
 

 

biblio.ugent.be 

 

The UGent Institutional Repository is the electronic archiving and dissemination platform for all 
UGent research publications. Ghent University has implemented a mandate stipulating that all 
academic publications of UGent researchers should be deposited and archived in this repository. 
Except for items where current copyright restrictions apply, these papers are available in Open 
Access. 

 

This item is the archived peer-reviewed author-version of: Continuous twin screw 
granulation: Influence of process variables on granule and tablet quality of a Nanocrystalline 
Paclitaxel Formulation for Hipec Treatment   

Authors: Vercruysse J., Diaz D.C., Peeters E., Fonteyne M., Delaet U., Van Assche I., De Beer 
T., Remon J.P., Vervaet C.  

In: European Journal of Pharmaceutics and Biopharmaceutics 82(1), 205-211 (2012) 

 

Optional: link to the article  

 

To refer to or to cite this work, please use the citation to the published version: 

Authors (year). Title. journal Volume(Issue)  page-page. Doi 10.1016/j.ejpb.2012.05.010    



1 
 

 

Continuous twin screw granulation: influence of process variables on granule and 
tablet quality 

 

J. Vercruyssea, D. Córdoba Díazb, E. Peetersa, M. Fonteynec, U. Delaetd, I. Van Assched, T. 

De Beerc, J.P. Remona, C. Vervaeta 
 

aLaboratory of Pharmaceutical Technology, Ghent University 
bDepartment of Pharmacy and Pharmaceutical Technology, Complutense University of 

Madrid 
cLaboratory of Pharmaceutical Process Analytical Technology, Ghent University 
dDepartment of Pharmaceutical Development, Johnson&Johnson Pharmaceutical Research 

and Development, Janssen Pharmaceutica 

 

Corresponding Author: 

Chris Vervaet 

Ghent University 

Laboratory of Pharmaceutical Technology 

Harelbekestraat 72 

9000 Ghent 

Belgium 

Tel: +32 9 264 80 69 

Fax: +32 9 222 82 36 

E-mail: Chris.Vervaet@UGent.be 

  

mailto:Chris.Vervaet@UGent.be�


2 
 

Abstract 

The aim of the current study was to screen theophylline (125 mg) tablets manufactured 

via twin screw granulation in order to improve process understanding and knowledge of 

process variables which determine granule and tablet quality. A premix of theophylline 

anhydrate, α-lactose monohydrate and PVP (ratio: 30/67.5/2.5, w/w) was granulated with 

demineralized water. Experiments were done using the high shear wet granulation module 

(based on twin screw granulation) of the ConsiGmaTM-25 unit (a continuous tablet 

manufacturing system) for particle size enlargement. After drying, granules were compressed 

using a MODULTM P tablet press (compression force: 10 kN, tablet diameter: 12 mm). Using 

a D-optimal experimental design, the effect of several process variables (throughput (10 - 25 

kg/h), screw speed (600 - 950 rpm), screw configuration (number (2, 4, 6 and 12) and angle 

(30, 60 and 90 degrees) of kneading elements), barrel temperature (25 - 40°C) and method 

of binder addition (dry vs wet)) on the granulation process (torque and temperature increase 

of barrel wall), granule (particle size distribution, friability and flowability) and tablet (tensile 

strength, porosity, friability, disintegration time and dissolution) quality was evaluated. The 

results showed that the quality of granules and tablets can be optimized by adjusting specific 

process variables (number of kneading elements, barrel temperature and binder addition 

method) during a granulation process using a continuous twin screw granulator. 

 

KEYWORDS: Continuous wet granulation, Twin screw granulation, Process variables, 

Granule and tablet quality, Experimental design 
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1. Introduction 
 

In contrast to other industries (plastics, food, chemistry), the pharmaceutical 

industry has been reluctant to move from batch processing towards continuous 

processing for several reasons (e.g., high profit margins, stringent regulatory 

constraints, limited material volume) [1-3]. However, as many patents of drug 

molecules recently expired or expire in the near future and due to an increasing 

demand for solid dosage forms, it is expected that the importance of the concept of 

continuous production will increase over the coming years [4, 5]. 

