
Genome-wide Association Study of Obsessive-Compulsive Disorder 

 

Abstract  

Obsessive-compulsive disorder (OCD) is a common, debilitating neuropsychiatric illness with 

complex genetic etiology.  The International OCD Foundation Genetics Collaborative (IOCDF-

GC) is a multi-national collaboration established to discover the genetic variation predisposing 

to OCD.  A set of individuals affected with DSM-IV OCD, a subset of their parents, and 

unselected controls, were genotyped with several different Illumina SNP microarrays.  After 

extensive data cleaning, 1,465 cases, 5,557 ancestry-matched controls and 400 complete trios 

remained, with a common set of 469,410 autosomal and 9,657 X-chromosome SNPs.  

Ancestry-stratified case-control association analyses were conducted for three genetically-

defined subpopulations and combined in two meta-analyses, with and without the trio-based 

analysis.  In the case-control analysis, the lowest two p-values were located within DLGAP1 

(p=2.49x10-6 and p=3.44x10-6), a member of the neuronal postsynaptic density complex.  In the 

trio analysis, rs6131295, near BTBD3, exceeded the genome-wide significance threshold with a 

p-value=3.84 x 10-8.  However, when trios were meta-analyzed with the combined case-control 

samples, the p-value for this variant was 3.62x10-5, losing genome-wide significance.  Although 

no SNPs were identified to be associated with OCD at a genome-wide significant level in the 

combined trio-case-control sample, a significant enrichment of methylation-QTLs (p<0.001) and 

frontal lobe eQTLs (p=0.001) was observed within the top-ranked SNPs (p<0.01) from the trio-

case-control analysis, suggesting these top signals may have a broad role in gene expression in 

the brain, and possibly in the etiology of OCD. 

 

Introduction 

Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by 

obsessions and/or compulsions that are distressing, time consuming or significantly impairing.  
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OCD is the fourth most common psychiatric illness1 with a lifetime prevalence of 1-3%.2, 3  OCD 

was identified as the anxiety disorder with the highest proportion (50.6%) of serious cases by 

the National Comorbidity Study Replication4 and as a leading global cause of non-fatal illness 

burden by the World Health Organization (WHO) in 2006.5 

 

Genetic studies have demonstrated that both biological and environmental factors are important 

in the etiology of OCD.  A multitude of OCD family studies published since the 1930’s provide 

strong evidence for an approximate four to ten-fold OCD risk increase among first-degree 

relatives of OCD-affected children and adults, respectively, as compared to relatives of 

controls.6-14  A review of twin studies concluded that obsessive-compulsive (OC) symptoms are 

heritable, with greater genetic influences in child-onset (45-65%), than in adult-onset OCD 

cases (27- 48%).15 This finding has been supported by subsequent twin studies16-18.  Linkage 

study results have been somewhat encouraging,19 identifying peaks on chromosomes 3q,20 

9p,21 10p,22, 23 15q20, 24 and 19q19 for OCD and on chromosome 14 for compulsive hoarding.25 

Unfortunately, none of these peaks exceeded the threshold for genome-wide significance, and 

only one the 9p peak has reached suggestive significance in more than one sample.19-21 

 

In addition, more than 80 positional and functional candidate gene studies of OCD have been 

reported, predominantly for variants within genes in the serotonin, dopamine and glutamate26,27 

pathways and those involved in immune and white matter pathways.28  SLC1A1, which encodes 

a neuronal glutamate transporter and which is within the linkage peak on chromosome 9p, is the 

only candidate gene observed to be associated in multiple independent samples, although the 

specific associated variant has varied.29-32 

 

Excessive grooming and anxiety-like behaviors have been observed in mice lacking expression 

of SAPAP3, a post-synaptic scaffolding protein located at excitatory synapses. This finding, 
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coupled with high SAPAP3 expression levels in the striatum, identify its human ortholog 

(DLGAP3) as an appealing candidate gene in OCD.33  Human studies have provided some 

support for a possible role of DLGAP3 in OCD-related disorders, suggesting increased rare non-

synonymous variant frequencies in OCD/trichotillomania subjects34 and association of common 

