
International Society for the Study of Drug Policy (ISSDP)
Rome, Italy, 21-23 May 2014

Drs. Tieberghien Julie

University of Ghent
Department of Penal Law and Criminology
Institute for Social Drug Research
Universiteitstraat 4
9000 Ghent
Email: Julie.Tieberghien@UGent.be
1. Introduction

‘Evidence-based policy’ proposes that policy makers should be informed by scientists and other drug experts, so that policy will reflect accurate factual knowledge of e.g. drug effects and risks rather than political biases. Ongoing debate and research about the role of scientific knowledge in (drug) policy making signifies the importance of realistic and nuanced accounts of the interaction between science and (drug) policy (Landry e.a., 2001; Carden, 2004; Stevens, 2011; MacGregor, 2013). It is stressed that scientific knowledge is just one type of information competing with other types as well as with ideology, interests and institutional rules and that many other players are involved in the policy-making process: e.g. interest groups and the media. These critics also point out that the popular notion of ‘evidence-based policy making’, where scientific knowledge is assumed to be present (evidence-based), may obscure the dynamic role that scientific knowledge can or does play (Monaghan, 2011).

Although the interest in studying the science-policy nexus in the drug field already emerged in the United Kingdom, Australia and Canada, we know hardly anything about whether and how the main political institutions in a parliamentary democracy such as Belgium, utilise (scientific) knowledge. Using a case study of the Belgian drug-policy debates between 1996 - 2003, we aim to understand the contribution of (scientific) knowledge and other types of information to the drug policy process and how closely prominent models of the science-policy nexus approximate this in practice. As drug policy is one of the most polarised subjects of public debate, the role of the media (and interest groups) in the science-policy nexus is also acknowledged.


While the drug issue entered the legislative framework with the Belgian law criminalising drugs and drugs possession (1921), the foundations of the Belgian drug policy were laid down rather late. In the first half of the 1990’s, some major cities were confronted with a steep increase in frequent crime that seriously affected the liveability in a number of neighbourhoods (Guillain, 2003). The idea (though not backed up by data) was that problem drug users were responsible for the rise in crime and nuisance. Eventually, the ‘policy window’ (Kingdon, 2002) was opened by an MP of the French-speaking socialist party (PS) who publicly emphasised, in the newspaper ‘Le Soir’ (17th November 1995), that he would submit a proposal to legalise cannabis possession. Although it was only a threat (he did not submit his proposition), this event initiated the political and parliamentary drugs debate in Belgium. The Federal Parliament established a Parliamentary Working Group (1996-1997) in order to develop a clear and timely view on all aspects of the Belgian drug phenomenon. The Parliamentary Working Group (PWG) asked national and international experts, working in all domains of drug policy, to convey their analysis and to give clear recommendations to the Federal Government. Apart from topics such as drug epidemiology, prescription, international drug production and methadone and/or heroin substitution, a debate on the legitimacy of the criminalisation of drugs in Belgium was also sparked off (Kaminski, 2003). However, at the end of the
nineties, the entire drug debate was overshadowed by the Dutroux case (i.e. paedophilia scandal) as well as by the resulting focus on reform of the judicial authorities and the police (‘Octopus reforms’). Meanwhile, in 1999, Belgian voters rejected the longstanding coalition government of Christian Democrats and Socialists and voted a six-party coalition into power consisting of the Flemish and Francophone Liberals, Socialists and Greens led by Flemish Liberal Leader Guy Verhofstadt (1999-2003). Gradually, the drug issue re-entered the political agenda. The Belgian government further elaborated the principles and recommendations of the Parliamentary Working Group and established the first (and current) "national drug strategy" in 2001. In this way a drug policy with a purely criminal focus was ‘officially’ replaced by a normalisation policy where the drug problem was primarily considered as a public health problem. As one of the action points, the Federal Drug Policy Note aimed to amend the Belgian Narcotic Drug Law of 1921. As a result, new drug legislation was endorsed in Belgium (2003), which de facto depenalised the possession of cannabis for personal use (i.e. maintenance of criminal penalties in the criminal law without any application in practice (Guillain & Marchand, 1998)). Both the 2001 drug strategy and the 2003 drug law form the foundations of the Belgian drug policy today (Tieberghien & Decorte, 2013).

3. Methodology
Understanding “knowledge utilization” is difficult: it is a complex task to demonstrate how “outputs” such as scientific knowledge affect “outcomes” and “policy impacts” (Rich, 1997). Assessments are also difficult due to the multiplicity of actors and the dynamics of policy processes (Ritter & Lancaster, 2013). Within this framework, measures of research ‘impact’ cannot be limited to examples of direct, instrumental use of research within a single decision point. Nor can it only rely on the traditional mechanisms of measuring academic ‘success’, such as academic citations or publications and memberships of advisory groups (Brambila e.a., 2007). The past decade, (drug) researchers have sought to use additional methods which are reflective of the reality of the policy making process and the dynamic role research plays within it (Ritter & Lancaster, 2013). Gradually, the method of interviewing was used to reconstruct processes of knowledge utilization and to map and understand the interactions between multiple actors, external factors or contextual developments, formal and informal initiatives, networks, conflicts and strategies.