 

As wet granulation is the most popular method to improve material properties 

(flow, homogeneity, compressibility) prior to tableting, it is obvious that a continuous 

wet granulation process is of high importance for a manufacturer of solid dosage 

forms. Several continuous wet granulation techniques were developed which have 

been reviewed by Vervaet and Remon [1, 4]. Keleb et al. [6] described the use of a 

laboratory scale co-rotating twin screw extruder without a die block in order to avoid 

excessive material densification inside the barrel. In this way, wet granules could be 

obtained in a continuous manner. Based on this research work [6-9], a twin screw 

granulator was implemented as the high-shear granulation unit in the commercially 

available industrial scale ConsiGmaTM-system (GEA Pharma Systems, ColletteTM, 

Wommelgem, Belgium). This system consists of three modules, as already described 

by Fonteyne et al. [10] and Chablani et al.[11]: a wet high-shear granulation module, 

a segmented dryer module and an evaluation module. 

  

Wet granulation via twin screw granulation is an attractive technology for the 

continuous processing of pharmaceuticals. Twin screw granulators are very flexible in 

terms of use, offering multiple variables (e.g., screw design, the placement of auxiliary 

units like feeders and pumps) [12]. Besides, Van Melkebeke et al. [13] successfully 

demonstrated the possibility to perform melt granulation using the same equipment. 

However, up-to-now process knowledge (certainly towards specific pharmaceutical 

formulations) about this innovative manufacturing technique is almost non-existing 

within the pharmaceutical industry. To improve process understanding, optimize 

granule quality and increase the process yield, knowledge about the formulation and 

process variables which determine granule quality is essential. Keleb et al. [8] made a 

first attempt to modify the screw configuration. By replacing discharge elements with 

conveying elements having a longer pitch the compression of the granules was 

reduced and lower amounts of lumps were generated. Shah [14] used a screw 
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configuration with only conveying and chopping (distributive) elements in order to 

improve the output and avoid periodic surging of the wet mass as it exited the 

extruder. Van Melkebeke et al. [7] reported that implementing an extra conveying 

element after the kneading block improved the granulation yield by reducing the 

oversized agglomerates. Djuric and Kleinebudde [15] and Thompson and Sun [12] 

evaluated the impact of different screw elements on continuous granulation with a 

twin screw extruder. They stated that granule and tablet properties could be 

influenced by using different designs of screw elements. Dhenge et al. [16] described 

the influence of screw speed, powder feed rate and liquid-to-solid ratio on the granule 

properties. In this paper, factors were changed one at a time for each experiment 

(COST-approach). It was found that alteration of these process variables had a 

significant impact on the residence time and the average torque during the 

granulation process, yielding granules with different properties. The liquid-to-solid 

ratio was recognized as the most influencing factor regarding the granule quality. 

Djuric and Kleinebudde [17] concluded that for scale-up of continuous twin screw 

granulation processes the material throughput could not be linearly increased. Further 

optimization of process variables was needed. In accordance to these results, 

Dhenge et al. [18] reported that changing the powder feed rate leads to changes in 

the size, shape, structure, porosity, strength and dissolution time of the granules. Tan 

et al. [19] used a full-factorial experimental design to describe the effect of granulation 

liquid composition, injection rate and screw speed on extruder power consumption, 

granule and tablet properties. 

 

In the current study, an experimental design approach was used to screen 

theophylline (125 mg) tablets manufactured via twin screw granulation. Design of 

experiments was used to identify the critical process variables and to study their 

impact on the granulation process, granule and tablet quality attributes. 

 
2. Materials and methods 

 
2.1. Materials 

 
Theophylline anhydrate was purchased from Farma-Química Sur (Malaga, 

Spain). α-lactose monohydrate 200M (Caldic, Hemiksem, Belgium) was used as 

filler for granulation and polyvinylpyrrolidone (PVP) (Kollidon® 30, BASF, 

Ludwigshafen, Germany) as binder. If PVP was added to the dry premix, distilled 
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water was used as granulation liquid. Magnesium stearate (Fagron, Waregem, 

Belgium) was applied as lubricant during tableting. 

