
ar
X

iv
:1

50
7.

00
57

9v
2

 [
ph

ys
ic

s.
da

ta
-a

n]
 9

 J
ul

 2
01

5

Neural Networks with Non-Uniform Embedding and
Explicit Validation Phase to Assess Granger Causality

Alessandro Montalto1,∗, Sebastiano Stramaglia2, Luca Faes3, Giovanni Tessitore4,

Roberto Prevete5, Daniele Marinazzo1

1 Data Analysis Department, Ghent University, Ghent, Belgium

2 Dipartimento Interateneo di Fisica, University of Bari, and INFN Sezione di Bari, Italy

3 BIOtech, Dept. of Industrial Engineering, University of Trento, and IRCS-PAT FBK,

Trento, Italy

4 Department of Physical Sciences, University of Naples Federico II

5 DIETI, University of Naples Federico II

∗ E-mail: alessandro.montalto@ugent.be

Abstract

A challenging problem when studying a dynamical system is to
find the interdependencies among its individual components. Several
algorithms have been proposed to detect directed dynamical influences
between time series. Two of the most used approaches are a model-
free one (transfer entropy) and a model-based one (Granger causality).
Several pitfalls are related to the presence or absence of assumptions
in modeling the relevant features of the data. We tried to overcome
those pitfalls using a neural network approach in which a model is built
without any a priori assumptions. In this sense this method can be
seen as a bridge between model-free and model-based approaches. The
experiments performed will show that the method presented in this
work can detect the correct dynamical information flows occurring in a
system of time series. Additionally we adopt a non-uniform embedding
framework according to which only the past states that actually help
the prediction are entered into the model, improving the prediction and
avoiding the risk of overfitting. This method also leads to a further
improvement with respect to traditional Granger causality approaches
when redundant variables (i.e. variables sharing the same information
about the future of the system) are involved. Neural networks are also
able to recognize dynamics in data sets completely different from the
ones used during the training phase.

1 Introduction

A fundamental problem in the study of dynamical systems is how to find
the interdependencies among their individual components, whose activity is
recorded and stored in time series. Over the last few years, considerable ef-
fort has been dedicated to the development of algorithms for the inference of
causal relationships among subsystems, a problem which is strictly related

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55853850?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1507.00579v2

to the estimate of the information flow among subsystems [1, 2]. Two ma-
jor approaches to accomplish this task are Granger causality (GC) [3, 4] and
transfer entropy (TE) [5]. GC is based on regression, testing whether a source
variable (driver) is helpful to improve the prediction of a destination vari-
able (target) beyond the degree to which the target predicts its own future.
GC is a model-based approach, implying that the corresponding statistics
for validation can be derived from analytic models, resulting in a fast and
accurate analysis. A pitfall, however, is inherent to model-based approaches:
the model assumed to explain the data often implies strong assumptions and
the method is not able to detect the correct directed dynamical networks
when these assumptions are not met. On the other hand non-parametric
approaches, such as transfer entropy, allow the pattern of influences to be
obtained in the absence of any guidance or constraints from theory; the
main disadvantages of non-parametric methods are the unavailability of an-
alytic formulas to evaluate the significance of the transfer entropy and the
computational burden, typically heavier than those required by model-based
approaches.

Feed-forward neural networks, consisting of layers of interconnected arti-

ficial neurons [6], are among the most widely used statistical tools for non-
parametric regression. Relying on neural networks, the proposed approach
to Granger causality will be both non-parametric and based on regression,
thus realizing the Granger paradigm in a non-parametric fashion.

In this paper we address the implementation of Granger’s original defi-
nition of causality in the context of the artificial neural networks approach
[7]. The metrics used to validate the hypothesis of directed influence is the
prediction error : the difference between the network output and the ex-
pected target. The choice of the correct prediction error, and consequently
the choice of the past states of the time series that will be fed to the model,
has to be accompanied by a validation phase. Only under optimization of
the generalization error one can be sure that the network is not overfitting.

In order to deal with an increasing number of inputs, each one repre-
senting a specific candidate source of directed influence, we will adopt a
non-uniform embedding procedure [8] that is an iterative procedure to select
only the most informative past states of the system to predict the future
of the target series among a wider number of available past states. In line
with this procedure the network will be trained with an increasing number
of inputs, each of them representing a precise past state of the variables that
are most helpful to predict the target. Also this selection process will be
implemented using the notions of prediction error and generalization error,
the former quantifying how well the training data are reproduced, the latter
describing the goodness of the validation on a novel set of data.

2

It is worth stressing that a neural networks approach to GC has been al-
ready proposed in [9], where neural networks with a fixed number of inputs,
together with other estimators of information flow, are used to evaluate GC.
In [9] neural networks are trained without a validation set and an empiri-
cal method to avoid overfitting is adopted. To our knowledge the present
approach is the first time that non-uniform embedding and a regularization
strategy by a validation set are used together in the context of neural net-
work approaches to detect dynamic causal links. Moreover, the neural net-
works built by our approach will accomplish not only the task of estimating
information flows among variables, they may also be used for dynamic classi-
fication task as well, as better explained in Subsection 6.6. The new method
presented in this work has been integrated in MuTE MATLAB toolbox [10]
and it will be compared here with the linear Granger causality as well as
with the Transfer Entropy, both implemented in the non-uniform embedding
framework.

2 Introduction to neural networks

Artificial neural networks (ANN) are a very popular branch of machine learn-
ing. Here we give a brief introduction to neural networks to make this work
self-consistent.

Neural networks can be represented as oriented graphs whose nodes are
simple processing elements called “neurons” handling their local input, con-
sisting of a weighted summation of the outputs from the parents nodes [6].
The input signal is processed by means of a function, called “activation func-
tion”, and the corresponding outcome, called “output”, is then sent to the
linked nodes by a weighted connection; the weight is a real number that
represents the degree of relevance of that connection inside the neural net-
work. The most common architecture of a neural network consists of neurons
ordered into layers. The first one is called “input layer” that receives the ex-
ternal inputs. The last layer is called “output layer” that gives the result of
the computations made by the whole network. All the layers between the
input and output layer are called “hidden layers”.

Neural networks with at least one hidden layer and activation functions
as the sigmoid function on the hidden nodes are able to adequately approx-
imate all kinds of continuous functions defined on a compact set from a
d -dimensional input space R

d, the domain, to a c-dimensional output space
R

c, the codomain given a sufficient number of hidden nodes: in this sense one
can say that neural networks can perform any mapping between two different
vector spaces [7]. In order to allow a neural network to find the correct map-

3

ping, a so-called “learning phase” is needed. In this work we use supervised

learning, during which inputs are presented to the network and its output is
compared to a known output. The weights are adjusted by the network that
tries to minimize a cost function that depends upon the network output and
the known output. This kind of learning allows a network to discover hidden
patterns inside the data.

