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ABSTRACT 

BACKGROUND: Recurrent antimicrobial interventions and disease-related intestinal 

dysfunction are suspected to contribute to the dysbiosis of the gastrointestinal 

microbial ecosystem in patients with cystic fibrosis (CF). The present study set out to 

detect and identify microbial discriminants in the gut microbiota composition that are 25 

associated with CF-related intestinal dysbiosis.  

METHODS: An in-depth description of CF-associated gut dysbiosis was obtained by 

screening denaturing gradient gel electrophoresis (DGGE) fingerprints for potentially 

discriminating bacterial species, and quantification by means of real-time PCR 

analyses using group-specific primers. 30 

RESULTS: A total of 8 DGGE band-classes assigned to the genus Bifidobacterium 

(n=3), and members of Clostridium clusters XIVa (n=3) and IV (n=2), were 

significantly (p<0.05) underrepresented in samples of patients with CF. Real-time 

PCR analyses confirmed a significantly lower abundance and temporal stability of 

bifidobacteria and Clostridium cluster XIVa in the faecal microbiota of patients with 35 

CF.  

CONCLUSION: This study is the first to report specific microbial determinants of 

dysbiosis in patients with CF.  
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1. INTRODUCTION 

 Chronic pulmonary infections in patients with cystic fibrosis (CF) are controlled 40 

with frequent antimicrobial administration. Although essential to restrain lung function 

decline, antimicrobial therapies disturb the balance of the gastrointestinal (GI) 

microbial ecosystem, also known as GI dysbiosis.  

 In populations without underlying chronic disease the selective pressure of 

prolonged antibiotic treatment can trigger a substantial reduction of metabolically 45 

important bacterial groups [1, 2], favour selection of antimicrobial resistant strains [3] 

and decrease colonization resistance, eliciting overgrowth by potentially pathogenic 

microorganisms [4]. Moreover, several studies have reported a long-term post-

treatment perturbation [5-8]. In young children, antibiotic-associated GI dysbiosis 

might have severe consequences for their quality of life by disturbing the maturation 50 

of the mucosa-associated lymphoid system [9-12] and inadequate immune 

development [13, 14], thus increasing the risk for acquiring infections. 

 In addition to antimicrobial interventions, dysbiosis in patients with CF could 

also result from the specific dietary regimen. Several studies have indicated that a 

positive correlation exists between alimentary habits early in life and improvement of 55 

CF lung function through stimulation of the mucosal immune defense maturation [15-

17]. Furthermore, it has been shown that GI dysbiosis can be induced by a high-fat, 

calorie-rich diet [18].  

 Using a culture dependent approach combined with molecular fingerprinting 

we previously found evidence for a compositional perturbation and substantially 60 

decreased temporal stability of the faecal microbiota in a group of patients with CF 

[19]. We now present the results of a follow-up study aiming at identifying specific 
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bacterial groups that can be considered determinants for intestinal dysbiosis in 

patients with CF.  
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2. MATERIALS AND METHODS 65 

2.1 Ethics statement. All eligible candidates for this survey and their parents 

received written information detailing the intent of the study. As the study only 

included a non-invasive sampling procedure for which the participants' willingness to 

provide the samples was mandatory, the Ethics Committee of the University of 

Leuven, Belgium, approved verbal informed consent obtained from both 70 

parents/guidance and participating children (no. ML4698). 

2.2 Participants. Faecal samples of 21 family units were analysed in this study. A 

family unit was defined as one patient with CF and one to two healthy siblings. All 

patients had a history of antibiotic treatment prior to and/or during the sampling 

period [19]. For 9 of these family units, 4 to 8 faecal samples collected between 2007 75 

and 2009 were analysed in a longitudinal study (table 1); in addition, one sample of 

each of the study participants was analysed in a cross-sectional study.  

2.3 Sample preparation. Stool samples were thawed at room temperature, and 1 g 

(wet weight) was homogenized in 9 ml Peptone Buffered Saline (PBS) (0.1 % w/v 

bacteriological peptone [catalog no. L37; Oxoid, Basingstoke, UK], 0.85 % w/v NaCl). 80 

1 ml of the resulting faecal solution was used for DNA extraction as previously 

described [20, 21].  