  
2.2. Preparation of granules 

 
Granulation experiments were performed using a high-shear co-rotating twin 

screw granulator without die plate, being the granulation unit of the ConsiGmaTM-

25 unit (Fig. 1). The length-to-diameter ratio was 25:1. In the ConsiGmaTM-25 unit, 

the granulation unit is directly linked to a six-segmented fluid bed dryer. As the 

aim of the current study was to improve process understanding of the granulation 

step, the fluid bed dryer was not used in order to avoid the impact of dynamic 

drying on the product properties. The barrel of the continuous granulator can be 

divided into two segments: a feed segment, where powder enters the barrel and 

consisting of conveying elements to transport the material through the barrel; and 

a work segment, where the powder is intensively mixed with the granulation liquid 

by kneading elements [10]. To evaluate the influence of process variables on the 

granulation process, the torque and temperature of the barrel wall at the work 

segment of the granulator were recorded. The equipment has an in-built torque 

gauge. The torque values obtained after equilibration of the process were 

averaged to give the overall torque during each run. At the work segment, the 

temperature of the barrel wall was controlled by a Pt100 temperature sensor. As 

the barrel jacket was not divided into different temperature zones, the full length of 

the barrel was preheated to equal temperature. During processing, the powder 

premix was gravimetrically dosed by a twin screw feeder (KT20, K-Tron Soder, 

Niederlenz, Switserland). Granulation liquid was gravimetrically pumped into the 

screw chamber using two peristaltic pumps (Watson Marlow, Comwall, UK) and 

silicon tubing (internal and external diameter of 1.6 and 4.8 mm, respectively) 

connected to a 1.6 mm nozzle. Liquid was added in front of the first kneading 

element. PVP was used as a binder, 2.5% (w/w) in granules, based on dry mass. 

To evaluate the dissolution properties, theophylline anhydrate (30%) was added 

as a model drug to the formulation. The water concentration (9%, calculated on 

wet mass) was kept constant for all experiments. For each run, after equilibration 

of the system, 800g of wet granules were collected at the outlet of the granulator, 

spread on a tray and oven-dried at 40°C during 24h. After drying, the total granule 

batch was divided into two parts of 400g. One part was analysed for particle size 

distribution as such and the other part was milled through a 1400µm screen at 

800rpm using a Quadro comil U10 (Quadro Engineering, Ontario, Canada), which 
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is part of the evaluation module of the ConsiGmaTM-25 system. The response 

parameters when investigating the influence of process variables on granule 

quality were: particle size distributions before and after milling, and friability and 

flowability of the milled granules. 

 

2.3. Preparation of tablets 
 

Tablets were made using the milled granulation product. Before tableting, the 

granules were blended with 0.5% (w/w) magnesium stearate in a tumbling mixer 

(W.A. Bachofen, Basel, Switserland). Tablets (417 mg) were prepared using a 

MODULTM P tablet press (GEA Pharma Systems, CourtoyTM, Halle, Belgium) 

equipped with a round concave (radius: 24mm) Euro B punch of 12 mm diameter 

at a compression force of 10 kN per tablet. Tensile strength, porosity, friability, 

disintegration time and dissolution of the tablets were tested. 

 

2.4. Design of experiments 
 

Preliminary experiments were carried out to determine the experimental 

ranges for the DOE factors throughput, screw speed and barrel temperature at 

different number and angle of kneading elements. When 12 kneading elements 

were used, two kneading zones each consisting of 6 kneading elements had to be 

used (Fig. 2). Both kneading zones were separated by a conveying element 

having the same length as one kneading zone. In this way, accumulation of 

material due to the retaining character of the kneading elements could be limited. 

An extra conveying element was implemented after the second kneading block in 

order to reduce the amount of oversized agglomerates, as reported by Van 

Melkebeke et al. [7]. Nevertheless, as the use of 12 kneading elements at an 

angle of 90 degrees at different process settings resulted in excessive formation 

of lumps or even blockage of the system due to excessive friction, this 

combination of factor levels had to be excluded from the design. For all 

experiments, the distance between liquid addition and first kneading element was 

kept constant. An 18-experiment D-optimal design was used to evaluate the 

influence of 6 process variables on the granulation process, granule and tablet 

properties: total throughput (10 - 25 kg/h), screw speed (600 - 900 rpm), screw 

configuration (number (2, 4, 6 and 12) and angle (30, 60 and 90 degrees) of 

kneading elements), barrel temperature (25 - 40°C) and method of binder addition 

(dry vs wet). D-optimal designs are used for screening and optimization instead of 
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the classical factorial designs when the experimental space is irregular and/or 

when several (multilevel) qualitative factors are examined, as is the case for this 

study [20]. Three replicates of the design center point were run. The different 

factor settings for each run are listed in Table 1. The results were evaluated with 

MODDE 9.0 software (Umetrics, Umeå, Sweden). 

