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Abstract

The semi-parametric proportional hazards model with crossed random effects shares

two important characteristics: it avoids explicit specification of the response time

distribution by using semi-parametric models, and heterogeneity that is due to sub-

jects and items is captured. The proposed model has a proportionality parameter

for the speed of each test taker, for the time intensity of each item, and for sub-

ject or item characteristics of interest. It is shown how all these parameters can

be estimated by Markov Chain Monte Carlo methods (Gibbs sampling). The per-

formance of the estimation procedure is assessed with simulations and the model is

further illustrated with the analysis of response times from a visual recognition task.

Keywords: Bayesian Estimation, Crossed Random Effects, Frailty Model, Response

Time, Semi-Parametric Proportional Hazards Model
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1 Introduction

Over the last 2 decades modeling of response time has seen rapid growth in the psy-

chometric literature. Van der Linden (2009) classified existing response time models

into two distinct categories based on the approaches those models have. The first

category models response times in the framework of an item response theory (IRT)

model, where responses are incorporated in the reaction time models or vice versa.

The second category consists of distinct models for response time and the examinees

responses. In this paper we build on the latter tradition, and focus more specifically

on the model for the response time. A large variety of distributional assumptions for

the response time have been proposed in the literature so far. An important class of

parametric models for reaction times that is frequently used assumes the lognormal

distribution, which was originally proposed in the literature by Furneaux (1952) and

introduced in the psychometric literature by Thissen (1983). Van Breukelen (2005)

and van der Linden (2006) amongst others further elaborated on this lognormal

model. More recently a Box-Cox-normal model for response time has been proposed

(Klein Entink, van der Linden & Fox, 2009). Rouder, Sun, Speckmanm, Lu and

Zhou (2003) alternatively suggested the shifted 3-parameter Weibull distribution.

Each of these distributions can be criticized for not exactly capturing the response

time: the absence of a shift parameter in the lognormal models, the heavier tails
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than expected under the Weibull, . . . (Rouder, Tuerlinckx, Speckman, Lu & Gomez,

2008). In this paper, we prefer to make progress within the semi-parametric propor-

tional hazards framework, as the latter avoids the need to specify the distribution of

the response times.

Bloxom (1985) was amongst the first to introduce the concept of hazard function in a

psychometric context. To introduce the concept of the hazard, suppose that response

times are observations of a random variable, which has probability density function

f(t). The hazard function h(t) of this distribution can be defined as follows. Let the

probability of response in a small (non-negative) interval of time ∆t immediately

following t denoted by Pr(t ≤ T ≤ t+ ∆t). The conditional probability of response

in this interval, given that the response did not occur prior to t is Pr(t ≤ T ≤ t+∆t |

T ≥ t). If we divide this probability by ∆t and pass it to the limit ∆t → 0, we

obtain the ratio h(t) = f(t)/S(t), where S(t) is the survival function, indicating the

probability that a response will not be given by time t. This is known as the hazard

function. The cumulative hazard function H(t) =
∫ t
0 h(u)du is linked to the survival

function as follows, S(t) = exp (−H(t)).

Loosely speaking, the hazard function expresses the likelihood of a participant pro-

viding a response in the next instant, given that he/she had not yet done so. Hence

the hazard function is able to capture the instantaneous capacity or speed of the test
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taker to respond. A test taker with a high capacity has a higher conditional prob-

ability of responding (Wenger & Gibson, 2004). Similarly, we can view the hazard

in terms of the intensity that an item requires to be responded. Easier items may

need less processing time and have a larger hazard compared to more difficult items.

With Wenger and Gibson (2004) we acknowledge the conceptual advantage of the

hazard compared to other typical statistics on reaction times such as the mean for

example. Indeed, the hazard provides information about the speed and intensity at

any time t, in contrast to the mean response time that only provides an expectation

on the response time.

The proportional hazards model assumes in its most general form that the specific

hazard of each subject and item combination, i.e. the hazard hij(t) for subject i

and item j, is proportional to some unknown baseline hazard function h0(t). More

specifically the hazard hij(t) equals φijh0(t) where φij is a positive scalar parameter.

In parametric proportional hazards models, a distributional assumption is made

on the response time, which leads to a fully parametric specification of h0(t) and

thus of the model for hij(t). Scheiblechner (1985) proposed in the early 80’s the

exponential density for response time. More specifically he assumed the baseline

hazard to be constant and φij to be an exponential function of the sum of a person

parameter θi and an item parameter εj . A major drawback of such parametric
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models is that misspecification of the distribution of response times may lead to

invalid inference; a misspecified baseline hazard causes all parameter estimates to

be inconsistent (Ridder, 1987). Misspecification of the distribution is less of an issue

in semi-parametric proportional hazards (also called the Cox PH-model). Indeed,

in the latter model, the baseline hazard h0(t) is left unspecified.

The use of semi-parametric proportional hazards models for reaction times from

psychological experiments is not entirely new. Van Breukelen (2005) and Wenger

and Gibson (2004) independently proposed some variant on the Cox PH-model.

Using a stratified partial likelihood approach (Allison, 1996) these authors allow for

unobserved heterogeneity across participants and dependence among items within

subjects. However, using their model potentially discards a considerable amount of

information as no comparisons between subjects can be made and the item covariate

estimates are based solely on within-subject comparisons. Moreover, as their model

is stratified for subjects, it considers in a sense subject heterogeneity as a nuisance

and hence does not allow to assess heterogeneity between subjects. Rather than

treating subjects as strata and item effects as fixed like these authors, we would like

to follow a recent trend in psychometry and view both subjects and items as random

samples from a larger population. If both items and subjects are considered to be

random, our target PH-model should therefore include both random subject and
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random item effects. Treating subjects as random effects is well established because

it is reasonable to assume that no combination of observed subject covariates will

be able to explain all the variance in response times between people. The same

argument can be invoked for items; it is not likely that a set of item predictors can

explain all the variance in response times that exists between test items. Since items

are not nested within subjects and subjects are not nested within items (figure 1),

such model with a random effect for subject and item is often called a crossed random

effects model (Raudenbusch, 1993).

Semi-parametric PH-models with a random effect, commonly known as ‘frailty mod-

els’ in the field of survival analysis, were first introduced by Vaupel, Manton and

Stallard (1979), and Clayton and Cuzick (1985) extended the model to allow for

covariates. While the biostatistical literature has seen major advances over the last

two decades, these models only recently received attention in the psychometric field.

