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Is the meiofauna a good indicator for climate change
and anthropogenic impacts?

Daniela Zeppilli1,10 & Jozée Sarrazin1
& Daniel Leduc2 & Pedro Martinez Arbizu3

&

Diego Fontaneto4 & Christophe Fontanier5 & Andrew J. Gooday6 &

Reinhardt Møbjerg Kristensen7
& Viatcheslav N. Ivanenko8

& Martin V. Sørensen7
&

Ann Vanreusel9 & Julien Thébault10 & Marianna Mea11 & Noémie Allio10 &

Thomas Andro10 & Alexandre Arvigo10 & Justine Castrec10 & Morgan Danielo10 &

Valentin Foulon10
& Raphaelle Fumeron10

& Ludovic Hermabessiere10 & Vivien Hulot10 &

Tristan James10 & Roxanne Langonne-Augen10
& Tangi Le Bot10 & Marc Long10 &

Dendy Mahabror10 & Quentin Morel10 & Michael Pantalos10 & Etienne Pouplard10
&

Laura Raimondeau10
& Antoine Rio-Cabello10 & Sarah Seite10 & Gwendoline Traisnel10 &

Kevin Urvoy10 & Thomas Van Der Stegen10
& Mariam Weyand10

& David Fernandes12

Received: 21 October 2014 /Revised: 1 June 2015 /Accepted: 16 June 2015 /Published online: 5 July 2015
# The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Our planet is changing, and one of the most press-
ing challenges facing the scientific community revolves
around understanding how ecological communities respond
to global changes. From coastal to deep-sea ecosystems, ecol-
ogists are exploring new areas of research to find model or-
ganisms that help predict the future of life on our planet.
Among the different categories of organisms, meiofauna offer
several advantages for the study of marine benthic ecosys-
tems. This paper reviews the advances in the study of
meiofauna with regard to climate change and anthropogenic
impacts. Four taxonomic groups are valuable for predicting

global changes: foraminifers (especially calcareous forms),
nematodes, copepods and ostracods. Environmental variables
are fundamental in the interpretation of meiofaunal patterns
and multistressor experiments are more informative than sin-
gle stressor ones, revealing complex ecological and biological
interactions. Global change has a general negative effect on
meiofauna, with important consequences on benthic food
webs. However, some meiofaunal species can be favoured
by the extreme conditions induced by global change, as they
can exhibit remarkable physiological adaptations. This review
highlights the need to incorporate studies on taxonomy,
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genetics and function of meiofaunal taxa into global change
impact research.

Keywords Meiofauna . Climate change . Anthropogenic
impacts . Biomonitoring . Natural observations and
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Introduction

The role of humans in altering the environment at a global
scale is becoming increasingly evident (IPCC 2014); thus, it
is crucial to understand the consequences of changes for life
on Earth and human societies (Rudd 2014). In particular, the
consequences of human actions on the environment need to be
understood to mitigate their impacts. Since the effects will
occur at a broad scale, understanding and attenuating potential
global changes represents a tremendous scientific challenge.

The major global change that we are experiencing is linked
to climate. Climate can be defined as the average weather in
terms of the mean and its variability over a certain time span
(Baede et al. 2001), while climate change can be defined as
any systematic change in the climate system that is sustained
over several decades or longer (Sijp et al. 2014). In the present
study, we consider mainly the current climate change. Global
surface warming has taken place at a rate of 0.74±0.18 °C
over the last 100 years (1906–2005) and the warming rate over
the last 50 years is almost twice that of the entire 100-year
period (IPCC 2007). Global warming itself expresses only one
aspect of climate change. Global sea level rising, melting of
ice sheets, and extreme weather events are other important
aspects of climate change (Freedman 2014). Modelling stud-
ies predict that climate change over the next century will have
profound consequences for marine biota, as well as for human
populations living in coastal regions (Jones et al. 2013; Mora
et al. 2013). With a constantly growing population and high
energetic demands, human activities significantly affect eco-
systems (Bampton 1999), and anthropogenic impacts are driv-
ing the observed changes (Barron 1989). Determining the
ecological impact of humans on marine ecosystems requires
a deep understanding of their interactions with these ecosys-
tems (Kennedy and Jacoby 1999).

When compared with other ecosystem compartments in-
cluded in models that aim at predicting and understanding
global changes, meiofauna offer several advantages.
Meiofauna is a collective name for one of the most diversified
communities of the marine realm, including small organisms,
unicellular protists and multicellular metazoans that live in
aquatic sediments (Giere 2009; Fig. 1). Due to their high
abundance and diversity, their widespread distribution, their
rapid generation time and fast metabolic rates, meiofaunal
organisms are vital contributors to ecosystem function, includ-
ing nutrient cycling and the provision of energy to higher

trophic levels (Woodward 2010). These characteristics make
meiofaunal organisms excellent candidates to test general eco-
logical hypotheses and theories (Jessup et al. 2004;
Nascimento et al. 2011, 2012; Bonaglia et al. 2014). However,
this group represents an often neglected component of marine
biodiversity (Curini-Galletti et al. 2012) and is generally poor-
ly studied (particularly in the deep sea) because most applied
programmes target the larger macrofauna, which are more
readily identifiable and countable than meiofauna
(Schratzberger et al. 2000).

To assess the general potential of meiofauna for predicting
and assessing global change and other anthropogenic
stressors, here we review advances in the study of meiofauna
with regard to climate change and human impacts, preceded
by a background session about the importance ofmeiofauna in
marine benthic ecosystems. We conclude by suggesting per-
spectives and limits for the use of meiofauna as model organ-
isms in future research related to global change.

Background

The term meiofauna (from the Greek μείων smaller) was
coined in 1942 by Molly F. Mare Bto define an assemblage
of benthic metazoans that can be distinguished from macro-
fauna by their small sizes.^ Considering the size boundaries
(operationally defined based on the standardised mesh size of
sieves with 1000 μm and 20 μm as upper and lower limits,
respectively; Danovaro 2010), protists are also considered part
of meiofauna (Giere 2009). Meiofauna represent the most di-
versified group in the marine realm, encompassing 24 of the
35 animal phyla, as well as one important group of protists, the
foraminifera (Giere 2009). Meiofauna are mostly found in and
on soft sediments, but also on and among epilithic plants and
other types of substrata (e.g., animal tubes; Pinto et al. 2013).
These small organisms can spend their complete life cycle
without reaching sizes greater than 1 mm (permanent
meiofauna), or be found in this size class for just a part of their
life cycle (e.g., juveniles of macrofauna, referred to as tempo-
rary meiofauna; Hentschel and Jumars 1994). They are the
most abundant size class in the benthos and are closely con-
nected to other compartments of the benthos (including pro-
karyotes and macrofauna; Baldrighi et al. 2013). They play an
important role in benthic food webs, not only as consumers
(feeding on detritus, diatoms and algae, and preying on other
small metazoans; Pergent et al. 1994; Duarte and Cebrian
1996; Gee and Somerfield 1997; Mateo and Romero 1997;
Gwyther 2003; Torres-Pratts and Schizas 2007; Mascart et al.
2013, 2015), but also as producers (being a food source for
macrofauna and fish; Gerlach 1978; Lebreton et al. 2011;
Vinagre et al. 2012; Carpentier et al. 2014). The abundance,
diversity, distribution and functional properties of meiofauna
can be affected by several abiotic factors, including
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temperature, salinity, hydrodynamic and sedimentary process-
es, sediment grain size, oxygenation level and food availabil-
ity (Ingels et al. 2011; Lizhe et al. 2012; Ngo et al. 2013;
Zeppilli et al. 2013; Górska et al. 2014; Pusceddu et al.
2014b), and also, by biotic factors such as predation and com-
petition (Tita et al. 2000; Danovaro et al. 2007; Nascimento
et al. 2011; Braeckman et al. 2013; Boldina et al. 2014).
Meiofauna are characterised by a high sensitivity to environ-
mental changes due to their short generation time and the lack
of pelagic larval dispersion for the dominant meiofaunal
groups (Bongers and Ferris 1999).Meiofauna can alsomodify
their environments and promote the degradation of organic
matter by stimulating microbial activity and bioturbating the
sediment (Aller and Aller 1992; Giere 2009).

