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Abstract: We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials
Institute Lavoisier) by means of atomic layer deposition (ALD). The obtained Pt@MIL-101 materials
were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD) measurements,
showing that the structure of the metal organic framework was well preserved during the ALD
deposition. X-ray fluorescence (XRF) and transmission electron microscopy (TEM) analysis confirmed
the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore
sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101
material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at
room temperature, showing full conversion for each substrate. Moreover, even under solvent free
conditions, full conversion of the substrate was observed. A high concentration test has been
performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity,
crystallinity and with very low Pt leaching.
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1. Introduction

Metal Organic Frameworks (MOFs) are a class of porous crystalline materials consisting of discrete
inorganic and organic secondary building units. Due to their exceptionally high porosity, pore volume,
large surface area and chemical tunability and flexibility, they have already been examined in a wide range
of areas such as gas storage and separations, sensing, drug delivery, ion exchange and as heterogeneous
catalysts [1–3]. When used as a heterogeneous catalyst, MOFs can be examined as such or can be utilized
as a support to stabilize catalytic active sites [4]. Besides the encapsulation of homogeneous complexes [5]
and polyoxometalates [6], there is a growing research interest towards the embedding of nanoparticles
(NPs) into MOFs [7]. The size, shape and orientation of the NPs can be controlled by adjusting the pore size
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and shape of the MOFs. Moreover, the nanopores of the MOFs can be used as templates for the synthesis
of monodispersed NPs. Thus far, mainly Pd [8], Au [9], Ru [10], Cu [11], Pt [12], Ni [13] and Ag [14] NPs
have been incorporated into MOFs through incipient wetness impregnation, colloidal deposition, solid
grinding and chemical vapor deposition.

In recent years, atomic layer deposition (ALD) has gained renewed attention as a flexible method
for tailoring mesoporous materials toward specific catalytic applications [15–17]. ALD is a self-limited
deposition method that is characterized by alternating exposure of the substrate to vapor-phase precursors
to grow oxides, nitrides, sulfides and (noble) metals [18]. The self-limiting nature of the chemical reactions
yield atomic level thickness control and excellent uniformity on complex three-dimensional supports such
as mesoporous materials. In noble metal ALD, islands are often formed at the start of the ALD process
instead of continuous layers. This island growth can be used advantageously to synthesize noble metal
NPs on large surface area supports. Several authors have demonstrated the successful synthesis of highly
dispersed Pt NPs with narrow size distributions [19–24]. Despite the unique advantages of MOFs as a
scaffold in catalytic systems, noble metal ALD in MOFs has not yet been explored. The main challenge
for ALD in MOFs is the slow diffusion of the chemical precursors within Ångstrom sized pores [25–27].
Therefore, Hupp and coworkers fabricated a Zr-based NU-1000 MOF with large 1D hexagonal channels
(~30 Å) and successfully realized the ALD-based incorporation of acidic Al3+ and Zn2+ sites [28] and
catalytically active cobalt sulfide [29]. Computational efforts provided mechanistic insight in the interaction
of the ALD precursors with the MOF nodes [30]. Very recently, Jeong et al. reported the ALD of NiO within
the framework of MIL-101-Cr (MIL = Materials Institute Lavoisier) [31]. This MIL-101 framework consists
of two types of pores with inner pore diameters in the low mesoporous regime (~25–35 Å) and is thermally
stable up to 300 ˝C. The MIL-101 framework is built up by Cr3O-carboxylate trimers and terephthalate
linkers with octahedrally coordinated metal ions binding terminal water molecules (see Figure S1) [32].
Hwang et al. [33] have demonstrated that these coordinated water molecules can be easily removed
by a thermal treatment under vacuum at a temperature of 150 ˝C, creating coordinatively unsaturated
sites (CUSs) which could be used, besides the Cr3O trimers, as initial binding sites for the anchoring
of nanoparticles. Because of these advantages, MIL-101-Cr was selected in this work as the MOF host
for catalytically active Pt NPs synthesized by ALD. It is shown that Pt ALD results in highly dispersed,
uniformly sized NPs embedded within both the small and larger MIL-101 pores. In addition, this paper
reports on the catalytic properties of the Pt@MIL-101 material in the hydrogenation of different linear and
cyclic olefins at room temperature.

