et al., 2002);

42: Alboran Sea (Palomino et al., 2011; Ercilla et al.,, 2012; Juan et al.,
2012);

43: Rosas (Canals, 1985);

44: Menorca (Mauffret, 1979; Velasco et al., 1996; Frigola et al.,
2008);
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45: Mallorca (Vandorpe et al., 2011);

46: Corsica (Roveri, 2002; Toucanne et al., 2012);

47: Thyrrenian (Falcini et al., 2010);

48: Messina (Viana et al., 1998a);

49: Adriatic (Verdicchio and Trincardi, 2008; Falcini et al.,, 2010);
50: Silicia Channel (Martorelli et al,, 2011);

52: Malta slope (Micallef et al., 2013);

53: Latakia (Tahchi et al., 2010);

54: Israel (Golik, 1993);

55: Moroccan margin (Casas et al., 2010; Antén et al, 2012;
Vandorpe et al., 2014);

56: Madeira (Faugeres et al., 1999);

57: Cape Yubi (Schwenk et al., 2010);

58: Cape Blanc (Schwenk et al., 2010);

59: Sierra Leone & Gambia basins (Westall et al., 1993; Jones and
Okada, 2006);

60: Pliocene, Equatorial Guinea (Shanmugam, 2012a);

61: Pliocene sand. Edop Field offshore Nigeria. (Shanmugam, 2003,
2012a);

62: Gabon (Biscara et al., 2010);

63: Namibia (Keil and Spief3, 2010);

64: Cape Basin (Weigelt and Uenzelmann-Neben, 2004);

65: Demerara Rise (Damuth and Kumar, 1975; Viana et al.,, 1998a);
66: Brasil (Viana et al., 2002a,b; Viana, 2008; Borisov et al., 2013);
67: Columbia (Massé et al., 1998; Faugeres et al., 2002a);

68: Santos (Duarte and Viana, 2007);

69: Campos (Mutti et al., 1980; Viana et al., 1998b; Lima et al., 2007;
Moraes et al., 2007; Viana, 2008);

70: Vema (Mézerais et al., 1993; Faugeres et al., 2002b);

71: Ewing (Ewing et al., 1971; Flood and Shor, 1988);

72: Argiro (Ewing et al., 1971);

73: Zapiola (Ewing et al., 1971; Flood and Shor, 1988; Flood et al.,
1993; Von Lom-Keil et al., 2002);

74: Argentine & Uruguayan margin (Hernandez-Molina et al., 2009;
Violante et al., 2010; Bozzano et al., 2011; Griitzner et al., 2011;
Mufioz et al., 2012; Preu et al., 2013);

75: Argentine Basin (Flood and Shor, 1988; Klaus and Ledbetter,
1988; Flood et al., 1993);

76: Lago Cardiel drift (Gilli et al., 2005);

77: Malvinas/Falkland Trough (Cunningham et al., 2002; Koenitz
et al., 2008);

78: Scotia basins (Howe and Pudsey, 1999; Pudsey and Howe, 2002;
Maldonaldo et al., 2003, 2005; Lobo et al., 2011; Martos et al., 2013);
79: Weddell Sea basin (Michels et al., 2002; Howe et al., 2004;
Maldonado et al., 2006; Lindeque et al., 2012);

80: Eastern Weddell Sea margin (Pudsey et al., 1988; Gilbert et al.,
1998; Camerlenghi et al., 2001; Pudsey, 2002);

81: Pennell Coast, Antarctica (Rodriguez and Anderson, 2004);

82: Bellingshausen (Scheuer et al., 2006; Uenzelmann-Neben and
Gohl, 2010);

83: Antarctica Peninsula (Rebesco et al., 1996, 1997; Pudsey, 2000;
Lucchi et al., 2002a,b; Rebesco et al., 2002; Lucchi and Rebesco,
2007; Rebesco et al., 2007);

84: Larsen Sea (Kuvaas et al., 2004; Gandjukhin, 2004);

85: Cosmonaut (Kuvaas et al., 2005);

86: Prydz Bay (Kuvaas and Leitchenkov, 1992);

87: Lac d'Armor drift, Kerguelen (Heirman et al., 2012);

88: Wilkes Land (Escutia et al., 2002);

89: Transkei Basin/Agulhas (Niemi et al., 2000; Uenzelmann-Neben,
2002; Schliiter and Uenzelmann-Neben, 2007, 2008)

90: Mozambique ridge (Uenzelmann-Neben et al., 2010);

91: Mozambique margin (Preu et al.,, 2011);

92: Sodwana Bay (Flemming, 1981; Ramsay, 1994);