Our study adopts a qualitative methodological approach: (1) a discourse analysis of specially selected 1,067 newspaper articles and 164 policy documents (Fairclough, 2003) and (2) semi-structured interviews with 55 key informants (Aberbach & Rockman, 2002). The interviews were conducted over a 8-month period between January and December 2013 including 17 members (or their employees) of the Parliament, 16 members (or their employees) of the Federal (and Regional) Government, 6 scientists, 6 journalists, 4 representatives of interest groups and 6 professionals working with drug users. While most studies on the science-policy nexus in the drug field rely on interviews, either with scientists or with policy makers (Duke, 2002; Lenton, 2004; Hughes, 2007; Hughes & Stevens, 2010; Hall, 2004; Monaghan,
we involve also more hidden sites/actors of power and influence (e.g. police officers, judges, prevention workers, journalists or interest groups) (Cochrane, 1998).

About 54 respondents were interviewed face-to-face, I had to resort to a telephone interview with 1 respondent as he is working abroad. The semi-structured interviews were organized around central themes but each was tailored and crafted for the individual respondent. The overall goal of these interviews was to complete and check the information gathered from the analysis of policy and media documents. However, these interviews also revealed the perceptions of those actors involved towards the use of scientific knowledge in the development of the Belgian drug policy between 1996-2003 and the role of other influencing (f)actors. In the current paper, some preliminary data from these 55 ‘elite interviews’ will be discussed as the qualitative (NVivo) analysis of the interviews is still ongoing.

4. Preliminary results of interviews
4.1. Perspectives on the relationship between science and policy
Respondents demonstrated considerable appreciation for scientific knowledge and its value in the policy making process. The policy makers I have interviewed, both MPs and members of the Government, were rather highly committed to the use of scientific knowledge and explained what the role of scientific knowledge should be. Scientific knowledge is perceived as a necessary resource in the policy making process to get some background information or developing a framework, to unravel and understand a problem, to determine clear definitions (e.g. of ‘legalisation’ or ‘depenalisation’), etc. Thus, scientific knowledge is useful both in the definition of policies and in evaluating policy choices. Policy makers clearly said it is proper to use scientific knowledge.

“Scientific knowledge is necessary to understand a problem and how to tackle it. It is important that the scientific world provides this type of information in the policy making process […] Essentially, it is a search for the truth and correctness” (Respondent 37, policy maker Government).

However, the extent to which policy makers value research findings in the policy process does not influence its utilization. A theme emerging from interviews is that scientific knowledge does not impact on policy, and in case it does have an impact, it is not in the way intended. Interviewees often saw scientific knowledge being used to justify or criticize existing policy (in order to impress and present themselves as ‘objective’) rather than to develop rational interventions or policy. Instrumental or conceptual use of (scientific) knowledge was perceived to be less realistic. The mechanism of policy makers ‘fishing’ or ‘trawling’ for evidence is linked with the political/selective model (Weiss e.a., 2005) and the evolutionary model (Stevens, 2009). Their self-identification as ‘a policy maker’ may then serve as a justification for selective use of scientific knowledge. The selection of scientific knowledge is also acknowledged by the scientists involved.
“You cannot avoid that they select the arguments they want to hear. You have to be aware of that. That is what makes the role of an expert in the policy making process so delicate” (Respondent 50, scientist).

“I think it is difficult to find a direct connection between science and policy. MPs do listen to those experts but rather selective” (Respondent 7, policy maker Parliament).

“Scientific knowledge does not influence policy making, it is used as justification […] Policy makers just use the ‘scientific paint’ to get an idea passed in the policy making process […] One can chose whatever study they want” (Respondent 49, policy maker Parliament).

“As a policy maker I select studies that are supporting. I admit, but I am here as a policy maker, not as a scientist” (Respondent 44, policy maker Parliament).

“I am not a scientist, but a policy maker. We had contacts with several universities as a source of inspiration” (Respondent 18, policy maker Government).

Even though our discourse analysis concluded otherwise (Tieberghien & Decorte, 2013; examples of conceptual, political and instrumental use were found), interviewees mostly reported instances where scientific knowledge had not been used. Skepticism about the decisive role of scientific knowledge in the policy making process was expressed. Interviewees often labeled the policy making process in this particular case as ‘evidence-free’ – what they see as non-rational policy making -, ignoring the rather subtle or ‘hard to trace’ roles of scientific knowledge in the policy making process (see also Monaghan, 2011). It shows how many hold false conceptual accounts of the science-policy nexus, assuming a rational model of the policy process. Those interviewed for this study, experts (scientists/practitioners) as well as policy makers, often emphasized that political opportunity prevails a fundamental discussion of scientific findings.

“Science did not play a decisive role. In the policy making process you need clear arguments and a will, both were provided by politics” (Respondent 37, policy maker Government).

“We did not study meta-reviews of Cochrane in order to know what works and what works not. That is not the way politics works” (Respondent 20, policy maker Government).

For scientists, it appeared to be a source of frustration that one’s work is not being taken notice of or contributing to the formation of policy.

“You can be sure of it: policy makers do not read what scientists produce […] If everything is going well, they read a summary or an article. They will evaluate the relevance on the basis of the discourse used or the title. Then they will say ‘yes’ or ‘no’ That is the way it works” (Respondent 50, scientist).