Marine meiofaunal diversity and ecosystem functioning

Ecosystem functions are considered as the sum of biological,
geochemical, and physical processes that operate within an
ecosystem, sustaining its overall performance and supplying
ecosystem services (Edwards et al. 2014). Increased human
pressure contributes to depauperate ecosystems, thereby po-
tentially affecting their ability to provide essential services.
The potential ecological consequences of biodiversity loss
and the relationships between species diversity and ecosystem
processes have aroused considerable interest in the scientific
community (Loreau et al. 2001). It is now recognised that
higher functional biodiversity contributes to a stable and resil-
ient ecosystem (Tomimatsu et al. 2013). The marine environ-
ment covers a large majority (71 %) of the planet’s surface,

shows high levels of diversity at all scales, and is essential to
global fluxes of materials, nutrients, and energy to other eco-
systems (Hooper et al. 2005). Understanding the relationship
between diversity and stability is one of the major challenges
in marine ecosystems ecology (Borja 2014), and the highly
diverse meiofauna were only recently included in ecosystem
functioning research. Several studies have shown that
meiofaunal species richness has a positive effect on ecosystem
functions (Covich et al. 2004). However, shallow-water soft-
sediment studies show that species identity and function
seems to bemore important than species richness for the main-
tenance of ecosystem functioning (Radwell and Brown 2008).
For example, in an experimental study, De Mesel et al. (2006)
provide evidence for an idiosyncratic relationship between
nematode species diversity and function in low-diversity sys-
tems. Furthermore, limited functional overlap between nema-
tode species is observed in low diversity systems (De Mesel
et al. 2006; Gingold et al. 2013). Using deep-sea nematodes as
model organisms, Danovaro et al. (2008) suggest that high
nematode diversity may have a positive impact on deep-sea
ecosystem functioning. This exponential diversity-function
relationship may only apply to low diversity assemblages
due to increased competition or greater functional redundancy
inmore diverse assemblages (Leduc et al. 2013). Although the
positive relationship between diversity and ecosystem func-
tioning is well defined when nematode species diversity is low
in deep-sea ecosystems, the correlation is absent when species
diversity is high (Leduc et al. 2013). This may explain why in
the South Pacific, the relationship between diversity and eco-
system functioning appears weaker, whereas in other regions,

Fig. 1 Microscopic view of meiofauna. Representatives of selected meiofaunal taxa: a, b) Nematoda, c) Tardigrada, d) Kinorhyncha, e) Copepoda, f, g)
Foraminifera. Credits: a, b, c, d: D. Zeppilli (IFREMER); e: Moorea Biocode project; f: C. Fontanier (IFREMER); g: Natural HistoryMuseum, London
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such as the Atlantic Ocean and Mediterranean Sea, the rela-
tionship is stronger (Leduc et al. 2013). On the continental
slope of the northwestern Mediterranean Sea, deep-sea fisher-
ies have caused the collapse of benthic meiofaunal biodiver-
sity and ecosystem functioning, with potential consequences
on biogeochemical cycles (Pusceddu et al. 2014a). Moreover,
a recent study assessed the influence of meiofauna on the
relationship between macrofaunal biodiversity and ecosystem
functioning (Piot et al. 2014), highlighting the fact that
meiofauna may have a strong direct impact on benthic prop-
erties, by modifying the interactions between macrofaunal
species, and therefore their impacts on ecosystem properties.

The ecological role of meiofauna in benthic ecosystems
can be assessed by measuring the flow of energy. Small or-
ganisms are characterised by high dynamics (oxygen con-
sumption and metabolism) and turnover (Gerlach 1971).
Compared with macrofauna, meiofauna usually have low
standing stock biomass, but high production (Giere 2009).
In some shallow ecosystems, such as tidal flats, meiofaunal
secondary production frequently exceeds that of macrofauna
(Warwick et al. 1979; Kuipers et al. 1981). Small benthos,
including meiofauna, clearly contribute substantially to pro-
duction in sandy sublittoral ecosystems: up to 40% of the total
benthic metabolism (Fenchel 1978). Generally, the biomass
and organic matter cycling by small heterotrophs (meiofauna
and bacteria) increase in importance with depth when re-
sources are limited (Heip et al. 2001; Thistle 2001; Rowe
et al. 2003; Baguley et al. 2005; Rex et al. 2006; Gontikaki
et al. 2011). The depiction of meiofauna in energy flux dia-
grams suffers from a lack of ecological information for many
constituent taxa (Giere 2009). The central role of detritus in
the meiofaunal energy budget (Escaravage et al. 1989) derives
from the consumption of detritus and microorganisms by the
most abundant meiofaunal groups, nematodes and foraminif-
era (Gooday 2003; Murray 2006). Grazing meiofauna stimu-
late microbial activity by keeping the microbial population in
its reproductive log-phase (Giere 2009). Many studies show
that meiofauna feed on benthic microalgae, freshly
sedimented phytodetritus and seagrass detritus (Lee 1980;
Rudnick 1989; Riera et al. 1996; Olafsson and Elmgren
1997; Buffan-Dubau and Carman 2000; Gooday 2003; Mur-
ray 2006; Torres-Pratts and Schizas 2007; Mascart et al. 2013,
2015). Nematode responses to food availability as well as to
other environmental factors can be species-specific with a
complex relationship between species diversity and function
(Dos Santos et al. 2008). Meiofauna represent, in turn, an
important food resource for macrofauna and a variety of juve-
nile fish (Giere 2009). In situ and laboratory experiments give
fairly accurate information on the role of foraminifera in the
food web and energy transfer within benthic environments
(e.g., Nomaki et al. 2005a, 2005b, 2006, 2009, 2010, 2011;
Würzberg et al. 2011). Oxygen consumption rates in
meiofaunal organisms are greater than in macrofaunal

organisms (Mahaut et al. 1995). Meiofauna may be five times
more metabolically active than macrofauna, consuming be-
tween 200 and 2000 mm3 O2/h/g wet weight compared to
200 to 500 mm3 O2/h/g wet weight for macrofauna in sublit-
toral sediments (Gerlach 1971). In the deep sea, the respiration
rate of meiofauna increases with depth, whereas it decreases in
larger organisms (Mahaut et al. 1995). For instance, deep-sea
foraminifera (e.g., Uvigerina semiornata) from the Indo-
Pakistan oxygen minimum zone (OMZ) dominate the uptake
of fresh organic matter when bottom-water oxygenation is
very low (~5 mmol/L), whereas larger metazoans
(polychaetes) are more efficient in food acquisition when ox-
ygenation is higher (Woulds et al. 2007). Furthermore, benthic
foraminifers are capable of denitrification as an alternative
metabolic pathway (Risgaard-Petersen et al. 2006; Piña-
Ochoa et al. 2010a, b).

Global climate change

Climate change, caused by an increase in atmospheric carbon
dioxide (CO2) over the past centuries, has already caused sig-
nificant shifts in marine and terrestrial ecosystems (Ingels
et al. 2012). The direct consequences of increasing CO2 in-
clude the increase in ocean temperature (Bindoff et al. 2007)
and acidity (Doney et al. 2009). The ocean temperature is
warming (the upper 75 m of seawater has warmed by
0.11 °C per decade from 1971 to 2010), the sea level is rising
(global mean sea level has risen by 0.19 m during the 1901–
2010 period) and sea surface salinity has increased by 0.13
PSS78 (Practical Salinity Scale 1978) from 1950 to 2008
(Durack and Wijffels 2010). CO2 concentrations in the atmo-
sphere have increased up to 40 % since pre-industrial times,
primarily due to fossil fuel combustion and carbon emissions
from land (IPCC 2014). Historically, the oceans absorbed ap-
proximately one-quarter of all CO2 released into the atmo-
sphere, resulting in a 26 % increase in the acidity of the ocean
(IPCC 2014). Over the last four decades, the extent of hypoxic
zones and OMZs has significantly increased (Diaz and Rosen-
berg 1995; Rabalais et al. 2010; Stramma et al. 2008 2010).
Other changes may occur in ocean stratification and circula-
tion (Doney et al. 2012). Climate change probably affects the
number of hurricanes and causes changes in current systems,
leading to the mass destruction of habitats. The speed of the
current climate change is comparable with other dramatic ep-
isodes in our planet’s history that led to mass extinction events
(Van De Schootbrugge and Gollner 2013).

Modelling studies predict global changes in ocean temper-
ature, pH, oxygenation and primary production over the next
century, with profound potential consequences for marine bi-
ota in general, as well as for human populations living in
coastal regions (Jones et al. 2013; Mora et al. 2013). The
effects of climate change are particularly evident in the Arctic
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Ocean and some parts of the Antarctic Ocean (Doney et al.
2012). In the latter, the low sea-surface temperature, leading to
increased CO2 solubility and upwelling of rich CO2 deep wa-
ter, has led to rapid acidification rates (Guinotte and Fabry
2008). In the Southern Hemisphere, the Antarctic Peninsula
is experiencing one of the fastest rates of regional climate
change on Earth (Turner et al. 2009) and Antarctic ecosystems
are particularly vulnerable and sensitive to these changes
(Ingels et al. 2012). Global climate warming also has second-
ary effects, such as large-scale ice-shelf disintegration events,
changes in the availability, quantity and quality of food, and
increased glacier melting leading to increased coastal turbidity
and salinity modifications (Ingels et al. 2012). A summary of
studies concerning the impact of climate change on marine
meiofauna is reported in Tables 1 and 2.

Impact of global climate change on meiofauna

Response to ocean warming

Recent studies have shown that meiofaunal communities re-
spond to warming both in seawater and freshwater ecosystems
(O’Gorman et al. 2012; Gingold et al. 2013). In freshwaters,
macrofaunal and meio community composition has been
shown to change dramatically across a thermal gradient, with
indications of low food-web stability in warmer currents
(O’Gorman et al. 2012). In subtropical meiofaunal communi-
ties, an increase of temperature negatively affects species-rich
communities, causing the mortality of dominant species,
which may have serious consequences for the benthic food
web (Gingold et al. 2013). In the deep eastern Mediterranean
Sea, global warming has altered the carbon and nitrogen cy-
cles and has had negative effects on deep-sea bacteria and
benthic meiofauna in terms of abundance and diversity
(Danovaro et al. 2004a). Furthermore, deep-sea meiofaunal
secondary production is expected to decrease in many parts
of the ocean due to ocean warming (Smith et al. 2008; Mora
et al. 2013).