 

2.5. Evaluation of granules 
 
2.5.1. Particle size analysis 
 

Sieve analysis was performed using a Retsch VE 1000 sieve shaker (Haan, 

Germany). Granules were placed on the shaker during 5 min at an amplitude of 2 

mm using a series of sieves (150, 250, 500, 710, 1000, 1400 and 2000 µm). The 

amount of granules retained on each sieve was determined. All granule batches 

were measured in duplicate. The amount of fines and oversized agglomerates 

were defined as the fractions <150 and >1400 µm, respectively. After milling, the 

amount of coarse granules was defined as the fraction between 710 and 1400 µm. 

The yield of the granulation process was defined as the fraction between 150 and 

1400 µm. 

 

2.5.2. Friability of granules 

The granule friability was determined (n=3) using a friabilator (PTF E Pharma 

Test, Hainburg, Germany) at a speed of 25 rpm for 10 min, by subjecting 10 g (Iwt) 

of milled granules together with 200 glass beads (mean diameter 4 mm) to falling 

shocks. Prior to determination, the granule fraction <250µm was removed to 

assure the same starting conditions. Afterwards, the glass beads were removed 

and the weight retained on a 250 µm sieve (Fwt) was determined. The friability 

was calculated as ((Iwt – Fwt) / Iwt)*100. 

2.5.3. Flowability 
 

The bulk volume (V0) of 30 g milled granules was recorded in a 100 ml 

measuring cylinder as well as the volume after 1250 taps (V1250) in a tapping 

machine (J. Englesman, Ludwigshafen, Germany) (n=3). Bulk and tapped 

densities were calculated as 30 g / V0 and 30 g / V1250, respectively. The 

compressibility index (C%) was calculated from the bulk and tapped density using 

the following equation, 
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C% = {(ρf - ρi) / ρf } * 100 

where ρi is the bulk density and ρf is the tapped density. 

 
2.6. Tablet evaluation 

 
The hardness, thickness and diameter of tablets (n=10) was determined 

(Sotax HT 10, Basel, Switserland) after a 24 h storage period at 21 °C and 30% 

RH. The tablet tensile strength T was calculated using the equation described by 

Fell and Newton [21], 

T = 2 F / π d t 

where F, d and t denote the diametral crushing force, the tablet diameter and 

the tablet thickness, respectively. Tablet porosity was calculated (n=3) using tablet 

apparent density and the helium density of the former granules. 

 

The tablet friability was determined (n=3) using a friabilator described in Eur. 

Ph. (PTF E Pharma Test, Hainburg, Germany), at a speed of 25 rpm for 4 min. 

The percentage weight loss was expressed as the tablet friability. 

 
The disintegration time was determined (n=6) using the apparatus 

described in Eur. Ph. (PTZ-E Pharma Test, Hainburg, Germany). Tests were 

performed in distilled water at 37 ± 0.5 °C using disks. 

 

Dissolution tests were performed (n=3) in 900 ml demineralised water (pH = 5) 

using the paddle method (VK 7010, Vankel, Cary, NC, USA). The temperature of 

the dissolution medium was maintained at 37 ± 0.5°C, while the rotation speed 

was set at 50 rpm. 5 ml samples were withdrawn at 5, 10, 15, 20, 30, 45 and 60 

min after starting the dissolution. The drug content was determined at 272 nm 

using an UV-1650PC double beam spectrophotometer (Shimadzu Benelux, 

Antwerp, Belgium). 

 

3. Results and discussion 
 
3.1. Evaluation of granulation process 
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Generally, conveying elements are used in a screw design to move material 

with minimal mechanical energy imparted, while kneading elements intensively mix 

solid and liquid components during continuous wet granulation. Kneading elements 

operate fully filled with material and may be partially or fully dependent on 

pressure-driven flow, as described by Thompson and Sun [12]. Because of their 

retaining character for the mass flow through the barrel, increasing the number of 

kneading elements led to more friction inside the barrel and consequently higher 

torque values (Fig. 3). As the granulation process generates friction and heat, the 

temperature of the barrel wall at the work segment of the granulator was monitored 

during each run. Using more kneading elements caused a higher temperature 

increase at the barrel wall (0.0 to 21.5°C) (Table 2) as a result of the higher 

amount of heat generated by friction. If the level of barrel temperature was low 

(25°C) and a higher number of kneading elements was used, the contribution of 

the heat generated by friction to the temperature of the barrel wall during 

processing was high (e.g. run 7, 8 and 13). 