“I believe I can say that science does not have an influence on decisions” (Respondent 48, scientist).
How do interviewees explain this gap between commitment and skepticism? Policy-makers all stated that, while research is important, the contribution of scientific knowledge in the governmental and parliamentary debates is sidestepped by other influencing (f)actors. Interviewees enumerated a series of constraints for the uptake of research results into policy, most notably the diversity and uncertainty of scientific knowledge and the competition with (f)actors other than scientific knowledge such as elections, professional/practitioner knowledge, etc..

“Policy making is the realization of what the society wants, you have to give an answer as a policy maker. Your choices are limited due to several influences: social reality, scientific knowledge, media coverage and perceived public opinion. As policy maker you have some opportunity for movement but you are restricted by those elements” (Respondent 34, policy maker Government).

4.2. Other influencing (f)actors

4.2.1. Professional/practitioner knowledge

Interviewees expressed that in the policy making process more value is placed on professional/practitioner knowledge than on research findings. All interviewees involved in the governmental and parliamentary debate explained that the question they often tend to ask is: what should be done in practice? Within this framework, practitioners are perceived as those who contributed more to the percolation of a (new) discourse (e.g. harm reduction discourse, public health discourse) which is linked with the ‘conceptual’ or ‘enlightenment’ model of the science-policy nexus (Weiss e.a., 2005).

“In the policy making process, the role of practitioners is more influential than people assume. […] Practitioners are really the experts, next to scientists […] We had a lot of contact with practitioners like M. Van Hex and J. Maertens about how to formulate and interpret some things, how to build a sound argumentation, etc. to avoid misinterpretations. Texts were checked over and over again” (Respondent 7, policy maker Parliament).

Practitioners do not only provide practical and clear information based on their day-to-day experiences, their interests related to e.g. budgets, staff, etc. make that they are more directly involved in the policy making process. More than scientific experts, practitioners tried to take up active roles in the policy making process itself. Several practitioners (e.g. professional working with drug users, magistrate, lawyer) succeeded in becoming members of the Ministerial Cabinet and their presence helped in the translation of their particular day-to-day experience into the policy making process. Others also took their ‘lobbying’ role seriously by playing the external ‘advisory’ card.

“I wrote a large part of the Federal Drug Policy Note. We had a lot of influence […] We succeeded in fixing some details and applying our vision […] I could not delete phrasings but I could influence the particular modalities […] So, I could not determine the final result but I did influence the onset and direction of the policy […] Based on my experience, I knew what was feasible and what not” (Respondent 16, practitioner).

The intensive interactions between practitioners and policy makers worked well. For instance, if we compare the Federal Drug Policy Note (2001) with the statements included in their 1999 Policy
Memorandum – a document composed by drug treatment and prevention services themselves describing the bottlenecks of each organization and of the cooperation between the organizations as well as their wish list for the future. There is a rather large overlap. For instance, issues like the establishment of a forum for a better cooperation and coordination between different policy actors (cfr. General Drug Cell), a better cooperation between justice and assistance, a further policy engagement in the initiatives like needle exchange and methadone substitution, etc. were (partly or entirely) addressed.

4.2.2. Political context
Policy makers need to deal with values and opinions of political parties, affected stakeholders and the general public (Lenton, 2004; Ritter e.a., 2007). Policy makers have to persuade other people, within and outside the Government, that their proposals are worth acting on. In general, policy makers are not free or able to act as individuals: they have responsibilities, especially to their electorates and parties, and have to find compromises. The Government, more than the Parliament, must strike a balance between important public and political values that are in conflict. The academic world, at the same time, is characterized by a freedom of speech regardless of public opinion or electoral context. Political climate and social acceptability were cited as important considerations in the research-to-policy processes, pointing at the role of gut feeling and emotions as well as limited maneuverability in policy making (which is e.g. linked with budgetary restrictions).

“You need scientific knowledge to understand and tackle a problem but you always have to take into account, and that is what policy making is about, the social acceptability of solutions” (Respondent 37, policy maker Government).

“There are scientific arguments, there are practitioners, but then it arrives in the political setting and some things cannot survive in a political setting” (Respondent 45, journalist).

4.2.3. Third community (through public opinion)
In our case study, interviewees said that the actions of the ‘third community’ – media and interest group - affected the science-policy nexus because of their strong link with the public opinion (and electorates of policy makers). Most of the journalists saw themselves as having a key role in informing the public about arguments on all sides of the drug policy debate.

“Those difficult terms, that is interesting for journalists who do not have imagination. A journalist acts most of the time rather binary […] nevertheless, it is the task of the media to explain such things to the population […] Members of the editorial staff were interested in the cannabis issue, not in the other issues of the drug policy. They argued that those other issues were interesting for policy makers but not for the public” (Respondent 46, journalist).

For MPs (especially those in an oppositional position), media are often the only source of information about what happens in the policy making process and it is a useful way to make yourself known among
the public (and the particular electorate). In particular, media coverage triggered a series of interpellations and questions (i.e. MPs used media statements as an introduction of their question or interpellation) but it also influenced the actual passing of new bills or resolutions (i.e. media statements were used as an example to support a statement during the legislative part of parliaments’ activities).

“If you are part of the opposition, you do not have access to important information. You are in a weak position […] The art is to attract the attention of the media by formulating a statement, an one-liner” (Respondent 4, policy maker Parliament).