An experimentally induced warming of 4 °C in coastal
sediments showed that heterotrophic variables (bacterial pro-
duction, meiofaunal biomass, and fluxes of oxygen) respond
more clearly to warming than do autotrophic variables (oxy-
gen production, nutrient uptake, and total alkalinity;
Alsterberg et al. 2011). Another in situ experiment showed
that global warming has also altered body-size population
structure, resulting in a disruption in top-down control, where-
as eutrophication embodies changes in bottom-up forcing
(Jochum et al. 2012). In another mesocosm experiment, the
reduction in top-predator body mass enabled the development
of a greater intermediate fish predator biomass, and in turn,
suppressed key micrograzers (mainly meiofaunal copepods),
which led to an overall increase in microalgal biomass
(Jochum et al. 2012). Even so, results coming from short-

termmesocosm experiments have to be interpreted cautiously,
considering that climate change takes place over much longer
time scales than ecological mechanisms might compensate
for. Several culture experiments showed the strict relationship
between temperature and nematode life cycles (e.g., Gerlach
and Schrage 1971; Hopper et al. 1973; Warwick 1981b). In
general, life cycles become shorter with increased temperature
(Gerlach and Schrage 1971; Hopper et al. 1973), and in some
cases at low temperatures, nematodes can shift to a vivipary
reproduction mode (Gerlach and Schrage 1971). Moens and
Vincx (2000) investigated the influence of salinity and tem-
perature on the life history of two estuarine nematode species.
They showed that temperature significantly influenced both
nematode species, while salinity had relatively minor effects
on fecundity and development times, but strongly impacted
juvenile viability at the end of the salinity range (0 and 40‰;
Moens and Vincx 2000). Furthermore, larger benthic forami-
nifera (e.g., Amphistegina, Heterostegina), hosting endosym-
biotic algae, suffer remarkable bleaching (symbiont or pig-
ment loss) due to temperature-induced stress in culture exper-
iments (e.g., Talge and Hallock 2003; Schmidt et al. 2011).

Response to ocean acidification

A number of acidification experiments (ex situ and in situ)
focusing on meiofauna compartment have been conducted
on shallow-water and deep-sea benthic ecosystems (e.g., Bar-
ry et al. 2004; Thistle et al. 2006; Ricketts et al. 2009; Fleeger
et al. 2010; McIntyre-Wressnig et al. 2013). The intensity of
response varies with the distance and intensity of the acidifi-
cation source (Ricketts et al. 2009). In general, an increase in
mortality, combined with a decrease in species richness, is
observed (Thistle et al. 2006). In coral reefs, coral bleaching
caused by high temperature and increasing acidity led to the
replacement of coral reefs by algae and favoured the develop-
ment of meiofaunal communities on dead corals (Hoegh-
Guldberg et al. 2007). In an experimental mesocosm, acidifi-
cation led to changes in nematode communities in sediments
affected by burrowing urchins (Dashfield et al. 2008). Another
experiment proved that acidification had a significant impact
on the structure and diversity of nematode communities, es-
pecially in sandy sediment nematofauna (Widdicombe et al.
2009). On the other hand, a 56-day CO2 enrichment in a
coastal microcosm caused no significant differences in the
abundance of total meiofauna (nematodes and harpacticoid
copepods; Kurihara et al. 2007). Similarly, fitness and survival
of larger benthic foraminifera sampled from reefs were not
directly affected by increased partial pressure of CO2 and the
concomitant decrease in pH and calcite saturation states. Nev-
ertheless, a range of non-lethal effects, including partial test
dissolution and symbiont loss, was observed (McIntyre-
Wressnig et al. 2013), and several studies have reported the
dissolution of calcareous foraminiferal tests in low pH
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sediments (Green et al. 1993; Mojtahid et al. 2008). In a
mesocosm experiment, which combined acidification and
warming of the water, the abundance and diversity of macro-
fauna were negatively affected, while the abundance of nem-
atodes increased due to the reduction in predation and com-
petition (Hale et al. 2011).

Deep-sea sedimentary organisms are expected to be more
sensitive to perturbations than are shallow-water ones, be-
cause natural deep-sea CO2 concentrations and pH are less
variable than in shallow water (Fleeger et al. 2010). Changes
in foraminiferal assemblages due to acifidification may have
consequences for specialist predators, such as certain isopods
and many scaphopods (Ingels et al. 2012). A series of in situ
experiments at 3600 m off the coast of Monterey Bay
(California) were performed by releasing small pools of liquid
CO2 to evaluate the potential impacts of a large scale deep-sea
carbon dioxide storage program on benthic deep-sea commu-
nities (Barry et al. 2013). The results showed that meiofauna
experienced high mortalities after exposure to episodic pH
changes (Barry et al. 2004; Carman et al. 2004; Thistle et al.
2005, 2006, 2007). These changes may lead to a decline in
meiofaunal biomass, although the decrease is likely to be less
than that for larger size classes (macrofauna and megafauna;
Jones et al. 2013). These experiments also showed the disso-
lution of calcareous foraminiferal tests leading to a decrease in
the total number of foraminifera and species richness and an
increase in the relative abundance of non-calcareous
(agglutinated) forms (Ricketts et al. 2009).

Response to ocean deoxygenation

Because oxygen solubility is inversely correlated with tem-
perature, global warming is already leading to a reduction
in oceanic oxygen concentrations (Matear and Hirst 2003).
Global warming intensifies hypoxia in OMZs and leads to
geographical expansion of existing OMZs; for example, in
the eastern Pacific and the Arabian Sea (Stramma et al.
2012). An increase in the number of OMZs is expected in
the future (Stramma et al. 2012). In deeper waters, naturally
occurring OMZs are located mainly in the eastern Pacific,
the Arabian Sea and the Bay of Bengal (Helly and Levin
2004), and they harbour organisms that are adapted to low
levels of oxygen..

Prolonged exposure to hypoxic conditions affects the entire
meiofaunal community (Wetzel et al. 2001; Sergeeva and
Zaika 2013). Meiofauna appear to better tolerate low concen-
trations of oxygen than macrofauna (Giere 1993). In the core
OMZ regions, where oxygen concentrations typically drop
below 0.1 mL/L, the fauna is primarily made up of small
organisms, dominated by foraminifera and nematodes (Levin
et al. 1991; Levin 2003; Gooday et al. 2009b), while macro-
faunal organisms are rare or absent (Levin et al. 1991; Gooday
et al. 2000, 2009a, 2009b; Levin 2003). Behavioural (escape,

predation reduction) and physiological responses (growth rate
decrease, dormancy, initiation of anaerobic metabolism) to
hypoxic conditions have been recorded in meiofauna
(Rabalais et al. 2002), with a general decrease in meiofaunal
densities due by the disappearance of many species (Diaz and
Rosenberg 1995). This trend was also noticed in the Gulf of
Mexico, where a dramatic decrease in meiofaunal abundance
and biomass was detected in association with hypoxia and
anoxia events (Murrell and Fleeger 1989). Furthermore,
meiofaunal composition can modify according to changes in
the hypoxic zone (Revkov and Sergeeva 2004). However, in
an OMZ on the Oman slope (Arabian Sea), Cook et al. (2000)
showed that food quality rather than oxygen was the major
predictor of nematode abundance, highlighting the importance
of ecological conditions in hypoxic environments.

In situ experiments confirm natural observations: hypoxia
caused a dramatic collapse of the macrofaunal community,
while meiofauna survived (Van Colen et al. 2009). Responses
to stress vary depending on the species as well as the duration,
severity, and frequency of the hypoxic periods (De Troch et al.
2013). In a short incubation time experimental setting, total
meiofaunal density was not affected by anoxic conditions, due
to the dominance of highly tolerant nematodes (De Troch et al.
2013). In another experimental study on Westerschelde Estu-
ary tidal flats (The Netherlands), hypoxia caused a dramatic
change in nematode community composition, with reduced
diversity and abundance of all dominant nematodes, except
for Odontophora spp. (Van Colen et al. 2009). A field exper-
iment carried out in the Northern Adriatic Sea lagoon showed
that nematodes were particularly resistant to the induced
hypoxic/anoxic disturbance (Guerrini et al. 1998).

