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In silico identification and experimental validation of PmrAB targets in Salmonella typhimurium by regulatory motif detectionWe demonstrated the efficiency of our procedure by recovering most of the known PmrAB-dependent targets and by identifying unknown targets that we were able to validate experimentally. We also pinpointed directions for further research that could help elucidate the S. typh-imurium virulence pathway.

Abstract

Background: The PmrAB (BasSR) two-component regulatory system is required for Salmonella
typhimurium virulence. PmrAB-controlled modifications of the lipopolysaccharide (LPS) layer confer
resistance to cationic antibiotic polypeptides, which may allow bacteria to survive within
macrophages. The PmrAB system also confers resistance to Fe3+-mediated killing. New targets of
the system have recently been discovered that seem not to have a role in the well-described
functions of PmrAB, suggesting that the PmrAB-dependent regulon might contain additional,
unidentified targets.

Results: We performed an in silico analysis of possible targets of the PmrAB system. Using a motif
model of the PmrA binding site in DNA, genome-wide screening was carried out to detect PmrAB
target genes. To increase confidence in the predictions, all putative targets were subjected to a
cross-species comparison (phylogenetic footprinting) using a Gibbs sampling-based motif-detection
procedure. As well as the known targets, we detected additional targets with unknown functions.
Four of these were experimentally validated (yibD, aroQ, mig-13 and sseJ). Site-directed mutagenesis
of the PmrA-binding site (PmrA box) in yibD revealed specific sequence requirements.

Conclusions: We demonstrated the efficiency of our procedure by recovering most of the known
PmrAB-dependent targets and by identifying unknown targets that we were able to validate
experimentally. We also pinpointed directions for further research that could help elucidate the S.
typhimurium virulence pathway.

Background
The PmrAB two-component regulatory system is part of a
multicomponent feedback loop that acts as one of the key reg-
ulatory mechanisms of Salmonella typhimurium virulence
[1-3]. The PmrAB regulatory system is itself responsive to
Fe3+ and mild acid [4] and senses Mg2+ indirectly by commu-
nicating with the Mg2+-sensitive PhoPQ system [5-8] via

PmrD [1,9]. PmrD is hypothesized to transduce the signal
from the PhoPQ system to the PmrAB system via a posttrans-
lational modification. The gene pmrD is transcriptionally
activated by the PhoPQ system but repressed by the PmrAB
system [1,9,10]. The PmrAB system is required for resistance
to the cationic antibiotic polymyxin B [11] and to Fe3+-medi-
ated killing [4]. The Mg2+-dependent regulation of PmrAB
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was shown to be important for gene expression in an intracel-
lular environment [12]. Fe3+-dependent PmrAB regulation,
on the other hand, has been hypothesized to be essential for
survival in extracellular environments [13]. A region in DNA
to which the PmrA protein binds has been identified by DNA
footprinting analysis [14,15].

In contrast to pmrD, other known target genes of PmrAB in S.
typhimurium are transcriptionally activated. One group of
targets is involved in LPS modification. PmrAB-induced
modifications include the addition of 4-amino-4-deoxy-L-
arabinose (Ara4N) and phosphoethanolamine (pEtN) to lipid
A [16]. Loci involved in the Ara4N modification of lipid A are
ugd [6] and the pmrHFIJKLM loci, both of which are respon-
sible for Ara4N biosynthesis [2,16-18] and incorporation of
Ara4N into lipid A [19,20]. LPS modifications are hypothe-
sized to allow bacterial survival within macrophages by low-
ering the affinity of the LPS for amphipathic cationic peptides
with antimicrobial activity that are produced as a conse-
quence of the innate immune response.