DLGAP3 variants with pathologic grooming in a family-based study,35 albeit with some 

inconsistencies.36 

 

In recent years, the genome-wide association study (GWAS) approach has led to the 

identification of many genetic associations for common complex traits.37  This model-free 

approach to gene discovery has led to a greater pathophysiologic understanding of many 

disorders, although only small proportions of the total genetic variance have so far been 

explained, and many of the identified variants have not brought new biological understanding.38  

To address the latter concern, functional support for GWAS findings has been sought by 

determining their effects on gene expression (expression quantitative trait loci- eQTLs) and 

methylation level (methylation quantitative trait loci-mQTLs).38  Top single nucleotide 

polymorphisms (SNPs) have also been examined for potential enrichment of eQTLs and 

mQTLs, compared to expected rates.  Moreover, examination for over-representation of micro-

RNA (miRNA) binding sites has also been adopted as an informative approach,39 given the role 

of miRNA in regulating gene expression.  In addition, pathway analyses have been conducted to 

determine whether specific gene pathways are enriched among the strongest associated 

variants.40 

 

The International OCD Foundation Genetic Collaborative (IOCDF-GC), consisting of more than 

20 research groups, has performed a GWAS to search for common SNPs predisposing to OCD.  

We present our findings from an analysis of the genetic association between OCD and a 

genome-wide set of common SNPs among case-control and trio samples and their combined 
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trio-case-control results.  We also present analyses of top GWAS findings with respect to their 

biological function in OCD-related and other brain regions. 

 

Materials and Methods  

Subjects and Genotyping 

Our initial sample consisted of 1,817 DSM-IV41 OCD cases, 504 controls and 663 complete 

trios, genotyped using the Illumina Human610-Quadv1_B SNP array.  This work was approved 

by the relevant IRBs at all participating sites, and all participants provided written informed 

consent.  The majority of the control subjects genotyped as a part of this project were not 

screened for the absence of OCD.  We also used data from 5,654 unscreened controls, 

previously genotyped on two different Illumina SNP arrays (Table S1).  

 

Quality Control 

The data for this study underwent QC and data cleaning with a concurrent GWAS of Tourette 

Syndrome (Scharf et al., Molecular Psychiatry, submitted),46 using PLINK,47 to exclude samples 

and SNPs for each array type (Figure S1).   

 

Statistical analyses 

To control for Type I error due to residual population stratification, case and control samples 

were separated into subpopulations of European (EU), South African Afrikaner (SA) and 

Ashkenazi Jewish (AJ) ancestry, using Multi-Dimensional Scaling (MDS) analysis 

(Supplementary Figures S2-4).  Population stratification outliers and those lacking genomically-

matched controls or cases were excluded, as were samples with excessive low-level 

relatedness to many others within each subpopulation.  Separate association analyses were 

conducted for each of the case-control subsamples (EU, SA and AJ) and for the trio samples.  

For the former, logistic regression was employed using an additive test model (1 df), with 
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diagnostic status as the dependent variable and each single SNP as the predictor, including 

specific ancestry-informative MDS axes as covariates (EU= 4 factors, SA= 2 factors, and AJ=1 

factor).  For the latter, the Transmission Disequilibrium Test (TDT) was used.   

 

Two meta-analyses were conducted using METAL48 by combining the three case-control sub-

populations, and by combining the three case-control subgroups and the trio group, weighting 

by the number of cases or trios (Supplementary materials).  Each SNP was tested separately, 

defining a genome-wide significance threshold at p<5x10-8, based on a 5% Type I error rate.37 

Using the PLINK retrieval interface,47 SNP annotations were created using the TAMAL 

database49based chiefly on UCSC genome browser files,50 HapMap51 and dbSNP.52  Further 

annotation was conducted using SCAN53 and SPOT54 and top SNPs (p<0.001) were also 

manually annotated using the UCSC genome browser.55  For analysis of sex chromosome 

SNPs, males and females were assessed separately for each subgroup, with adjustment by 