2.4 Denaturing Gradient Gel Electrophoresis (DGGE). Cross-sectional study 

DGGE fingerprints of 21 patients with CF and 24 healthy siblings, and longitudinal 

study DGGE fingerprints of 2 family units were available from a previous study [19]. 85 

Novel DGGE-PCR experiments were performed as previously described [19], on 

longitudinal samples from 7 additional family units using universal bacterial primers 

targeting the hyper-variable V3 region of the 16S rRNA gene. The resulting 16S 
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rRNA amplicons were separated by DGGE fingerprinting using the D-code System 

(Bio-Rad, Nazareth, Belgium) with a 35-70% linear gradient (100% denaturing 90 

polyacrylamide solution containing 7M urea (EC-605, National Diagnostics) and 40% 

formamide (F-9037, Sigma, St. Louis, USA)).  

2.5 DGGE gel band matching, extraction and sequencing. Upon normalization, all 

fingerprint profiles were subjected to band-class analysis as described by Joossens 

and coworkers [22]. Non-parametric Mann-Whitney-U tests were performed to screen 95 

for potentially discriminating band-classes in fingerprint profiles of patients with CF 

and healthy siblings. P-values of less than 0.05 were considered significant and 

multiple-testing errors were corrected by using the adapted Benjamini-Hochberg 

method [23]. Bands representing potentially discriminating band-classes were 

excised from the DGGE gel and sequenced as previously described [24]. The web-100 

based EzTaxon Server v2.1, a manually annotated and curated database of 16S 

ribosomal RNA gene sequences for bacterial type strains with validly described 

species names, was used to allocate sequenced bands to species based on 16S 

rRNA gene sequence similarities [25]. The V3-16S rRNA gene sequences determined 

in this study have been deposited in the EMBL database under accession numbers 105 

HE617671 to HE617678. 

2.6 Real-time PCR. Based on the results of DGGE band discriminant analysis, 

concentrations of faecal bifidobacteria and members of Clostridium cluster XIVa were 

determined with real-time PCR using the LightCycler system I (Roche, Mannheim, 

Germany) and the SensiMixTM Capillary Kit (QT405-05, Bioline, London, UK). 110 

Bifidobacteria were quantified using Bifidobacterium-specific primers g-Bifid-F (5' 

CTCCTGGAAACGGGTGG 3') and g-Bifid-R (5' GGTGTTCTTCCCGATATCTACA 3') 
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[26], and a calibration curve was constructed based on a serial dilution of DNA from 

Bifidobacterium breve LMG 13208T from which anaerobic plate counts were obtained 

on Modified Columbia agar [27]. For quantification of Clostridium cluster XIVa 115 

members, previously described group-specific primers g-Ccoc-F (5’ AAA TGA CGG 

TAC CTG ACT AA 3’) and g-Ccoc-R (5’ CTT TGA GTT TCA TTC TTG CGA A 3’) 

were used [28] and anaerobic enumeration of Ruminococcus torques strain L2-14 

onto medium YCFAGSC [29] was performed for construction of the calibration curve. 

The 20 µl reaction mixture contained 4 µl SensiMixTM Lite (Bioline Ltd., London, UK), 120 

0.4 µl 50*SYBR® Green I solution (Bioline Ltd.), 1.5 µl enzyme mix (Bioline Ltd.), 8.1 

µl MQ water, 5 µM of each primer (Sigma Aldrich, Bornem, Belgium) and 2 µl 

bacterial DNA. The real-time PCR program consisted of initial denaturation at 94°C 

for 5 min, followed by 40 cycles of denaturation for 20 s at 94°C, annealing at 65°C 

(genus Bifidobacterium) or 55°C ( Clostridium cluster XIVa) for 20 s and elongation at 125 

72°C for 50 s. SYBR green fluorescence was detected  at the end of each 

amplification step. Melting curve analyses were performed by slowly increasing the 

temperature from 60°C to 95°C (genus  Bifidobacterium) or 75°C to 95°C ( Clostridium 

cluster XIVa). Measurements were performed in triplicate, and were repeated when 

variation between measurements exceeded 0.5 Ct. 130 

2.8 Statistical analyses of real-time PCR data. The longitudinal datasets were 

analysed with a linear mixed model that accounts for the temporal variation between 

consecutive samples of each subject nested within a family unit. Samples of the 

cross-sectional study were compared with parametric one-tailed paired t-tests. In 

addition, the effect of several clinical parameters including forced expiratory volume 135 

in one second (FEV1), forced vital capacity (FCV), age, weight for height and gender 

was assessed. Statistical analyses were performed using SAS version 9.4 with p-
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values of less than 0.05 considered significant. Faecal concentrations were 

expressed as log10 colony forming units (CFU) per gram wet weight stool. 
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3. RESULTS 140 