A second class of targets are directly dependent on PmrAB,
but have as-yet-undefined functions. pmrC (co-transcribed
with pmrAB [21]) and pmrG (located upstream of the pmrH-
FIJKLM operon) are both transcriptionally activated by
PmrAB. Mutations in pmrG did not affect the resistance to
polymyxin B [2]. Tamayo et al. recently identified two addi-
tional targets of PmrAB - yibD and dgoA. However, none of
these was involved in resistance to polymyxin B or to high
concentrations of Fe3+ [22]. These genes might therefore rep-
resent a group of as-yet-unidentified functions regulated by
the PmrAB system [22]. Also, PmrAB-regulated genes
involved in resistance to Fe3+ and pEtN addition to LPS
remain to be identified [22]. Together with the recent indica-
tions of new PmrAB-dependent functions, this raises the pos-
sibility that not all PmrAB targets have yet been identified.
Therefore, in this study we used an in silico approach to pre-
dict targets of the PmrAB regulatory system. Several method-
ologies exist for genome-wide screening using a motif model
(or mathematical representation) of experimentally verified
regulatory sites [23-27]. These assign to each possible motif
position in the genome a score (the specifics of which depend
on the methodology) that indicates how well the subsequence
located at that position matches the motif model. Genome-
wide screenings of this type have proved successful in detect-
ing additional targets of the regulator being investigated.
However, more reliable predictions for motifs in specific
pathways have been obtained by incorporating cross-species
comparisons (phylogenetic footprinting) [26,28-34]. Because
evolutionary forces tend to preferentially retain functional
DNA sequences, motifs that are conserved in the intergenic
regions of orthologs derived from several related species are
more likely to be biologically relevant [35,36].

In this study, we combine both approaches. Putative targets
identified by a genome-wide screening were, whenever

possible, analyzed by phylogenetic footprinting based on
Gibbs sampling [33,34,37]. Four interesting targets were val-
idated by wet lab experiments and the PmrA box of a repre-
sentative target was subjected to site-directed mutagenesis.

Results
Genome-wide screening using a PmrA motif model
Gibbs sampling was used to detect PmrA-binding motifs in
the intergenic regions of three experimentally verified PmrAB
targets (ugd, pmrC, pmrG). The logo of the statistically over-
represented motif detected is represented in Figure 1. This
motif corresponded to the PmrA-binding site experimentally
identified by Aguirre et al. [15] and partially overlapped the
PmrA-binding site delineated by Wosten et al. [14]. They
detected this site upstream of the transcription start of pmrC,
in the intergenic region between pmrG and pmrH, and
upstream of ugd (on the plus strand) [14,15]. We used the
obtained motif model in a genome-wide screening of the S.
typhimurium intergenic sequences [38]. Table 1 summarizes
the results of our screening, using a threshold as described in
Materials and methods. From experimentally verified exam-
ples, it appears that the PmrA motif can be biologically func-
tional not only when present on the plus strand (as in the case
of pmrH), but also when located on the minus strand (for
example in pmrG) [14]. Therefore, both strands of the
genome sequence were screened.

Identification of close homologs
We can expect to detect conserved biologically active PmrA
motifs only in species that have a functional counterpart of
the S. typhimurium PmrAB system. Of all the completely
sequenced bacterial species, only the genomes of S. typhimu-
rium, S. typhi, Escherichia coli, Shigella flexneri and Yers-
inia pestis contain the amino-acid motif that determines the
specificity of the sensor protein PmrB (the amino acids sug-
gested to be involved in binding Fe3+ [4]). Also, the protein
domains involved in the binding of PmrA to DNA were almost
perfectly conserved in the PmrA orthologs in the species
above (PF00486 domain, see supplementary information on

Consensus sequence of the PmrA boxFigure 1
Consensus sequence of the PmrA box. Motif logo representing the initial 
motif model used to screen the S. typhimurium intergenic sequences.
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Table 1

List of the putative PmrAB targets in S. typhimurium

Name Description Score Instance Alignment Footprint Distribution
(COG)

Distribution
[38]

Minus strand

STM1273 Putative nitric oxide reductase 0.848436 CTTAATGTTT
TCTTAAT

/ / 1000 All Salmonella 
only

STM2132 Pseudogene; frameshift; putative RBS for 
STM2133

0.814252 TTTTAGATTC
ACTTAAT

/ / 1000 Some or all 
Salmonella only

STM4596 Paralog of E. coli ORF, hypothetical protein 
(AAC73478.1); BLAST hit to putative inner 
membrane protein

0.806962 TTTAATATTC
ACTTAAA

/ / 1000 Some Salmonella 
only

STM3131 Putative cytoplasmic protein; putative RBS 
for STM3130; putative first gene of operon 
with STM3130 (putative hypothetical 
protein)