However, there seems to exist a gap between the two worlds of the Government and the Parliament (see also Walgrave & Van Aelst, 2006; MacGregor, 2010, Lancaster e.a., 2010). In our interviews, policy makers unanimously indicated that media discourse did not hamper or steer the general direction or the content of the debate on the governmental level fundamentally. However, Ministers and their representatives reported to be always aware of the media discourse as these topics may steer informal discussions between policy makers or may oblige Ministers to formulate some public statements as well as to answer a parliamentary question/interpellation. Policy makers are especially concerned about how the public (and their electorate) view and assess policy decisions. The media is described as a powerful (and ideologically/culturally inspired) ‘megaphone of society’, and thus an important contributing factor.

“It is not difficult to find out the ideological view point of some journalists. If they are against the Note and they feel the controversy, than you will certainly know […] If we started the discussions, media was not the theme, but instead it was more gut feeling: what is the position of my electorate? How far can we go?” (Respondent 37, policy maker Government).

As the media has the necessary platform to quickly put issues on the public agenda and has access to policy makers, it is also an instrument by means of which policy makers may receive scientific knowledge (Tieberghien, 2014). However, scientists commented that engaging research findings with wider circles in the public debate and shouting loudly with rather simple messages is a risky business (see also MacGregor, 2010).

“The relationship with media is difficult. On the one hand, media coverage of scientific knowledge is often wrong, but on the other hand, you can take advantage of it […] If we obtained some interesting results, we use the media because coverage may influence the policy making process in a certain way […] However an academic publication is more important than media coverage” (Respondent 24, scientist).

“I watch out, I have tried to explain things many times, media often select some issues and as a result the statements mean the opposite of what I told […] Scientific knowledge is often presented and interpreted wrongly […] Of course, it is not always simple to explain how to present numbers correctly […] Results are not always written in a comprehensible language” (Respondent 47, scientist).
Several interest groups (those advocating for drug users’ rights as well as groups presenting parents or ex-drug users advocating against drug use) were involved in the development of the Belgian drug policy between 1996-2003. In addition to their use of media as a communication instrument (e.g. several ‘blow-ins’ and manifestations, organized in order to promote ‘legalization’ of cannabis, were covered in the newspapers), these interest groups tried to influence policy making by ‘lobbying’ members of the Parliament and the Government. Even though they were heard and a dialogue was set up, all interviewees agreed that their efforts did not result in effectively influencing policy makers involved.

“Eventually we, interest group ‘Ouders tegen drugs’, tried to get in touch with MPs. I realized that they are rather accessible. We took the initiative to make contact with some MPs […] It worked well in some cases” (Respondent 3, member interest group).

“We had a long conversation, they talked about their concerns and about their opinions. Also some misunderstandings were clarified […] They had some interesting things to tell but they did not represent the society. Apart from their presence, they had no actual influence” (Respondent 20, policy maker Government).

“We organized a demonstration, a couple of days later we were invited by the Prime Minister […] You are heard and that’s it of course. They give you some time to explain, but in practice, nothing happened […] Eventually, we do not have played any role. You ring a bell but that’s it” (Respondent 3, member of interest group).

In general, similar with the influence of the media discourse, voices of interest groups only play a role in the Parliament (e.g. as a source to formulate questions/interpellations). At the governmental level, Ministers (and their representatives) explained to be aware of the actions and points of view of these interest groups by means of their initiatives. They perceive members of interest groups as ‘experts’ in their own practical and moral domains but, at the same time, hopelessly conflicted by ‘emotions’. Even though they are participants in policy discourse with an undeniable public dimension, their main limitation is that, according to the interviewees, they provide only a small number of citizens which do not necessarily represent the larger public. Attempts to influence policy making therefore remain limited to setting up a dialogue with policy makers instead of influencing the actual policy making process. In other words, they succeed in affecting policy makers on the level of public feasibility instead of on the level of substantive argumentation.

“Interest groups have a certain influence, especially when it is also covered in the media. We talk about these actions but eventually we ignore these when more political issues raise” (Respondent 36, policy maker Government).

“Using the media is a communication strategy of those interest groups. They do not influence policy making, they did not have made any impression on me” (Respondent 37, policy maker Government).

4.2.4. Unsuitability of academic output
Many empirical studies already highlighted the characteristics of scientific knowledge that may impede the interaction between scientists and policy makers and the use of scientific knowledge in the policy making process: institutional constraints, timing mismatch, academic format of communication and uncertainty of scientific knowledge (Sorian & Baugh, 2002; Mitton e.a., 2007; Ritter e.a., 2007; Huston, 2008).

We found several similarities. In our interviews, respondents talked about the institutional differences between the academic world and the policy making process. The idea that policy makers and scientist operate in two different worlds and speak two different languages was often stressed in the interviews. The issue that academic career structures are geared towards and reward academic publication, rather than involvement in the policy making process was one topic in the interviews. Furthermore, they described that scientists apply a certain degree of nuance in their argumentations while policy makers often do not make any differentiations and think in terms of practical solutions. Interviewees illustrated this in the following way:

“A scientist is different. If a scientist feels that an argument is not truthful, he will not support this. That is against the principles of science. Sometimes too rectilinear […] However it is not smart to think to go straight ahead to arrive at your destination. Policy making includes making small turns and sometimes big ones” (Respondent 5, policy maker Parliament).

“In policy making, one have to find just one solution to a problem. Being a scientist, I have a more nuanced vision, there is not 1 solution to a problem. That is an additional problem. Society makes it so complex […] Furthermore, changing figures and different policy levels” (Respondent 47, scientist).