Nematodes are adapted to extreme environments through
detoxification strategies and high anaerobic capacity (Veit-
Köhler et al. 2009; Vopel et al. 1998). As such, they can be
used to detect changes in oxygen levels in marine environ-
ments. Harpacticoid copepods are the most sensitive
meiofauna taxa to low oxygen concentrations (De Troch
et al. 2013). Several studies have shown that nematodes are
generally more resistant to hypoxia than copepods (Murrell
and Fleeger 1989; Modig and Olafsson 1998; Grego et al.
2013; Sergeeva and Zaika 2013). Copepods may stop feeding
under anoxic conditions, yielding increased primary producer
levels (De Troch et al. 2013). Nevertheless, some eucalanid
copepods have a reduced aerobic metabolism that allows them
to live permanently in OMZs (Teuber et al. 2013), and some
species such as Calanus chilensis show high values of lactate
dehydrogenases, which help their transit through OMZs dur-
ing their daily migration (Teuber et al. 2013). In response to
hypoxia, calcareous foraminifera optimise their oxygen cap-
ture by becoming smaller (Bernhard and Sen Gupta 1999;
Levin 2003), and exhibiting a thinner and more porous shell
(Bradshaw 1961; Phleger and Soutar 1973; Perez-Cruz and
Machain-Castillo 1990; Sen Gupta and Machain-Castillo
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1993; Gooday et al. 2000). These morphological changes im-
prove oxygen exchange, but make them even more vulnerable
to dissolution in the low pH conditions that prevail in organ-
ically enriched OMZs (Gooday et al. 2010). Other likely
mechanisms that allow foraminifera to live in hypoxic and
anoxic sediments have been reviewed by Koho and Piña-
Ochoa (2012). They include the presence of bacterial endo-
symbionts (e.g., Bernhard 2003), the sequestration of chloro-
plasts (Bernhard and Bowser 1999; Grzymski et al. 2002), the
proliferation of peroxisomes and mitochondria (Bernhard and
Bowser 2008), and most notably, the respiration of stored
nitrates (Risgaard-Petersen et al. 2006; Piña-Ochoa et al.
2010a, b). Denitrification as an alternative metabolic pathway,
together with other physiological and ultrastructural adapta-
tions, make foraminifera an important ecological group in
oxygen-depleted environments (e.g., Woulds et al. 2007;
Gooday et al. 2009a, b; Glock et al. 2012; Koho and Piña-
Ochoa 2012; Mallon et al. 2012; Fontanier et al. 2014).

Response to changes in sea level and primary productivity

Rising sea level, by amplifying beach slopes, leads to in-
creased wave exposure and favours the presence of coarser
particles in intertidal ecosystems. This causes declines in the
abundance of meiofauna and macrofauna, with potential ad-
verse consequences for ecosystem functioning (Yamanaka
et al. 2010).

Global warming is likely to have a widespread impact on
the benthos through its effect on surface primary productivity,
which depends on temperature, depth of the mixing layer, pH,
oxygen concentrations and phytoplankton taxa (Wigham et al.
2003; Edwards and Anthony 2004). Deep-sea meiofauna play
important roles in the processing and redistribution of food
reaching the abyssal seafloor (Rex and Etter 2010). A reduc-
tion in the delivery of food to the seafloor linked to warming is
likely to lead to reductions in body size, a trend that would
favour the meiofauna at the expense of larger size classes
(Smith et al. 2008).

Response to increased episodic events

Global change may also modify the cyclical pattern of climate
turbulence, for example, the seasonal ‘El Niño’ event (Collins
et al. 2010). El Niño has led to increased oxygenation of the
central Chilean shelf, an area associated with an OMZ, as well
as an increase in the supply of organic matter (Neira et al.
2001; Levin 2003). The 1997–1998 El Niño events caused
changes in meiofaunal community in an upwelling region
off Central Chile: harpacticoid copepod densities were nine
times higher than during the previous year, but total
meiofaunal densities were 42 % lower (Neira et al. 2001).

Climate change is also expected to increase the intensity
and frequency of episodic events in mid-latitude regions of the

world (i.e., Mediterranean Sea; Somot et al. 2006; Coma et al.
2009). An example of such events is the dense shelf water
cascading (DSWC), particular buoyancy-driven currents caus-
ing dense water to rapidly sink into deep basins due to the
excess density gained by cooling, evaporation and freezing
in the surface layer (Shapiro et al. 2003). A recent study in
the Gulf of Lions (Pusceddu et al. 2013) reported that the 2005
DSWC event resulted in lower abundance, biomass and rich-
ness of all meiofaunal groups compared with other periods
(Pusceddu et al. 2013).

Response to ice-shelf modifications

Global warming may lead to major changes in polar regions
with regard to seasonal changes (ice-cover for example) that
may directly affect meiofauna (Kramer et al. 2011). Change in
climate is expected to form brackish and salinemelt ponds that
may provide new habitats for sympagic meiofauna (Jones
et al. 2013). On the other hand, the melting of polar glaciers
and the resulting glacial melt-water and fine sediments will
lead to greater water-column turbidity, affecting phytoplank-
ton production, and increasing sedimentation rates and burial
disturbance in coastal regions, particularly fjords (W sławski
et al. 2011). Global warming is also responsible for ice-shelf
collapse around the Antarctic Peninsula (Scambos et al.
2003). Raes et al. (2010) investigated the effect of this phe-
nomenon on Antarctic meiobenthos. Sea-ice collapse in
Larsen continental shelf was associated with a phytoplankton
bloom that affected pelagic organisms as well as meiofauna
(Gutt et al. 2011), promoting the abundance and diversity of
nematodes (Raes et al. 2010). A recent study of Rose et al.
(2014) compared meiofauna from Larsen continental shelf
stations with food-limited deep-sea stations in the Western
Weddell Sea, and showed that meiobenthic communities have
not yet recovered from the food-limiting conditions present at
the time of iceshelf coverage. In recently ice-free areas close to
a glacier in the West Antarctic Peninsula, meiofauna showed
relatively low densities. However, the pioneer nematode ge-
nus Microlaimus reached high abundance in these newly ex-
posed sites (Pasotti et al. 2014).

However, the largest global warming event will be when
the opening Arctic creates polynyas into the open Atlantic
Ocean. The New East Water polynya (NEW polynya) has
become larger and larger, now reaching 43.000 km2. The
whole climate in Northern Europe strongly depends on Arctic
polynyas. If both the North East Water polynya (NOW polyn-
ya) and NEW polynya collapse, it will affect the Gulf Stream.
The unique meiofauna associated with NEW polynya will be
endangered, risking extinction (see Huys et al. 1997; Worsaae
and Kristensen 2003). The structure of meiofaunal communi-
ties inside the unique ikaite tufa columns in the Ikka Fjord is
also endangered. These columns are formed by the rare min-
eral ikaite (calcium carbonate hexahydrate, see Buchardt et al.
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1997). Themineral ikaite is metastable, and the ikaite columns
are already melting at a temperature of 6 °C (Buchardt et al.
1997). Meiofauna organisms are found both inside and out-
side the columns. In particular, a species-rich meiofauna com-
munity was described in the Atoll depression, including roti-
fers, kinorhynchs and eutardigrades (Halobiotus crispae), as
well as new species such as the rotifer Notholca ikaitophila
(Sørensen and Kristensen, 2000). The ikaite is only stable in
water below 6 °C and the rising temperature is at risk of
disintegrating the Ikka fjord and consequently its unique
meiofauna community. A diagram of ice-shelf modification
impacts on marine meiofauna is given in Fig. 2.

Meiofaunal organisms as useful test case of climate change
studies

Experimental and modelling approaches are used to identify
and predict ecosystem level changes in response to climate
change (Wernberg et al. 2011). Regarding climate change ef-
fects in Antarctica, Ingels et al. (2012) provided a data syn-
thesis on five important benthic taxa (Nematoda, Foraminif-
era, Isopoda, Amphipoda, Echinoidea). This study shows that
foraminifers, in particular species with calcareous tests, are
likely to be negatively impacted by ocean acidification, while
nematode abundance may be stimulated by high concentra-
tions of CO2 and low O2. Data on benthic macrofauna and

meiofaunal nematode diversity from the shelf margin of the
North Pole suggest that both local (α-) and turnover (β-) di-
versity may be determined by ecological conditions (reported
as food supply, sediment properties, disturbance, flow and
bottom-water oxygen content; Renaud et al. 2006).