In this work we implement a growing neural network to study dynamical
interactions in a system made up of several variables, described by time
series, interacting with each other. The aim of the work is not only to find
a directional relationship of influence between a subset of time series, the
source, and a target time series taking into account the rest of the series
collected in a set, called conditioning, but also to determine the delay at
which the source variables are influencing the target. We will then see how
the neural networks approach can be useful to accomplish, under the same
framework, several tasks such as: finding the directed dynamical influences
among variables chosen at a certain delay; predicting a target series when
the network is fed with a novel realization of a dynamical system whose
connectivity structure has been previously learned; classifying a new data
set, giving information about how close the causal relationships are to those
observed in data sets used during the learning phase.

2.1 Mathematical framework

In this work we deal with growing feed-forward neural networks to better infer
the directed dynamical influences in a composite system. Each stochastic
variable at hand is assumed to be zero mean (the mean of the data sample
is subtracted from data), hence we will deal with neural networks without
bias terms. A classical feed-forward neural network without bias is usually
described by: a finite set of O nodes S = 1, 2, . . . , O divided in d inputs, c

output nodes and O− (d+ c) hidden nodes; a finite set of one way direction
connections C each one connecting a node belonging to the k-th layer to a
node belonging to the h-th layer, with h > k. A weight whk is associated
with each connection from the node k ∈ k to the node h ∈ h. Each node
o is characterized by an input function so, an input value io, an activation
function fo, and an output value zo [7]. Let us now define wh as the weights
vector of the connections which leave the nodes of the k-th layer and reach
the node h. Let us define z as the output vector of a generic layer of nodes.
The input ih is given by ih = sh(wh, z). Usually we have: ih =

∑

k whk · zk.

4

Each zh is given by

zh = fh

(

∑

k

whk · zk
)

(1)

To evaluate the output of a multilayer network, consecutive applications
of (1) are needed to activate all network nodes. Figure 1 depicts the schematic
structure of the feed-forward networks under discussion here.

Figure 1: Schematic representation of a feed-forward neural network.

To summarize: the output values of a network can be expressed as de-
terministic functions of the inputs. Assuming that the network has only
one hidden layer h, we can say that the whole network represents a func-
tion, linear or non-linear depending on the linearity or non-linearity of the
fh, between the d -dimensional input space and the c-dimensional output
space, with parameters w given by the network weights. The relation hold-
ing between inputs and outputs of the network can be approximated in the
multidimensional space spanned by the hidden nodes by either an hyper-
plane if linear functions are used as activation functions of the hidden nodes
or by a smoother approximation when non-linear functions are set as activa-
tion functions of the hidden nodes. Usually, the activation functions of the
output nodes are set to be the identity function that does not modify the
input values of the output nodes because the outputs of the network are not
supposed to be bounded in order to assume values as close as possible to the
training target values, assuming that overfitting is avoided.

So far we have shown how neural networks can process inputs and how
they can be mapped onto a parametric function F(x;w) : Rd → R

c.

5

We can now assume that there is a function f : x ∈ R
d → f(x) ∈ R

c to be
modelled and we know a finite set of N couples (xn, tn), where n ∈ [1, . . . , N],
t
n is the value of the function f(x) evaluated in x

n plus an error ǫ(xn). We
want to approximate f using the parametric function F : w ∈ R

p,x ∈ R
d →

F(x;w) ∈ R
c. The function F can be found through the minimization of

a certain error function E(w). For instance a classical error function is the
sum of squares function (2) to minimize by means of an iterative procedure
that requires the data to be presented to the network several times through
consecutive realizations called epochs:

E =
1

2

N
∑

n=1

d
∑

k=1

(ynk − xn
k)

2 (2)

The training of the network is the process to determine, starting from a
finite set of couples (xn, tn), the weights w̃ that can better shape F to be as
close as possible to f. After each epoch of the training phase the weights in
the network are adjusted. At this point a definition of close is in order. Let
us suppose a noisy dataset consisting of xn and t

n = f(xn) + ǫ(xn) where
ǫ is the noise term. If we train the network until the input can be exactly
reproduced then F is not only reproducing f, but the noise too. It is easy
to understand that the more specialized the network the less it will be able
to predict the right t

n′

= f(xn′

) + ǫ(xn′

) when a x
n′

never seen before is
presented to the network. In this case we say that the network is not able to
generalize. To overcome this issue the validation phase is embedded in the
learning. The validation phase is paramount because it allows the network to
both model the function from which the data could have been drawn and to
avoid modeling fluctuations produced by noise in the training set. In order
to accomplish these two modeling tasks at the same time, the whole learning
procedure is divided into two well distinguished steps:

1. the whole data set is divided in two groups. One group is used for the
training step during which the weights are updated

2. the second group is used for the validation step. These data have not
been used in the previous step. We used a maximum amount of training

epochs and a smaller number of epochs called validation epochs. The
validation phase is embedded in the learning phase: this combination of
training and validation avoids erroneous use of the training procedure,
thus avoiding overfitting.

In the following section, we present the algorithm used for the learning
phase:

6

1. training step: adjust the weights after a number of training epochs

2. validation step: evaluate the generalization error and store it in a vector
VEvect

3. repeat steps 1. and 2. continuing to train the network until one of the
following three stop conditions is verified:

• the relative error evaluated as

‖current VEvect entry −mean(previous VEvect entries)‖
current VEvect entry

is less than a validation threshold set to 10−3. The value of previ-

ous VEvect is set to 5;

•
(current VEvect entry −mean (previous VEvect entries))

current VEvect entry
≥ 0

• the maximum number of training epochs is reached.

The previous VEvect and validation threshold values have been chosen taking
into account a cautious gradient descent implying small updating steps as
the main concern here is the risk of overfitting.

3 Granger Causality with neural networks

The aim of this work is to find directed dynamical influences among vari-
ables, modeled as time series, using neural networks as a powerful tool to
compute the prediction errors needed to evaluate causality in the Granger
sense. According to the original definition, Granger causality (GC) deals with
two linear models of the present state of a target variable. The first model
does not include information about the past states of a driver variable, while
the second model contains such information. If the second model’s error is
less than that of the first model in predicting the present state of the target,
then we can safely say that the driver is causing the target in the sense of
Granger [11]. Here we introduce a new Granger causality measure called
neural networks Granger causality (NNGC) defined as

NNGC = errreduced − errfull (3)

where errreduced is the prediction error obtained by the network that does
not take into account the driver’s past states, while errfull is the prediction

7

error evaluated by the network that takes into account the driver’s past
states.

Therefore, instead of fitting predefined models, (linear ones in the origi-
nal proposal by Granger) we train a neural network to estimate the target
using only the past states that can better explain the target series, by using
the non-uniform embedding technique. Such strategy leads to growing neu-
ral networks, with an increasing number of input neurons, each input neuron
representing a past state chosen from the amount of past states available, con-
sidering all the variables in the system. The architecture of the network and
choice of the most suitable past states, performed through the non-uniform
embedding approach, are described in detail in the next sections. Relying
on neural networks, this method realizes the Granger paradigm in a non-
parametric fashion, like in [12, 13] where radial basis function networks where
employed. This article improves such previous work by (i) using non-uniform
embedding and (ii) employing training and validation phases concurrently to
ensure a more robust detection of dynamical interactions.