3.1 DGGE fingerprint analysis of longitudinal samples. The DGGE study of nine 

family units, in which per subject 4 to 8 samples obtained over a two year period 

were included, yielded a total of 103 DGGE profiles which were investigated for the 

presence of potentially discriminating band-classes. The total number of band-

classes present in more than half of the CF samples or sibling samples, ranged from 145 

6 to 24 per family unit. Statistical analysis of these band-classes revealed significant 

differences between samples of patients with CF and healthy siblings (Mann-

Whitney-U test, p<0.05) in six family units, with each unit displaying 1 to 7 potentially 

discriminating bands. Benjamini-Hochberg correction for multiple testing reduced 

these results to five family units with the number of significant band-classes ranging 150 

from 1 to 6 per family unit (table 2). For each of these discriminating band-classes, 

bands were significantly more represented in sibling samples compared to samples 

of the corresponding patient with CF (figure 1). In total 8 different band-classes 

displayed a significant difference between samples of patients with CF and healthy 

siblings: band-class 8.90 was significantly underrepresented in faecal samples of 155 

patients in five out of the six family units, band-class 16.27 was discriminative in 

three family units, band-classes 10.22 and 14.02 were underrepresented in patient 

samples of 2 family units, and band-classes 3.79, 9.46, 11.46 and 16.05 were 

underrepresented in one family unit only.  

 Sequence analysis of DNA amplicons corresponding to band-classes 14.02, 160 

16.05 and 16.27 revealed 100% 16S rRNA gene sequence identity with 

Bifidobacterium longum, Bifidobacterium catenulatum/ Bifidobacterium 

pseudocatenulatum/ Bifidobacterium kashiwanohense (the 140-144 bp V3-16S rRNA 
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fragment does not allow differentiation of closely related bacterial species) and 

Bifidobacterium adolescentis/ Bifidobacterium ruminantium/ Bifidobacterium stercoris, 165 

respectively (table 3). Subsequent DGGE band position analysis [30] with type and 

reference strains of these Bifidobacterium species, indicated that only B. 

adolescentis co-migrated with  band-class 16.27, and that only B. catenulatum and B. 

pseudocatenulatum co-migrated with band-class 16.05 (figure S1). We therefore 

tentatively identified the bacteria represented by band-classes 14.02, 16.05 and 170 

16.27 as B. longum, B. catenulatum/ B. pseudocatenulatum and B. adolescentis, 

respectively. 

 In addition, DNA amplicons corresponding to band-classes 3.79 and 11.46 

showed the highest sequence similarity with Ruminococcus bromii (97.8%) and 

Faecalibacterium prausnitzii (98.5%), respectively (table 3). Both species are 175 

members of Clostridium cluster IV [31]. DNA amplicons corresponding to band-class 

8.90 showed 100% sequence similarity with Eubacterium contortum, Clostridium 

oroticum and Eubacterium fissicatena; DNA amplicons of band-class 9.46 showed 

100% sequence similarity to five species of the genus Blautia (table 3), and  DNA 

amplicons corresponding to band-class 10.22 showed 99.3% sequence similarity to 180 

five different species, namely Ruminococcus lactaris, Ruminococcus gauvreauii, 

Eubacterium xylanophilum, Clostridium herbivorans and Acetovibrio ethanogignens, 

of which the latter three have not been isolated from human stool before. Band-

classes 8.90, 9.46 and 10.22 each represent members of Clostridium cluster XIVa 

[31]. 185 
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3.2 DGGE fingerprint analysis of cross-sectional samples. In parallel with the 

longitudinal study, a cross-sectional dataset consisting of 42 samples from 20 

patients with CF and 22 siblings was screened for potentially discriminating band-

classes. However, none of the band-classes was found to represent a significant 190 

difference between both groups. 

3.3 Real-time PCR analyses. The 8 discriminative DGGE band-classes identified in 

this study represent three major components of the human GI microbiota, namely the 

genus Bifidobacterium and Clostridium clusters IV and XIVa [31]. Subsequent 

quantification experiments did not include Clostridium cluster IV as it was 195 

represented by two band-classes, each detected in only one family unit., whereas  

Bifidobacterium band-classes (i.e. 14.00, 16.05 and 16.27) were significantly 

underrepresented in faecal samples of patients with CF in 5 out of the 6 family units 

and Clostridium cluster XIVa band-classes (i.e. 8.90, 9.46 and 10.22) were 

significantly underrepresented in samples of patients with CF in all but one family unit.  200 

Figure 2 shows the temporal variation of bifidobacterial abundance in the five family 

units where bifidobacteria were significantly underrepresented as determined by 

band-class analysis. CF samples consistently displayed lower bifidobacterial 

concentrations (figure 2). In addition, although not statistically significant (linear 

mixed model, p=0.16) visual inspection of these data revealed a stronger temporal 205 

variation in bifidobacterial abundance in samples of patients with CF compared to 

healthy siblings throughout (figure 2). 