Some meiofauna groups, such as foraminifers and ostra-
cods, can be very useful to the study of past climate change
by the recovery of their fossil shell. For an exhaustive review
on this matter, please refer to paleoclimatology studies. Ben-
thic foraminifera, particularly species with calcareous tests,
have a superb fossil record and are widely used by micropa-
leontologists to reconstruct conditions in the historical and
geological pasts (Gooday 2003; Jorissen et al. 2007; Gooday
et al. 2009a; Schönfeld et al. 2012). Their utility in
palaeoceanography and palaeoecology is based on a consid-
erable body of available knowledge regarding the adaptation
of different species to particular environmental conditions
(e.g., Murray 2006). The abundance, rapid reproductive rate
and ecological sensitivity of species to different environmen-
tal conditions alsomakes foraminifera excellent candidates for
monitoring the status of modern ecosystems, particularly
those exposed to human impacts (Alve 1995; Mojtahid et al.
2008; Schönfeld et al. 2012). It is also possible to use forami-
nifera to reconstruct environmental baseline conditions prior
to a disturbance event retrospectively (Gooday et al. 2009a).
Bouchet et al. (2012) analysed benthic foraminiferan diversity

Fig. 2 Diagram of ice-shelf modification impacts on marine meiofauna
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in the top 1-cm layer of sediments with respect to a bottom
water oxygen gradient on the Norwegian Skagerrak coast, and
established a clear pattern of Bbad^ to Bhigh^ Ecological
Quality status (EcoQs). The correlation between bottom-
water oxygenation and foraminiferal diversity suggests that
benthic foraminiferal represent an efficient bio-monitoring
tool to evaluate the EcoQS, a result already evident from
OMZs studies (Gooday et al. 2000, 2009b). The Ostracoda
fossil record is of greatest value for tracing palaeo-climate
events, providing valuable information on past water salinity,
temperature and chemistry, hydrodynamic conditions, sub-
strate characteristics, climate, sea level variations, oxygen
and nutrient availability (Frenzel and Boomer 2005) and an-
thropogenic influences (Irizuki et al. 2015). Yasuhara et al.
(2012a, 2014) used ostracod and foraminiferal fossil records
from the last 250,000 years on the Shatsky Rise in the North
Pacific Ocean to demonstrate that rapid climate changes affect
deep-sea benthic diversity. They observed glacial-interglacial
shifts in overall abundances and species diversities for both
meiofauna taxa. Ruiz et al. (2004) described the recent

evolution of the Odiel Estuary (SW Spain) during the past
decades and the influence of natural and anthropogenic factors
analysing the distribution of Ostracoda and Foraminifera.

Richmond et al. (2007) modelled the effects of environ-
mental variability on copepods using a 98-year salinity record
for coastal South Carolina. This study showed that a greater
frequency and magnitude of extreme events, such as precipi-
tation and estuarine salinity reduction, negatively affect cope-
pod population growth rates, with possible population de-
clines. Since they represent an important food source for
higher trophic levels, the reduction of the harpacticoid popu-
lation may affect many other estuarine species, as well as
species from other habitats whose larval stages develop in
the estuary (Richmond et al. 2007).

Other anthropogenic impacts

It has been demonstrated that meiofauna, including foraminif-
era, are good indicators of the health of coastal marine

Fig. 3 Diagram of anthropogenic impacts on marine meiofauna
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ecosystems (Vassallo et al. 2006; Balsamo et al. 2012;
Schönfeld et al. 2012; Moens et al. 2014). In recent decades,
a growing body of scientific literature has been dedicated to
the response of meiofauna to anthropogenic impacts, such as
pollution (Coull and Chandler 1992; Fleeger and Carman
2011; Balsamo et al. 2012; Moens et al. 2014). Meiofauna
reflect changes derived from environmental disturbance, both
spatially and temporally (Moreno et al. 2008), and can be
considered a collective indicator of environmental quality
since they display specific responses to different types of an-
thropogenic disturbance (Schratzberger and Warwick 1999;
Danovaro et al. 2004b). Furthermore, the study of meiofauna
is cost-effective compared with that of other benthic compo-
nents (Rogers et al. 2008). These advantages favour the use of
meiofauna as bioindicators, especially when the disturbance
source has not been identified (Kennedy and Jacoby 1999).
The diversity and richness of taxa are generally lower in pol-
luted and stressed environments, due to the disappearance of
more sensitive groups (e.g., ostracods, gastrotrichs, hydro-
zoans, tardigrades), leaving an assemblage dominated by tol-
erant organisms, such as nematodes (Pusceddu et al. 2007).
The nematode/copepod ratio can be used as a tool to monitor
organic pollution (Raffaelli and Mason 1981; Sandulli and De
Nicola 1989) in intertidal and subtidal studies (Warwick
1981a; Amjad and Gray 1983; Sheills and Anderson 1985).
For example, this biomonitoring index was applied in sedi-
ments affected by aquaculture wastes (Sutherland et al. 2007;
Riera et al. 2011, 2012). The debate about the difficulty in the
interpretation of this index (Coull et al. 1981; Lambshead
1984) was recently resolved by Sun et al. (2015). The incor-
poration of this index with environmental variables gives re-
liable information about anthropogenic disturbances (Sun
et al. 2015). Alve (1995) provides a thorough review of the
effects of different forms of pollution on benthic foraminifera.
Thus, the BFORAM^ (Foraminifera in Reef Assessment and
Monitoring) Index (FI) assesses coral reef vitality and suitabil-
ity of benthic environments for communities dominated by
symbiotic algal organisms (Hallock et al. 2003). Ostracods
respond to pollution-induced environmental changes showing
high sensitivity to heavy-metal pollution, oil discharges and
anoxic conditions (Ruiz et al. 2005). Some ostracod species
are adapted to hypoxic conditions and can dominate in pollut-
ed environments (Alvarez Zarikian et al. 2000; Yasuhara et al.
2012b). In addition to changes in the Ostracoda community,
morphological and geochemical changes can also be detected
in ostracod shells (Ruiz et al. 2005). A schematic representa-
tion of anthropogenic impacts on marine meiofauna is illus-
trated in Fig. 3.

Trawling and other physical disturbances

Industrial fishing using bottom trawling is one of the most
severe human-derived disturbances to the seafloor (Watling

and Norse 1998), and results in a substantial level of mortality
among benthic invertebrates (van Denderen et al. 2013). Larg-
er organisms, such as bivalves and crustaceans, suffer high
mortality with long recovery times (Kaiser et al. 2006), where-
as smaller meiofaunal taxa appear to have higher resilience to
these disturbances (Jennings et al. 2001). Most studies have
focused on megafauna and macrofauna, and relatively little is
known about the impact of bottom trawling on meiofaunal
communities (Moens et al. 2014). In general, meiofauna were
less affected than macrofauna by physical disturbance, as in
the case of sediment modifications due to the passage of large
cruise liners (Warwick et al. 1990). For nematodes, trawling
has been shown to have either a positive (Pranovi et al. 2000;
Liu et al. 2009, 2011), negative (Schratzberger et al. 2002;
Hinz et al. 2008) or minor impact on community structure
(Schratzberger et al. 2002; Lampadariou et al. 2005). Never-
theless, a recent study showed that chronically trawled areas in
the north-western Mediterranean Sea are characterised by sig-
nificantly reduced meiofaunal abundance (80 %), biodiversity
(50%), and nematode species richness (25%)when compared
with non-trawled areas (Pusceddu et al. 2014a). However, a
mesocosm experiment suggests that removal or reduced den-
sities of larger macrofauna species as a result of trawling may
lead to increased nematode abundance (Ingels et al. 2014).
Environmental setting is, once again, a very important factor
to be considered in impact studies, as demonstrated by a series
of microcosm experiments designed to evaluate the effects of
physical and biological disturbance and organic enrichment
on nematodes (Schratzberger and Warwick 1998a, 1999).
These experiments showed that nematodes inhabiting sand
sediments suffered mainly when exposed to organic enrich-
ment, while nematodes from mud sediments were more sen-
sitive to physical disturbance (Schratzberger and Warwick
1998a, 1999).

Industrial discharge of hydrocarbon

Hydrocarbon pollution from maritime transport, offshore pro-
duction, release of refined fuel or accidents can impact marine
ecosystems (Arieli et al. 2011; Beyrem et al. 2010; Mahmoudi
et al. 2005; Ernst et al. 2006). Hydrocarbons are composed of
several types of molecules and can occur in solid, liquid or
gaseous forms. These molecules change composition quickly
within the first hours of release (Kingston 2002), due to factors
such as photoxidation, sedimentation, evaporation and expan-
sion of the oil slick (Ernst et al. 2006). Microbial degradation
takes place and can be used as a tool for bioremediation
(Schratzberger et al. 2003). Due to these chemical changes,
the bioavailability of hydrocarbons may have different effects
on benthic fauna, including meiofauna (Alve 1995). Forami-
niferal organisms respond to hydrocarbon contaminations by
an increase mortality rate and abnormality, and a decrease in
density and diversity (Balsamo et al. 2012 and references
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therein). After the sinking of the oil tanker Erika off the
French coast, Ernst et al. (2006) studied the response of fora-
minifera to the presence of oil. Immediately after the accident,
Haynesina germanica was the dominant species, but during
the first 2 weeks, the authors observed a significant decrease in
foraminiferal density compared with control sediments. After
4 weeks, a global density increase was observed, and after
4 months, new foraminiferal species, such as Textularia
earlandi and Ammonia spp., dominated. Mahmoudi et al.
(2005) added different concentrations of diesel oil to micro-
cosms and compared the meiofaunal communities after
90 days. Nematodes showed a strong decrease in abundance
and diversity. Some species, such as Oncholaimus
campylocercoides andChaetonema sp., declined, while others
(e.g., Marylynnia stekhoveni) increased with higher diesel
concentrations (Mahmoudi et al. 2005). Another controlled
oil spill experiment in an intertidal zone was performed
in a sandy beach of Korea (Kang et al. 2014). A dramatic
impoverishment of meiofaunal abundance was detected
during the first 4 days after the contamination, with slow
recovery. One month after the contamination, meiofaunal
communities recovered their pristine status (Kang et al.
2014).