4 Non-uniform embedding (NUE)

We first introduce in this section the NUE approach which is the basis of the
algorithm used to build a neural network able to find the correct mapping
between the input and the output spaces in an optimal way. The uniform
embedding (UE) approach relies on a predefined set of candidates making a
strong assumption about which past states are better able to explain the fu-
ture of the target series. This approach, lacking a specific criterion according
to which the candidates are chosen, is likely to cause problems such as over-
fitting and detection of false influences [14, 15]. NUE framework, instead, is
an iterative procedure aimed at detecting only the time series’ past states
that can effectively help to predict the target series. To evaluate whether
a new candidate should be chosen, an hypothesis and, eventually, a signifi-
cance test, should be satisfied. In this way of exploring causality, once this
hypothesis and significance test (when needed) are no longer satisfied, the
procedure is unable to find additional candidates to help predict the target.

Let us consider a composite system described by a set of M interacting
dynamical (sub) systems and suppose that, within the composite system,
we are interested in evaluating the information flow from the source system
X to the destination system Y , collecting the remaining systems in the vec-
tor Z =

{

Zk
}

k=1,...,M−2
. We develop our framework under the assumption of

stationarity, which allows to perform estimations replacing ensemble averages
with time averages (for non-stationary formulations see, e.g., [16] and refer-

8

ences therein). Accordingly, we denote X, Y and Z as the stationary stochas-
tic processes describing the state visited by the systems X , Y and Z over
time, and Xn, Yn and Zn as the stochastic variables obtained sampling the
processes at the present time n. Moreover, we denote X−

n = [Xn−1Xn−2 . . .],
Y −

n = [Yn−1Yn−2 . . .], and Z
−

n = [Zn−1Zn−2 . . .] as the infinite-dimensional
vector variables representing the whole past of the processes X, Y and Z. In
some cases, taking the instantaneous influences of the candidate drivers into
account as well may also be desirable. In such cases, the vectors X−

n and Z
−

n

defined above should also contain the present terms Xn and Zn.
We will discuss here the crucial issue of how to approximate the infinite-

dimensional variables representing the past of the processes. This problem
can be seen in terms of performing suitable conditioned embedding of the
considered set of time series [17].

The main idea is to reconstruct the past of the whole system represented
by the processes X, Y,Z with reference to the present of the destination
process Y , in order to obtain a vector V = [V Y

n , V X
n , V Z

n] containing the most
significant past variables to explain the present of the destination.

Non-uniform embedding constitutes the methodological advance with re-
spect to the state of the art that we propose as a convenient alternative to
UE. This approach is based on the progressive selection, from a set of candi-
date variables including the past of X, Y , and Z considered up to a maximum
lag (candidate set), of the lagged variables which are more informative for
the target variable Yn. At each step, selection is performed maximizing the
amount of information that can be explained about Y by observing the vari-
ables considered with their specific lag up to the current step. This results in
a criterion for maximum relevance and minimum redundancy for candidate
selection, so that the resulting embedding vector V = [V X

n V Y
n V Z

n] includes
only the components of X−

n , Y −

n and Z
−

n , which contribute most to the de-
scription of Yn. Starting from the full candidate set, the procedure which
prunes the less informative terms is described below:

1. Get the matrix with all the candidate terms
MC = [Xn−1 . . .Xn−lXYn−1 . . . Yn−lY Zn−1 . . .Zn−lZ], with lX , lY , lZ rep-
resenting the maximum lag considered for the past variables of the
observed processes; these matrices will contain also the terms Xn and
Zn in case one wants to take into account instantaneous effects. The
values of lX , lY , lZ can be set by the experimenter according to a known
feature of the data, or set to a reasonably large value for exploratory
purposes. If values of lX , lY and lZ are set too low, an incorrect esti-
mation of Granger causality may result, but higher values should not
issues with non-uniform embedding.

9

2. Run the procedure to select the most informative past variables and
the optimal embedding vector:

(a) Initialize an empty embedding vector V
(0)
n

(b) Perform a while loop on k, where k can assume values from 1 to
the number of initial available candidates, numC, in the MC ma-
trix. At the k−th iteration, after having chosen k − 1 candidates
collected in the vector V

(k−1)
n :

for 1 ≤ i ≤ number of current candidate terms

• add the i−th term of MC , W
(i)
n , to a copy of V

(k−1)
n to form

the temporary storage variable V ′

n = [W
(i)
n V

(k−1)
n]

• compute the information exchanged between Yn and V ′

n

(c) Among the tested W
(i)
n , select the term Ŵn which maximizes the

information exchanged

(d) if Ŵn satisfies a termination criterion, delete it from MC and set
k = k + 1.

(e) else end the procedure setting k = numC + 1 and returning V =

V
(k−1)
n

3. Use Yn and the full embedding vector V = [V X
n V Y

n V Z
n] and to evalu-

ate errfull. errreduced is obtained excluding from errfull the candi-
dates belonging to the variables considered as drivers. Both errors are
evaluated as the root mean squared error (RMSE) between the neu-
ral network output and Yn. If the error resulting from the network
that contains the inputs representing the driver’s past states (errfull)
is lower than the error resulting from the network that does not take
into account the driver’s past states (errreduced), then the driver as-
sessed is determined to help predict the target more than the network
that excludes the driver.

The complexity of the algorithm concerns mainly step 2, in particular
step 2(b), involving a for loop nested inside a while loop: in the worst case
the body of the for loop is executed numC2 times resulting in a complexity
O(numC2).

10

Summarizing, the non-uniform embedding is a feature selection technique
selecting, among the available variables describing the past of the observed
processes, the most significant - in the sense of predictive information - for
the target variable. Moreover, given the fact that the variables are included
into the embedding vector only if associated with a significant contribution
to the description of the target, the significance of the NNGC estimated with
the NUE approach results simply from the selection of at least one lagged
component of the source process. In other words, if at least one component
from X is selected by NUE, the estimated NNGC is strictly positive and can
be assumed to be significant. If not, the estimated NNGC is exactly zero
and is assumed to be non-significant. This latter also occurs when the first
candidate (k = 1) does not reach the desired level of significance, meaning
that none of the candidates provides significant information about the target
variable. This may also be encountered, for instance, when the target process
consists of white noise: the code will return an empty embedding vector and
assign a zero value to the NNGC.

5 Non-uniform embedding using neural networks

(NeuNet NUE)

Here we want to investigate the opportunity to use neural networks to create
the two models needed to evaluate NNGC and, at the same time, to better
choose the right candidates to be considered as terms of the models. In this
sense our method is a model-free approach because we do not assume any
model a priori that can explain the data, but we allow the network to explore
the parameters space in order to find the model we need. The procedure will
be able to model a function from the input space, spanned by the time series’
past states, and the output space, spanned by the present state of the target
series: Yn = f(V). It will be possible to estimate a function F as close as
possible to f . This will ensure a precise prediction of Y from Y itself, X and
Z. It is easy to see that from F it is possible to assess whether for another
data set Y ′, X ′,Z′, the same relation F holds: in this case the network will
be able to generalize.