An early application of frailty models and notable exception in the psychometric

literature was proposed by Douglas, Kosorok and Chewning (1999) when dealing

with discrete response times. These authors consider a subject-specific latent psy-

chological construct, assume independence between response times conditional on

this unobservable frailty, and study the performance of the Metropolis-Hasting algo-

rithm to estimate the ability of an item to distinguish among subjects with varying
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levels of that latent psychological construct. Ranger and Ortner (2012) proposed a

profile likelihood approach that can circumvent the limitation of discrete response

times for the latter model. While these authors used a marginalized maximum like-

lihood framework, Wang, Fan, Chang and Douglas (2013) recently described a more

flexible Markov chain Monte Carlo framework.

The major difficulty with fitting frailty models is the often complicated integration

of the likelihood over the random effect. While fitting (semi-)parametric PH-models

with a single frailty has been extensively studied (for an overview see Ibrahim, Chen

& Sinha, 2005; Duchateau & Janssen, 2008), simultaneous estimation of two or more

random effects (one random effect for subject and one for item in our case) is a more

challenging task, especially in the frequentist framework. Duchateau and Janssen

(2008) for example distinguish two different cases for frailty models with more than

one frailty: (i) different frailty terms occur within the same cluster (illustrated by

Legrand, Ducrocq, Janssen, Sylvester & Duchateau, 2005), and (ii) the frailty terms

are nested (Shih & Lu, 2009), but these authors focus their discussion to the fully

parametric case. Estimation of crossed random effects in frailty models however has

to our knowledge not been studied yet and will further be developed in this paper.
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2 Bayesian estimation in a semi-parametric proportional

hazards framework with crossed random effects

In this paper we elaborate on the following frailty model for response time Tij from

subject i (i = 1, . . . , N) on item j (j = 1, . . . , k):

hij(t) = h0(t) exp
(
xtijβ + v1i + v2j

)
, (1)

with the baseline hazard h0(t) left unspecified. In model (1), xtij is a vector of

subject- and item-specific covariates of interest. In the visual recognition study that

we will discuss later in the illustration, one was interested in knowing whether neutral

scenes are recognized faster then pleasant scenes. The item-specific covariate in

model (1) then reflects each of these conditions. Alternatively, the effect of subject-

specific characteristics like age might be of interest. Further, v1i is a subject-specific

random effect and v2j an item-specific random effect in model (1). Conditional

on these random effects, response times Tij are assumed to be independent. In a

crossed random effect setting where items are not nested within subjects or vice

versa (figure 1), these random effects are assumed to be independent. Finally, the

additional assumption is made that - conditional on measured covariates xtij - there

is a consistent item effect across subjects and vice versa.
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We can rewrite (1) as

hij(t) = h0(t)u1iu2j exp
(
xtijβ

)
(2)

where u1i = exp (v1i) and u2j = exp (v2j) subject- and item-specific frailties. The

frailties u1i and u2j are interpreted as representing all unmeasured subject- and item-

factors which affect the subject- and item-specific hazard, and assumed to capture

the unobserved heterogeneity in response times between subjects and items respec-

tively. As mentioned in the introduction, the hazard function can intuitively be

viewed as the likelihood of a subject i completing item j, given that the subject has

not yet completed the item. A fast responder has a high conditional probability of

finishing the item, and will have a large value for v1i (or u1i) in model (1) (model (2)

respectively). In other words, the value of v1i allows to assess the speed of the test

taker relative to its peers with the same measured characteristics. Similarly, an item

that is more easily accomplished will have a high conditional probability of being

finished, and hence have a large value for v2j (or u2j), reflecting the time intensity of

the time relative to its alikes. Within the spirit of the proportional hazards frame-

work, it is important to realize that - while we allow for different hazards for each

item and subject - these hazards are restricted to be shifted proportionally from

h0(t) by an item-specific and individual-specific component. Assuming such pro-

portionality may not be realistic in all circumstances as item response distributions
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can differ considerably even in similar tests (Ranger & Kuhn, 2012). Other recent

proposals in the semi-parametric PH-framework (Ranger and Ortner, 2012; Wang

et al., 2013), specify the hazard as follows

hij(t) = h0j(t) exp (βjv1i),

where similar to model (2), v1i can be viewed as a speed parameter. While the

latter model allows for a different functional form for the hazard for each item

and a discrimination parameter (βj), the stratified baseline hazard would not allow

to quantify the effect of an item-specific characteristic xij (neutral versus pleasant

pictures for example) on the response time. In contrast, we aim to propose in

this paper a model that allows to estimate such effects while acknowledging the

heterogeneity that is both due to the subjects and items. To reach that goal, we

require that the effect of each item j is to shift a common baseline hazard h0(t)

with a factor exp (v2j). Such model is an important improvement over existing

fully parametric counterparts. Indeed the semi-parametric PH-model (2) leaves

the baseline hazard h0(t) unspecified, and hence allows for a wider range of true

underlying response time distributions.

Distributional choices have to be made for the random effects. Typical choices are

that v1i (and v2j) are an independent and identically distributed (i.i.d) sample from

either a normal density with mean 0 and variance σ21 (σ22 respectively), or that u1i
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(and u2j) are from a one-parameter gamma density with mean one and variance γ1

(γ2). The mean of the random effects (frailties) is set to zero (one, respectively)

to allow for identifiability. In this paper, we will proceed with zero-mean normally

distributed subject and item random effects. The parameters σ21 and σ22 can be

viewed as heterogeneity parameters, and allow to assess the variability between

subjects and items, respectively (Legrand et al., 2005).

We will use Bayesian techniques to fit the semi-parametric model (1) and follow

the Markov Chain Monte Carlo-approach suggested by Kalbfleisch (1978) for semi-

parametric Cox model and further extended for frailty models by Clayton (1991).

These authors tackle the problem of an unspecified baseline hazard h0(t) by propos-

ing an independent-increments gamma prior for the cumulative baseline hazard

H0(t), with H0(t) =
∫ t
0 h0(u)du. Ibrahim, Chen & Sinha (2005, p.47) describe

several alternative nonparametric prior processes for the baseline cumulative haz-

ard (the beta process, correlated prior processes, the Dirichlet process, . . . ) but

here the independent-increments gamma approach was choosen because of its ease

of implementation in available software. Under this independent-increments ap-

proach, the hazard at each observed response time is considered a parameter, and

so - with many different response times typically observed - we end up with a very

high number of parameters to be estimated. To avoid high-dimensional sampling
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associated with the Metropolis algorithm, we will therefore rely on the more effi-

cient Gibbs sampling, which is based on the posterior density of each parameter,

conditional on all the other parameters. In this section we demonstrate how Gibbs

sampling can be applied to obtain posterior densities for the parameters of inter-

est in the semi-parametric frailty model (1) with zero-mean normal random effects.