Furthermore, a cross-sectional analysis was conducted investigating the first 

sample of 21 family units. Although DGGE band-class analysis did not reveal any 

discriminatory potential of bifidobacteria, real-time PCR analysis revealed a 210 
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significantly higher Bifidobacterium abundance in samples from healthy siblings 

(8.71±0.13 mean log10 CFU/g stool) compared to patient samples (7.97±0.26 mean 

log10 CFU/g stool) (one-tailed paired t-test, p=0.003) (figure 3).  

Figure 4 shows the temporal variation of the Clostridium cluster XIVa abundance in 

the five family units where these bacteria were consistently underrepresented in 215 

samples of patients with CF. In addition, analysis of the temporal variation of 

Clostridium cluster XIVa abundance per family unit again revealed a higher temporal 

variation between the different sampling points of the patients with CF compared to 

their healthy siblings (figure 4), which however, was not significant between both 

groups (linear mixed model, p=0.39). 220 

Although members of Clostridium cluster XIVa were not discriminatory in the 

cross-sectional dataset using DGGE band class analysis, real-time PCR analysis 

revealed a significantly lower abundance of these bacteria in samples of patients with 

CF (6.51±0.17 mean log10 CFU/g stool) compared to samples of healthy siblings 

(7.14±0.09 mean log10 CFU/g stool) (one-tailed paired t-test, p=0.006) (figure 3). 225 

Moreover, for both groups Clostridium cluster XIVa abundance and the weight for 

height parameter were positively correlated (linear mixed model, p=0.03) (figure 5). 

This correlation, however, diminished with age (linear mixed model, p=0.041). In 

addition, patients with a low weight for height parameter revealed much lower 

abundance of Clostridium cluster XIVa compared to healthy siblings with a low 230 

weight for height parameter (figure 5).  



13 

 

DISCUSSION 

We previously reported that the predominant faecal microbiota of children with CF is 

characterized by a compositional disturbance of the total faecal microbiota and 

decreased temporal stability [19]. The present study expanded the 2-year longitudinal 235 

study from two to nine familial units in order to obtain more statistically sound results, 

identified the microbial components of the dysbiosis using band-class analysis of the 

community fingerprints, and applied real-time PCR to confirm and quantify the most 

important observations. We showed that members of the genus Bifidobacterium were 

temporary unstable and significantly underrepresented in the faecal microbiota of 240 

patients with CF in comparison to their healthy siblings. Several studies, including 

one of CF patients [32], reported a substantial decline in the number of GI 

bifidobacteria during and following antimicrobial supplementation [33-37]. The 

observed reduction of bifidobacteria could be the result of their high antimicrobial 

susceptibility and reduced adhesion capacity to inflamed mucosa [38, 39]. The 245 

results of our DGGE fingerprint analyses revealed a significant reduction of bands 

assigned to B. longum, B. catenulatum/ B. pseudocatenulatum and B. adolescentis. 

These species are considered among the most important members of the 

bifidobacterial community in the GI tract [40]. High bifidobacterial species richness 

rather than high abundance is positively correlated with the maturation of the 250 

mucosal immune system [11] but an overall reduction of the bifidobacteria in children 

with CF could influence extra-intestinal disorders such as respiratory inflammation 

and even infection. Given the health-promoting features attributed to bifidobacteria 

[38, 39], their intestinal abundance is also often used as a biomarker for a well-

balanced gut microbiota. Therefore, the significant decline observed in the present 255 

study could have severe repercussions for the host's health. 
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 We also report for the first time that bacteria of Clostridium cluster XIVa [31] 

are significantly underrepresented in the faecal microbiota of CF patients. 

Furthermore, in siblings as well as patients with CF Clostridium cluster XIVa 

abundance and weight for height were positively correlated. However, patients with 260 

poorer nutritional status revealed a much lower abundance of Clostridium cluster 

XIVa compared to healthy siblings with poorer nutritional status (figure 5). Finally, 

band-classes 3.79 and 11.46 were underrepresented in samples of patients with CF. 