In this study a three-layers feed-forward neural network is used [7], trained
by means of the resilient back propagation technique that is one of the fastest
learning algorithms [18]. Briefly, the resilient back propagation is an opti-
mized algorithm to update the weights of a neural network based on the
gradient descent technique. Let ∆ij be the weight update value that only
determines the size of the weight update and E the error function. Then the

11

resilient back propagation rule is the following:

∆ij =

η+ ×∆
(t−1)
ij if ∂E

∂wij

(t−1) × ∂E
∂wij

(t−1)
> 0

η− ×∆
(t−1)
ij if ∂E

∂wij

(t−1) × ∂E
∂wij

(t−1)
< 0

∆
(t−1)
ij else

(4)

where 0 < η− < 1 < η+. To summarize: every time the partial derivative of
the current weight wij changes in sign, i.e. the error function slope changes
indicating that a local minimum has been avoided, the updated value ∆ij is
decreased by the factor η− allowing a reversal, or “coming back”, in the pa-
rameters space towards the local minimum. If the derivative does not change
sign, then the updated value ∆ij is increased by the factor η+ accelerating
towards a local minimum.

Once the updated value is evaluated, the weight update is quite straight-
forward as shown by the following equations:

∆(t)
wij

=

−∆
(t)
ij if ∂E

∂wij

(t)
> 0

+∆
(t)
ij if ∂E

∂wij

(t)
< 0

0 else

(5)

so that w
(t+1)
ij = w

(t)
ij +∆

(t)
wij . However, we should also take into account the

case when the partial derivative changes sign: the previous weight update is
then reverted as follows:

∆
(t)
wij = −∆

(t−1)
wij if ∂E

∂wij

(t−1) × ∂E
∂wij

(t)
< 0. (6)

Following the NUE scheme, each input corresponds to a candidate, while
the minimization criterion is the prediction error between the network output
and Yn. We should keep in mind that the core of the entire procedure lies
in the choice of the candidates that can actually help to predict the target
series. Once the relative prediction error, defined as (prediction errork−1 −
prediction errork)/(prediction error1−prediction errork) where k can assume
values from 1 to the number of initial available candidates, is greater than
or equal to a threshold, the procedure stops and no further candidates are
chosen. To summarize: the hypothesis of Granger causality evaluates how
much information is introduced by adding a new input with respect to the
information carried only by the inputs previously considered. Moreover, it
is worth stressing that in this case we do not rely on the comparison with
a null distribution in order to choose whether a given candidate must be
chosen or not. On the other hand, when a driver-response relationship among
variables holds, the algorithm will find, input by input, the candidate that

12

will give the lowest prediction error, this being a condition that can hold
only if we ensure the network is not overfitted. The risk of overfitting is the
reason why a validation phase, described in detail in the following sections,
was implemented and the idea of a fixed amount of training iterations was
discarded. As soon as the error on the validation set, called generalization

error increases, the training of the network stops ensuring the capability of
the network to generalize, implying that it has not been overfitted.

To better explain the steps implemented to select the past states as a
pseudo-code we can say that a for loop is nested within a while loop. The
while loop condition, that takes into account the decreasing of the prediction
error during the training phase, determines whether or not an additional
input should be added to the network. It is worth stressing that during the
whole procedure of the candidates’ selection, the internal architecture of the
network is kept fixed: the number of hidden nodes is set up as a fraction
of the maximum number of candidates available, as shown in subsection
6.1, and it does not change. The for loop, instead, tests each available
candidate given the previous inputs already chosen. During this test, at each
iteration of the for loop, a network is trained taking into account the current
candidate and the validation phase takes place according to the procedure
explained in Subsection 2.1 point 3. Therefore, the validation error is taken
into account in order to allow the network itself to reach its best performance,
in terms of the generalization task, according to the current candidate. At
the end of the for loop the candidate which gives the minimum prediction
error is selected. If the prediction error satisfies the while loop condition, such
that the relative prediction error is smaller than a threshold, the candidate
is chosen and deleted from the set of the available candidates so that the
procedure can continue. Otherwise, the procedure will stop. The pseudo-
code of the algorithm is shown in the following:
1: Initialize network parameters;
2: Initialize the embedded matrix EM = ∅
3: Initialize the prediction error PE vector = ∅
4: Initialize the current prediction error CPE vector = ∅
5: Initialize final candidate matrix FCM = ∅
6: Initialize CS = [Xn−1 . . .Xn−lX , Yn−1 . . . Yn−lY ,Zn−1 . . .Zn−lZ]. The terms Xn and

Zn should be considered too in case the instantaneous effects should be taken into
account.

7: k = 1
8: while CS 6= ∅ do

9: if CS is full then

10: Initialize the network NN with one input, the number of chosen hidden nodes,
one output

11: else

12: Add to NNk−1 another input;

13

13: Initialize only the weights between the new input and the hidden nodes keeping
all the rest fixed;

14: end if

15: for i ∈ [1, . . . , length(CS)] do

16: while epoch ≤ maxTrainEpochs do

% Learning phase:
17: train the network, after 30 training epochs evaluate the prediction error;
18: validate the network evaluating the generalized error;
19: if epochs/valEpochs == 0 and epochs ≤ maxTrainEpochs then

20: evaluate the relative validation error
21: if ‖relative validation error‖ ≤ validationThreshold or relative error ≥ 0

or epochs == maxTrainEpochs then

22: Store the prediction error in CPE(i)
23: epoch = maxTrainEpochs + 1
24: end if

25: Store the prediction error in CPE(i);
26: epoch = epoch + 1
27: end if

28: end while

29: end for

30: NNk = neural network having in input the candidates that give the minimum
prediction error stored in CPE

31: PEk = min(CPE)
32: if relative prediction error ≤ trainThreshold then

33: NN = NNk−1

34: PE = PEk−1

35: CS = ∅
36: else

37: NN = NNk

38: add to FCM the candidate of CS that returns the minimum prediction error
39: delete from CS the candidate that returns the minimum prediction error
40: k = k + 1
41: end if

42: end while

43: return NN; FCM; PE

where the strings after the % symbol should be considered as non executable
code.

In the following we will explain in more detail the algorithm showed above:

1. In the initialization phase it is worth noting that lX , lY , lZ represent
the maximum lag considered for the past variables of the observed
processes. In the following experiments we will set lX , lY , lZ to take
into account more past states than needed.

2. at the k -th step of the while loop at line 8, where k runs on the number
of inputs chosen, the network tests all the candidates available by means
of the for loop at line 15: there are k inputs. The first k -1 inputs are

14

the ones chosen so far and on the k -th input one candidate per time is
considered. The initial conditions are the same for each candidate: the
weights have been fixed so the ones departing from the k -1 inputs are
the same found as the result of the training at the (k -1)-th step and the
weights departing from the k -th input are the same at the beginning of
each training session when the RMSE between the network output and
Yn is evaluated. Lines 19-27 take care of whether to stop the training
phase for the current candidate according to the generalization error.