 

Increasing the throughput (kg/h) resulted in a higher filling degree which 

required more energy input to rotate the screws at the predefined screw speed, 

yielding higher torque values (Fig. 3). In contrast to Tan et al. [19], no significant 

impact of screw speed on torque was observed. In the current study, the screw 

speed was varied between 600 and 950 rpm. As the difference of screw load at 

lower versus higher screw speed is low, no significant differences in extent of 

shear and compaction forces experienced by the material inside the barrel were 

observed. Changing the angle of kneading elements or the binder addition method 

had no significant effect on torque. As described above, the combination of 12 

kneading elements at an angle of 90 degrees was excluded from the design due to 

the formation of lumps or even blockage of the system. It seems that the angle of 

kneading elements only becomes an important factor when a higher amount of 

kneading elements is used. 

 

During start-up of each run, the torque and temperature of the barrel wall 

increased until equilibrium was reached. This can be explained by the gradual 

layering of the barrel wall at the work segment with wet mass during this phase. 

The time needed for the torque and temperature of barrel wall to equilibrate gives 

a good indication of the time needed for the granulation process to reach steady 

state conditions. It was found that when a higher number of kneading elements 

was used, the time to reach equilibrium was higher (0 to 9 min) (Table 2). Using a 
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feedback control system material loss during start-up can be minimized. This 

system regulates the temperature of the barrel jacket during the granulation 

process in order to compensate for the temperature increase of the barrel wall due 

to friction. 

 

3.2. Influence of process variables on granule quality 
 

Particle size distributions of granules before and after milling were determined. 

A significant relationship between amount of fines and amount of oversized 

agglomerates and three process variables was detected: number of kneading 

elements, barrel temperature and binder addition method (Fig. 4a and b). By 

increasing the number of kneading elements, the powder was more intensively 

mixed with the granulation liquid, yielding less fines (0.9 to 20.2% <150µm) and 

more oversized agglomerates (19.5 to 82.3% >1400µm) (Table 2). This was also 

described by Thompson and Sun [12] and Djuric and Kleinebudde [15]. The same 

effects on particle size distribution were observed at a higher barrel temperature 

due to an increased solubility rate of the powder mixture in the granulation liquid. 

Because of the low residence time during twin screw granulation, the binder was 

more effective when it was already dissolved in the granulation liquid. Although 

changing the throughput led to different degrees of barrel filling and torque values, 

no significant impact on the particle size distribution was detected. No significant 

effect for angle of kneading elements and screw speed on particle size distribution 

was found. According to Thompson and Sun [12], the angle of kneading elements 

only affected the particle size distribution if the filling degree of the barrel was high 

(70%). Dhenge et al. [16] already mentioned the minimal effect of screw speed on 

the size of the granules. As the same process variables had an opposite effect on 

the amount of fines and the amount of oversized agglomerates (Fig. 4a and b), the 

changes in yield before milling could not be explained by the variation of a specific 

process variable. Milling of the granules resulted in breakage of oversized 

agglomerates and extra formation of fines (19.2 ± 3.4%). As a higher number of 

kneading elements and barrel temperature led to less fines before milling, as 

already described above, and a lower increase of fines by milling, the process yield 

after milling could be increased (55.0 to 84.7%) by adjusting these process 

variables (Fig. 5). 

 

For all granules, the friability, an estimate for granule strength, was low (1 to 

11%). However, using more kneading elements and higher barrel temperature 
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yielded less friable granules (Fig. 6). Kneading elements improved the distribution 

of granulation liquid through the powder bed and densified the material, resulting 

in stronger granules which are less liable to mechanical stress [7]. Besides, by 

increasing the barrel temperature, more theophylline and lactose dissolved in the 

granulation liquid which formed solid bridges after recrystallisation during drying. 