A study by Montagna and collaborators (2013) investigat-
ed the impact of the Deepwater Horizon (DWH) accident in
the northern Gulf ofMexico (April 2010, 1525mwater depth)
on meiofauna. This study showed a severe reduction of
meiofaunal diversity within 24 km2 from the weelhead. Nem-
atode abundance increased near the oil spill, while
harpacticoid copepods decreased drastically, indicating a pos-
sible community-level trophic response due to the DWH-spill-
enriched indigenous bacteria, which would be available as
food for deep-sea nematodes (Montagna et al. 2013). Another
study in the same area by Bik et al. (2012a) investigated
meiofaunal communities prior to and following the oil spill
and demonstrated significant changes in community structure,
especially for nematodes. Prior to the spill, nematode genera
exhibited high richness and evenness, whereas the post-spill
communities consisted mainly of predatory and scavenger
taxa. Similarly, nematode abundance and diversity significant-
ly decreased with changes in taxonomic structure after con-
tamination by polycyclic aromatic hydrocarbons (Louati et al.
2014). In contaminated sediments that had undergone treat-
ment, biostimulation had a positive impact on community
structure and diversity index, suggesting meiofauna as possi-
ble candidates for biorestoration of contaminated sediments
(Louati et al. 2014). Considering available literature on nem-
atodes affected by hydrocarbon contamination, variable re-
sponses have been reported (Balsamo et al. 2012 and refer-
ences therein). These differences can be explained by different
dosages, time of exposure, toxicity and bioavailability of hy-
drocarbons, together with the types of sediments and hydro-
dynamic conditions (Balsamo et al. 2012 and references

therein). All these parameters are to be taken in account in
impact studies concerning meiofauna, and in particular,
nematodes.

Thermal pollution

Hechtel et al. (1970) and Arieli et al. (2011) investigated the
impact of thermal pollution on meiofauna due to water
discharged from nuclear power plants. Hechtel et al. (1970)
focused on benthic invertebrates from Long Beach (USA),
reporting a decrease in species diversity and a change of
dominant species. These observations reflect the
disappearance of sensitive species at high temperatures.
Arieli et al. (2011) investigated the impact of thermal pollution
along a gradient at the outlet of the Central Hadera (Israel)
power plant on foraminiferal communities. Temperatures
exceeded 30 °C during the summer with a dramatic effect on
populations, which showed a decrease in abundance and di-
versity. Species such as T. agglutinans were not present at
polluted sites, while Lachlanella sp. tolerated high tempera-
tures. The biology of nematodes found in percolating filter-
bed sewage treatment plants was investigated byWoombs and
Laybournparry (1984a, b). Temperature profoundly affected
their feeding activity, ingestion rates, growth, reproduction
and longevity. As temperature increased, the ingestion rates
increased, while longevity decreased with higher
temperatures.

Agriculture discharges and sewage

The increased use of fertilizer in agriculture has resulted in
greater export of nutrients to the marine environment. These
discharges can have various effects, and may, for instance,
trigger green algal blooms that affect marine ecosystems. Al-
gal blooms have a marked influence on the meiobenthos
(Garcia and Johnstone 2006) following the deposition of
fluffy layers of phytodetritus on the seafloor. These unconsol-
idated organic deposits, often agglutinated by mucous secre-
tions, enhance microbial activity after relatively short periods
(days to weeks), and can subsequently cause a significant
increase in meiofaunal abundance and diversity (Giere
2009). Garcia and Johnstone (2006) investigated the impact
of filamentous cyanobacterium Lyngbya majuscula blooms
on the meiobenthos. A bloom led to oxygen depletion in sed-
iments, causing a decrease in abundance and in their sediment
depth distribution. However, the bloom did not affect the
abundance and distribution of polychaetes as strongly as it
did for copepods and nematodes. Green algae in the genus
Enteromorpha are the main cause of the formation of reduced
surface sediments or Bblack spots^ on the tidal flats of the
Wadden Sea (The Netherlands) (Neira and Rackemann
1996), leading to severe reductions of meiofaunal abundance
and diversity (Neira and Rackemann 1996; Carriço et al.
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2013). In an investigation of the impact of green tides on
meiofauna on the Brittany coasts, a reduction in diversity
and differences in species composition were recorded when
comparing impacted and unimpacted beaches (Carriço et al.
2013). Similarily, in the Venice Lagoon (Italy), the communi-
ties at sites affected by the green alga Ulva rigida were differ-
ent from those found in unimpacted sites (Villano and War-
wick 1995). Drifting macroalgal mats frequently accumulate
during the summer on Baltic Sea beaches, inducing anoxic
and sulphidic conditions and leading to changes in meiofaunal
composition. In particular, the nematode assemblages under
the mats are characterised by low diversity and are dominated
by the deposit feeder Sabatieria pulchra (Wetzel et al. 2002).
Field studies show shifts in community structure and lower
diversity in sites affected by sewage pollution (Coull and
Chandler 1992). Experimental studies showed that nematodes
can tolerate osmotic stress, regulating their water content by
changes in their cuticlea (Forster 1998). Some nematode gen-
era (such as Daptonema, Sabatieria, Pontonema, and genera
of the family Linhomoeidae) are particularly abundant in or-
ganically enriched locations (e.g., Warwick and Robinson
2000; Armenteros et al. 2010). Copepods showed endocrine
alterations while in contact with released anthropogenic
chemicals such as insecticides (Dahl and Breitholtz 2008).

Heavy metal pollution

Heavy metals are naturally present in both terrestrial and ma-
rine soils. Among heavy metals, some, such as iron, are es-
sential for biological processes (Wang et al. 2014). However,
at higher concentrations, specific elements, including copper,
zinc or lead, can be toxic (Baize 1997). The inputs of heavy
metals in the marine environments are mainly due to industrial
activities. Paint factories, steel mills and waste dumps are all
anthropogenic sources of heavy metals (Hack et al. 2007).
Several studies have shown a decrease in meiofaunal diversity
due to heavy metal pollution in coastal systems (Austen and
McEvoy 1997; Gyedu-Ababio and Baird 2006). Some species
disappear; others can become dominant (Hack et al. 2007).
Copper seems to have the greatest impact on the structure of
freshwater benthic communities (Burton et al. 2001). Toler-
ance tometal pollutants has been shown to varywidely among
nematode species (Moens et al. 2014 and references therein).
A study about the impact of heavy metals on nematodes from
the Swartkops Estuary (Port Elizabeth, South Africa) revealed
that nematode community structure was significantly impact-
ed, with dominance of Monhystera and Theristus coloniser
genera in the most polluted sites (Gyedu-Ababio et al.
1999). Some species, such as Enoplus communis, show low
tolerance to metals (Howell 1983), while others, such as
Diplolaimella dievengatensis and Halomonhystera disjuncta
nematodes (Vranken and Heip 1986; Vranken et al. 1991;
Gyedu-Ababio and Baird 2006), as well as copepods (Burton

et al. 2001), can be tolerant to high levels of heavy metals.
Nematodes can accumulate and tolerate higher levels of cop-
per, cadmium, zinc and lead than other meiofaunal organisms
(van der Wurff et al. 2007 and references therein). However,
changes in nematode genetic diversity can be induced by sub-
lethal concentrations of metals (Derycke et al. 2207), and sub-
lethal effects can be detected by life-history parameters, such
as fecundity and development times (Vranken et al. 1991).
Nematodes mainly store heavy metals in their subcutaneous
tissue (Howell 1983) and gastrointestinal tract (Harvey and
Luoma 1985), but they can also accumulate heavy metals in
their mucus (Riemann and Schrage 1978; Jensen 1987; Decho
1990). Offshore nematode communities appear to be more
susceptible to metals than near-shore communities (Austen
and McEvoy 1997). High levels of heavy metals potentially
generate test deformities in benthic foraminifera and modify
community structure (e.g., Alve 1995; Ruiz et al. 2004;
Armynot du Châtelet et al. 2004; Ferraro et al. 2006; Le Cadre
and Debenay 2006). In an experimental study, Alve and
Olsgard (1999) found that foraminifera were able to colonise
sediments that were severely contaminated with copper. At
high (967–977 ppm) and very high (1761–2424 ppm) concen-
trations, their abundance decreased and equitability increased.
However, there was no effect on overall species richness, and
in contrast to previous studies, there was no evidence of in-
creased test deformation (Alve and Olsgard 1999).