3. lines 32-41 check whether it would be worth adding candidates, or it
is better to stop the whole procedure because no further meaningful
information can be added to better predict the target. The generaliza-
tion error is not relevant at this stage, since it is only used to stop the
training phase.

The network is finally trained to reproduce the best correspondence between
the space spanned by the terms of FCM and the space spanned by Yn. The
network is then the model that can be used to explain Yn, including the
driver’s candidates. This model will give errfull. To evaluate errreduced the
candidates belonging to the source system should be removed from the net-
work, so the corresponding inputs and weights should not be considered. This
configuration leaves the weights between the hidden nodes and the output
unchanged, so the network now won’t be able to approximate Yn as well as
during the evaluation of the previous term if the causal hypothesis holds be-
tween the driver and the target. errreduced can be computed projecting the
information carried by the inputs representing the candidates belonging to
the target and the conditioning variables on the output space and evaluating
the RMSE between the network output and Yn. NNGC is now immediately
evaluated by the difference between the two terms. The significance of the
causality measure estimated with the neural network method embedded into
the NUE approach results simply from the selection of, at least, one lagged
component of the driver. In other words, if at least one component from
the driver is selected, the Granger causality is strictly positive and can be
assumed as significant. If this is not the case, the estimated causality that
results is exactly zero and is assumed to be non-significant.

NUE is used here as a feature selection algorithm. Other feature selection
algorithms can be used to select the most informative candidates; in the
present work our choice is in line with other approaches to detect dynamical
interactions present in literature, thus offering a coherent framework for all
the estimators.

15

6 Applications to simulated data

Before applying the proposed method, the correct initialization parameters
were set (see Subsection 6.1). First of all, we wanted to prove that neu-
ral networks implemented with the non-uniform embedding framework per-
form better than neural networks implemented with the uniform embedding
framework, Subsection 6.2. Then, several datasets were simulated to test Ne-
uNetNUE in different situations in order to explore its capability to detect
the correct directed dynamical links, see Subsections 6.3 - 6.4. During those
three experiments we compared the neural networks with a model-based ap-
proach and two model-free approaches, as described in Subsection 6.3, to get
a better idea of the performances obtained by our method. Furthermore, we
wanted to check whether NeuNetNUE was both robust with respect to redun-
dant information (see Subsection 6.5) and able to outperform an approach
based on multivariate Granger causality analysis [19]. Finally we wanted to
evaluate the capability of the networks to predict and classify time series (see
Subsection 6.6).

6.1 Choice of the parameters

One of the crucial aspects of neural networks approaches concerns the choice
of the optimal parameters. In this paper we are interested not only in the
parameters involving the architecture and the training of the network, but
also in the parameters that are responsible for the number of past states that
can be chosen, allowing the approach to be more or less conservative. The
parameters can be listed as follows:

• the threshold according to which a certain number of past states are
chosen (th). This parameter is taken into account to stop the training
of the network and it consequently regulates the amount of past states
chosen by the network: for a lower th more past states are selected, see
Section 5 pointed list 3

• the validation threshold, useful to not overfit the network (valTh). This
parameter plays an important role in the validation phase, allowing the
network not to be overfitted, see Section 5 pointed list 2

• the number of hidden nodes (hidNodes), reported as percentage of the
total amount of the available past states

• the learning rates for the resilient back propagation, η+, η−.

16

The parameters mentioned above must be set so that the neural network
approach is able to detect the expected information flow. The investigation
of the best parameters values was performed on linear and non-linear models
with memory up to 3 points in the past.

We considered 20 simulations of the systems for each combination of the
parameters values shown in table 1. We set lX = lY = lZ = 5. Values
of η− and η+, the parameters of the resilient back propagation, ranged as
η− ∈ [0.4, . . . , 0.9] with step of 0.1 and η+ ∈ [1.1, . . . , 1.4] with step of 0.1.
The threshold’s values for the prediction error range between 2−8 and 0.3.
According to this assumption, it is then possible to consider whether the
current candidate is significant or not. Small values of the threshold, such
as 2−8, represent a weakly conservative network. On the other hand, high
values of the threshold, such as 0.3, represent a strongly conservative net-
work. We first investigated how the network performed for higher values of
the threshold and we found that the networks were too conservative and,
consequently, NueNet NUE only found one candidate belonging to the tar-
get series only. The same reasoning holds for the validation threshold that
gives the range of values within which the validation error can fall. The as-
sumption on how wide the range is, determines whether the network can be
considered to have undergone enough training. Finally the number of hid-
den nodes ranges between 0.1 and 2.5, with step of 0.2, times the number of
available past states. In this way, we allow the network to have a number of
hidden nodes so as to allow it to reach the best performance with increasing
number of inputs. It turned out that number of hidden nodes = 1.3× number

of available candidates was the best compromise.
For each combination of the parameters we evaluated how many times the

method was able to detect the right information flows, estimating the num-
ber of true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN). We then evaluated sensitivity = TP /(TP+FN), specificity
= TN / (TN+FP) and F1score = 2TP/(2TP + FP + FN) and we checked
how the performances changed as the parameters varied. We found that neu-
ral networks obtained high performances on both systems corresponding to
different parameters values: parameters values obtained on the linear system
allowed NeuNet NUE to be less conservative with regard to neural networks
used with parameters values found on the non-linear system. We finally chose
the parameters in correspondence to which the network would be considered
less conservative: th = 8−3; valTh = 0.6; hidNodes = 0.3. Figure 2 shows the
performances of the network for different values of th, keeping all the other
parameters fixed. For a better visualization, only five points out of the nine
showed in the table were plotted. The other four points have been omitted,
being too close to the others in the figure: the resulting curve is virtually

17

unchanged. We can notice that for the minimum value of th, 2−8, the net-
work takes into account more past states than needed retrieving more FP and
less TP than for higher values of th. Furthermore, the specificity is lower,
almost zero, than the sensitivity. For th = 8−3 the network’s performances
give sensitivity = specificity = 1, while for the maximum value of th, 0.3,
the network is not allowed to choose a lot of past states and, consequently,
there are less TP and more TN than for lower values of th, resulting in the
sensitivity lower than the specificity.

Name Parameter Parameter values

th 2−8 2−6 2−4 2−3 5−3 8−3 1−2 0.15 0.30
valTh 0.2 0.4 0.6 0.8 1

hidNodes 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5
η− 0.4 0.5 0.6 0.7 0.8 0.9
η+ 1.1 1.2 1.3 1.4

Table 1: Parameters values to initialize the network.

Figure 2: Sensitivity and specificity at varying of the threshold values.