MDS factors as described above, and subsequent combination via meta-analysis, using the 

number of cases or trios as a weighting factor.  A sign test was conducted to examine for 

increased consistent directionality of effect for the most strongly associated SNPs between the 

case-control and trio samples.  Analyses of potential enrichment of SNPs from:  a) 22 previously 

identified candidate genes, b) pre-defined gene pathways, and c) target gene intervals 

containing micro-RNA (miRNA) binding sites56, among the top hits from the case-control, trio, or 

trio-case-control trio-case-control GWAS results were performed using INRICH.40 

 

eQTL and mQTL annotation and enrichment tests 

Functional support for the SNPs with the strongest evidence of association in the trio-case-

control meta-analysis was sought by determining effects of the most significantly associated 

SNPs (p<0.001) on both gene expression (expression quantitative trait loci- eQTLs) and on 

methylation level (methylation quantitative trait loci-mQTLs).  This was done with eQTLs from 
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frontal lobes,57 parietal lobes,57 lymphoblastoid cell lines (LCL),58 and the cerebellum,58 and with 

mQTLs58 from cerebellum, using previously collected data.58  To test whether the SNPs with the 

strongest observed associations were enriched for eQTLS or mQTLs, the LD-independent 

SNPs from the trio-case-control analyses with p<0.001 and with p<0.01 were compared to 

1,000 random sets of the same size, conditioning on allele frequency, to yield an empirical 

distribution.  An enrichment p-value was then calculated as the proportion of randomized sets in 

which the eQTL (or mQTL) count matched or exceeded the actual observed count in the list of 

top SNP associations, as previously described57 (see Supplementary materials). 

 

Imputation of SNPs 

Imputation of SNPs was conducted proximal to any SNPs with genome-wide significance from 

the trio, combined case-control or trio-case-control samples.  This was completed using the 

1000 Genomes Project via IMPUTE2,59 and haplotypes from the 1,092 individuals in a 1000 

Genomes Data Release60 as a reference dataset.  Post-imputation QC and allelic dosage 

analysis were conducted in PLINK (see Supplementary materials).    

 

Results  

Multidimensional scaling analyses identified three distinct genetic subpopulations within the 

case-control sample, which corresponded to:  European (EU), South African (SA) and 

Ashkenazi Jewish (AJ) ancestries (Supplementary materials).  After QC, a total of 1,465 cases 

(1,279 EU, 93 SA and 93 AJ), 5,557 controls (5,139 EU, 260 AJ and 158 SA) and 400 complete 

trios (299 EU) remained and each had genotypes for a common set of 469,410 autosomal and 

9,657 X-chromosome SNPs (Table S1).  Quantile-quantile (QQ) plots of the observed versus 

expected log(p) values under the null hypothesis were used to calculate genomic control 

lambda values for the trio (λ=1.015), case-control (λ=1.002), and trio-case-control samples 
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(λ=1.011) (Figure 1).  QQ plots for EU (λ=1.009), SA (λ=0.969) and AJ (λ=0.982) case-control 

subpopulations were also constructed (Supplementary Figure S7).  There was no evidence for 

significant residual stratification effects in any of the comparisons. 

 

Trio Sample Results 

An overview of the p-values for the trio analysis plotted against genomic location is illustrated in 

Figure 2a.  Of the top 4 OCD-associated SNPs in the trio sample with p-values< 1 x 10-5, one 

SNP, rs6131295 (11,996,267bp (hg19) on 20p12.1-2), exceeded the threshold for genome-wide 

significance of p<5x10-8 with a p=3.84x10-8.61  This SNP is located ~90 kb 3’ to BTBD3 (Figure 

3).  None of the other 442 SNPs with p-values<0.001 were in LD (r2>0.2) with this SNP 

(Supplementary Table S2). 