93: Mozambique Channel (Faugeres et al., 1999);

94: Sumba (Reed et al., 1987; Faugéres et al., 1999);

95: Marion drift, NE Australian margin (Davies et al., 1991; Faugeéres
et al., 1999);

96: Great Australian Bight (Anderskouv et al., 2010a,b);

97: South China Sea (Liidmann et al., 2005; Luo et al., 2010; Wang
etal., 2010; Gong et al,, 2012,2013; Chen et al., 2013; Liet al,, 2013);
98: Miyako Island (Tsuji, 1993; Viana et al., 1998a);

99: Baikal lake (Ceramicola et al., 2001);

100: Okhotsk Sea (Wong et al., 2003);

101: Kurile (Karp et al., 2006);

102: Esmeralda (Carter et al,, 2004a,b,c);

103: Campbel skin (Carter et al., 2004a,b,c);

104: Canterbury (Lu et al., 2003; Lu and Fulthorpe, 2004; Fulthorpe
etal, 2011);

105: N Bounty (Carter et al., 2004a,b,c);

106: Chatham terrace (Carter et al., 2004a,b,c);

107: Chatham (McCave and Carter, 1997; Carter et al., 2004a,b,c);
108: Louisville (Carter and McCave, 1994; Carter et al., 2004a,b,c);
109: N. Chatham (Wood and Davy, 1994; Carter et al., 2004a,b,c);
110: Rekohu (Carter et al., 2004a,b,c; Joseph et al., 2004);

111: Hikurangi Fan-drift (Carter et al., 2004a,b,c; Venuti et al., 2007);
112: Subducting drift (Carter et al., 2004a,b,c; Joseph et al., 2004);
113: Samoa (Lonsdale, 1981; Faugeres et al., 1999);

114: Mid Pacific Seamounts (Lonsdale et al., 1972; Cacchione et al.,
1988; Viana et al., 1998a);

115: California Bordeland (Robinson et al., 2007);

116: Carnegie Ridge (Lonsdale et al., 1972; Lonsdale and Malfait,
1974).

II) Contourite deposits in the ancient record:

A: Miura-Boso, Japan (Stow and Faugéres, 1990; Ito, 1996; Stow
et al., 1998b, 2002b);

B: Ningxia (Hua et al., 2010; He et al., 2011; Shanmugam, 2011,
2012a);

C: Pigliang Drif, Gansu, China (Gao et al., 1998; Luo et al., 2002);

D: Yangjiaping, Jiuxi Drift, Hunan, China (Duan et al., 1993; Gao et al.,
1998; Stow et al., 1998a; Luo et al., 2002; He et al., 2010);

E: Talme. Israel (Bein and Weiler, 1976);

F: Cyprus (Kahler, 1994; Kahler and Stow, 1998; Stow et al., 2002c;
Turnbull, 2004);

G: Calabria (Collela and d'Alessandro, 1988);

H: Mallorca (Barnolas, 2010; Barnolas and Llave, 2012);

[: Caravaca, Spain (Martin-Chivelet et al., 2003, 2008);

J: Ricla, NE Spain. Upper Jurassic (Badenas et al., 2012; Pomar et al.,,
2012; Shanmugam, 2012a).

K: Annot Sandstone. Eocene-Oligocene, SE France (Shanmugam,
2003, 2006, 2012a);

L: French-Swiss Alps, Cretaceous (Villars, 1991);

M: Europe and North Africa (Oczlon, 1991, 1994; Hiineke, 2001,
2006, 2007);

N: North Sea (Shanmugam, 2008, 2012a);

0: Danish Basin (Lykke-Andersen and Surlyk, 2004; Esmerode et al.,
2007; Surlyk and Lykke-Andersen, 2007; Esmerode et al., 2008);

P: Cretaceous, offshore Norway (Shanmugam, 2012a);

Q: Delaware Basin (Mutti, 1992);

R: Equatorial East Atlantic, Eocene (Sarnthein and Faugeres, 1993).
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S: Campos (Paleogene) (Mutti et al., 1980; Mutti, 1992; Moraes et al.,
2007);

T: Los Molles, Chile (Suarez et al., unpublished in Stow et al.,, 1998a);
U: Neuquen Basin, Central Andes, Argentina (Martin-Chivelet et al., 2008);
V: DSDP Leg 28, Site 268. Antarctica (Oligocene). (Piper and Brisco,
1975);

W: Lachlan, eastern Australia (Jones et al.,, 1993);

Y: Waihao Forks, South Island, New Zealand (Carter et al., 2004a).
Z: South of the Chatham Islands, New Zeland (Party, 1999).
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