18

6.2 Reasoning behind our discarding of the uniform em-

bedding approach

Before explaining the experiments that we performed to test the proposed
approach, we would like to underline that the non-uniform embedding frame-
work was chosen because of its theoretical advantages with respect to the uni-
form embedding. Furthermore, we wanted to check whether those advantages
held in the case of the GC neural networks estimator too. Neural networks
used with the uniform embedding approach (NeuNet UE) only need one net-
work to be trained when errfull is evaluated. Each input of the network
represents a past state, therefore the number of inputs equals the number of
available past states. The other network parameters have the same values
as in the case of NeuNet NUE. The validation phase is still required. Once
errreduced is evaluated by only removing the inputs corresponding to the
past states that belong to the driver whose influence to a specific target is
tested, we can obtain a value of NNGC whose significance still has to be
evaluated. This step is addressed using surrogates technique as implemented
in the case of other estimators also used into the uniform embedding frame-
work [10]. This means that for each surrogate another network with the
same architecture has to be trained resulting in a dramatic increase of the
computational complexity.

We compared NeuNet NUE and NeuNet UE performing a multivariate
analysis on 100 realizations of a system composed of five coupled Hénon maps
with a length of 2500 time points, built according to the following equations:

X1,n = aV (1)− (0.5c(X4,t−1 +X5,t−1)+

(1− c)X1,t−1)
2 + aV (2)X1,t−2 + w1,n

X2,t = aV (1)− (0.5c(X3,t−1 +X5,t−1)+

(1− c)X1,t−1)
2 + aV (2)X1,t−2 + w2,n

X3,t = aV (1)−X2
3,t−1 + aV (2)X3,t−2 + w3,n

X4,n = aV (1)−X2
4,t−1 + aV (2)X4,t−2 − 0.02cX3,t−2 + w4,n

X5,t = aV (1)− (0.5c(X1,t−1 +X2,t−1)+

(1− c)X5,t−1)
2 + aV (2)X5,t−2 + w5,n

(7)

where aV is the characteristic parameter tuned for chaotic behavior, the
coupling strength c = 0.4 and w is drawn from Gaussian noise with zero
mean and unit variance. In figure 3 the modeled links are shown.

We performed the analysis setting lX = lY = lZ = 5 and using the rest of
the parameters values found in Subsection 6.1. Looking at sensitivity, speci-
ficity and F1score, table 2, we can clearly notice that NeuNet NUE performs

19

Figure 3: Simulated system. Interactions between the variables of the simu-
lated Hénon maps system generated according to equations (7).

better than NeuNet UE. Considering this result, the heavy computational
complexity and the lack of information about the only past states that can
give information to the target concerning the use of NeuNet UE, led us to
only take into account NeuNet NUE for further investigations.

Sens Spec F1score
NeuNet NUE 0.86 0.80 0.80
NeuNet UE 0.69 0.93 0.77

Table 2: Sensitivity, specificity and F1score values obtained on the system
(7) by NeuNet NUE and NeuNet UE.

6.3 Simulated data: Hénon maps

In the first experiment we generated 6 Hénon maps rearranging the system
(7) as shown in figure 4 setting the coupling strength c = 0.2. The equations

20

are shown in the following

X1,n = aV (1)−X2
1,n−1 + aV (2)X1,n−2 + w1,n

Xm,n = aV (1)− (0.5cm(Xm−1,n−1 +Xm+1,n−1)+

+ (1− cm)Xm,n−1)
2 + aV (2)Xm,n−2 + wm,n

X6,n = aV (1)−X2
6,n−1 + aV (2)X6,n−2 + w6,n

(8)

where aV is the vector of parameters for chaos, w is drawn from Gaussian
noise with zero mean and unit variance and m ∈ [2, 5] is the identifier of the
series.

Figure 4: Simulated system. Interactions between the variables of the simu-
lated Hénon maps system generated according to equations (8).

We generated 100 realizations of the Hénon maps, performed a multivari-
ate analysis keeping the parameters found in section 6.1 fixed and setting
lX = lY = lZ = 5. We then evaluated the mean values of the NNGC for all
the pairwise combinations driver-target as shown in figure 5. We compared
our method’s performance with the binning, linear and nearest neighbor es-
timators implemented in the non-uniform embedding framework (henceforth
BIN NUE, LIN NUE and NN NUE). These three estimators are already
implemented in MuTE [10]. The comparison with NeuNet NUE has been

21

performed in terms of sensitivity, specificity and F1score, as shown in table
3. We can notice that NeuNet NUE is the second best method after NN
NUE.

Figure 5: GC matrix representation for the NueNet NUE estimator applied
to the system (8). The color indicates the magnitude of the GC averaged
over 100 realizations of the simulation. The targets are plotted on the x-axis
while on the drivers are plotted on the y-axis.

Sens Spec F1score
BIN NUE 1 0.86 0.84
LIN NUE 0.99 0.74 0.73

NeuNet NUE 1 0.98 0.98
NN NUE 1 1 1

Table 3: Sensitivity, specificity and F1score values obtained on the system
(8) by the four estimators.

Furthermore, we wanted to investigate whether NeuNet NUE was robust
enough with respect to the coupling strength involved in (8) using only 5
time series. Again we performed a comparison with the estimators imple-
mented in MuTE. In figures 6 - 9 we can see the performances of the four
methods, noticing that NeuNet NUE is the only approach able to detect the
expected information flows even when the coupling is 0.8. NN NUE detects
two false positive information flows for the directions 4 → 2, 2 → 4 from
coupling strength value equal to 0.6 on. BIN NUE and LIN NUE obtain the
worst performances detecting false positive information flows even for cou-
pling strength equal to 0.3, see figure 6 direction 2 → 4. Note the differing

22

number of outliers in figure 6 versus figure 9, even if the detection criterion is
fixed: on each box, the central mark is the median, the edges of the box are
the 25th and 75th percentiles, the whiskers extend to the most extreme data
points not considered outliers. The four methods show different fluctuations
of the exchanged information values as remarked by the different number of
outliers.

In figures 10, 11 we compare the performances of the four methods show-
ing their ROC curves and F1score, respectively. NN NUE and NeuNet NUE
ROC curves report the highest sensitivity and specificity as soon as the cou-
pling is greater than zero. For high couplings the ROC curves denote a higher
specificity of NeuNet NUE. BIN NUE starts with low sensitivity and speci-
ficity, and its specificity generally increases as the coupling increases. F1score
curves belonging to NeuNet NUE and NN NUE are very close. For couplings
greater than 0.5 NeuNet NUE F1score is higher than NN NUE F1score, but
both lower than BIN NUE F1score denoting once again how NeuNet NUE
can be much closer to model-free than to model-based approaches. Only at
coupling = 0.6 NeuNet NUE has the highest F1score.

Figure 6: LIN NUE performances on Hénon maps at varying of the coupling
strength. GC values are plotted on the y-axis, while the coupling strength
values are plotted on the x-axis.

23

Figure 7: NeuNet NUE performances on Hénon maps at varying of the cou-
pling strength. NNGC values are plotted on the y-axis, while the coupling
strength values are plotted on the x-axis.