Aquaculture

Aquaculture (i.e., farming of aquatic organisms such as fish,
molluscs, crustaceans and aquatic plants, etc.) has rapidly ex-
panded during the last decades in response to the depletion of
natural fish stocks by overfishing (Jackson 2001). Under the
cages used in fish farming, organic matter accumulates con-
tinuously and in great quantities due to the sedimentation of
fish wastes (faeces and uneaten food). The accumulation of
inorganic material causes eutrophication, which can lead to
the development of anoxic sediments (Newell 2004). Aqua-
culture leads to changes in sediment composition that can
impact benthic communities. This enrichment decreases with
increasing distance from the cage (Mazzola et al. 1999;
Forchino et al. 2011). Several studies have examined the im-
pact of aquaculture on meiofauna (Sutherland et al. 2007;
Mirto et al. 2010; Netto and Valgas 2010; Mirto et al. 2012).
The enriched habitats are characterised by high densities of
meiofaunal opportunistic nematodes and copepods able to uti-
lise a wide variety of food resources (Warwick 1987). In par-
ticular, bacterial feeder nematodes can contribute to enhance
the rate of bacterial decomposition of the detritus (Warwick
1987). A microcosm experiment showed that an increasing
amount of organic matter has a negative effect on nematode
diversity. The same concentration of organic matter given in
many small quantities had milder effects on community
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structure than when administered in fewer but larger quantities
(Schratzberger and Warwick 1998b). In Mediterranean Sea
fish farms, a strong effect on meiofaunal density and diversity
is observed in sediments under the cages (Mirto et al. 2012).
The abundance of some groups (i.e., kinorhynchs) decreases
significantly or even disappears in the sediments under the
cages, while others (i.e., polychaetes) increase in sediment
with higher organic matter content (Mirto et al. 2012). A de-
crease in the abundance of some meiofaunal groups under the
cages was also observed in salmon farms in Canada (Suther-
land et al. 2007), and in mussel farming in Brazil (Netto and
Valgas 2010). In a North Adriatic (Mediterranean Sea) fish
farm, a different copepod community, also characterised by
low abundance, was observed in the sediments under the
cages (Grego et al. 2009). Studies comparing intensive and
semi-intensive farming showed that low intensity farming
does not impact on meiofauna community (Danovaro et al.
2004b). A number of studies have also analysed foraminiferal
assemblages influenced by organic enrichment from fish
farms (e.g., Schafer et al. 1995; Angel et al. 2000; Vidović
et al. 2009), as well as the recovery of assemblages after the
farming activity ceased (Oron et al. 2014). High population
densities are associated with zones that are less severely im-
pacted. These dense populations are dominated by species
typical of organically enriched habitats. Recently, Pawlowski
et al. (2014) used a next-generation metabarcoding approach
(DNA and RNA) to evaluate foraminiferal diversity responses
to organic enrichment associated with fish farms. This study
revealed high variation among foraminiferal communities col-
lected in the vicinity of fish farms and at distant locations, with
evidence for species richness decreasing at impacted sites,
especially visible in the RNA data.

Dumping of dredged material

Dredging and dumping of dredged material are a result of
increasing human activities in coastal areas. The dumping
itself has consequences for the water column and the seabed.
In the water column, the main effects concern changes in
turbidity, which can initiate changes in primary production
and the release of materials, such as contaminants and organic
matter. Sediment inputs to the seabed can also lead to smoth-
ering of the fauna, and may initiate changes in bathymetry
(Engler et al. 1991). Therefore, dredged material can represent
a potential resource to create and/or improve intertidal habitats
(i.e., beneficial use; Bolam et al. 2006). It can also initiate an
influx of organisms from other regions, especially when the
fauna in the dredging area is different from that of the dump-
ing area (Van Hoey et al. 2011). In south-eastern England,
3 years after dredging, meiofaunal and macrofaunal commu-
nities rapidly recolonised sediments (Bolam et al. 2006). After
3 months, macrofaunal and meiofaunal assemblages were rich
and diverse, despite the presence of sediments with physico-

chemical characteristics different from those found in sur-
rounding areas (Bolam et al. 2006). This study also supported
the hypothesis that meiofaunal recolonisation occurred pri-
marily through the direct transfer of individuals, i.e., the set-
tlement of a small number of meiofaunal organisms passively
re-suspended in the discharged material. A study on the Bel-
gian coast, comparing nematode communities after sand ex-
traction and 2 years later, showed that nematode community
composition was more stable after 2 years than at the extracted
sites (Vanaverbeke and Vincx 2008).

Introduction of alien species

Ballast water discharges by ships can have a negative impact
on marine ecosystems and also on meiofauna. Ostreopsis
ovata, a dinoflagellate non-toxic epiphytic species commonly
found in the tropics (Gallitelli et al. 2005), was introduced into
Mediterranean Sea via ballast waters (Guidi-Guilvard et al.
2012). This species develops on the brown alga Halopteris
scoparia under optimal conditions and becomes toxic
(Guidi-Guilvard et al. 2012). Analyses showed that high con-
centrations of O. ovata are associated with changes in the
community structure of the phytal meiofauna. Gollasch
(2002) recorded non-native foraminiferal species transported
in ballast tank sediments from ships sailing into German ports.
Along the French Atlantic coast, Bouchet et al. (2007) docu-
mented the occurrence of Quinqueloculina carinatastriata, a
foraminiferal species that was likely introduced from theMed-
iterranean and Red Seas by mariculture trade or shipping ac-
tivities. The survival of tropical plankton organisms in ballast
waters was studied by accompanying a container vessel on its
23-day voyage from Singapore to Bremerhaven in Germany
(Gollasch et al. 2000). For two tanks, one filled off Singapore
and the other off Colombo, Sri Lanka, their phytoplankton and
zooplankton content was monitored with daily sampling. As
reported in previous studies, species abundance and diversity,
especially of zooplankton, decreased sharply during the first
days, and only a few specimens survived the whole cruise.
The contents of the Colombo tank, however, changed dramat-
ically during the last week of sampling. The harpacticoid co-
pepod, Tisbe graciloides, increased in abundance by a factor
of 100 from 0.1 to 10 ind/L within a few days. This was the
first time that a species found in ballast water multiplied at
such a high rate. Opportunistic species such as T. graciloides
are apparently able to thrive and propagate in ballast water
tanks under certain conditions. Ballast water tanks may thus
serve as incubators for certain species (Gollasch et al. 2000;
Levings et al. 2004).

Munition and nuclear waste dump sites

Chemical munition dump sites are places where weapons and
chemical munitions have been dumped. SinceWorld War II,
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thousands of tons of chemical munitions have been dumped
into the Baltic Sea (Grzelak and Kotwicki 2014) where
meiofaunal communities were poor, not only in terms of abun-
dance, but also in terms of number of taxa (Kotwicki et al.
submitted). At dumping sites associated with hypoxic and/or
anoxic conditions, the communities are composed of well-
adapted organisms and dominated by mud-dwelling nema-
todes like Sabatieria, Terschellingia and Halomonhystera
species. Halomonhystera disjuncta showed ovoviviparous re-
production, which secures the survival of the broods (Grzelak
and Kotwicki 2014). Sediment burial significantly reduces the
toxicity of 2,4,6-trinitrotoluene (TNT) in marine ammunition
dumping for the copepod Nitocra spinipes, especially in fine-
grained sediment (Ek et al. 2007). There is still a remarkable
lack of information on the environmental impact of radioac-
tive waste that was disposed of in abyssal oceans in the second
half of the 20th century (IAEA 1999). The Barents Sea repre-
sents one of the best-known nuclear-polluted marine zones;
nuclear tests were carried out in this marine environment by
the USSR and nuclear waste has also been dumped there
(Galtsova et al. 2004). Pogrebov et al. (1997) showed that
meiofaunal communities were different between control and
radionuclide-polluted sites. A significant increase in
meiofauna diversity was observed at higher concentrations
of 137Cs (Galtsova et al. 2004). Alexeev and Galtsova
(2012) showed a positive correlation between radio-caesium
concentrations and the taxonomic diversity of meiofauna. Fur-
thermore, meiofauna react faster than the macrobenthos to
radioactive pollution through changes in diversity and abun-
dance; the macrobenthos is more stable and shows fewer ef-
fects in the short term (Alexeev and Galtsova 2012).

Exploitation of mineral resources

The exploitation of mineral resources has a direct impact on the
benthic community due to removal of resources, and also an
indirect impact made by shallow-water mining wastes. The
effects of shallow-water mining wastes (heavy metals) on
meiofauna were investigated in the Fal Estuary system (south-
west England), revealing that some nematode species may have
developed different tolerance mechanisms to survive in areas
with high heavy metal concentrations (Somerfield et al. 1994).
Microcosm and mesocosm scale experiments on meiofauna
recolonisation in discharges tailing sediments were performed
in Benete Bay (Indonesia; Gwyther et al. 2009). This study
revealed that meiofauna colonised tailing sediments after
40 days and recovered control values after 97 days.