 

Case-Control Sample Results 

In the case-control sample, no SNPs exceeded the genome-wide threshold for significance 

(Table 1, Figure 2).  Nine OCD-associated SNPs had p-values<1 x 10-5 (Table 1).  The lowest 

two p-values were for SNPs rs11081062 (p=2.49x10-6) and rs11663827 (p=3.44x10-6), located 

at chromosome 18 within an intron of DLGAP1 (Figure 3).  DLGAP1 (also known as SAPAP1) 

encodes the discs, large (Drosophila) homolog-associated protein a member of the neuronal 

postsynaptic density complex.  The third lowest p-value was for the SNP rs26728 (p=4.75x10-6), 

located within an intron of EFNA5, encoding Ephrin-A5 (Supplementary Figure S12).  Ephrins 

are important for development of the neocortex through regulation of axonal inhibition or 

repulsion,62 and EFNA5 was also among top hits in an Alzheimer’s disease GWAS.63  The 

fourth lowest p-value=5.40x10-6, was for rs4868342, lying within an intron of HMP19, encoding 

the brain-specific HMP19 protein (Supplementary Figure S12), which is expressed in the Golgi 

complex.64  The fifth lowest p-value=5.81x10-6, was for rs297941, which is located 
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approximately 21 kb 5’ to the gene encoding FAIM2 (also known as LFG) and about 25 kb from 

a cluster of genes encoding a group of aquaporins (AQP5, AQP6, AQP2), and lies within a 

putative coding region of mRNA BC034605, isolated from testis (Supplementary Figure S12). 

 

Trio-Case-Control Meta-Analysis Results 

None of the SNPs exceeded the genome-wide threshold for significance, although several of 

the top hits were also identified among top hits in either the trio analysis or in the case-control 

analysis (Figure S12).  Using the sign test with 3616 LD-pruned SNPs with p<0.01, there was 

evidence for increased consistent directionality (1907/3616=0.52; p=5.25 x 10-4 for 1-sided 

binomial test) between the trios and the combined case-controls.  The top 38 OCD-associated 

SNPs in this meta-analysis, with p-values<5x10-5, are presented in Table 1.  For example, the 

top signal (p=4.99x10-7), rs297941 near FAIM2, was also the fifth ranked SNP in the case-

control analysis.  FAIM2 is highly expressed in the central nervous system and plays a role in 

Fas-mediated cell death.65  When rs6131295 (the SNP with significant genome-wide association 

in the trio sample) was meta-analyzed along with the case-control sample, the combined p-

value increased to 3.62x10-5. 

 

Examination of prior OCD linkage regions and candidate genes 

There was no evidence found for genome-wide significant association with OCD in either 

previously identified putative linkage regions (Supplementary Table S3) or in 22 previously 

identified candidate genes when examining the trio, case-control and trio-case-control groups. 

The Q-Q plot of candidate gene SNPs for the combined case-control group shows little inflation 

(λ=1.085, Supplementary Figure S8), suggesting no evidence for over-representation within 

these genes.  While the Q-Q plot of the combined trio-case-control sample indicates small 

inflation (λ=1.168, Supplementary Figure S8), the follow-up enrichment test demonstrated no 
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over-representation of top hits (p<0.001 and p<0.01) within previously identified candidate 

genes (p=0.15 and p=0.10, respectively).  For the 22 OCD candidate genes examined, the 

lowest SNP p-values are reported in Supplementary Table S4.  The strongest finding was 

observed for ADARB222, with a p-value=1.6x10-4, which did not survive correction for multiple 

testing of candidate gene SNPs (corrected p=0.53). 

 

eQTL and mQTL annotation and enrichment analyses 

Support for the SNPs with the strongest evidence of association in the combined trio-case-

control sample was sought by determining functional effects of the most significantly associated 

autosomal SNPs.  These top SNPs were annotated with expression QTL (eQTLs) data from 

frontal, parietal and cerebellar brain regions (Table 1), along with lymphoblastoid cell lines 

(LCLs) (Supplementary Table S2) and methylation levels (mQTLs) in cerebellum (Table 1). 

 

SNPs with association p-values < 0.01 (n=3,521) were then examined for enrichment of eQTLs 

and mQTLs.  Significant enrichment was observed for frontal eQTLs (p=0.001) as well as for 

cerebellar eQTLs (p=0.033) and parietal eQTLs (p=0.003) (Figure 4a-c).  Furthermore, 

enrichment of cerebellar mQTLs was observed (p<0.001) with an enrichment p-value of 

p<0.001 (Figure 4d), suggesting that these SNPs are more likely to influence the methylation 

state.  No significant enrichment for either genic (p=0.54) or missense variants (0.34) was 

observed.  A similar analysis examining only the top SNPs with association p-values <0.001 

(n=415) demonstrated no significant enrichment for mQTLs or for eQTLs (p>0.05). 