2. Results and Discussion

2.1. Characterization of Pt@MIL-101-Cr

2.1.1. X-Ray Diffraction, Nitrogen Adsorption and Determination of the Pt Loading

The Pt loading of each Pt@MIL-101-Cr material was determined by means of XRF (see Table 1).
As expected, an increasing number of ALD cycles resulted in a higher Pt loading. For the 40, 80 and
120 ALD cycles, a Pt loading of respectively 0.21, 0.30 and 0.35 mmol¨ g´1 was obtained. The latter
sample was used for the catalytic evaluation.

Table 1. Langmuir surface area (Slang) and Pt loading of the Pt@MIL-101-Cr materials (MIL = Materials
Institute Lavoisier).

Sample Pt Loading (mmol¨ g´1) Slang (m2¨ g´1) Pore volume (cm3 g´1) *

MIL-101-Cr / 3614 1.52
Pt@MIL-101-Cr-40 cycles 0.21 3418 1.47
Pt@MIL-101-Cr-80 cycles 0.3 3304 1.48

Pt@MIL-101-Cr-120 cycles 0.35 3210 1.42
* After normalization for the amount of the Pt, determined at a relative pressure P/P0 = 0.98.
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Additionally, the crystallinity of the Pt@MIL-101-Cr materials was examined by means of X-ray
powder diffraction (XRPD) measurements. In Figure 1, the XRPD patterns of the pristine MIL-101-Cr
and the Pt@MIL-101-Cr materials obtained after the ALD deposition of the Pt nanoparticles using
different cycles is presented. The XRPD pattern of each Pt@MIL-101-Cr material presents the pure
phase of the non functionalized MIL-101-Cr. This explicitly shows that the framework integrity of
the parent MOF was well preserved during the ALD deposition process, despite the use of ozone
as reactant. Nitrogen sorption measurements were carried out to determine the Langmuir surface
area of the pristine MIL-101-Cr and Pt@MIL-101-Cr materials (see Table 1 and Figure S2 for the
nitrogen adsorption isotherms). The MIL-101-Cr has a Langmuir surface area of 3614 m2/g, which
is significantly higher than the value usually reported in literature because of an extra activation
step carried out to remove the free organic linker [34,35]. Only the group of Férey reported a higher
Langmuir surface area of approximately 5900 m2/g by adding hydrogen fluoride (HF) to the synthesis
of the framework [36]. No significant change in the Langmuir surface area is observed for the
Pt@MIL-101-Cr materials obtained after 40 cycles and even after 80 ALD cycles. In addition, inspecting
the capillary condensation step in Figure S2, it is clear that there is no obvious pore size reduction upon
increasing the number of ALD cycles which is in contrast to the work of Snurr, Hupp and Farha [28,37],
but, in these cases, metal oxides were prepared by cycling a metal precursor and water in the MOF
framework. These adsorption data corroborate the finding that Pt (as a zerovalent metal) is formed as
nanoparticles inside the pores, rather than by a layer by layer deposition on the walls, which would
result in a gradual pore mouth and cage size reduction. This is further corroborated by tomography
and transmission electron microscopy (TEM) data.
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Figure 1. X-ray powder diffraction (XRPD) patterns of MIL-101-Cr and the obtained Pt@MIL-101-Cr
materials (MIL = Materials Institute Lavoisier).