The approach outlined below builds further on the Bayesian estimation in the semi-

parametric PH-model with one gamma frailty described in Duchateau and Janssen

(2008, p.233-245).

A Bayesian estimation approach

We first order all response times tij , and partition the time axis in z (with z

equal to the total number of distinct response times) disjoint intervals (t(0), t(1)], . . .,

(t(z−1), t(z)] with t(0) = 0 and t(m) corresponding to the m-th ordered reaction

time. Further denote the increase of the cumulative baseline hazard in interval

(t(m−1), t(m)] by h(m). The probability that subject i gives a response to item j in the

interval (t(m−1), t(m)] equals Pr(Tij < t(m))−Pr(Tij < t(m−1)) = exp
(
−
∫ t(m−1)

0 hij(u)du
)
−

exp
(
−
∫ t(m)

0 hij(u)du
)

, where the latter equality follows from S(t) = exp (−H(t)).

Viewing the reaction times as grouped within these intervals (where the number of

intervals is equal to the number of observations if all reaction times are different),
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the grouped-data likelihood function corresponding to model (1) conditional on fixed

and random effect equals

N∏
i=1

k∏
j=1

exp
(
− exp(xtijβ + v1i + v2j)

∑
m:t(m)<tij

h(m)

)
× (3)

[
1− exp

(
− exp(xtijβ + v1i + v2j)h(s,ij)

)]

with s, ij = min{m : t(m) ≥ tij}.

Using first-order Taylor expansion (see appendix A1), this expression can be ap-

proximated by

N∏
i=1

k∏
j=1

exp

− exp(xtijβ + v1i + v2j)
∑

m:t(m)≤tij

h(m)

(exp(xtijβ + v1i + v2j)h(s,ij)
)
(4)

or alternatively

N∏
i=1

k∏
j=1

∏
m:t(m)≤tij

(
h(m) exp(xtijβ + v1i + v2j)

)δij(t(m))

exp
(
−h(m) exp(xtijβ + v1i + v2j)

)
(5)

with δij(t(m)) equal to 1 if tij = t(m), and else 0.

Expression (5) resembles the likelihood of a Poisson regression analysis with likeli-

hood as if the indicators δij(t(m)) were Poisson random variables with expectation

h(m) exp(xtijβ + v1i + v2j). Since the conjugate prior for the Poisson mean is the

gamma distribution, it is therefore convenient if H0(t) is assumed to follow a pro-

cess in which the increments h(m) are distributed according to gamma distributions
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(Kalbfleisch, 1978). The likelihood formulation (5) is also the one that is used in

OPENBUGS (Lunn, Spiegelhalter, Thomas & Best, 2009), a free software package

for performing Bayesian inference using Gibbs sampling, that we will use for the

illustration too. Before we demonstrate how model (5) and specific prior choices

lead to conditional posterior densities describing the Gibbs sampler which are either

known distributions or shown to be log concave, we first specify these priors.

Prior distributions

As motivated above, we assume an independent gamma process prior for the cu-

mulative baseline hazard. More specifically, we have that the increments h(m) are

distributed as independent gamma variables with shape parameter c
(
H∗0 (t(m))−

H∗0 (t(m−1))
)

and scale parameter c respectively, with the Gamma distribution with

shape parameter r and scale parameter µ defined in OPENBUGS as

f(x) =
µrxr−1e−µx

Γ(r)
if x > 0

We need to specify values for both H∗0 and c. The function H∗0 is taken to be based

on a time-constant hazard h∗0 and c then reflects the degree of confidence in this

prior guess h∗0. Small values of c correspond to large variances on the increments

and hence to weak prior beliefs. In the simulation study and illustrating example

below we set c equal to 0.0001 and the increments in the cumulative baseline hazard
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H∗0 (t(m)) − H∗0 (t(m−1)) were set to r∆t(m), where r is a guess at the event rate

(assumed to be equal to 1 here) per time interval, and ∆t(m) is the size of the

interval, t(m) − t(m−1) .

For the fixed effect parameters β = (β1, . . . , βp) we assume uniform priors f(βl) ∝ 1

and independence between all parameters, implying that f(β) =
∏p
l=1 f(βl) ∝ 1.

For the precision of the normally distributed random effects v1i and v2j , 1/σ1 and

1/σ2 respectively, non-informative gamma distributions are assumed.

Posterior distribution

Following Bayes theorem, the joint posterior density function of the parameter vector

ω given the observed data t, equals

f(ω | t) =
f(t | ω)f(ω)

f(t)

with ω = (ht, σ1, σ2,β
t,vt1,v

t
2), a (z + 1 + 1 + p + N + k) × 1 vector with h =

(h(1), . . . , h(z))
t, β = (β1, . . . , βp), v1 = (v11, . . . , v1N )t and v2 = (v21, . . . , v2k)

t.

To use Gibbs sampling, Bayes theorem can also be applied to one specific parameter

ωi while conditioning on the other parameters (denoted by ω(−i)),

f(ωi | t,ω(−i)) =
f(t | ω)f(ωi | ω(−i))

f(t | ω(−i))

Given the independence between prior densities of all parameters, we have

f(ωi | t,ω(−i)) ∝ f(t | ω)f(ωi), (6)
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where we further dropped the normalizing factor as it is difficult to obtain in this

setting.

In the following we derive the conditional posterior densities for all the parameters

of interest. We first consider the conditional posterior density of one component of

β, say βl (l = 1, . . . , p). From (6) and the uniform prior for βl, it follows that

f (βl | t,h, σ1, σ2,β(−l),v1,v2) ∝ f(t | h, σ1, σ2,β,v1,v2)

=

N∏
i=1

k∏
j=1

∏
m:t(m)≤tij

(
h(m) exp(xtijβ + v1i + v2j)

)δij(t(m))

exp
(
−h(m) exp(xtijβ + v1i + v2j)

)
(7)

As this conditional posterior density is logconcave (see Appendix A1), it allows to

make use of the adaptive rejection sampling algorithm (Gilks & Wild, 1992), a fact

that is also used in OPENBUGS to generate a sample.