Whereas scientific research can take years to complete, policy issues often rise rapidly to the top of the political agenda. Members of the Parliament and Government mentioned the problem of timing (e.g. one legislature only lasts for 4 years) which brings scientific knowledge too far away from reality. How scientific knowledge may lose out to political motives on the governmental and parliamentary debates because of timing mismatch is clearly illustrated by the argumentations regarding the compliance with the international conventions. In the preparation of the final discussion in the Council of Ministers on January 18th 2001, a member of the Ministerial cabinet argued:

“A study of 3 ULB professors argues that legalisation is not inconsistent with the international UN-conventions. They acknowledge that their study only shows ‘preliminary’ results as result of a ‘quick’ study, awaiting the results of a profound study. In other words, their study is worthless” (Internal communication Ministerial Cabinet, 17 January 2001).

Even commissioned research may suffer from the short timeframe. For example, since the Federal Drug Policy Note (2001), the Minister in charge of the Federal Science Policy received an annual budget to organise and manage a research programme in support of the decision making in the field of illegal drugs. While some of these researches may have been relevant to the 2003 drug law reform (e.g. research
project ‘Case management in the substance abuse treatment and criminal justice system’, study of the effect of the long term use of cannabis, research project ‘problematic drug use’ and ‘drugs and nuisance’), the results of these policy funded research projects came too late to contribute to the development of a legal framework at that time.

“Research is sometimes too late. Commissioned researches often provide answers to questions or problems that appeared before” (Respondent 26, practitioner).

“Scientific input is too low. We have the pressure to advance quickly, a legislature only lasts for 4 years. To get something on the rails, that is difficult” (Respondent 36, policy maker Government).

The translation of scientific knowledge into policy principles is an even more complex process. MPs as well as Ministers (and their representatives) may only have time to read a summary or even one page of a study. When discussing the presentation of research findings, interviewees indicated that a lengthy report or publication would not be read. While there is already more scientific knowledge than can be absorbed, it still requires a significant amount of time to search, locate, access and review the academic literature. Consequently, they have to make a selection from the huge amount of information that they have at their disposal. Policy makers argued that reports should be rather short, containing ‘useful’ information in a comprehensible language (which may decrease political or media distortion). A disadvantage of providing short reports or summaries is that any nuance and contextualization will be left out. However, scientists also seem to be aware of the need to better ‘translate’ the results of their research into policy implications.

“There is no time, decisions must be made quickly. So it is difficult to read all of it […] I will have to hire someone to read that scientific report for me […] I do not have time to read 200 pages, good studies need to be apprehensible” (Respondent 36, policy maker Government).

“Translating results to the public or to policy makers. Scientist should work on that issue […] That is a large limitation of scientific knowledge, it has to be translated in a comprehensible language so a correct message is provided […] You always have to take into account whose your audience” (Respondent 47, scientist).

“Scientists have to measure, study, provide knowledge but when knowledge is provided, it is not clear for policy makers what to do with it. It is mostly descriptive. I agree” (Respondent 52, scientist).

Likewise, policy makers express skepticism about scientific knowledge dismissing it as inconclusive. Due to different, sometimes contradicting academic perspectives (e.g. social sciences versus exact sciences, biological versus sociological approaches), it has been quite ineffective at providing clear policy solutions. Whereas scientists may be familiar with the conditions of scientific uncertainty, policy makers often seek certainty and deterministic solutions, having something down in ‘black and white’. Available knowledge is perceived weak, contradictory and evolving (e.g. knowledge about the link between cannabis and schizophrenia) which produces ‘uncertainty’. Too critical voices (e.g. there were ‘believers’ as well as
'non-believers' regarding dependence of cannabis use, regarding the 'soft drugs' vs. 'hard drugs') are therefore perceived as less useful. Likewise, a limited amount of studies in Belgium at the end of the nineties required policy makers to search for foreign examples. These studies were however put aside easily.

“They will not search for someone who takes a rather radical perspective. Policy makers will ignore that scientist because they are not interested in too different opinions” (Respondent 49, policy maker Parliament).

“They rapidly say 'this is not related to us' and yes, they want to decide based on Belgian data, not based on data from the USA or Australia [...] It was already difficult to convince people using scientific findings and in Belgium there was a serious lack of it” (Respondent 39, practitioner)

At the same time, it is important to acknowledge that scientific knowledge is a subjective construct influenced by prevailing social values and ideologies, supporting certain approaches or beliefs more than others (Walters, 2003). Accordingly, interviewees linked uncertainty with the lack of neutrality of scientific knowledge. They point at the inherent (technical) limitations of scientific studies and the existence of deceptive studies.

“Scientific research is not always available or methodologically correct. It also does not always allow to answer questions clearly or to draw conclusions” (Respondent 34, policy maker Government).

“I believe that scientific arguments are important. I have tried to integrate them into the policy making process but that is not easy… this is linked with scientific research as such. Scientists often receive funding from policy makers and scientific researchers produce something that is in line with the expectations of these policy makers. That is why science loses a lot of credibility in the policy making process” (Respondent 5, policy maker Parliament).

Furthermore, taking the above into consideration, policy makers as well as scientists recognized that these characteristics of scientific knowledge may work counterproductive: high levels of scientific uncertainty about the likelihood and effects of key events may stimulate selective or misuse of scientific information and authority for their own purposes (see also above). The acknowledgment of uncertainty also might open access to the use of knowledge produced by other groups. For instance, the fact that scientific knowledge is not focused on the practical day to day issues but is rather too abstract, fragmented (not multidisciplinary) and ‘unworldly’ (see also MacGregor, 2010), may explain why input of practitioners may prevail scientific knowledge in the policy making process.