2.1.2. TEM Measurements

In order to investigate the Pt loading in the Pt@MIL-101-Cr, (high angle) annular dark field
scanning transmission electron microscopy measurements ((HA)ADF-STEM) were carried out on the
Pt@MIL-101-Cr-120 cycles sample. As MOFs are known to be extremely sensitive to the electron beam,
the electron dose, dwell time and the image magnification were optimized in order to acquire images
of the intact MIL-101-Cr framework [38].
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The MIL-101-Cr crystals in the Pt@MIL-101-Cr-120 cycles sample demonstrate a typical truncated
octahedral morphology, with predominant {111} facets and {100} truncation (Figure 2a). It is clear
from the high magnification ADF-STEM images (bottom row in Figure 2) that the MIL-101-Cr crystals
maintain their initial crystallinity after the ALD deposition of Pt nanoparticles. The bright contrast
features in the images correspond to the heavy Pt nanoparticles which are evenly dispersed in the
MIL-101-Cr crystals. The Pt nanoparticle size matches well with the pore diameter of the MIL-101-Cr
framework, indicating that they are likely embedded within the pores of the MIL-101-Cr framework.
To completely fill the smaller cages with Pt, around 900 Pt atoms are needed, and, in the case of the
bigger cages, ~1400 atoms, which is in accordance with the observed Pt NP size of ~2–3 nm. However,
the HA(ADF) images are only 2D projections of 3D objects. The direct method to determine the 3D
position of the nanoparticles is electron tomography which has been performed on the ALD-loaded
Pt@MIL-101 in our previous work. An additional electron tomography series was acquired in this
study (see Figure S3 and Movie M.1) on a heavily Pt loaded MIL-101-Cr crystal, which unambiguously
demonstrates that the ALD loading of Pt NP into the MIL-101-Cr frameworks leads to the embedding
of nanoparticles inside the cages of the MOF host [38]. However, it is also clear from this and our
previous study that some of the Pt is remaining at the surface, mostly in the form of larger Pt chunks.
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Figure 2. (High angle) annular dark field scanning transmission electron microscopy measurements
((HA)ADF-STEM) (top row) and ADF-STEM (bottom row) images. (a) Fresh Pt@MIL-101-Cr-120 cycles;
(b) Pt@MIL-101-Cr-120 cycles after run 1; (c) Pt@MIL-101-Cr-120 cycles after the high concentration run.
The white arrows point to Pt nanoparticles with similar diameters to the MIL-101 framework pores.

2.2. Catalytic Results

A number of reports have already demonstrated the potential of Pt nanoparticles as hydrogenation
catalysts. Within this regard, Pt nanoparticles have been immobilized on different supports like carbon
nanotubes, silica based materials and MOFs [39,40]. While, in this study, cyclic and linear olefins were
utilized as substrates to examine the catalytic performance of Pt@MIL-101-Cr, other studies have used
this MOF for the hydrogenation of nitroarenes [41,42], cinnamaldehyde [43] and for the assymetric
hydrogenation of α-ketoesters [44]. Additionally, besides these liquid phase based hydrogenation
reactions, gas phase olefin hydrogenation reactions have been reported for Pt@MOF catalysts [45,46].
In Table 2, an overview is presented of the investigated substrates employing Pt@MIL-101-Cr-120
cycles as catalyst, compared to some other studies that used Pt@MOF catalysts, while in Figure S4 the
conversion patterns using Pt@MIL-101-Cr-120 cycles as catalyst are shown. In Table 3, the TON,
TOF and Pt leaching is presented. As can be seen from Table 2, the Pt@MIL-101-Cr-120 cycles
exhibits approximately full conversion in the hydrogenation of each examined substrate. For 1-octene
full conversion was observed after only 30 min of reaction (entry 5), whereas for styrene (entry 6)
97% conversion was noted after 3 h with the formation of respectively n-Octane and ethyl benzene.
However, it is important to note that the blank reactions for the latter substrates already showed a
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high converison. More specifically, a conversion of 37% of 1-octene was seen after 30 min of reaction
whereas, for styrene, 50% was already converted after 3 h of reaction in the absence of the catalyst. For
the other examined substrates, cyclohexene and cyclooctene, the conversions obtained for the blank
reactions were significantly lower with only 11% cyclohexene conversion after 2 h of reaction time and
no conversion of cyclooctene under these reaction conditions. In the presence of the catalyst, 94% of
cyclooctene was converted after 6 h (entry 7), whereas, for cyclohexene, 98% of conversion was noted
after just two hours of reaction (entry 8). The latter substrate can also be converted under solvent free
conditions (entry 9). Full conversion was noted after 20 h of reaction.

Table 2. Comparison of the catalytic activity of Pt@MIL-101-120 cycles with other Pt based Metal
Organic Frameworks (MOF) catalysts in the hydrogenation of cyclic and linear olefins.