Next we consider f(h(l) | t(l),h(−l), σ1, σ2,β,v1,v2), the conditional posterior den-

sity of h(l) (l = 1, . . . , z), which equals

f(t(l) | h, σ1, σ2,β,v1,v2)f(h(l) | h(−l), σ1, σ2,β,v1,v2)

f(t(l) | h(−l), σ1, σ2,β,v1,v2)

with t(l) referring to all reaction times equals to t(l). Given the assumed indepen-

dence between all parameters and the independent increments in cumulative hazard,

this expression simplifies to

f(h(l) | t(l), σ1, σ2,β,v1,v2) =
f(t(l) | h(l), σ1, σ2,β,v1,v2)f(h(l))

f(t(l) | σ1, σ2,β,v1,v2)
(8)
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The conditional likelihood expression of t(l) in the numerator of (8) is given by

f(t(l) | h(l), σ1, σ2,β,v1,v2) =

N∏
i=1

k∏
j=1

(
h(l) exp(xtijβ + v1i + v2j)

)δij(t(l)) exp
(
−h(l)B(l)

)
=

N∏
i=1

k∏
j=1

(
exp(xtijβ + v1i + v2j)

)δij(t(l)) × hD(l)

(l)

× exp
(
−D(l)h(l)B(l)

)
(9)

with B(l) =
∑

i′j′∈R(t(l))
exp

(
xti′j′β + v1i′ + v2j′

)
, where R

(
t(l)
)

is the risk set at

time t(l) and D(l) the number of observed reaction times equal to t(l).

The conditional likelihood expression of t(l) in the denominator of (8) can be found

by integrating out h(l) from (9)

f(t(l) | σ1, σ2,β,v1,v2) =
N∏
i=1

k∏
j=1

(
exp(xtijβ + v1i + v2j)

)δij(t(l))
×
∫ ∞
0

h
D(l)

(l) exp
(
−D(l)h(l)B(l)

)
dh(l)

=

N∏
i=1

k∏
j=1

(
exp(xtijβ + v1i + v2j)

)δij(t(l))
× cch

∗
(l)

Γ(ch∗(l))

(
c+D(l)B(l)

)−ch∗(l)−D(l) Γ
(
ch∗(l) +D(l)

)

with h∗(l) = H∗0 (t(l))−H∗0 (t(l−1)). Therefore, we end up with

f(h(l) | t(l), σ1, σ2,β,v1,v2) =
(
c+D(l)B(l)

)ch∗(l)+D(l) h
ch∗(l)+D(l)−1
(l)

× exp
(
−h(l)(c+D(l)B(l))

) (
Γ(ch∗(l) +D(l))

)−1
,

which corresponds to a gamma density with parameters ch∗(l) +D(l) and c+D(l)B(l),

and hence we can sample from the gamma density.
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For the random effect v1i (i = 1, . . . , N), the conditional posterior density is propor-

tional to

f(v1i | t,h, σ1, σ2,v2) ∝ f(t | h, σ1, σ2,v2)f(v1i)

=
k∏
j=1

∏
l:t(l)≤tij

(
h(l) exp (xtijβ + v1i + v2j)

)δij(t(l))
× exp

{
−
(
h(l) exp (xtijβ + v1i + v2j)

)}
× 1√

2πσ1
exp

(
− v21i

2σ21

)

Given the logconcavity of this conditional posterior density, we can again rely on

the adaptive rejection resampling algorithm. Similar arguments can be used for the

random effect v2j (j = 1, . . . ,K).

Finally, as the gamma distribution is the conjugate prior for the precision of the

normal distribution, sampling from its posterior density is easily obtained.

3 Simulation study

Competitive models

To assess the finite sample properties of the proposed estimation procedure for the

parameters of interest in model (1), we performed a simulation study. We contrasted

the performance of the newly proposed semi-parametric PH-model with crossed

random effects with 3 existing PH-models for reaction times: (a) a fully parametric

PH-model, assuming a shifted Weibull distribution, with crossed random effects (b)

18



a more standard semi-parametric PH-model with a single random effect for subject,

and (c) a discrete PH-model with crossed random effects. Under the fully parametric

approach we assumed the following hazards model :

hij(t) = λ0γ(t− ψ)γ−1 exp (xtijβ
∗ + v∗1i + v∗2j) when t ≥ ψ (10)

with ψ ∈ <+ the shift parameter, γ ∈ <+ the shape parameter, and λ0 ∈ <+ the

(baseline) rate parameter of the shifted 3-parameter Weibull (Rouder, Tuerlinckx,

Speckman, Lu, & Gomez, 2008). When ψ equals zero and γ equals one, the shifted

Weibull distribution reduces to an exponential distribution. The roles of each of

these parameters and their estimation through Markov Chain Monte Carlo integra-

tion is further discussed by Rouder and colleagues (2008). Similar as in model (1)

v∗1i and v∗2j are crossed random effects, reflecting the speed of subject i and intensity

of item j (Loeys, Rosseel & Baten, 2011), where here too the assumption is made

that v∗1i ∼ N(0, σ∗21 ) and v∗2j ∼ N(0, σ∗22 ). As noted by one of the referees, the shift

parameters are often hard to estimate, but results presented below did not drasti-

cally differ for the Weibull model with or without shift parameter.

The second model considered for comparison, the semi-parametric PH-model with

a single random effect for subject can be expressed as

hij(t) = h0(t) exp
(
xtijβ

∗∗ + v∗∗1i
)

(11)
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In model (11) it is assumed that the correlation between measurements on the same

subject i is captured by the random effect v∗∗1i , while the heterogeneity due to items

is ignored as compared to model (1).

Finally, we compare the proposed estimation approach based on continuous time to

an approach based on discrete time. More specifically, we define the discrete-time

hazard rate λijk for subject i on item j in interval k as

λijk = Pr (Tij = k | Tij ≥ k,xij , w1i, w2j), (12)

Assuming model (1), it can be shown (Prentice & Gloecker, 1978) that

λijk = 1− exp
(
− exp(γk + xtijβ + v1i + v2j)

)
which can be rewritten as

log [− log(1− λijk)] = γk + xtijβ + v1i + v2j (13)

where the coefficients β are identical to that of model (1) and αk is a constant related

to the conditional survival probability in the interval k. The grouped data survival

model is therefore equivalent to the binary response model with the complementary

log-log link function. To fit this model with generalized linear mixed model software

that allows for crossed random effects (for e.g. proc Glimmix in SAS, or the glmer-

function in the R-library lme4), one must treat each discrete time unit for each

subject as a separate observation. For each of these observations, the response is
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then dichotomous, corresponding to whether or not the subject gave an answer in

the time unit.