“Policy makers attach more importance to a report of practitioners than a scientific report. They easily argue that these viewpoints are just developed by 'unworldly' scientists. Scientists are often labeled as people working in an ivory tower, that makes it easier to take scientists less serious” (Respondent 29, policy maker Government).
“If there is no scientific consensus, then it is even not taken into account. If scientific arguments are not clear, policy makers do whatever they want […]” (Respondent 36, policy maker Government).

“You always find a scientist who says A and another who says B […] Scientific knowledge pro and contra, policy makers chose the knowledge they need” (Respondent 49, policy maker Parliament).

Eventually, it became clear that some policy makers have difficulties in handling the contradictions in research or the lack of adequate research. For instance, they criticized the pretension of some researchers in ‘speaking truth to power’ or being ‘objective’. This perception of policy makers is also felt by scientists themselves.

“There is a large spectrum of viewpoints within scientific research […] Scientific knowledge is important but each of them has his own opinions. Scientists often have the pretension to know it better than society and policy makers” (Respondent 44, policy maker Parliament).

“It is not because a professor supports an opinion that you automatically have to believe that the particular opinion is completely truth” (Respondent 10, policy maker Parliament).

“They really look down on us. Except for our technicity they look down on us. Scientist do not become rich and we are seen as people who like to pedal. What is our value? Do we play? No, we are on the sidelines and we are allowed to shout, that’s all” (Respondent 50, scientist).

One of the strategies reported by policy makers to deal with these issues is to establish personal relationships with scientists (inner circle), which will be discussed below. Another strategy of policy makers is to focus on numbers or statistics, (wrongly) assuming that this type of scientific knowledge always represents ‘objectivity’ and authoritative, truth-producing data.

“Numbers are the only ‘objective’ source which can provide data for policy makers” (Respondent 51, scientist).

“Numbers are religious, if you present these, you are telling the truth regardless of these numbers are correct” (Respondent 11, practitioner)

4.3. Linkage between science and policy: ‘inner circle’

The relationship between science and policy is perceived complicated due to the interaction with other, professional, public and political, factors. However, understanding how policy makers access scientific knowledge may assist in encouraging greater use. Relationships between scientists and policy makers were cited as the most important element in the linking of science to policies (see also Ritter, 2009). Thus, influence is not related to a single piece of research but rather continually through interaction with a researcher. Respondents further explained that their lack of time as well as the inconclusive characteristics of scientific knowledge makes that they aim for information they can ‘trust’. In accordance with Weiss (2005), our interviewees mentioned to prefer to use findings from the accepted
(and Belgian) ‘body of knowledge’ instead of new, recent findings. Similarly, research that is supplied by a trusted international organization (e.g. EMCDDA) is more likely to have influence.

“I remember that I always made use of the reports of the EMCDDA because they elucidated the evolution in European countries yearly. Those numbers showed tendencies of cannabis prevalence rates and how they differed or not” (Respondent 29, policy maker Government).

Policy makers have acknowledged that they tend to pay careful attention to those scientists with whom they have established personal relationships, which allow for easy flow of information. This may confirm the idea of epistemic communities, referring to a network of professionals with recognized expertise, authoritative claim and privileged access (Haas, 1992).

“It is a matter of networks, not everyone has a good network […] I will not call a professor who I do not know personally, I think no one does” (Respondent 36, policy maker Government).

“If you take the advice of an expert who is considered as prominent in his or her research domain, you certainly have a better argumentation in the Council of Ministers” (Respondent 37, policy maker Government).

Those experts are perceived as being a credible source of knowledge, but also in terms of being known as appropriately discrete (e.g. taking into account the risk of media leaks). Scientific credibility refers to the capacity of scientific experts to enroll supporters behind their claims, to legitimate their arguments as authoritative knowledge, and to present themselves to the public and policy makers as someone who can give voice to science. Remarkably, in contrast with the findings of our discourse analysis (i.e. a study which is extensively included in the newspapers may have a lower chance of playing a role in the governmental discussion because it may lose its fundamental credibility by the different (additional or false) interpretations provided by the media; Tieberghien, 2014), the key issue with expert advice is that credibility assumes that an expert is engaging with the public (and journalists) and not just with Government. Apparently, the public opinion influences the extent to which the Government could have confidence in and trust the expert. Interviewees illustrated this point:

“Who is an expert? From the public point of view, it is someone who is more knowledgeable than others. From the scientific point of view, it is someone who is more known than others and has many publications. From a political point of view, an expert is someone who is publicly known and who is likely to meet his expectations” (Respondent 48, scientist).

“If you are consulted, that is not because of your knowledge. It is wrong to think ‘I have impact, I am important’. No way. It is because you present yourself well. They think ‘he is accepted by the public. If we can convince this expert, we have a fantastic case’” (Respondent 50, scientist).