0.801641 CTTAATTTTT
ACTTATT

/ / 1000 All Salmonella 
only

STM1020 Gifsy-2 prophage 0.791616 CTTATTGTTA
AGTCAAT

/ / 1000 Other 
distributions

stdA STM3029; paralog of E. coli putative 
fimbrial-like protein (AAC73813.1); BLAST 
hit to putative fimbrial-like protein

0.788548 CAAAACATT
AACTTAAT

/ / 1000 Subspecies 1 
only?

ugd STM2080; S. typhimurium UDP-glucose 6-
dehydrogenase

0.781719 CTCAGAATT
AACTTAAT

m + 1100 All nine 
genomes

sinR STM0304; S. typhimurium SINR protein. 
(SW:SINR_SALTY) transcriptional 
regulator

0.780204 CTTGATATCA
TCTTAAT

/ / Subspecies 1 
only

STM3131 Putative cytoplasmic protein; putative RBS 
for STM3130; putative first gene of operon 
with STM3130; (putative hypothetical 
protein)

0.772846 CTTAATACTC
ACATTAT

/ / 1000 Other 
distributions

STM4413 Putative imidazolonepropionase and 
related amidohydrolases; putative RBS for 
STM4412; first gene of operon with 
STM4412 (D-galactonate transport)

0.771153 GTGAATGTT
AAATTAAT

/ / 1000 Some or all 
Salmonella only

ybdO STM0606; ortholog of E. coli putative 
transcriptional regulator LYSR-type 
(AAC73704.1); BLAST hit to putative 
transcriptional regulator, LysR family

0.769839 CTTAATGTA
GAGTTTAT

m + 1110 All Salmonella 
only

oraA STM2828; ortholog of E. coli regulator, 
OraA protein (AAC75740.1); BLAST hit to 
regulator

0.766748 CTTGATGGT
AATTTAAC

m - 1110 All nine 
genomes

sdhC STM0732; Ortholog of E. coli succinate 
dehydrogenase, cytochrome b556 
(AAC73815.1); Putative RBS for sdhD; first 
gene of putative operon encoding succinate 
dehydrogenase

0.765950 CTTATTATTC
CCTTAAG

/ / 1000 All nine 
genomes

ycaR STM0987; Ortholog of E. coli ORF, 
hypothetical protein (AAC74003.1); 
BLAST hit to putative inner membrane 
protein; Putative RBS for kdsB; first gene of 
a putative operon with ksdB (CMP-3-
deoxy-D-manno-octulosanate transferase)

0.765889 TTCAATATTA
ACATAAT

/ / 1000 All nine 
genomes

lasT STM4600; Ortholog of E. coli ORF, 
hypothetical protein (AAC77356.1); 
BLAST hit to putative tRNA*tRNA 
methyltransferase

0.765754 ATTTAGGATA
ATTTAAT

nd / 1110 All nine 
genomes

STM2137 Putative cytoplasmic protein 0.764036 TTTAACCTTA
ATTTAAT

nd / 1100 Some Salmonella 
only

STM1672 Putative cytoplasmic protein 0.762904 ATTAATAGTC
ACTTATT

/ / 1000 Subspecies 1 
only?
Genome Biology 2004, 5:R9
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gcvA STM2982; Ortholog of E. coli positive 
regulator of gcv operon (AAC75850.1); 
first gene of putative operon (gcvA, ygdD, 
ygdE containing a SAM-dependent 
methyltransferase)

0.761166 CTTAATGTC
GAATGAAT

m + 1111 All nine 
genomes

ycgO STM1801; Ortholog of E. coli ORF, 
hypothetical protein (AAC74275.1); 
BLAST hit to putative CPA1 family, Na:H 
transport protein

0.760685 TTTAACATTA
ACATAAT

m + 1110 All nine 
genomes?

STM2287 Paralog of E. coli putative sulfatase* 
phosphatase (AAC75329.1); BLAST hit to 
putative cytoplasmic protein

0.759519 CTTATTATTC
ACATAAC

/ / 1000 Some or all 
Salmonella only?

yebW STM1852; Ortholog of E. coli ORF, 
hypothetical protein (AAC74907.1); 
BLAST hit to putative inner membrane 
lipoprotein

0.754895 CTCAATGTTA
ACTACTT

/ / 1000 All nine 
genomes?