Data generation

For a fixed sample size of 15 subjects and 20 items (approximately reflecting the size

of the illustrating example), we generated a single response time for each subject-

item combination. Conditional on covariates and random effects, the continuous

response times were assumed to follow (i) an exponential distribution (‘exp’) with

rate parameter λ = 1/500 (simulation setting (S1a) through (S1e) in table 1), (ii)

a Weibull distribution (‘Wei’) with rate parameter λ = 1/500, shape parameter

γ = 2 and ψ = 0 (setting (S2a) through (S2c)), or (iii) a piecewise exponential

distribution (‘p-e’) with rate 1/1000, 1/400 and 1/700 and change points at 400

and 600 (setting (S3a) through (S3c)). A single observed item-specific covariate

Xj is assumed that is either Bernoulli with probability 0.5 (‘B(0.5)’) or standard

normal (‘N(0,1)’), except for setting (S1e) which simultaneously has an item-specific

fixed effect, a subject-specific fixed effect and its interaction. All settings assumed

subject- and item-specific random effects v1i and v2j that are normally distributed.

Also note that in setting (S1d) the heterogeneity due to items was set to zero. For

the discrete PH-approach, 10 intervals of length 100 were considered.
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The semi-parametric PH-model with crossed random effects (1) (‘Cox PH-2’) and its

discrete counterpart (13) (‘Discrete PH-2’) hold under all simulation settings except

(S1d); the shifted Weibull model (14) (‘Weibull-2’) additionally does not hold under

the piece-wise exponential baseline hazard; while the single frailty model (11) (‘Cox

PH-1’) only holds under scenario (S1d).

Simulation Results

Table 1 presents for each of these 4 models summaries of the estimated fixed ef-

fects and the estimated standard deviation of the subject random effect (estimated

standard deviations of the item random effect performed similar and are not shown)

that are based on 200 repetitions in each setting. All estimates are derived from the

posterior means for these parameters obtained from 2 independent chains of length

2500, except for the estimates from model (13) where a frequentist approach was

taken.

The semi-parametric PH-model does not show any evidence of biased fixed esti-

mates. It is interesting to note that - while making less distributional assumptions

- the cost in terms of efficiency for the fixed effect estimates as compared to its

parametric Weibull counterpart - is very mild, if any. There is some indication of

undercoverage of the 95% posterior interval for the fixed effect estimate, both in
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the semi-parametric and parametric PH-models with crossed random effects. The

variability of the subject random effect is well recovered in all scenarios by all mod-

els with crossed random effects, also when no item variability was generated (S1d)

but assumed. Of note, the continuous and discrete PH-model with crossed random

effect yield rather similar results.

While the semi-parametric approach treats the baseline hazard as a nuisance, it can

still be of interest to look at the performance of its estimation. The left panel of

figure 2 presents as an example the estimated cumulative baseline hazard for each of

200 simulations under scenario (S3a), and the true cumulative baseline hazard is on

average relatively well approximated. The shifted Weibull family does not include

the piecewise exponential distribution (S3a), but does perform relatively well from

this perspective too (right panel of figure 2).

When random variance due to both subjects and items is present (all settings ex-

cept for S1d) but only one source is included in the model, potential problems

arise. In the context of linear mixed effect models, Baayen, Davidson and Bates

(2008) demonstrated that deflated standard errors and biased fixed effect estimates

results when item or person variance is not taken into account. On comparing the

results obtained from model (1) with model (11), we find similar findings in the

semi-parametric PH-framework. Moreover there is evidence of a deflated variance
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component for the subject random effect when ignoring the item variability.

Based on the settings explored, we can conclude that while the semi-parametric ap-

proach does not force the practitioner to make specific distributional choices for the

response time distributions, it does not come at the price of much efficiency loss.

Furthermore, ignoring one level of heterogeneity as in the standard frailty model

with a single random effect may seriously compromise the inference for the fixed

effect parameters. Finally, it is worth noting that while one could have expected

a loss in precision or power by discretizing response times, the PH-approach with

crossed random effects for discrete response times performs surprisingly well.

4 Example

In a recently performed visual object recognition study, Schettino, Loeys, Delplanque

and Pourtois (2011) explored the effect of emotional content on early recognition.

More precisely, an initial blurred visual scene was first shown, before the actual

content of the stimulus was gradually revealed. The first (blurred) image level of

a given picture was presented for 500ms, followed by a 250ms blank screen. Next,

the second image level of the same picture (containing more HSF information) was

immediately presented for 500 ms, plus 250 ms blank screen, and the same proce-

dure was repeated until the presentation of the sixth image level (i.e. unfiltered
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picture). Participants were asked to press the spacebar key on a keyboard as soon

as they felt they could decide with sufficient confidence, whether the presented scene

contained a living object or not. Pressing the spacebar key immediately interrupted

the presentation of the stimuli. Standard neutral and emotional scenes were se-

lected from the International Affective Picture System, a standardized database

containing emotionally-evocative pictures that depict objects and scenes across a

wide range of categories and situations. The pictures were divided into three emo-

tion categories, according to their pre-defined valence scores: neutral, unpleasant

and pleasant. Since there are gender differences in both valence and arousal ratings,

two sets of 138 pictures were selected in order to balance the arousal levels of the

emotional pictures across male versus female participants. Among these selected

pictures, only 42 were shared between male and female participants.

In total, 19 psychology students participated to the study. For this illustration, we

further selected the 11 neutral and 16 pleasant pictures that were shared between

male and female participants. The main purpose of the analysis below is to explore

the effect of pleasant versus neutral pictures on the time to recognition (defined as

the time between initiation of the trial and pressing the spacebar). We assume a

semi-parametric proportional hazards model for the reaction time Tij (participants

i = 1, . . . , 19 and pictures j = 1, . . . , 27) with a fixed effect for emotion of the picture
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(denoted x1j being equal to 1 if neutral and 0 if pleasant) and crossed random effects

v1i for participants and v2j for pictures, i.e.

hij(t) = h0(t) exp (β1x1j + v1i + v2j) (14)

with h0(t) further left unspecified, β1, v1i, v2j ∈ < and v1i ∼ N(0, σ21) and v2j ∼

N(0, σ22). In model (14) a positive (negative) β1 implies that neutral pictures are

recognized faster (slower, respectively) than pleasant pictures. Furthermore, par-

ticipants with a positive v1i tend to respond faster, i.e. they have a higher speed,

while pictures with a positive v2j need less processing time conditional on whether

the picture is neutral or pleasant.