Entry Catalyst Substrate Reaction
Conditions

Reaction
Time Conversion Main

Product Reference

1 Pt@MIL-101 1-octene 35 ˝C, solvent free
at 1.5 bar of H2

6 h >99% n-Octane [47]

2 Pt@ZIF-8 1-hexene RT, ethanol at 1 bar
of H2

24 h >95% n-Hexane [48]

3 Pt@ZIF-8 cyclooctene RT, ethanol at 1 bar
of H2

24 h 2.7% Cyclooctane [48]

4 Pt-Ni frame@
Ni-MOF-74 Styrene 30 ˝C, THF at 1 bar

of H2
3 h >99% / [49]

5 Pt@MIL-101 1-octene RT, ethanol at 6 bar
of H2

30 min >99% n-Octane this work

6 Pt@MIL-101 Styrene RT, ethanol at 6 bar
of H2

3h >97% Ethyl
benzene this work

7 Pt@MIL-101 cyclooctene RT, ethanol at 6 bar
of H2

6h >94% Cyclooctane this work

8 Pt@MIL-101 cyclohexene RT, ethanol at 6 bar
of H2

2h >98% Cyclohexane this work

9 Pt@MIL-101 cyclohexene 60 ˝C, solvent free
at 6 bar of H2

20h >99% Cyclohexane this work

Table 3. The turnover number (TON), turnover frequency (TOF) and leaching percentage for each
examined substrate using Pt@MIL-101-Cr-120 cycles as catalyst.

Substrate TON TOF (min´1) Reaction Time Leaching of Pt (%)

1-Octene 497 16.6 30 min <0.05 *
Styrene 482.7 3.7 3h 0.89

Cyclohexene 490 4.4 2h 0.32
Cyclooctene 468 1.93 6h <0.05 *

* Below detection limit. The TON number was determined at the end of the reaction while the TOF number was
determined after 30 min of catalysis.

Additionally, the Pt@MIL-101-Cr-120 cycles’ catalyst was compared with other Pt@MOF based
heterogeneous catalysts for the hydrogenation of linear and cyclic olefins. Although it is difficult to give
an objective comparison, as different catalytic conditions were used in these tests, it can be seen from
Table 2 that each Pt based catalyst, including the Pt@MIL-101-Cr-120 cycles, exhibits a good catalytic
performance in the hydrogenation of alkenes except for the Pt@ZIF-8 (ZIF = zeolitic imidazolate
framework) in the hydrogenation of cyclooctene. For the substrate 1-hexene, using Pt@ZIF-8, 95% of
conversion in 24 h was obtained with no side product formation, whereas almost no activity was seen
in the hydrogenation of cyclooctene (2.7%) (entry 2 and 3). The authors adressed this difference in
activity to the difference in size of the examined substates, as cyclooctene has a molecular width of
5.7 Å which exceeds the size of the apertures of ZIF-8 (3.4 Å) [48]. The pore aperture in MIL-101-Cr
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is significantly larger (12 and 15 Å), as MIL-101-Cr contains two types of cages having a diameter
of respectively 29 Å and 34 Å. The enhanced catalytic performance of the Pt@MIL-101-Cr-120 cycles
catalyst in comparison to the reported Pt@ZIF-8 for the hydrogenation of cyclooctene can be assigned
to this difference in pore aperture. For cyclohexene, styrene and cyclooctene the turnover frequency
(TOF) is respectively 4.4 min´1, 3.7 min´1 and 1.93 min´1, as can be expected as the kinetics slow
down as the molecules become larger. Furthermore, the room temperature based conversion of styrene
in this work, in a very recent study of Li et al. [49], the latter substrate was fully converted at the same
reaction time (3 h) under a H2 pressure of 1 bar through use of a bimetallic Pt-Ni frame@MOF-74, but
no product distribution was presented (entry 4).