STM0897 Hypothetical protein Fels-1 prophage 0.754468 CGTAAGGCT
CTTTTAAT

/ / 1000 Some Salmonella 
only

lpfA STM3640; S. typhimurium long polar fimbrial 
protein A precursor; first gene of a 
putative fimbriae synthesis operon

0.753228 ATTAAGAATA
AATTAAT

/ / 1000 Other 
distributions

Plus strand

yjdB* STM4293; S. typhimurium hypothetical 61.6 
kDa protein in basS*pmrA-adiY intergenic 
region. (SW:YJDB_SALTY) putative 
integral membrane protein; Putative RBS 
for basR; first gene of the putative operon 
(yjdB basR basS)

0.930146 CTTAAGGTT
CACTTAAT

m + 1111 All nine 
genomes

ugd STM2080; S. typhimurium UDP-glucose 6-
dehydrogenase

0.913666 CTTAATATTA
ACTTAAT

m + 1100 All nine 
genomes

yfbE/ais STM2297; Ortholog of E. coli putative 
enzyme (AAC75313.1); first gene of the 
yfbE operon; shared intergenic with ais

0.912660 CTTAATGTTA
ATTTAAT

m + 1111 All nine 
genomes?

STM1269*/
STM1268

Putative chorismate mutase; intergenic 
shared with STM1268

0.888478 CTTAATGTTA
TCTTAAT

/ / 1000 All Salmonella 
only

STM0692 Paralog of E. coli nitrogen assimilation 
control protein (AAC75050.1); putative 
transcriptional regulator, LysR family

0.814773 CTTGATGTT
GATTTAAT

/ / 1000 All Salmonella 
only

ybjG/mdfA* STM0865; Ortholog of E. coli orf, 
hypothetical protein (AAC73928.1); 
putative permease; intergenic shared with 
mdfA (multidrug translocase)

0.810981 CTTTAAGGTT
AATTTAA

m + 1111 All nine 
genomes

STM2901 Hypothetical protein putative cytoplasmic 
protein; located downstream of 
pathogenicity island 1

0.803712 CTTAATATCA
ATATAAT

/ / 1000 Other 
distributions

yhjC/yhjB STM3607; Ortholog of E. coli putative 
transcriptional regulator LysR-type 
(AAC76546.1); intergenic shared with yhjB 
(putative transcriptional regulator)

0.796967 TTGAATATTA
ATTTAAT

nd / 1110 All nine 
genomes?

yjbE/pgi STM4222; Ortholog of E. coli orf, 
hypothetical protein (AAC76996.1); 
BLAST hit to putative outer membrane 
protein; first gene of the putative operon 
(yjbE, yjbF, yjbG, yjbH) consisting of putative 
outer membrane (lipo)proteins; intergenic 
shared with pgi (glucosephosphate 
isomerase)

0.791181 TTTAATTTTA
ACTTATT

/ / 1000 All nine 
genomes?

yibD* STM3707; Ortholog of E. coli putative 
regulator (AAC76639.1); BLAST hit to 
putative glycosyltransferase

0.790879 CTTAATAGTT
TCTTAAT

m + 1100 Other 
distributions

Table 1 (Continued)

List of the putative PmrAB targets in S. typhimurium
Genome Biology 2004, 5:R9
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STM1926/flhC Putative cytoplasmic protein; Putative RBS 
for STM1926; first gene of a putative 
operon with yecG (putative universal stres 
protein); shared intergenic with flhC en 
flhD (flagellar transcriptional activator)

0.790699 CCTAATGTT
CACTTTTT

/ / 1000 Some or all 
Salmonella only

STM0334/
STM0335

Putative cytoplasmic protein; shared 
intergenic with STM0335

0.789514 TTTCATATTC
ATTTAAT

/ / 1000 Some Salmonella 
only

ybdN STM0605; Ortholog of E. coli orf, 
hypothetical protein (AAC73703.1); 
BLAST hit to putative 3-phosphoadenosine 
5-phosphosulfate sulfotransferase (PAPS 
reductase)*FAD synthetase Putative RBS 
for ybdM; first gene of a putative operon 
with ybdM (hypothetical transcriptional 
regulator)

0.788778 ATTAATATAA
ATTTAAT

nd / 1100 All nine 
genomes?