Bayesian Analysis

We fitted model (14) in OPENBUGS (detailed code can be found in appendix A2),

and ran 2 independent chains of length 15000, where the first half’s were used as

a burn-in period. The total run time for the two chains of length 15000 was about

30 minutes on a Windows PC. When the MCMC algorithm is used, it is important

to assess first its convergence to ensure that the random draws are actually com-

ing from the posterior distribution of interest. An informal approach is to visually

inspect the plot of the Gibbs sampler run, the so-called trace plot, and the auto-

correlation plot, with high autocorrelation indicative for slow mixing and possibly
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nonconvergence to the limiting distribution (because the chain will tend to explore

less space in finite time). Gelman and Rubin (1992) further proposed a formal diag-

nostic method when running several chains, the so-called scale reduction factor R̂,

which is based on the estimated within-chain variance and between-chain variance.

If the value of R̂ is close to 1, for example less than 1.2, we may conclude that the

MCMC algorithm reasonably converges; otherwise the algorithm may fail to con-

verge. Figure 3 presents the trace plots after the burn-in period for both chains

and a corresponding autocorrelation plots for the fixed effect parameter β1 and the

random effect variance components σ1 and σ2. While for the latter two there is no

indication of a problem in convergence or in high autocorrelation, the mixing of the

2 chains for β1 is very slow and the autocorrelation pretty high. The Gelman-Rubin

statistic equals 1.09. Although this is smaller than the threshold typically used, we

further explored this phenomenon in the earlier described simulation settings and

observed similar behavior throughout.

Interestingly, we find marginal evidence for prolonged response times for pleasant

versus neutral images (posterior mean for β1=0.45 with 95% posterior density rang-

ing from -0.02 to 0.86). Furthermore, the variability in speed amongst participants

(posterior mean for σ1=0.56 with 95% posterior density ranging from 0.39 to 0.80)

is somewhat smaller than the variability in intensity amongst items (posterior mean
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for σ1=0.73 with 95% posterior density ranging from 0.54 to 0.99). Figure 4 shows

the posterior mean of the parameter v2j with its 95% posterior interval for all 27

images, and allows to compare the intensity between the presented items.

Model Validity

The validity of the model is assessed here using posterior predictive checks, which are

based on the response time for participant i on item j predicted from the posterior

distribution of the model parameters (van der Linden, Breithaupt, Chuah, & Yang,

2007), denoted by t̃ij . For each observation tij , one can calculate the left-sided

probability of exceedance of the observation under its predictive density,

Pr(t̃ij < tij) i = 1, . . . , N ; j = 1, . . . , k

It can be shown that - if the model fits well - the cumulative distribution of these

probabilities follows the identity line. The results from this check of the global

fit of the model is shown in the left panel of Figure 5, which provides evidence

that the model fits the data well. Indeed the cumulative distribution plot almost

coincides with the identity line. This same analysis was repeated with the cumulative

distributions of the predictive probabilities for the individual items (right panel of

Figure 5). Because these distributions are based on smaller samples, we see more

variability but still a very reasonable fit for this random selection of items.
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Alternative modeling approach: the log-normal model.

To contrast the newly proposed semi-parametric approach with existing parametric

approaches for reaction time modeling, we also present the results from the most

popular model, the lognormal model (Van der Linden, 2006) distribution, assuming

crossed random effects for subjects and items too.

The density of the lognormal distribution is given by

f(tij | µ∗ij , σ∗) =
1√

2πσ∗tij
exp

[
−1

2

(
log tij − µ∗ij

σ∗

)2
]

(15)

where we restricted the variance σ∗2 not to depend on subject or item, while the

mean µ∗ij equals,

µ∗ij = β∗0 + β∗1x1j + v∗1i + v∗2j , (16)

with β∗0 , β
∗
1 , v
∗
1i, v

∗
2j ∈ < and σ∗ ∈ <+. We further assume that random intercepts for

subject and item are normally distributed, i.e. v∗1i ∼ N(0, σ∗21 ) and v2j ∼ N(0, σ∗22 ).

The parameters in (16) express effects on the mean of the (log) response time and

can not directly be related to the parameters in the PH-model (14). Moreover, their

signs have opposite interpretations. Estimated parameters are shown in table 2, and

similar conclusions are reached as before. However the posterior predictive checks

based on the predicted response time distribution provide evidence of a poorer global

fit as compared to the PH-model (left panel of Figure 5).
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Accuracy

As participants in the above discussed visual recognition study were under time

pressure to give a correct answer as soon as possible, not all answers to the ques-

tion whether the presented scene was gradually revealing a living object or not were

correct (overall, nearly 95% of the answers were correct). In contrast to the tra-

ditional item-response framework where responses are incorporated in the reaction

time models or vice versa, we focused here on a distinct model for the response time.

It is still possible though to explore the speed-accuracy trade-off. Indeed, following

van der Linden (2007), one can propose a response model, a model for response time

and a higher-level structure accounting for the dependencies between the item and

subject parameters in these models. While van der Linden (2007) used a log-normal

model for the response times, and Loeys, Baten and Rosseel (2011) used a shifted

Weibull distribution with crossed random effects for the response time for the anal-

ysis of psycholinguistic data, this joint modeling framework is flexible enough to

include the newly proposed semi-parametric PH-model too. More specfically, we

continue to assume model (14) for the response time, while we assume the following

logistic regression model with crossed random effects for the response

logit(P (Yij = 1)) = α0 + α1x1j + w1i + w2j (17)
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with Yij denoting the response of subject i to item j (1 if correct, else 0), and x1j a

dummy variable for the neutrality of the scene as before. In model (17) a positive

value of α1 implies a higher accuracy rate associated with neutral scenes as compared

to pleasant scenes. Further, w1j and w2j are zero-mean normal random effects,

capturing the heterogeneity between subjects and between items, respectively.

A joint modeling approach is invoked by imposing a joint multivariate distribution

on the vector of all random effects for subject and item from models (14) and (17).