The deep-sea realm is one of the least-known oceanic areas
on Earth, but this remote environment harbours large areas of
concentrated metal reserves (Thurber et al. 2014). Many of
these metals are used in electronics, and since terrestrial sup-
plies are diminishing, deep-sea mineral resources are likely to
be extensively mined within the next few decades (Thurber

et al. 2014). We are experiencing an increasing attention on
exploration and mining of deep-sea minerals (such as cobalt-
rich ferromanganese crusts, seafloor massive sulphide de-
posits and polymetallic nodules). In addition to the physical
disturbance due to mineral deposit extraction, the reduction in
habitat heterogeneity (Zeppilli et al. 2014) may permanently
alter the structure of benthic communities (Leduc et al. 2015
and references therein). Benthic meiofauna from polymetallic
nodule areas are known from the Pacific Ocean (Hessler and
Jumars 1974; Snider et al. 1984; Renaud-Mornant and
Gourbault 1990; Bussau et al. 1995; Ahnert and Schriever
2001; Radziejewska 2002; Lambshead et al. 2003; Veillette
et al. 2007a, b;Miljutin andMiljutina 2009a, b;Miljutina et al.
2010, 2011; Miljutina and Miljutin 2012) and Indian Ocean
(Parulekar et al. 1982; Ansari 2000; Ingole et al. 2000, 2005;
Singh et al. 2014). The techniques used for the extraction of
nodules from the seafloor involve mechanical screening,
bucket or scraper methods or hydraulic approaches to lift the
nodules from the seafloor (Thiel 2003). These techniques can
lead to the complete destruction of the upper 5–10 cm layer of
soft sediments and the removal of nodules dispersed in the
upper sediment layer (Miljutin et al. 2011), killing most
meiobenthic organisms inhabiting the upper 0–5 cm layer of
sediments, as well as those colonising the nodules. Chung
et al. (2002) summarised the potential impact on benthic fauna
during mining activities: (1) direct impact along the track of
the nodule collector, where the sediment and associated fauna
is crushed or dispersed in a plume, and the nodules are re-
moved, (2) smothering or entombment of benthic fauna by
the sediment plume, and (3) destruction of food resources
for some species. The nodules themselves constitute a specific
habitat for some organisms inhabiting their surface and the
interstitial space inside their crevices and internal cavities
(Thiel et al. 1993; Veillette et al. 2007a, b). In general, nema-
todes inhabiting the surface and crevices of nodules differ
from the assemblages in the surrounding soft sediments, and
some species are exclusively reported only in nodule crevices
(Bussau 1993; Thiel et al. 1993; Bussau et al. 1995; Veillette
et al. 2007a, b). Surprisingly, Bussau (1992) also found unique
tardigrade fauna on and inside the manganese nodules from
the Peru Basin at water depths from 4140 to 4170 m. The new
genus and three new species he described (Bussau 1992) have
never been observed outside the manganese nodule area and
may be endemic. However, unless more sampling is undertak-
en, it cannot be concluded if this is a question of pseudo-
endemism due to undersampling or if these species are truly
endemic to the manganese nodule field, and in this case, if the
nodule-associated fauna will also be lost during mining. Ex-
periments conducted on the impacts of nodule mining on
abyssal nematode communities in the Clarion-Clipperton
Fracture Zone (Tropical and Equatorial Pacific) showed a neg-
ative impact on nematode abundance and diversity (Vopel and
Thiel 2001). The severity of the impact was demonstrated by
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changes in meiobenthic abundance, presence/absence of key
taxa, and species diversity for nematodes and harpacticoid
copepods (Radziejewska 2014). The impact remained detect-
able 26 years after the initial disturbance (Miljutin et al. 2011).

Conclusions and perspectives

The benthic fauna within an ecosystem have different body
size spectra that reflect structural and functional aspects. Ma-
rine benthos forms an intricate network in which each group/
species contributes functionally. This review demonstrates
that meiofauna, besides being fundamental to understand the
structure and functioning of marine communities, can be used
as a proxy for responses of benthic communities to environ-
mental changes.

This review shows that meiofauna can be a useful tool to
investigate the impacts of climate change. Inmost studies, glob-
al change negatively impacts meiofaunal communities, which
experience a reduction of abundance and diversity, with impor-
tant consequences on benthic food webs. Overall, meiofauna
are less negatively affected by climate change than are macro-
fauna; for example, at very low oxygen concentrations, only
meiofaunal organisms survive. Some species of nematodes and
foraminifers can even be favoured by the occurrence of extreme
environmental conditions. The presence of these Bextreme^
species can used as warning signal of global change. Some
climate impacts, such as ice-shelf modifications, can have op-
posite effects on meiofauna: negative (by increasing physical
disturbances on the seafloor) and/or positive (by creating new
habitats and promoting phytoplanktonic blooms). In any case,
unique meiofaunal communities such as those found on the
NEW polynya and in the Ikka Fjord, are endangered by ice-
shelf modifications, with the risk of extinction.

Meiofauna are doubtlessly good indicators of anthropogenic
impacts, and reflect spatial and temporal changes. However, it
is difficult to correctly interpretate meiofaunal responses with-
out information about abiotic factors. Therefore, measurements
of associated environmental conditions are fundamental in the
interpretation of the observed patterns. Considering environ-
mental parameters together withmeiofaunal indices strengthens
scientific interpretations and provides useful tools for the detec-
tion of anthropogenic disturbances. Multistressor experiments
are more informative than single stressor ones, revealing com-
plex changes in ecological and biological interactions, and a
precautionary approach may be required when interpreting sin-
gle stressor studies. Anthropic pollutions generally have a neg-
ative effect on meiofauna. However, the increase in sea surface
primary production and algal blooms generally has a positive
effect on nematode abundance and biomass, and habitat forma-
tion such as dumping of dredged material may increase
meiofaunal abundance and diversity by locally increasing het-
erogeneity. As in the case of climate, some species can tolerate

polluted conditions and show physiological changes. In addi-
tion, several meiofaunal species are specific to a kind of impact
and can be used as detection tools. For organic enrichment, it
was proved that the partitioning of organic inputs (as for aqua-
culture) can significantly reduce the impacts on meiofauna. In
some ecosystems, the recovery time for the meiobenthic com-
munity can be very slow, as in the case of the deep-sea exploi-
tation of minerals where severe habitat destruction may induce
a loss of biodiversity over several decades.

Four taxonomic groups are valuable for predicting global
changes: foraminifers (especially calcareous forms), nema-
todes, copepods and ostracods. Foraminifers and copepods
are very sensitive to changing environmental conditions,
while some nematode species are particularly tolerant to
stress. Further studies about global change impact on less
represented taxa are thus necessary.

In summary, compared to other benthic groups, meiofauna
can be particularly valuable in impact studies. The study of
meiofauna is cost-effective compared to that of other benthic
components, and their use as bioindicators is particularly useful
when the source of disturbance has not been identified, and to
identify the effects of different forms of ecosystem perturba-
tions. Nevertheless, meiofaunal taxonomic identification re-
mains a challenge and a lack of experts complicates the task.
Identification can be facilitated by using free computer-based
illustrated keys that are accessible online (e.g., NEMYS http://
nemys.ugent.be/ for nematodes; http://copepodes.obs-banyuls.
fr/en for copepods; Ellis and Messina http://www.micropress.
org/em/about.php and World Foraminifera Database http://
www.marinespecies.org/foraminifera/ for foraminifera). The
development of molecular approaches is bringing significant
help to reinforce taxonomic identification and to distinguish
morphologically similar species and cryptic species. These
also include the development of rapid molecular methods for
the identification Ben masse^ of small metazoans (Bik et al.
2012b), such as high-throughput next-generation sequencing
(Fonseca et al. 2010) and proteomic fingerprinting (Laakmann
et al. 2013). This review has elucidated the importance of
meiofauna in global change impact studies. There is an urgent
need to focus impact research on the taxonomy, genetics and
function of keystone meiofaunal taxa or species.
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Glossary

Bleaching Expulsion of the endosymbiotic
algae (zooxanthellae) or their algal
pigment from the tissue of symbi-
otic invertebrates (mainly reef
corals), which lose their colour and
turn white. Coral can survive a
bleaching event, and at times it
may be a reversible process, de-
pending on the intensity and extent
of the phenomenon. Several fac-
tors can cause the bleaching (e.g.,
increased or decreased light, ther-
mal stress, bacterial infections).

Deposit feeder An animal that ingests deposited,
particulate material that primarily
consists of inert sediments of low
food value (mineral grains,
refractory organic matter, etc.).

Ecosystem functions/
Ecosystem functioning

The sum of biological,
geochemical, and physical
processes that operate within an
ecosystem, sustaining the overall
performance of the ecosystem and
suppling ecosystem services.

Idiosyncratic model The idiosyncratic model suggests
that the relationship between
species richness and ecosystem
functioning results in an extremely
variable ecosystem. More
specifically, the idiosyncratic
relationship implies that each
species has a different contribution
to ecosystem functioning,
depending on its interspecific
interactions.

Macrofauna Benthic animals retained on a 1-
mm sieve.

Meiofauna Benthic animals passing through a
1-mm sieve and retained on a 20-
μm sieve.

Permanent meiofauna Organisms that spend their entire
life cycle in the meiofauna size
category.

Phytal meiofauna Meiofauna living in close
association with seagrasses, kelp
and seaweeds.

Rivet model The rivet model is based on the
potential overlap and
complementarity among the
functions of different species. In
this model, when a species is
removed or added to an ecosystem,
its contribution to ecosystem
functioning is relatively small.
This allows the system to keep the
ecological function when a few
species are lost.

Sympagic meiofauna Meiofauna living in close
association with sea ice, either on
the ice under-surface, on the soft
lower ice layer, within briny
channels or pockets in the solid sea
ice, or at the interface with water
below the sea ice.

Temporary meiofauna Organisms that are part of the
meiobenthos only during a stage of
their life (i.e., larvae and juveniles
stages of macrofauna).
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