2.3. Reusability and Stability Tests

To examine the reusability of the Pt@MIL-101-Cr-120 cycles catalyst, a high concentration run
was carried out in which 10 times more substrate was added in comparison to the previous catalytic
experiments, without changing the catalyst loading. This procedure is employed when little catalyst
is available, as repeated filtration steps result in cumulative catalyst losses. In addition, 250 Mmol
of cyclooctene was added into the Parr reactor and the reaction was monitored until full conversion
was obtained. As can be seen from Figure S5, nearly full conversion was reached after approximately
168 h of reaction. This observation demonstrates that the Pt@MIL-101-Cr-120 cycles catalyst does
not lose its activity nor becomes deactivated during many turnovers. Additionally, during this high
concentration run, only a negligible amount of Pt NPs was leached out: 0.81% of Pt was leached from
the Pt@MIL-101-Cr-120 cycles. The turnover number TON (determined at the end of the reaction)
and TOF (determined after 2 h of catalysis) number for this concentrated run is respectively 4859 and
108 h´1. Comparison of the XRPD patterns of the Pt@MIL-101-Cr-120 cycles before and after catalysis
clearly shows that no changes are observed in the XRPD pattern of the Pt@MIL-101-Cr-120 cycles after
catalysis when compared to the pristine MOF, even after the high concentration run (see Figure 3).
The latter observation shows that the framework integrity of the MOF was preserved.
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Additionally, in Figure S6, the nitrogen adsorption isotherms are presented for the Pt@MIL-101
material before and after catalysis. From this figure, one can see that the Langmuir surface area
slightly decreased after catalysis, which is probably due to a partial clogging of the pores during the
catalytic testing. The fresh catalyst has a Langmuir surface area of 3210 m2/g, the Pt@MIL-101-Cr-120
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cycles-run 1 and Pt@MIL-101-Cr-120 cycles-concentrated run have a Langmuir surface area of 2650
and 2700 m2/g respectively. Moreover, annular dark field scanning transmission electron microscopy
measurements were carried out on the Pt@MIL-101-Cr-120 cycles after run 1 (Figure 2b) and after
the high concentration run (Figure 2c). It can be seen from these images that the morphology of the
MIL-101 particles remains similar to these of the fresh Pt@MIL-101-Cr-120 cycles sample and that the
MIL-101 framework retains its crystalline nature. Additionally, no significant agglomeration of the Pt
nanoparticles is observed, even after the high concentration run.

3. Experimental Section

3.1. Materials and Methods

All chemicals were purchased from Sigma Aldrich (Diegem, Belgium) or TCI Europe (Zwijndrecht,
Belgium) and used without further purification. Nitrogen adsorption experiments were carried out
at ´196 ˝C using a Belsorp-mini II gas analyzer (Rubotherm, Bochum, Germany). Prior to analysis,
the samples were dried under vacuum at 90 ˝C to remove adsorbed water. XRPD patterns were
collected on a ARL X’TRA X-ray diffractometer (Thermo Fisher Scientific, Erembodegem, Belgium)
with Cu Ka radiation of 0.15418 nm wavelength and a solid state detector. XRF measurements were
performed on a NEX CG from Rigaku (Addspex, Abcoude, the Netherlands) using a Mo-X-ray source
(Addspex, Abcoude, the Netherlands) Elemental analyses was conducted using a Vista-MPX CCD
Simultaneous Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) (Waltham, MA,
USA). HAADF-STEM and ADF-STEM imaging was carried out on a FEI Tecnai Osiris microscope
(Hillsboro, Oregon, USA), operated at 200 kV. The convergence semi-angle used was 10 mrad, the
inner ADF detection angle was 14 mrad, the inner HAADF-STEM detection angle was 50 mrad.

3.2. Catalytic Setup

In each catalytic test, the Parr reactor was loaded with 70.0 mL ethanol and 2.84 mL of dodecane
used respectively as solvent and internal standard. The examined substrates in this study are 1-octene,
styrene, cyclooctene and cyclohexene (25 mmol). The Pt@MIL-101-Cr-120 cycles was used as the
catalyst. For each examined substrate, the same loading of active sites was employed. More specifically
in every catalytic test, 0.05 mmol Pt sites were used which give rise to a molar ratio of substrate:
catalyst of 500:1. The TON number was calculated by dividing the mmol obtained product by the
number of active sites while the TOF number was determined by dividing the TON number by the
reaction time (expressed in minutes). All the catalytic tests were performed at room temperature and
at a pressure of 6 bar H2. During each test, aliquots were gradually taken out of the mixture and
subsequently analyzed by means of gas chromatography (GC) using a split injection (ratio 1:17) on a
Hewlett Packard 5890 Series II GC with TCD detection (Santa Clara, CA, USA). The capillary column
used was a Restek XTI-5 column (Bellefonte, PA, USA) with a length of 30 m, an internal diameter of
0.25 mm and a film thickness of 0.25 µm. H2 was used as carrier gas under constant flow conditions
(1.4 mL/min).The fresh catalyst was activated under vacuum at 90 ˝C overnight prior to catalysis.
After each catalytic run, the catalyst was recovered by filtration, washed with acetone, and dried at
90 ˝C overnight under vacuum.