More specifically, we assume that both the subject parameters v1i and w1i and the

item parameters v2i and w2i follow a bivariate normal distribution with mean 0 and

a covariance structure specified by

ΣS =

 σ2v1 ρ1σv1σw1

ρ1σv1σw1 σ2w1

 and ΣI =

 σ2v2 ρ2σv2σw2

ρ2σv2σw2 σ2w2

 . (18)

In (18), ρ1 measures the correlation between speed (as captured by v1) and ability

(as captured by w1) at the subject level, while ρ2 measures the correlation between

time intensity (as captured by the opposite of v2) and difficulty at the item level (as

captured by the opposite of w2).

Setting the inverse Wishart distribution as prior for the covariances ΣS and ΣI for

example, one can proceed with joint estimation of models (14) and (17) within the

Bayesian framework using Gibbs sampling (for further details, see van der Linden,
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2007; and Loeys et al., 2011). For the visual recognition study, we find under

this joint modeling approach similar estimated effects (not shown) of the emotional

context of the scene, and of the variability in response time due to participants

and items as under the response time modeling alone. Moreover, assuming (18), a

negative correlation between speed and ability (left panel of figure 6), and a positive

correlation between the difficulties and time intensities of the items (right panel of

figure 6) is found, the posterior mean for ρ1 and ρ2 equal -0.54 and 0.55, respectively

(with 95% posterior interval from -0.83 to 0.01 and 0.13 tot 0.81, respectively).

The latter finding is in line with van der Linden (2009) who also observed a strong

tendency to a substantial positive correlation between difficulty and time intensity of

the items across several educational tests, while for ρ1 he found varying correlations.

One possible explanation of the negative correlation between ability and speed, might

be the better time management among more able participants. When there is ample

time, these participants may slow down to maximally profit from it.

5 Discussion

The newly proposed semi-parametric PH-model nicely complements the increasingly

popular crossed random effects model based on the lognormal distribution from van

der Linden (2006). While the latter fits within the accelerated failure time frame-
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work, we made progress here within the PH-framework. As compared to modeling

the effect of an item condition change from A to B on the mean reaction time,

the hazard ratio is directly interpretable as a ratio of the instantaneous capacity

of the test-taker for completing an item under condition A versus condition B at

any time. While processing capacity is a critical construct in cognitive psychology

(Wenger & Gibson, 2004) the use of the hazard function to assess changes in such

processing capacity may get reinforced by the proposed model. A second advantage

of the proposed semi-parametric model is its greater flexibility than fully parametric

alternatives like the lognormal or Weibull model. The main drawback of the latter

models is indeed the need to specify the distribution that most appropriately mirrors

that of the actual response times. This is an important requirement that needs to be

verified and an appropriate distribution may be difficult to identify (Rouder et al.,

2008; Klein Entink et al., 2009). On the other hand, when a suitable distribution

can be found, the parametric model might be more informative than the Cox model.

Simulation studies presented in this paper do not show evidence of loss in efficiency

when using semi-parametric versus parametric proportional hazards models. Third,

the proposed PH-model can easily deal with censored observations. Many response

time researchers truncate their data, excluding as spurious all response times falling

outside a specified range (Ulrich & Miller, 1994). While censoring instead of trun-
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cating may greatly reduce the biasing effects of outliers, the psychometric literature

has seen few developments of estimating response time distributions in the presence

of censoring (Dolan, van der Maas, & Molenaar, 2002). In Appendix A3 we demon-

strate how censoring can easily be incorporated in the proposed PH-framework.

Fourth, treating both subject and items as random makes most sense from a theo-

retical perspective. It allows to generalize findings to the population of subjects and

items (De Boeck, 2008), respectively, and to explain the person’s variation in speed

and the item’s variation in intensity. As clearly demonstrated in the simulation

study, ignoring the variability due to items may dramatically impact the validity of

the statistical inference. Both the newly proposed model and van der Linden’s log-

normal models have crossed random effects and share the strength of acknowledging

heterogeneity due to subjects and items. Fifth, in contrast to the traditional item-

response framework where responses are incorporated in the reaction time models

or vice versa, we focused here on a distinct model for the response time, and showed

how it can easily be embedded within a joint modeling framework for response time

and accuracy.

Weaknesses of the semi-parametric PH-model include the lack of diagnostic tools for

checking the PH-assumption for the covariates of interest and the random effects,

and for checking the distributional assumptions for the random effects. The assumed
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shift in hazards for each item in the proposed model may be questionable in some

settings. Indeed, Ranger and Kuhn (2012) recently demonstrated that the reaction

time distribution may differ substantially across items within a test. These authors

therefor unified the proportional hazards models and accelerated failure time mod-

els in latent trait models for discrete response times allowing for such item-specific

distributions, but their models should rather be viewed within the item-response

theory framework with focus on item discrimination, i.e. the ability of an item

to distinguish between subjects with unequal speed. Within that same framework,

Wang, Fan, Chang & Douglas (2013) proposed the linear transformation with frailty

model for continuous response times, a generalization that encompasses the lognor-

mal model, the Weibull model and the Cox PH-model amongst others. In contrast

to the approach presented in this paper, both the model of Ranger and Kuhn (2012)

and the model of Wang et al. (2013) offer the flexibility of allowing for differential

distributional assumptions between items, but their models do not allow to estimate

the effect of observed item-specific characteristics as in our illustration.

Finally the proposed estimation procedure is computationally intensive, and improv-

ing the speed in estimating the parameters is currently under investigation. Several

estimation procedures for (semi-)parametric PH-model with a single random effect

or nested random effects exist. The penalized likelihood approach, the EM-algorithm
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(with several variants) or Bayesian techniques based on Gibbs sampling amongst oth-

ers have different advantages and drawbacks (Abrahantes, Legrand, Burzykowski,

Janssen, Ducrocq & Duchateau, 2006). In this first application of cross-classified

semi-parametric PH-models, we opted to use Gibbs sampling. Computational speed

may be improved by avoiding Gibbs sampling and working along the lines of Cho

and Rabe-Hesketh (2011) who discuss the alternating imputation posterior (AIP)

algorithm for crossed random effects in (generalized) linear mixed models. The AIP-

algorithm alternates between an item wing in which item intensity is sampled for

given person speed, and a subject wing in which person speed is sampled for given

item intensity, and our hope is that the implementation of Laplacian approximations

in these alternations may largely improve speed.
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Appendix

Appendix A1

In order to derive the approximation for the likelihood (4), consider the contribution

of the second ordered response time (assume this belongs to subject k on item l):

L(tkl) = exp
(
− exp(xtklβ + v1k + v2l)h(1)

)
−
[
1− exp

(
− exp(xtklβ + v1k + v2l)h(1) + h(2)

)]
= φ(h(1))− φ(h(1) + h(2))

Using first-order Taylor series approximation around h(1), this can be approximated

by

L(tkl) ≈
(
h(1) − (h(1) + h(2))

)
φ
′
(h(1) + h(2))

= h(2) exp(xtklβ + v1k + v2l) exp
(
− exp(xtklβ + v1k + v2l)h(1) + h(2)

)
By doing so for every observed response time, likelihood approximation (2) is ob-

tained.
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In order to demonstrate the logconcavity of the conditional posterior density f(βl |

t,h, σ1, σ2,β(−l),v1,v2), we need to prove that its second derivative is nonpositive.