Thus, if scientists want to play a role in the policy making process, they have to make themselves visible and to create networks outside the academic world. Attending conferences (where a mix of expertise is
invited), appearing in the media as a ‘trustful’ expert, building contacts with (employees of) policy makers through commissioned research projects (e.g. guidance committees) or attending working groups of political parties may be seen as important tactics to be selected in e.g. formal advisory structures at the parliamentary level (e.g. PWG) or to become ‘external’ or ‘internal’ advisor among the Ministerial Cabinets. Those roles may allow scientists to better control which message is provided and how it is absorbed in the political setting.

“It has to work in two ways […] Scientist actively have to translate their findings into the policy making process. Writing a publication is one thing, making contacts with policy makers is another one” (Respondent 35, policy maker).

Eventually, to rely solely on individual relationships with a researcher could result in either a decrease or an increase in research utilization. Some scientists may act as leverage in promoting the use of research findings but others might not be supporting their recommendations on research but on personal motives. A focus on individual relationships may also limit the diversity of scientific insights for policy makers (and promote selective use of knowledge) and, at the same time, challenge scientific experts to proactively represent themselves at the parliamentary and governmental level (in case they aim to play such a role) at least temporarily (taking into account that a legislature only lasts for 4 years). With the increasing role of the internet and social media nowadays, it is imaginable that personal contacts/networks are now less influential (in comparison with the period 1996-2003). Consistent with the rise of technology (e.g. Google, Twitter), policy makers may have more easy access to a wider range of information/expertise. A recent study of Ritter (2009) found that accessing the internet was used in about half the cases even though the most frequent sources remained the advice form an expert or the consultation of technical reports.

4.4. Engagement of experts: their public role
Having scientists participating in the policy making process was seen as an important facilitator to research utilization. The discussion above brings us to the debate regarding a scientist’s public purpose to contribute to a better policy making which has sparked off in several research domains (Loader & Sparks, 2010). There are different audiences for scientific knowledge (e.g. scientific community, policy makers, public and media) and the notion that research may be carried out to influence policy is still controversial to many researchers. Some feel quite strongly that research should not be limited and directed by the demands of policy makers. They assume that more is accomplished when research is unfettered and free to follow its own directions. However, providing research for the benefit of policy makers and the needs of a society is equally legitimate (Carden, 2004).

“There is always an interaction between science and policy. A scientist can say that he is not interested in the policy making process but policy is always in a certain way interested in science. Eventually, it is about the direction of society” (Respondent 50, scientist).
Referring to the role of scientists in the policy making process in particular, the involvement of a broad range of experts in the development of the Belgian drug policy (1996-2003) resulted in the participation of scientists who clearly fall under the following categories (provided by Loader & Sparks, 2010): ‘scientific experts’, ‘policy advisors’ or ‘observed-turned players’. It is not their primary interest but ‘scientific experts’ acknowledge their public role and use their knowledge and methodological skills to answer questions of policy makers in a nuanced and well-considered way. This type of engagement, however, does not go beyond rare participation in parliamentary commissions (e.g. the Parliamentary Working Group on drugs, 1996-1997).

“I am not linked with any political party but if we find important results, I try to formulate clear recommendations. Maybe this is not good enough and do I have to participate in the policy making process. Question is then, to what extent is your scientific research is compromised of has one the impression it is compromised?”
(Respondent 24, scientist).

Even though they find research intellectually fascinating, ‘policy advisors’ really aim to inform (public and political) debate and action on them. For instance, ‘policy advisors’ are doing a great part of their research on (short-term) contracts for the Government and they perceive it as their task to give scientific knowledge to or sit on parliamentary debates or commissions and/or to become advisors of MP’s. Often they also establish good contacts with professionals (e.g. police, outreach workers, …). Some of this engagement goes behind the public scenes: e.g. some of those scientists also participated in working groups of a political party.

“First, I tried to influence the highest level of the policy making process but that was not successful. It is better to work bottom-up, talking with associations and MPs in order to climb up. I also have done activities to distribute information, I have attended a lot of conferences, etc. That is the role of a scientist. Of course, I understand that some scientists do not do this […] Eventually, I played a role but I was not linked with any political color”
(Respondent 52, scientist).

Exemplary and unique in the Belgian situation is the decisive role of one scientist in the policy making process. Being the security advisor of Prime Minister Guy Verhofstadt, he obviously acted as an ‘observed-turned player’ (Loader & Sparks, 2010) or a so-called ‘policy entrepreneur’ (Kingdon, 2002). Embracing such a role requires a substantial adaptation by the scientific expert, who moves from a position of absolute ‘outsider’ to a knowledgeable ‘outsider’.

“You have to be aware that you are a technician, not a politician. You make your knowledge and expertise available but you remain a technician. You do not decide in which direction policy is steered […] It is different from your role in the Parliament. In the Parliament you are an ‘external’ who is contracted for some hours; Working on the governmental level is quite different. They determine your agenda and you are more involved in the political story […] Here you have to work within the governmental system: you unite the representatives of the Ministers and you try to result in policy making […] Nevertheless, I never wanted to become dependent of the political setting. I would not be happy there. I wanted to stay independent”
(Respondent 50, scientist).
Even though the opportunities to become such a player are rather scarce, his former (research) expertise as well as his involvement in the PWG (1996-1997) enabled him to play a decisive, influential role in the policy making process. Consequently, having a close link to the Government, he was involved in the development of the Federal Drug Policy Note (2001). This scientist can be perceived as a player who is able to function equally well in both worlds and speak both languages fluently. Having a privileged position, he gradually discovered how policy gets made and who or what exerts most influence. At the same time, he became best placed to advance or stimulate the influence of scientific knowledge. For instance, the inclusion of the analysis of European drug policies in the Federal Drug Policy Note (2001) was very much a result of the promotion by this ‘observed turned player’ working as advisor to the Government. A respondent testified:

“I remember that we have included an analysis of foreign examples and results of scientific research based on the numbers of the EMCDDA. He joined the working group to give more ‘schwung’ and in this role, he urged for more scientific support” (Respondent 20, policy maker Government).