These band-classes were tentatively assigned to Ruminococcus bromii and 

Faecalibacterium prausnitzii, respectively, representing Clostridium cluster IV 265 

bacteria [31]. Many Clostridium clusters IV and XIVa bacteria produce butyrate as a 

result of carbohydrate fermentation. This metabolite has various important biological 

functions such as providing energy for colonocytes, eliciting an anti-inflammatory 

response, establishment and maintenance of the GI barrier, and reduction of 

intestinal permeability, and is presumed to be involved in the prevention of colorectal 270 

cancer [41-43]. Yet, the GI microbial ecosystem has a high level of functional 

redundancy and a broad phylogenetic spectrum of bacteria is capable of synthesizing 

butyrate. It is therefore unclear to which extent a significant reduction of these 

bacterial groups may have clinical consequences.   

 Frequent use of high doses of antibiotics such as amoxicillin-clavulanate likely 275 

contributed to the reported dysbiosis. In a study by Young and Schmidt [44] a 

considerable decrease in members of the Clostridium cluster XIVa and of 

bifidobacteria was noted in the faecal microbiota of a male patient after treatment 

with amoxicillin-clavulanate. Strikingly, whereas the levels of the former were 

restored after cessation of antibiotic therapy, Bifidobacterium concentrations were not. 280 

Furthermore, decreased levels of members of Clostridium clusters IV and XIVa have 
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also been reported in patients with inflammatory bowel disease [24, 45, 46], which 

could suggest that also CF-associated GI inflammation [47-49] may be involved in 

the observed dysbiosis.  

Although intensive antimicrobial treatment courses are likely to contribute to the 285 

dysbiosis in patients with CF, highly personalized antibiotic therapies did not allow 

correlating the use of specific antimicrobial compounds with a significant reduction of 

the bacterial groups. Furthermore, no significant correlation was found between 

faecal bacteria and FEV1, FCV or gender. However, it should be noted that the 

cohorts in the present study were not age-matched, gender-matched, thus limiting 290 

our evaluations. 

To our knowledge, this is the first study that identifies specific bacterial groups as 

main determinants for a dysbiosis in patients with CF. The observed 

underrepresentation and temporal instability of members of the genus 

Bifidobacterium and Clostridium clusters IV and XIVa in patients with CF could be the 295 

result from the disease-related impairment of essential gastrointestinal functions as 

well as the detrimental effects of intensive antimicrobial treatment courses. Further 

exploration of this dysbiosis at the functional level is needed to help establishing the 

role of these bacterial groups and may lead the way to alternative nutritional 

interventions with functional foods. 300 
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Figure 1. DGGE fingerprint profiles of the longitudinal study. DGGE fingerprint 440 

profiles showing the predominant faecal microbiota of a) family unit 3; b) family unit 6; c) 

family unit 11; d) family unit 14; e) family unit 16; f) family unit 18, and discriminating 

band-classes.  

Bc: Band-class, S1 to 8: Sample 1 to 8, CF: Patient with CF; SIBLING: Healthy sibling. 

 445 

Figure 2. Temporal variation of bifidobacterial abundance. Temporal variation of the 

genus Bifidobacterium in the five family units displaying one or more potentially 

discriminating bands assigned to this group. The error bars represent standard errors. 

The asterisks indicate significant differences between patients with CF and healthy 

siblings (linear mixed model, p<0.05). The intervals between the consecutive sampling 450 

points are ±3 months.  

Figure 3. Bifidobacterial and Clostridium cluster XIVa abundance in cross-

sectional study. Graphical representation of bacterial population differences as 

boxplots. Left: Boxplot displaying Bifidobacterium abundance in faecal samples of 

patients with CF (n=21) and healthy siblings (n=22) from the cross-sectional dataset. 455 

The open circle indicates an outlier value. Right: Bloxplot displaying Clostridium cluster 

XIVa abundance in faecal samples of patients with CF (n=21) and healthy siblings (n=22) 

from the cross-sectional dataset. The p-values are based on the one-tailed paired t-test. 

 

Figure 4. Temporal variation of Clostridium cluster XIVa abundance. Temporal 460 

variation of members of Clostridium cluster XIVa in the five family units displaying one or 
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more potentially discriminating bands assigned to this group. The error bars represent 

standard errors. The asterisks indicate significant differences between patients with CF 

and healthy siblings (linear mixed model, p<0.05). The intervals between the 

consecutive sampling points are ±3 months.  465 

 

Figure 5. Clostridium cluster XIVa abundance and weight for height. Scatterplot 

displaying the correlation between Clostridium cluster XIVa abundance and weight for 

height (%) (linear mixed model, p=0.03). 

 470 