 

The results for bulk and tapped density are shown in Fig. 7. The bulk densities 

ranged from 0.553 to 0.667 g/ml, and the tapped densities from 0.632 to 0.728 

g/ml. The number of kneading elements significantly affected granule bulk and 

tapped density. Increasing the number of kneading elements resulted in higher 

bulk and tapped densities. When a higher number of kneading elements were 

used more irregular shaped coarse granules were formed, in agreement with 

Thompson and Sun [12], leading to a better packing of the granules when poured 

into the cylinder. The compressibility index was used to describe the flowability of 

the granules. Compressibility indices marginally differed from each other and did 

not exceed 15%, indicating a good flowability of the granules [22]. No significant 

relationships between the flow properties and any of the process variables were 

detected. 

 
3.3. Influence of process variables on tablet quality 

 

Tablets were made from the milled fraction of the granules. No extragranular 

disintegrant was added to the formulation in order to avoid the loss of significant 

relationships between process variables and tablet properties. In accordance to 

Djuric and Kleinebudde [15], shortening of the kneading section during twin screw 

granulation yielded granules with a lower density. Compression of these granules 

resulted in tablets with a higher tensile strength (1.24 to 1.78 MPa) (Table 3) due 

to the lower resistance towards deformation during compression. 

 

For all tablets, the friability was low (0.17 to 0.30%). However, barrel 

temperature had statistically significant impact on the tablet friability. A higher 

barrel temperature during granulation resulted in tablets with a lower friability. 

Regarding the porosity of the tablets (19.1 to 24.8%), no significant process 

variables were detected. 

 

The use of more kneading elements during granulation created granules with 

a higher density [15]. Because of the increased density, the percolation of liquids 
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inside these granules is hampered resulting in tablets with a higher disintegration 

time (470 to 1256 sec). Besides, elongation of the kneading zone during 

granulation decreased the amount of fines, which are important for disintegration. 

 

Next to the disintegration time, it was investigated if process variables could 

significantly influence the drug release profile, as this is the most important 

characteristic for tablets. As the aim of this study was to compare drug release 

profiles of tablets made from granules produced with different process settings, no 

disintegrant was added to the formulation. Again, the number of kneading 

elements showed a significant impact on the dissolution results (Fig. 8). Similar to 

the disintegration results, tablets made from denser granules (i.e. higher number 

of kneading elements) showed a slower drug release profile (69.8 to 86.6% 

released after 45min). These results were in agreement with the conclusions 

made by Dhenge et al. [18]. In this paper, it was noticed that at increased powder 

feed rate denser granules were produced which took longer time to release the 

salt embedded in them. 

 

4. Conclusions 
 

This study was designed to screen theophylline (125mg) tablets manufactured 

via twin screw granulation. Using a D-optimal experimental design, the effect of 

several process variables on the granulation process, granule and tablet quality 

was evaluated. No significant relationships for angle of kneading elements and 

screw speed were found. Increased throughput and number of kneading elements 

resulted in higher torque values during granulation. More friction due to elongation 

of the kneading zone resulted in a higher temperature increase of the barrel wall. 

A higher number of kneading elements and barrel temperature resulted in less 

fines, more oversized agglomerates and less friable granules. As barrel 

temperature had an important effect on the granule properties, this parameter 

should be carefully controlled, especially when using good water soluble 

components e.g. lactose. Because of the short residence time during twin screw 

granulation, the binder was more effective when it was already dissolved in the 

granulation liquid. The tensile strength, disintegration time and dissolution profile 

of tablets depended on the number of kneading elements. Increasing the number 

of kneading elements yielded denser granules which were less deformable during 

compression. Percolation of liquids inside these granules is hampered, resulting 

in tablets with a longer disintegration time and a slower drug release. The results 
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showed that the quality of granules and tablets can be optimized by adjusting 

specific process variables (number of kneading elements, barrel temperature and 

binder addition method) during a granulation process using a continuous twin 

screw granulator. 
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Figures 

1 ConsigmaTM-25 granulation unit: high-shear twin screw granulator (a) with K-Tron 

KT20 loss-in-weight feeder (b) and gravimetric liquid addition on both screws (c). 

2 Detail of twin screws with feed segment (a), liquid addition position (b) and work 

segment (c). 