3.3. Synthesis of MIL-101-Cr and Pt@MIL-101-Cr

The MIL-101-Cr was synthesized according to a slightly modified procedure of Edler et al. [34].
Typically, 0.6645 g of terephthalic acid was mixed with 1.6084 g of Cr(NO3)3¨ 9H2O and 20 mL of
destilled water. The mixture was transferred into a Teflon-lined autoclave, sealed and heated in 2 h
to 210 ˝C at which it was hold for 8 h. After cooling down to room temperature, the MIL-101as was
filtered, washed with acetone and stirred in dimethylformamide for 24 h at 60 ˝C to remove unreacted
terephthalic acid. Thereafter, the MIL-101 was stirred in 1M HCl for 12 h at room temperature,
filtered and dried under vacuum at 90 degrees overnight. The deposition of the Pt nanoparticles
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was achieved by means of ALD. Pt ALD on the powder sample was performed at 200 ˝C using
(methylcyclopentadienyl)-trimethylplatinum [MeCpPtMe3] as Pt source and O3 as reactant [50]. All the
depositions were conducted in a home built experimental cold-wall ALD chamber connected through
a gate valve to a turbo pump backed up by a rotary pump. A second gate valve was installed for
pre-evacuation of the chamber via a bypass line to the rotary pump. The powder sample was loaded
in a molybdenum sample cup which was then transferred into the ALD reactor through the load-lock
and was placed on a heater block. After loading into the reactor, the powder sample was allowed
to outgas and thermally equilibrate for at least 1 h under vacuum. The solid MeCpPtMe3 precursor
(99% Strem Chemicals), kept in a stainless steel container, was heated above its melting point (30 ˝C),
and the delivery line to the chamber was heated to 60 ˝C. Argon was used as a carrier gas for the Pt
precursor. O3 was produced from a pure O2 flow with an OzoneLab™ OL100 ozone generator (Ozone
Services, Burton, BC, Canada), resulting in an O3 concentration of 175 µg/mL. A static exposure mode
was applied during both ALD half-cycles [1,4]. The pulse time of the MeCpPtMe3 precursor was 10 s,
after which the valves to the pumping system were kept closed for another 20 s, resulting in a total
exposure time of 30 s. The same pulse time and exposure time was used for the O3 also. The effect of
the exposure times on the Pt loading was not studied in detail. Nevertheless, these exposure times
were found to be large enough to ensure penetration deep into the MOF crystals. During the precursor
and reactant exposures, the pressure in the chamber increased to ca. 5 ˆ 10´1 mbar and 1 mbar,
respectively. In between the two exposures, the valve to the rotary pump was first opened for 10 s and
then the valve to the turbo pump was opened for another 50 s to reach the base pressure.

4. Conclusions

Pt NPs were synthesized in situ within MIL-101-Cr by means of ALD, enabling the varying of Pt
loading by changing the number of ALD cycles. Highly dispersed Pt NPs were obtained with sizes
determined by the pore sizes of the MOF host. The Pt@MIL-101 materials maintained their porosity
and crystallinity during the synthesis of the Pt NPs and during the catalytic hydrogenation of cyclic
and linear olefins. Full conversion for every substrate was obtained using Pt@MIL-101 as catalyst
under mild reaction conditions. Moreover, even under solvent free conditions, full conversion was
shown with negligible leaching of Pt. Stability tests have demonstrated that the Pt@MIL-101 catalyst is
stable for a long reaction time without loss in crystallinity or agglomeration of the Pt NPs, and with a
high TOF and TON number.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/6/3/45/s1.
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