glgB STM3538; Ortholog of E. coli 1,4-alpha-
glucan branching enzyme (AAC76457.1); 
BLAST hit to 1,4-alpha-glucan branching 
enzyme; Putative RBS for glgX; putative 
first gene of operon involved in glycogen 
synthesis

0.779808 TTTAAGGGT
AGCTTAAT

m - 1111 All nine 
genomes

leuO STM0115; S. typhimurium probable 
activator protein in leuabcd operon. 
(SW:LEUO_SALTY) putative 
transcriptional regulator (LysR family)

0.776490 ATTAATGTTA
ACTTTTT

m - 1111 All nine 
genomes

STM0343 Paralog of E. coli orf, hypothetical protein 
(AAC75237.1); BLAST hit to AAC75237.1 
identity in aa 10 - 512 putative Diguanylate 
cyclase*phosphodiesterase domain

0.774271 ATTAATGTTA
CTTTAGT

nd / 1100 Subspecies 1 
only

orf242 STM1390 S. typhimurium ORF242 
(gi|4456866) putative regulatory proteins, 
merR family

0.773644 CTTAGTCTTC
ATTTGAT

/ / 1000 Other 
distributions

STM1868A/
mig-3

Lytic enzyme; intergenic shared with mig-3 
(phage assembly protein)

0.773462 CTTAATGATT
ATTTATT

/ / 1000 ?

STM2763/
STM2726

Paralog of E. coli prophage CP4-57 
integrase (AAC75670.1); BLAST hit to 
putative integrase; intergenic shared with 
STM2726 (putative inner membrane)

0.772053 ATTAATGTCC
ATTTAGT

/ / 1000 S. typhimurium 
only

pntA STM1479; Ortholog of E. coli pyridine 
nucleotide transhydrogenase, alpha subunit 
(AAC74675.1); Blast hit to AAC74675.1 
pyridine nucleotide transhydrogenase 
(proton pump), alpha subunit; Putative RBS 
for pntB; first gene of the putative operon 
(pntA, pntB)

0.770547 TTTAATGTTA
ATTTCTT

m - 1111 All nine 
genomes

STM0057/cit2 Putative citrate-sodium symport; intergenic 
shared with citC2 (citrate lyase synthetase)

0.767968 CTCATGGTT
CATTGAAT

nd / 1110 Other 
distributions

yrbF STM3313; Ortholog of E. coli putative ATP-
binding component of a transport system 
(AAC76227.1); Blast hit to AAC76227.1 
putative ABC superfamily (atp_bind) 
transport protein; Putative RBS for yrbE; 
RegulonDB:STMS1H003330; first gene of 
putative yrb operon (ABC transporter)

0.766758 CCTAATTTTG
ACTTTAT

m + 1111 All nine 
genomes

yejG STM2220; Paralog of E. coli orf, hypothetical 
protein (AAC75242.1); Blast hit to putative 
cytoplasmic protein

0.767099 CTTTATGTTT
ATTTTAT

m + 1111 All nine 
genomes

slsA STM3761; putative inner membrane 
protein

0.765418 CTTTATGTTA
TTTAAAT

nd / 1110 Other 
distributions

yhcN STM3361; Ortholog of E. coli orf, 
hypothetical protein (AAC76270.1); Blast 
hit to putative outer membrane protein

0.764452 ATTAGTGTAT
ACTTAAT

m + 1111 All nine 
genomes?

Table 1 (Continued)

List of the putative PmrAB targets in S. typhimurium
Genome Biology 2004, 5:R9
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yceP STM1161; Ortholog of E. coli orf, 
hypothetical protein (AAC74144.1); Blast 
hit to putative cytoplasmic protein

0.764191 TTTATTGTTC
ATATAAT

m + 1100 All nine 
genomes

STM4098 putative arylsulfate sulfotransferase 0.763003 TCTAATATTT
ATTTAAT

nd / 1100 Subspecies 1 
only?

stfA STM0195; S. typhimurium major fimbrial 
subunit StfA

0.762241 ATCAATTTTA
ATTTAAT

/ / 1000 Some Salmonella 
only

atpF STM3869; Ortholog of E. coli membrane-
bound ATP synthase, F0 sector, subunit b 
(AAC76759.1); Blast hit to imembrane-
bound ATP synthase, F0 sector, subunit b; 
Putative RBS for atpH; first gene of a 
putative operon encoding putative ATP 
synthase