Referring to the equations (7), we obtained the results shown in table 4 in
terms of sensitivity, specificity and F1score. This time NeuNet NUE detects
causal influences better than BIN NUE, even if it is still not able to perform
better than NN NUE.

Sens Spec F1score
BIN NUE 0.85 0.68 0.73
LIN NUE 0.88 0.45 0.65

NeuNet NUE 0.86 0.80 0.80
NN NUE 0.87 0.91 87

Table 4: Sensitivity, specificity and F1score values obtained on the system
(7) by the four estimators

24

Figure 8: BIN NUE performances on Hénon maps at varying of the coupling
strength. TE values are plotted on the y-axis, while the coupling strength
values are plotted on the x-axis.

6.4 Simulated data: Lorenz system

In the third experiment we studied a system composed of five identical Lorenz
subsystems defined by the following equations:

ẋ1 = −10x1 + 10x1, ẋi = −10xi + 10xi + C(xi−1 − xi),

ẏ1 = −x1z1 + 28x1 − y1, ẏi = −xizi + 28xi − yi,

ż1 = x1y1 − 8/3z1, żi = xiyi − 8/3zi,

(9)

where i ∈ [2, 5]. The differential equations are solved by means of the Runge-
Kutta method implemented in MATLAB and the time series are generated
at a sampling rate of 0.01 time units. The subsystems, ranging from X1

to X5, influence each other according the following rule: i -th time series is
influenced only by the (i − 1)-th time series except for X1 that only gives
influence to X2. The coupling strength C = 5 is the same for the whole set
on influences.

The nature of the Lorenz system results in a more challenging system
than the Hénon systems. The parameters set up have been kept the same as

25

Figure 9: NN NUE performances on Hénon maps at varying of the coupling
strength. TE values are plotted on the y-axis, while the coupling strength
values are plotted on the x-axis.

in the other experiments. Even in this scenario NeuNet NUE can reach good
performances with both high sensitivity and specificity, as shown in table 5.
Our method, on this system too, reaches performances in the middle between
the model-free approaches and the model-based approach.

Sens Spec F1score
BIN NUE 0.94 0.91 0.82
LIN NUE 0.51 0.72 0.39

NeuNet NUE 0.70 0.95 0.74
NN NUE 1 0.86 0.77

Table 5: Sensitivity, specificity and F1score values obtained on the Lorenz
system by the four estimators.

Another experiment on a chaotic Lorenz system was performed in order to
check how robust NeuNEt NUE could be with respect to influences occurring
at longer delays. We used 150 bidirectionally coupled Lorenz systems as in
[20]. The delay at which series 1 influences series 2 was set at 45 points back,
while the delay at which series 2 influences series 1 was set at 75 points back.

26

Figure 10: ROC curves obtained on Hénon maps at varying of the coupling
strength.

The coupling constant was set as 0.1 for both series. We chose 90 candidates
for each series and checked how many times each candidate was chosen. As
we can see in figures 12-15 NN NUE can detect the right delays even if there
are many other candidates chosen. NeuNet NUE was successful in retrieving
the correct influences at the corresponding delays, more often than NN NUE
as it can be seen from the height of the peaks. The other two estimators
clearly failed in detecting the right influences and delays.

6.5 Redundant data

An issue that complicates the correct detection of GC is the presence of
redundant variables. In this case the conditioning approach is misled and
the analysis results in false negatives (see [19] for a complete explanation of
this phenomenon). We applied neural networks Granger causality analysis
to redundant data to check whether the approach was able to detect the
right information flows with an increasing number of redundant variables.

27

Figure 11: F1score obtained on Hénon maps at varying of the coupling
strength.

Figure 12: BIN NUE performances on bidirectionally coupled Lorents sys-
tem.

28

Figure 13: LIN NUE performances on bidirectionally coupled Lorents system.

Figure 14: NeuNet NUE performances on bidirectionally coupled Lorents
system.

We used data generated by the following equations:

tn = hn−2 + cεn

di,n = hn−1 + cϕn

(10)

29

Figure 15: NN NUE performances on bidirectionally coupled Lorents system.

where the process h and the noises ε, ϕ are drawn from a Gaussian distribu-
tion with zero mean and unit variance. The coefficient c modulates the noise.
The system represent a chain of influences, for which redundancy arises when
i ≥ 3, (the first two variables share information on the future of the third
one), and so on.

We compared NeuNet NUE with the fully conditioned non-linear ker-
nel Granger causality as in [19]. The experiments were performed with
lX = lY = lZ = 5 and keeping the parameters found in Subsection 6.1
fixed. We generated 20 trials of the system (10) varying the number of re-
dundant variables from 1 up to 20, with 2500 time points. The analyses were
performed taking into account the variable t as targets and each variable di
as driver, conditioning on the remaining d(i−1) variables, with i ∈ [1, . . . , 20].
We then evaluated GC for both methods averaging over the number of trials,
varying the number of redundant variables. According to the results shown
in figure 16, we can notice how GC detected by the neural networks never
drops to zero, as it happens for kernel GC. Table 6 reports the number of
false negatives given by NeuNet NUE. It is worth noting that the amount of
false negatives is zero up to 10 redundant variables. Conversely, due to the
different construction of the method, the values of kernel Granger causality
are always significant, albeit very low, at least for this system size.

30

RV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
FN 0 0 0 0 0 0 0 0 0 0 3 4 14 13 17 29 41 49 57 79

Table 6: Number of false negatives, FN, returned by NeuNet NUE for 20
trials at varying of the number of redundant variables, RV.

Figure 16: NeuNet NUE and multivariate GC performances on the redundant
system.

6.6 Classification task

Our final goal in this paper was to test whether NeuNet NUE could correctly
classify dynamics. We trained NeuNet NUE on the system (8). We have
randomly chosen one of the networks trained to detect the causal influences
towards a certain target. Then we fed the network with 100 realizations of
the system (8), never used in the learning phase, and with 100 realizations
of an autoregressive system, represented by the following equations:

X1,n = 0.95
√
2X1,n−1 − 0.9025X1,n−2 + z1,n

X2,n = 0.5X2
1,n−2 + z2,n

X3,n = −0.4X1,n−3 + z3,n

X4,n = −0.5X2
1,n−2 + 0.25

√
2X4,n−1 + 0.25

√
2X5,n−1 + z4,n

X5,n = −0.25
√
2X4,n−1 + 0.25

√
2X5,n−1 + z5,n

(11)

where z1,n, z2,n, z3,n, z4,n, z5,n are drawn from Gaussian noise with zero mean
and unit variance.

31

System 8 is considered, this time with only five variables to be consistent
with the size of the autoregressive model. We then evaluated the average
RMSE for both the systems. We repeated the procedure for 30 different
noise values, ranging from 0 to 0.7, and different couplings strength, ranging
in the interval [0,0.8] with step of 0.2. The results are shown in figure 17.
We plotted the average RMSE with respect to the different noise level for
each coupling strength value. We can notice that the errors obtained when
the two systems are given to NeuNet NUE as test sets lie in linear separable
portions of space. This represents an encouraging result as it may be useful
to classify systems, given that our approach has been trained with a known
system.