 

miRNA and pathway analyses 

After correction for multiple hypothesis testing, there was no evidence for enrichment of specific 

miRNA binding sites among the LD-blocks containing top SNPs compared to the genes 
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matched with size and marker density (see Supplementary Table S5).  The strongest 

enrichment was found in 49 high-confidence (TargetScan probability>0.9) predicted miRNA-

219-5p/508/508-3p/4782-3p targets, two of which have at least one SNP with p<0.001 

(empirical p=0.011, corrected p=0.060) in the case-control GWAS result.  A similar level of 

enrichment was also found in 89 high-confidence predicted miR-130ac/301ab/301b/301b-

3p/454/721/4295/3666 targets, two of which have at least one SNP with p<0.001 in trio TDT 

result.  In the pathway analyses, no results achieved significance at the corrected p-value 

(lowest corrected p=0.55) (see Supplementary Table S6). 

 

Discussion   

We report results from the first genome-wide association study (GWAS) to search for common 

DNA sequence variation predisposing individuals to OCD.  After removing low performing SNP 

assays and DNA samples, we analyzed 400 trios, 1,465 cases and 5,557 controls for 469,410 

autosomal and 9,657 X-chromosome SNPs.  The trio and case-control subsamples were 

analyzed individually, and then these results were combined in both case-control and trio-case-

control meta-analyses.  One SNP, rs6131295, located on chromosome 20p12.1-p12.2, 

approximately ~90 kb from the BTBD3 gene, was genome-wide significant in the trio analysis 

(p=3.84x10-8), but not in the combined case-control and trio meta-analysis, suggesting that 

further examination will be required using independent samples.  BTBD3 is a member of a large 

family of transcription factors, which includes BTBD9, a gene that has been associated with 

Tourette Syndrome, a disorder frequently co-morbid with OCD.66  BTBD3 participates in multiple 

cellular functions including transcriptional regulation, cytoskeleton dynamics, ion channel 

assembly and gating, protein ubiquitination and degradation67 and has also been associated 

with primary open-angle glaucoma.68  BTBD3 is expressed in the brain, with the highest 

observed levels in childhood and adolescence (www.BrainSpan.org, Release 3),67 when OCD 
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frequently emerges.69  rs6131295 is a cis-eQTL for BTBD3 in the frontal cortex (p=0.028), a 

region that has repeatedly been implicated in OCD.  This SNP is also a parietal cis-eQTL for 

ISM1 (20p12;p=0.0036) and an LCL trans-eQTL for DHRS11 (17q11.2;p=0.0001). 

 

Interestingly, the brain-wide expression pattern of DHRS11 and ISM1 are highly correlated with 

the expression of several of the other genes found among the top hits of both the case-control 

and the trio-case-control meta-analyses (www.BrainSpan.org, Release 3) (Supplementary 

Figure S12).70  Furthermore, many of these genes have been implicated in glutamate signaling.  

Specifically, ISM1 (C20orf82) is correlated with expression of pre-synaptically-located ADCY8 

(0.61, rank 11 of 22,328 transcripts), the gene with the seventh strongest OCD-association in 

the trio-case-control meta-analysis, which has also been associated with bipolar disorder71 and 

with fear memory.72  ISM1 is also correlated with brain-wide expression of numerous glutamate-

related genes including GRIK4 (0.565, rank 66), DLGAP3 (0.576,rank 44), GRIK1 (0.595,rank 

22), SHANK3 (0.598,rank 21) as well as ADARB2 (0.600,rank 19), which contains the SNP with 

the best p-value in this study among previously reported candidate genes (Supplementary Table 

S4), and lies within a childhood-onset OCD linkage peak.22  Similarly, the expression of 

DHRS11 (MGC4172) is strongly correlated (0.847, rank 25 of 22,328 transcripts) with that of 