0.760841 CAGAAGGTT
AACTAGAT

m + 1111 All nine 
genomes

yegH/wza STM2119; Ortholog of E. coli putative 
transport protein (AAC75124.1); Blast hit 
to putative inner membrane protein; 
intergenic shared with wza (putative 
polysaccharide export protein)

0.760004 ATTAATATTA
AATGAAT

m - 1111 All nine 
genomes

yjgD/argI STM4470; S. typhimurium hypothetical 
protein in argI-miaE intergenic region 
(ORF15.6). (SW:YJGD_SALTY) putative 
cytoplasmic protein; Putative binding site 
for ArgR; shared intergenic regions with 
argI (arginine ornithine transferase); first 
gene of a putative operon with miaE (tRNA 
hydroxylase)

0.759514 ATTAAAATTC
ACTTTAT

m + 1111 All nine 
genomes

sseJ/
STM1630*

STM1631; S. typhimurium secreted effector; 
regulated by SPI-2; shared intergenic with 
STM1630 (putative inner membrane 
protein)

0.758303 CTTAAGAAAT
ATTTAAT

/ / 1000 Some Salmonella 
only

csrA STM2826; S. typhimurium carbon storage 
regulator

0.756990 CTTAGGTTTA
ACAGAAT

m + 1111 All nine 
genomes

dinP/yafK STM0313; Ortholog of E. coli damage-
inducible protein P; putative tRNA 
synthetase (AAC73335.1); Blast hit to 
AAC73335.1 DNA polymerase IV, devoid 
of proofreading, damage-inducible protein 
P; intergenic shared with yafKJ (periplasmic 
protein, putative amido transferase)

0.756938 CATACTGTA
CACTTAAA

m + 1111 All nine 
genomes

STM0346 Putative outer membrane protein; 
Homolog of ail and ompX

0.756369 CATTAGGTG
CTCTTAAT

/ / 1000 Some Salmonella 
only

ybfA/STM0707 STM0708; Ortholog of E. coli orf, 
hypothetical protein (AAC73793.1); Blast 
hit to putative periplasmic protein; 
intergenic shared with STM0707 
(hypothetical protein)

0.754265 ATTAGTATTA
ATTTAAC

m + 1111 All nine 
genomes?

yncD/STM1587 STM1587; Ortholog of E. coli putative 
outer membrane receptor for iron 
transport (AAC74533.1); Blast hit to paral 
putative outer membrane receptor; 
intergenic shared with STM1586 (putative 
receptor)

0.754063 CATTTTCTTA
ACTTAAT

m - 1100 All nine 
genomes

Table 1 (Continued)

List of the putative PmrAB targets in S. typhimurium
Genome Biology 2004, 5:R9
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our website [39]). Therefore, these γ-proteobacterial species
were used to perform phylogenetic footprinting analysis. For
each gene containing a potential hit of the PmrA motif in the
S. typhimurium genome sequence, close homologs were
selected as described in Materials and methods.

Phylogenetic footprinting using Gibbs sampling
For each dataset we aimed at constructing a local multiple
alignment. We used Gibbs sampling to generate motifs that
can be used as alignment seeds. Alignments were
subsequently constructed based on the positions of these
motif seeds. Potential seeds were selected using a heuristic
described in the supplementary information on [39]. Such
multiple alignments summarize the motifs in the intergenic
sequences that are conserved between species. We used the
alignments to verify whether the putative PmrA motifs
retrieved by the genome-wide screening were conserved in
other species. Table 1 gives an overview of the results of the
genome-wide screening and the phylogenetic footprinting
approach (individual alignments are displayed in the supple-
mentary information at [39]).