Figure 17: RMSE versus the noise level. The red curves are obtained testing
NeuNet NUE on the same kind of data with which it was trained. The
blue curves are obtained testing NeuNet NUE on the system (11). Each
curve represents the network trained to detect the influence towards a specific
target with a different coupling strength.

7 Conclusions

In this paper we have implemented the Granger paradigm for detection of
dynamical influences in the frame of feed-forward neural networks. The nov-
elty of the present approach arises from the use of non-uniform embedding
for variable selection and generalization error for the assessment of Granger

32

causality. We have demonstrated the theoretical and experimental advan-
tages of implementing the neural network approach with non-uniform em-
bedding compared to the uniform one. Due to the universal character of
function approximation of neural networks, the proposed approach is inter-
mediate between the classical Granger linear implementation and the non-
parametric estimator corresponding to transfer entropy: by means of several
examples, we have shown that there are situations where our approach out-
performs both approaches. The proposed method differs from the kernel
Granger causality not only by providing a validation phase, but also by let-
ting the neural networks explore the parameters space and building the best
model to explain the information transfers among variables. Kernel Granger
causality, instead, is still a model-based approach, for which the type of ker-
nel and the degree of non-linearity have to be specified beforehand. We would
like to remark that so far neural networks have been used to detect GC only
when combined with other estimators. Furthermore the training phase was
stopped only when a certain number or training epochs was reached. This
choice seems quite approximate because of the lack of knowledge about the
exact amount of training epochs needed to both minimize the error function
and to avoid overfitting the neural networks. Therefore, the validation phase
is necessary in our opinion to ensure that the network fully explores the pa-
rameters space, converges to a minimum and avoids the risk of overfitting.
We conclude remarking that other wrappers can be taken into account and
many deep learning architectures are built from artificial neural networks,
therefore we expect that further developments of our approach will be the
implementations of Granger causality both using other feature selection al-
gorithms and in the frame of deep learning [21].

Acknowledgments

This work is supported by: the Belgian Science Policy (IUAP VII project
CEREBNET P7 11); the University of Ghent (Special Research Funds for
visiting researchers). The neural network toolbox has been developed by
Roberto Prevete and Giovanni Tessitore: rprevete@unina.it; tessitore@na.infn.it

The authors would like to thank Dr. Christopher Stewart for his valuable
feedback.

33

References

[1] Michael Wibral, Raul Vicente, and Joseph T Lizier. Directed Informa-

tion Measures in Neuroscience. Springer, 2014.

[2] Koichi Sameshima and Luiz Antonio Baccala. Methods in Brain Connec-

tivity Inference through Multivariate Time Series Analysis. CRC Press,
2014.

[3] C.W.J. Granger. Investigating causal relations by econometric models
and cross-spectral methods. Econometrica, 3:424–438, 1969.

[4] Steven L Bressler and Anil K Seth. Wiener–granger causality: a well
established methodology. Neuroimage, 58(2):323–329, 2011.

[5] Thomas Schreiber. Measuring information transfer. Phys Rev Lett,
85(2):461, 2000.

[6] David E. Rumelhart, James L. McClelland, and CORPORATE PDP
Research Group, editors. Parallel Distributed Processing: Explorations

in the Microstructure of Cognition, Vol. 1: Foundations. MIT Press,
Cambridge, MA, USA, 1986.

[7] C.M. Bishop. Neural networks for pattern recognition. 1995.

[8] Luca Faes, Giandomenico Nollo, and Alberto Porta. Information-based
detection of nonlinear granger causality in multivariate processes via a
nonuniform embedding technique. Phys. Rev. E, 83:051112, May 2011.

[9] A Attanasio and U Triacca. Detecting human influence on climate us-
ing neural networks based granger causality. Theoretical and Applied

Climatology, 103(1-2):103–107, 2011.

[10] Alessandro Montalto, Luca Faes, and Daniele Marinazzo. Mute: A
matlab toolbox to compare established and novel estimators of the mul-
tivariate transfer entropy. PloS one, 9(10):e109462, 2014.

[11] Clive WJ Granger. Investigating causal relations by econometric models
and cross-spectral methods. Econometrica, pages 424–438, 1969.

[12] Nicola Ancona, Daniele Marinazzo, and Sebastiano Stramaglia. Radial
basis function approach to nonlinear granger causality of time series.
Phys. Rev. E, 70:056221, Nov 2004.

34

[13] Daniele Marinazzo, Mario Pellicoro, and Sebastiano Stramaglia. Non-
linear parametric model for granger causality of time series. Phys. Rev.

E, 73:066216, Jun 2006.

[14] Milan Paluš and Martin Vejmelka. Directionality of coupling from bivari-
ate time series: How to avoid false causalities and missed connections.
Phys. Rev. E, 75:056211, May 2007.

[15] Daniele Marinazzo, Mario Pellicoro, and Sebastiano Stramaglia. Kernel
method for nonlinear granger causality. Phys Rev Lett, 100(14):144103,
2008.

[16] Anders Ledberg and Daniel Chicharro. Framework to study dynamic
dependencies in networks of interacting processes. Phys Rev E Stat

Nonlin Soft Matter Phys, 2012.

[17] Ioannis Vlachos and Dimitris Kugiumtzis. Nonuniform state-space re-
construction and coupling detection. Phys Rev E, 82(1):016207, 2010.

[18] Martin Riedmiller and Heinrich Braun. A direct adaptive method for
faster backpropagation learning: The rprop algorithm. In Neural Net-

works, 1993., IEEE International Conference on, pages 586–591. IEEE,
1993.

[19] Sebastiano Stramaglia, Jesus Cortes, and Daniele Marinazzo. Synergy
and redundancy in the granger causal analysis of dynamical networks.
NEW JOURNAL OF PHYSICS, 16:18, 2014.

[20] Michael Wibral, Nicolae Pampu, Viola Priesemann, Felix Siebenhühner,
Hannes Seiwert, Michael Lindner, Joseph T Lizier, and Raul Vicente.
Measuring information-transfer delays. PloS one, 8(2):e55809, 2013.

[21] Li Deng and Dong Yu. Deep learning: Methods and applications. Foun-

dations and Trends R© in Signal Processing, 7(3–4):197–387, 2013.

35

	1 Introduction
	2 Introduction to neural networks
	2.1 Mathematical framework

	3 Granger Causality with neural networks
	4 Non-uniform embedding (NUE)
	5 Non-uniform embedding using neural networks (NeuNet NUE)
	6 Applications to simulated data
	6.1 Choice of the parameters
	6.2 Reasoning behind our discarding of the uniform embedding approach
	6.3 Simulated data: Hénon maps
	6.4 Simulated data: Lorenz system
	6.5 Redundant data
	6.6 Classification task

	7 Conclusions