FAIM2, which is located in the same LD block as the best SNP (rs297941) in the trio-case-

control, and fifth best in the case-control meta-analyses.  FAIM2 has been associated with 

neuroprotection following transient brain ischemia.72  The rat homologue of FAIM2, neural 

membrane protein 35 (NMP35), is expressed at the post-synaptic membrane in a subset of 

synapses and in dendrites, and co-localizes with the glutamate receptor GluR2.65  Thus, there is 

a potential relationship between rs6131295 (trio analysis), and FAIM2 and ADCY8 (tagged by 

the SNPs ranked #1 and #7 in the trio-case-control analysis). 
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The top two SNPs associated in the case-control meta-analysis (both with p<3x10-5 in the trio-

case-control meta-analysis) are located in DLGAP1, another gene which influences glutamate 

signaling.  DLGAP1 encodes a Shank-associated protein and has been associated with 

schizophrenia and with a smoking cessation phenotype73 and three DLGAP1 deletions have 

also been observed (2 in schizophrenia cases and 1 in controls).74  Another member of this 

gene family, DLGAP3, has been implicated in compulsive-like behavior in a mouse model 

(SAPAP3).  Specifically, knockout mice for the striatum-expressed SAPAP3 gene (which codes 

for a post-synaptic protein at cortico-striatal glutamatergic excitatory synapses) developed 

repetitive grooming behaviors and anxiety that were reversed with an SSRI and with gene 

replacement.24 

 

Several of the top associations in the combined trio-case-control meta-analysis are in or near 

genes that have been implicated in other studies of psychiatric disorders, including ADCY863, 75, 

76, ARHGAP1847 and JMJD2C 62 in bipolar disorder, schizophrenia and autism spectrum 

disorders, respectively.  Enrichment for eQTLs was observed among the top associated GWAS 

SNPs (N=5,321; p<0.01), with empirical p-values of 0.001 for frontal cortex, 0.003 for parietal 

tissue and 0.033 for cerebellum.  Marked enrichment was also observed for methylation QTLs 

(p<0.001).  This is consistent with the finding by Nicolae et al. (2010),58 who reported that 

disease-associated SNPs from GWAS were significantly more likely to be eQTLs, than other 

random sets of SNPs with similar minor-allele-frequencies (MAF). 

 

It remains unclear whether the finding at rs6131295, which exceeded genome-wide significance 

with p=3.84x10-8 in the trio sample, is a false positive or not. Certainly the decrease in 

significance of the p-value to 3.62x10-5 when the trio data is meta-analyzed with the much larger 

case-control sample data suggests so.  On the other hand, our attempts to determine whether 

this finding was spurious did not find any evidence of such, as detailed here:  1) The intensity 
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plot for this SNP has three tight, separated, clusters (Figure S10a); 2) There were no missing 

genotypes in the trio sample and there were no Mendelian errors; 3) Two nearby directly 

genotyped SNPs with low r2 values (0.2-0.4) had p-values within the 10-2 range, demonstrating 

very low statistical significance (Figure S10b); and 4) Imputation of the trio sample provided 

additional results that are not inconsistent with a true positive finding. Of the 40 regional SNPs 

examined, those with large r2 values (>0.90) and similar minor allele frequencies to rs6131295 

had strong p-values in the range of 10-6 and 10-7 (Table S7 and Figure S11).  Moreover, the 

surrounding SNPs in low r2 with rs6131295 all have an opposite direction of risk effect, which 

may partially explain why they have much less significant p-values.  Although these imputed 

data and the above noted facts cannot prove that rs6131295 is a true positive, they do not 

support the hypothesis that it is a false positive.  Replication with additional samples will be 

required to provide further clarification.  

In summary, although no SNPs were identified to be associated with OCD at a genome-wide 

significant level in the combined trio-case-control sample, a highly significant enrichment of 

methylation-QTLs (p<0.001) and frontal lobe eQTLs (p=0.001) was observed within the top-

ranked SNPs (p<0.01).  This suggests that these top signals may have a broad role in gene 

expression in the brain, and possibly in the etiology of OCD.  In the trio sample, we observed a 

genome-wide significant result for rs6131295, which is located near BTBD3, and is an eQTL for 