Detailed analysis of the putative PmrAB targets
Putative PmrA motifs were detected in the intergenic regions
of genes encoding transcriptional regulators, outer-mem-
brane and secreted proteins, proteins with functions involved
in flagella and fimbria synthesis, proteins with a function
related to the modification of cellular components, putative
transport proteins, proteins involved in amino-acid synthesis
and also in phage remnants. As mentioned above, if the puta-

tive PmrAB-regulated genes contained close homologs in
other species, the intergenic sequences of these close
homologs were locally aligned to check whether putative
PmrA motifs were conserved in these other species as well.
For some of the datasets, however, no local alignment could
be identified (no motif detected). Closer inspection showed
that most of these datasets contained highly homologous par-
alogs of the original sequence. The intergenic sequences of
these paralogs showed an overall low degree of conservation
(for example, STM0057) with the original intergenic
sequence in S. typhimurium (data not shown). In some of the
datasets, a local alignment of the respective intergenic
regions could be detected, but the putative PmrA motif was
not present within the conserved parts of the alignment (for
example, leuO). For these putative PmrAB targets, phyloge-
netic footprinting could not strengthen the confidence in the
prediction of the PmrA motif. If such putative motifs are bio-
logically active, their activity will be restricted to Salmonella
serovars or S. typhimurium.

Our analysis revealed that PmrA motifs, present in the inter-
genic sequences of known PmrAB-dependent S. typhimu-
rium genes, were also conserved in the intergenic sequences
of the orthologs of these genes in related species (Figure 2).
An overview of the alignments of these known targets is given
below.

pmrH (the first gene of an operon that contains the genes
pmrHFIJKLM; Table 1) is the only known PmrAB-regulated
gene for which the PmrA motif is conserved in all genome

yafC/STM0275 STM0256; Ortholog of E. coli putative 
transcriptional regulator LysR-type 
(AAC73313.1); Blast hit to putative 
transcriptional regulator, LysR family; 
intergenic shared STM0275 (drug efflux 
protein)

0.753257 CAAAATATC
AATTTAAT

m - 1111 Other 
distributions

Name: name of the gene in the S. typhimurium genome (NC_003197). For genes that are divergently transcribed and have a shared intergenic region, 
the gene for which the motif is detected on the plus strand is indicated first and the gene for which the motif is on the minus strand is indicated after 
the slash. Description: annotation of the encoded proteins and genome location of the genes (derived from GenBank and Sanger annotation). Score: 
normalized score assigned to the respective motifs by MotifLocator. Site: instance of the motif as detected in the respective intergenic sequence. 
Distribution (COG): distribution of the protein as determined by our analysis. The distribution is indicated by a binary profile that indicates the 
presence 1 versus absence 0 of the protein in species (serovars) of, respectively, Salmonella, E. coli, Shigella and Yersinia (for example, 1111 indicates 
protein present in all four species; 1000: protein present in Salmonella species only). Distribution: distribution of the protein encoded by the 
corresponding gene in nine bacterial genomes as determined by McClelland et al. [38]. Proteins having close homologs in at least one Salmonella strain 
but not in E. coli or K. pneumoniae are indicated by 'some Salmonella only'. Genes that contain close homologs in all genomes are indicated by 'all nine 
genomes'. Other combinations are indicated by 'other distributions'. ? indicates that the authors were not certain about the statement. Differences 
between the distribution as determined by McClelland et al. and the one determined by our analysis is due to the difference in selection criteria used 
to identify close homologs (see Materials and methods). Alignment: indicates whether the intergenic regions in the dataset could be locally aligned 
(nd, no local alignment detected that contained the original sequence of S. typhimurium; m, local alignment detected. If the dataset only contained 
homologs from Salmonella species, local alignments were considered noninformative (indicated by /)). Footprint: denotes whether the PmrA motif is 
conserved in the close homologs. +, the retrieved putative PmrA motif is conserved; -, the intergenic sequences of the orthologs could be locally 
aligned but the PmrA motif was not part of the conserved regions. Most promising PmrAB targets that contained a PmrA motif matching the PmrA 
consensus (Figure 4) are in bold face. PmrA motifs that are experimentally validated in this study are indicated by an asterisk.