3 Contour plot for torque as a function of throughput (kg/h) and number of kneading 

elements. 

4 Effect plots for particle size distribution of granules before milling: fines (a) and 

oversized agglomerates (b). Numb: Number of kneading elements; T: Barrel 

temperature; Bind (wet): Binder addition via granulation liquid; Scr: Screw speed; 

Angle: Angle of kneading elements; Thr: throughput. 

5 Contour plot for yield (150-1400µm) of milled granules as a function of barrel 

temperature (°C) and number of kneading elements. 

6 Surface plot for friability of milled granules as a function of barrel temperature (°C) 

and number of kneading elements. 

7 Bulk and tapped densities of milled granules. 

8 Effect plot for percentage drug released after 45 min. Numb: Number of kneading 

elements; Angle: Angle of kneading elements; Thr: throughput; T: Barrel temperature; 

Scr: Screw speed; Bind (wet): Binder addition via granulation liquid. 
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Tables 

Table 1: Overview of factor settings from the experimental design. 

Table 2: Characterization of granulation process and granules from the experimental 

design. 

Table 3: Characterization of tablets from the experimental design. 
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Figure 1: ConsigmaTM-25 granulation unit: high-shear twin screw granulator (a) with K-

Tron KT20 loss-in-weight feeder (b) and gravimetric liquid addition on both screws (c). 
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Figure 2: Detail of twin screws with last part of feed segment (a), liquid addition position 

(b) and work segment (c). 
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Figure 3: Contour plot for torque as a function of throughput (kg/h) and number of 
kneading elements. 
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Figure 4: Effect plots for particle size distribution of granules before milling: fines (a) and 

oversized agglomerates (b). Numb: Number of kneading elements; T: Barrel temperature; 

Bind (wet): Binder addition via granulation liquid; Scr: Screw speed; Angle: Angle of kneading 

elements; Thr: throughput. 
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Figure 5:  Contour plot for yield (150-1400µm) of milled granules as a function of barrel 

temperature (°C) and number of kneading elements. 
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Figure 6:  Surface plot for friability of milled granules as a function of barrel temperature 

(°C) and number of kneading elements. 
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Figure 7:  Bulk and tapped densities of milled granules. 
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Figure 8: Effect plot for percentage drug released after 45 min. Numb: Number of 

kneading elements; Angle: Angle of kneading elements; Thr: throughput; T: Barrel 

temperature; Scr: Screw speed; Bind (wet): Binder addition via granulation liquid. 
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Table 1: Overview of factor settings from the experimental design. 

Run Throughput 
(kg/h) 

Screw speed 
(rpm) 

Kneading elements 
Barrel T (°C) Binder 

addition Number  Angle (°) 

1 17.5 775 4 60 32.5 wet 

2 25 600 2 90 25 wet 

3 25 950 2 30 40 dry 

4 10 600 12 30 40 dry 

5 25 600 12 30 40 wet 

6 25 950 2 30 25 wet 

7 25 600 12 60 25 dry 

8 25 950 12 30 25 dry 

9 25 600 2 90 40 dry 

10 10 600 2 30 25 dry 

11 10 950 2 90 25 dry 

12 25 950 6 90 40 wet 

13 10 950 12 30 25 wet 

14 17.5 775 4 60 32.5 wet 

15 17.5 775 4 60 32.5 wet 

16 10 950 2 30 40 wet 

17 10 600 6 90 40 wet 

18 10 950 12 60 40 dry 
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Table 2: Characterization of granulation process and granules from the experimental design. 

 Process  Unmilled granules Milled granules 

Run Torque  
(Nm) 

Barrel T 
increase 

(°C) 

Time to 
steady state 

(sec) 
<150µm 

(%) 
150-1400µm 

(%) 
>1400µm 

(%) 
<150µm 

(%) 
710-1400µm 

(%) 
150-1400µm 

(%) 
Friability  

(%) 
Compressibility 

(%) 