∂2

∂β2l
logf(βl | t,h, σ1, σ2,β(−l),v1,v2)

=
∂2

∂β2l

N∑
i=1

k∑
j=1

∑
m:t(m)≤tij

[
δij(t(m))log

(
h(m) exp(xtijβ + v1i + v2j)

)

−h(m) exp(xtijβ + v1i + v2j)
]

= −
N∑
i=1

k∑
j=1

∑
m:t(m)≤tij

h(m) exp(xtijβ + v1i + v2j)x
2
ijl

This last expression is always less than or equal to zero.

The logconcavity of the conditional posterior distribution of the random effects can

be shown similarly.
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Appendix A2

# N: total number of observations (obs.t contains all response times)

# T: number of distinct response times (t contains ordered distinct response times)

# subject: label for the participant (Nsubj is total number participants)

# item: label for the item (Nitem is total number of items)

# X: predictor

# eps: epsilon (small number like 0.0001 for eg.)

model

{

for (i in 1:N){

for (k in 1:T){

Y[i,k]<-step(obs.t[i]-t[k]+eps)

dN[i,k]<-Y[i,k]*step(t[k+1]-obs.t[i]-eps)

}

}

for (k in 1:T){

for (i in 1:N){

dN[i,k]~dpois(Idt[i,k])

Idt[i,k]<-Y[i,k]*exp(beta1*X[i]+b1[subject[i]]+b2[item[i]])*dL0[k]

}

dL0[k]~dgamma(mu[k],c)

mu[k]<-dL0.star[k]*c

S0[k]<-exp(-sum(dL0[1:k]))

S1[k]<-pow(exp(-sum(dL0[1:k])),exp(beta1))

}

for (i in 1:Nsubj){

b1[i]~dnorm(0.0,tau1)

}

for (j in 1:Nitem){

b2[j]~dnorm(0.0,tau2)

}

tau1~dgamma(0.001,0.001)

tau2~dgamma(0.001,0.001)

sigma1<-sqrt(1/tau1)

sigma2<-sqrt(1/tau2)

c<-0.0001

r<-1

for (k in 1:T){

dL0.star[k]<-r*(t[k+1]-t[k])

}

beta1~dnorm(0,0.0000001)

}
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Appendix A3

Response times can be right censored - that is response times are known for only

a portion of the subject/item combinations under study, and the remainder of the

response times are known only to exceed certain values. Specifically, an observation

is said to be right censored at c if the exact value of the observation is not known

but only that it is greater than or equal to c.

Suppose that there are N subjects and k items under study, and associated with

subject i and item j is a response time Tij and a censoring time Cij . The Tij are as-

sumed to be distributed with density f(t) and survivor function S(t). The response

time Tij will be observed only if Tij ≤ Cij . Censored data can be represented by

pairs of random variables (Yij , δij), where Yij = min(Tij , Cij), and δij equals 1 if

Tij ≤ Cij and 0 if Tij > Cij .

In the presence of such censoring, the grouped-data likelihood function (4) corre-

sponding to model (1) equals

N∏
i=1

k∏
j=1

exp
(
− exp(xtijβ + v1i + v2j)

∑
m:t(m)<yij

h(m)

)
×

[
1− exp

(
− exp(xtijβ + v1i + v2j)h(s,ij)

)]δij
with s, ij = min{m : t(m) ≥ yij} and t(m) is the m-th ordered observed response time.
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Using the same Taylor expansion as before, this expression can be approximated by

N∏
i=1

k∏
j=1

∏
m:t(m)≤yij

(
h(m) exp(xtijβ + v1i + v2j)

)δij(t(m))

exp
(
−h(m) exp(xtijβ + v1i + v2j)

)
(19)

with δij(t(m)) equal to 1 if yij = t(m) and δij = 1, and else 0.

The only change that needs to be made to the OPENBUGS code in Appendix A2

is to replace

dN[i,k]<-Y[i,k]*step(t[k+1]-obs.t[i]-eps)

by

dN[i,k]<-Y[i,k]*step(t[k+1]-obs.t[i]-eps)*delta[i,k]

where δ is the above defined status indicator.
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FROM SUBJECT POPULATION 

RANDOM SAMPLE 
FROM ITEM POPULATION 

RESPONSE TIMES 

Figure 1: Graphical presentation of a crossed random effects model
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Figure 2: Estimation of the cumulative baseline hazard function under the semi-

parametric PH-model with crossed random effects (left panel) and the shifted

Weibull model with crossed random effects (right panel) in simulation setting (S3a).

The black solid line represents the true cumulative baseline hazard (shifted exponen-

tial distribution), the dashed line represents the average of the estimated cumulative

hazards over the 200 simulations (with the estimated hazard from each simulation

run represented by the gray lines)
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Figure 3: Traceplots and autocorrelation plots for the fixed effect parameter β1 and

random effect variance components σ1 and σ2 in the visual recognition study
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Figure 4: Estimated random item effects with 95% posterior intervals from the

semi-parametric PH-model for the visual recognition study
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Figure 5: Left panel: overall fit of the semiparametric PH-model (dotted line) and

lognormal model (dashed line) to the visual recognition data. The better the fit, the

closer the empirical distribution to the identity line (solid line). Right panel: Item

fit of the semi-parametric PH-model for a sample of 5 items of the 27 items in the

visual recognition data.
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Semi-Parametric β1 σ1 σ2

0.45 0.56 0.73

(-0.02,0.86) (0.39,0.80) (0.54,0.99)

Log-Normal β∗1 σ∗1 σ∗2

-0.07 0.09 0.11

(-0.15,0.01) (0.06,0.11) (0.08,0.13)

Table 2: Estimated fixed effect of emotion, and standard deviation of random subject

and item effects (with 95% posterior intervals) from the semi-parametric PH-model

and the log-normal model with crossed random effects
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