BTBD3, DHRS11 and ISM1.  The expression of these latter two genes are highly correlated with 

other top hits, many of which are related to glutamatergic neurotransmission and signaling.  So, 

while no genome-wide significant associations were found in the entire sample, the 

convergence of results from both the trio and combined trio-case-control analyses suggest the 

possibility that our findings at BTBD3, FAIM2 and ADCY8 are genes involved in the 

pathogenesis of OCD.  In the case-control sample, the two most significant p-values were 

located within DLGAP1, a member of the same gene family as DLGAP3, which is also 
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expressed in the neuronal postsynaptic density complex and which has been implicated in a 

mouse model of OCD,33 making these results intriguing.  Future exploration and attempts to 

replicate these findings with additional independent samples is warranted. 
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Table 1: Strongest Associated GWAS Variants in Trio, Case-Control and Combined Trio-
Case-Control Samples Single nucleotide polymorphisms (SNP) listed by rs# include those with association P-

values<10-5 for the trio and case-control samples, and those with P-values<10 -4 for the combined trio-case-control 
sample association results.  The chromosome (Chr) and base pair location for each SNP are listed in columns to the 
right of the SNP column.  SNPs are listed separately for the analyses of trios (top section of table, with box around 
results), case-control samples including combined EU, SA and AJ MDS-defined ancestry subgroups (middle section 
and box), and for combined trio-case-control samples (lower section and box).  SNPs with p<10-3 for any of the 
following are available in online Supplementary Table S2: EU, AJ and SA case-control subgroups individually and 
combined, trios, and combined case-control-trios).  OR indicates the odds ratio for the tested allele in the trio sample.  
Direction indicates whether the direction of association between OCD and the A1 allele is either positive (+) or 
negative (-) A1 allele for individual subgroups within the combined (EU, AJ, SA, trios) samples.  The left gene and 
right gene columns lists the closest genes in the SNP region, either being within the gene (no distance given) or right 
and left flanking genes (+ distance in kilobases) or downstream (- distance in kilobases).  For SNPs located within 
genes, other functional elements in the region are as noted.  QTL (eQTL) columns list genes whose expression or 
methylation levels (m) are associated (P-value) with the specified SNP in that row, specifically as identified previously 
in EU-ancestry frontal (F), parietal (P) or cerebellar (C) tissue.  mQTL and F eQTL data is unavailable for X 
chromosome SNP. 

 

Figure 1: Quantile-quantile (QQ) Plots of Observed versus Expected –log(p) Statistics for: 
(a) Trio samples, (b) Case-Control samples and, (c) Combined Trio-Case-Control 
Samples.  Quantile-quantile plot of observed vs. expected test statistics from the study samples. The 95% 

confidence interval of expected values is indicated in grey.  Corresponding genomic control �ambda values are 
indicated within each plot. 

 

Figure 2: Manhattan Plots for: (a) Trio, (b) Case-Control and, (c) Combined Trio-Case-
Control Samples.  Manhattan plot of all genotyped SNPs from the study samples. Red and blue lines indicate 

significance thresholds of 5 x10-8 and 1 x 10-5, respectively. 

 

Figure 3: Locus Plots for SNPs rs6131295 (near BTBD3), rs11081062 (within DLGAP1) 
and rs297941 (near FAIM2).  Regional association plots pf the best supported SNPs from the a) Trio, b) 

Case-Control (3meta) and c) Trio-Case-Control (4meta) analyses. Locations and observed (-log (p-values) for 
genotyped SNPs are show with black squares. LD, in r2, to the lowest p-value SNP in each plot is indicated using red 
shading (white-low LD, red-high LD). Blue lines indicate the estimated recombination rate from HapMap release 22. 

 

Figure 4: Enrichment analyses for Quantitative Trait Loci (QTLs) among GWAS Variants 
with p<0.01.  Enrichment of (a) frontal lobe expression QTLs (p=0.001), (b) cerebellum expression QTLs 

(p=0.033), (c) parietal expression QTLs (p=0.003), and (d) methylation QTLs (p<0.001) among GWAS SNPs with 
p<0.01 (N=5321).  Distribution of the count of QTLs in 1,000 simulations, each matching the MAF distribution of the 
OCD–associated SNPs. The black dot identifies the observed eQTL or mQTL count in the OCD susceptibility–
associated SNPs. 