1 1.5 0.0 250 6.6 51.1 42.2 29.3 18.5 70.7 8 ± 0 8 ± 1 

2 2.2 0.0 100 20.2 48.8 30.9 45.0 13.0 55.0 10 ± 1 10 ± 1 

3 2.1 0.0 25 10.8 55.8 33.3 35.2 15.0 64.8 7 ± 0 12 ± 1 

4 4.0 10.0 350 1.3 41.3 57.5 15.7 30.9 84.3 3 ± 0 10 ± 3 

5 7.3 10.3 335 0.9 33.7 65.4 15.3 33.2 84.7 3 ± 0 8 ± 1 

6 2.4 0.4 165 11.3 47.1 41.5 33.9 20.1 66.1 9 ± 1 7 ± 1 

7 5.6 12.5 285 11.2 60.0 28.8 29.3 19.1 70.7 2 ± 0 8 ± 0 

8 6.6 21.5 535 1.8 43.6 54.6 17.9 28.1 82.1 9 ± 1 9 ± 1 

9 1.9 0.0 35 16.5 51.4 32.1 36.6 16.8 63.4 11 ± 1 9 ± 1 

10 1.3 0.3 60 14.6 57.7 27.7 34.1 18.2 65.9 9 ± 0 10 ± 0 

11 0.9 0.1 45 19.0 61.5 19.5 37.6 15.6 62.4 9 ± 0 9 ± 1 

12 4.9 6.2 250 1.0 16.7 82.3 18.2 28.6 81.8 1 ± 0 9 ± 0 

13 4.5 20.2 335 2.4 46.2 51.4 19.5 28.1 80.5 4 ± 0 7 ± 1 

14 1.7 0.1 215 8.7 51.8 39.5 31.1 17.6 68.9 7 ± 1 10 ± 1 

15 1.4 0.0 275 11.0 54.4 34.6 33.3 17.0 66.7 7 ± 0 9 ± 1 

16 1.3 0.0 200 7.6 53.9 38.5 27.4 20.0 72.6 5 ± 0 10 ± 1 

17 4.4 6.0 300 1.6 52.4 46.1 17.2 27.7 82.8 3 ± 0 7 ± 2 

18 2.8 8.5 385 2.4 53.4 44.2 17.9 26.7 82.1 3 ± 0 9 ± 0 
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Table 3: Characterization of tablets from the experimental design. 

Run Tensile strength 
(MPa) 

Porosity 
(%) 

Friability 
(%) 

Disintegration 
time (s) 

% release 
after 45 min 

1 1.78 ± 0.04 19.0 ± 2.1 0.25 772 ± 80 73.8 ± 3.1 

2 1.48 ± 0.06 15.2 ± 1.9 0.30 730 ± 66 76.8 ± 4.3 

3 1.57 ± 0.09 17.9 ± 0.5 0.26 828 ± 25 73.7 ± 5.6 

4 1.32 ± 0.05 16.0 ± 1.9 0.24 927 ± 49 72.2 ± 2.1 

5 1.36 ± 0.05 19.4 ± 1.0 0.23 649 ± 45 71.1 ± 2.2 

6 1.43 ± 0.06 19.0 ± 0.8 0.26 605 ± 75 73.9 ± 1.9 

7 1.45 ± 0.04 16.1 ± 1.1 0.27 774 ± 44 74.0 ± 2.0 

8 1.24 ± 0.06 16.9 ± 1.1 0.23 766 ± 57 77.8 ± 5.5 

9 1.52 ± 0.06 17.2 ± 1.2 0.22 834 ± 59 73.4 ± 4.8 

10 1.52 ± 0.08 15.7 ± 1.0 0.27 470 ± 50 82.1 ± 6.0 

11 1.61 ± 0.06 18.8 ± 0.2 0.26 529 ± 59 77.4 ± 1.4 

12 1.54 ± 0.07 17.5 ± 0.3 0.19 825 ± 108 71.9 ± 4.4 

13 1.27 ± 0.08 16.6 ± 0.6 0.23 938 ± 78 70.9 ± 3.5 

14 1.52 ± 0.04 20.1 ± 0.7 0.21 536 ± 43 81.7 ± 1.7 

15 1.51 ± 0.05 19.6 ± 0.9 0.19 557 ± 37 76.5 ± 1.3 

16 1.63 ± 0.07 19.9 ± 1.1 0.21 485 ± 62 86.6 ± 3.4 

17 1.35 ± 0.09 17.9 ± 0.9 0.19 765 ± 61 73.1 ± 6.0 

18 1.44 ± 0.08 18.4 ± 0.4 0.17 1256 ± 49 69.8 ± 3.7 
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