Similarly, the policy funded evaluation study ‘Het Belgisch drugbeleid anno 2000: een stand van zaken drie jaar na de aanbevelingen van de parlementaire werkgroep drugs’ (De Ruyver e.a., 2000) was clearly an important source of inspiration for the Government. The influential role of the security advisor may certainly count for the evaluation study giving direction to the Belgian drug policy and finally led to action/implementation (cfr. instrumental model). However, we also noted a rather symbolic utilization: the Federal Drug Policy Note clearly demonstrated commitment and responsiveness to the recommendations of the evaluation study even though a particular problem with the vagueness of some notions related to the cannabis prosecution policy (e.g. definition of ‘public nuisance’ and ‘problematic use’ and ‘quantity for personal use’) was not solved at all. This immediately refines the significance or influence the ‘observed turned player’ may have on the policy making process.

5. Conclusions

The experience of meeting these ‘elites’ (i.e. members (or their employees) of the Parliament, members (or their employees) of the Federal (and Regional) Government, scientists, journalists, representatives of interest groups and professionals working with drug users) did add some colour to the otherwise black-and-white writing and interpretation of the science-policy nexus (Bogner e.a., 2009; Ritter & Lancaster, 2013). Interviewing these people certainly gives in-depth information that can rarely be gleaned from examining documents alone (Tieberghien, 2014). In particular, when we compare the results of our discourse analysis with the interview data, we see that the political context as well as media were observed as important influencing factors in both analysis. Additionally, interviews helped to reveal the decisive role of practitioners, to detail the role played by journalists, members of interest groups and scientists as well as to explore the (un)suitability of scientific knowledge.
Policy makers that I have interviewed strongly believed that scientific knowledge has a central role to play in the policy making process. However, the extent to which policy makers valued the role of scientific knowledge did not influence its utilization. Their skepticism was illustrated by respondents making many references to the ‘shopping’ for scientific knowledge that support the policy maker’s point of view. A view that was pervasive was that policy makers listen to scientific knowledge only when it fits their agendas. The illustrations of situations where scientific knowledge had not been used were even more numerous: the case was therefore labeled ‘evidence-free’ by the interviewees.

The data I have presented suggest that there are several difficulties in providing and using scientific knowledge in the policy making process. These include the uncertainty and the lengthy time scales of scientific knowledge as well as the availability of day-to-day practical experiences of practitioners. These issues are often seen as causes of the failure to establish an ‘evidence based policy’, but the problem is also linked with the political context: the budgetary restrictions as well as the exercise of power and the desire of policy makers for the enhancement of the prevailing order and of their own status determines its use. Additionally, where policy makers are committed to the public opinion through media and actions of interest groups, they may be less interested in research findings.

Those interviewed for this study emphasized that the key in making a linkage between science and policy lies in the establishment of (in)formal relationships. The vast majority of policy makers (MPs and members of the Government) relied on the consultation of their ‘inner circle’ almost exclusively. This trustworthy ‘network’ allows policy makers to access and interpret (contradictory) scientific knowledge easily and quickly. However, to rely solely on individual relationships with a researcher may challenge the extent and nature of research utilization. Also other suggestions could be extracted to enable and stimulate the interaction between science and policy. The importance of communication and distribution of short, accessible reports in a comprehensible language and the need for neutrality are some that might be considered for action.

The final point that stood out from the interview results was the discussion about the ‘public’ role of scientists. We observed several types of engagement by scientific experts which may resound the question: is it the duty of scientists to ‘step into the circle”? Scientific knowledge may have a particular input in the policy making process via ‘observed turned players’ and to a lesser extent via ‘policy advisors’ and ‘scientific experts’. Obviously, scientists have a role to play in the complexity of policy making (i.e. we have to stimulate discussion and reflection among the public and policy makers) but we should not delude ourselves of our centrality. Scientific knowledge is meant to inform policy, not to make it (‘evidence-informed policy’). A judgment about whether or not a policy direction should be pursued is not solely a scientific judgment (Rock, 2010). Thus, a public role at least should be part of a larger intellectual task of a scientist.
Even though research utilization may vary with time, space and subject, the preliminary findings of our interviews show some similarities with the main results of international studies on the facilitators/barriers of research utilization in general and on the influence of research on policy making in the drug field in particular. For instance, similar conclusions were drawn by MacGregor (2013) and Monaghan (2011) regarding the UK drug policy. While Monaghan (2011) discussed the zero-sum conceptualization of the science-policy nexus, MacGregor (2010, 2013) described that policy makers accept but selectively use science saying that it is their role to represent public interests. Other, similar features mentioned by related studies are the opening of a window of opportunity, the role of political parties, affected stakeholders or the general public (Lenton, 2004; Ritter e.a., 2007). Finally, the importance of seeking advice from individual experts seems to be in line the study of Ritter (2009) which focused on how policy makers get access to scientific knowledge.
Bibliography