Table 1 (Continued)

List of the putative PmrAB targets in S. typhimurium
Genome Biology 2004, 5:R9



R9.8 Genome Biology 2004,     Volume 5, Issue 2, Article R9       Marchal et al. http://genomebiology.com/2004/5/2/R9
Figure 2 (see legend on page after next)

b2253 NC_000913 E. coli K12     NNNNNNNNNCGTAAACTCCACCTATAGACAAGCGCAACCAGACAATTACCGTGAAATTGAGCTACATTTCTGGCGATAAT
ECs3141 NC_002695 E. coli O157  NNNNNNNNNCGTAAACTCCACCTATAGACAAGCGCAACCAGACAATTACCGTGAAATTGAGCGACATTTCTGGCGATAAT
Z3511 NC_002655 E. coli O157    NNNNNNNNNCGTAAACTCCACCTATAGACAAGCGCAACCAGACAATTACCGTGAAATTGAGCGACATTTCTGGCGATAAT
yfbE NC_004431 E. coli CFT073   NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNACCAGACAATTACCGTGAAATTGAGCGACTTTTCTGGCGATAAT
yfbE NC_004337 S. flexneri      NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTTTCTGGCGATAAT
yfbE NC_003197 S. typhimurium   NNNNNNNNNNNNNNNNNNCATTAACCTCTCAGGCAGACAGTGCAGCTAACTTAATAGCAATACAATTAAAATGAAATTCC
STY2527 NC_003198 S. typhi      NNNNNNNNNNNNNNNNNNNNNNNNCATTAACCTCTCAGGCAGACAGTGCAGCTAACTTAATAGCAATACGATTAAAATGA
YPO2422 NC_003143 Y. pestis     ATTTATTGGCAATAAAATATTATTTACTTCTCCTATTCTCATCAGATCATTGTGCTTACGATGTTATTTTATCGTGGACA
y1917 NC_004088 Y. pestis       ATTTATTGGCAATAAAATATTATTTACTTCTCCTATTCTCATCAGATCATTGTGCTTACGATGTTATTTTATCGTGGACA

b2253 NC_000913 E. coli K12     TCGCAGTTGGTGTAATATTAAAAATCCTACGATGTCGGCAAAATGCCTCAAAATTTTGCCAAATGCAAAGCCTAAATAAG
ECs3141 NC_002695 E. coli O157  TAGCAGTTGGTGTAATATTAAAAATCCTACGATGCTGGCAAAATGCCTCAAAATTTTGCCAAATGCAAAGCCTAAATAAG
Z3511 NC_002655 E. coli O157    TAGCAGTTGGTGTAATATTAAAAATCCTACGATGCTGGCAAAATGCCTCAAAATTTTGCCAAATGCAAAGCCTAAATAAG
yfbE NC_004431 E. coli CFT073   TAGCAGTTGGTGTAATATTAAAAATCCTATGATGCCGGCAAAATGCCTCAAAATTTTGCCAAATGCAAAGTCTAAATAAG
yfbE NC_004337 S. flexneri      TAGCAGTTGGTGTAATATTAAAAATCCTACGATGTCGGCAAAATGCCTCAAATTTTTGCCAAATGCAAAGCCTAAATAAG
yfbE NC_003197 S. typhimurium   GCAACGGAAGACCAGGCCAGAAACATAAAAACAGCTTTTGGGCATGCATAAAATGCCTTAAACTTTCGGCGAAAGCAAAG
STY2527 NC_003198 S. typhi      AATTCCGCGACGGAAGACCAGAAACATAAAAACAGCTTTTGGGCATGCATAAAATGCCTTAAACTTTCGGCGAAAGCAAA
YPO2422 NC_003143 Y. pestis     TTATCAGTATAAATAATGAACGCAATTATAGCGTTAAATCCAACTCATTGATTAAAATGAATAACATATCATTACTATTA
y1917 NC_004088 Y. pestis       TTATCAGTATAAATAATGAACGCAATTATAGCGTTAAATCCAACTCATTGATTAAAATGAATAACATATCATTACTATTA

b2253 NC_000913 E. coli K12     AAAAAATATAAAAATTTCAATATTTACGTCTAATATTAGTTTCTTAAGGTTAAGTTAATATTCTATCCTTAAAATTTCGC
ECs3141 NC_002695 E. coli O157  AAAAAATATAAAAATTTCAATATTTACGTCTAATATTAGTTTCTTAAGGTTAAGTTAATATTCTATCCTTAAAATTTCGC
Z3511 NC_002655 E. coli O157    AAAAAATATAAAAATTTCAATATTTACGTCTAATATTAGTTTCTTAAGGTTAAGTTAATATTCTATCCTTAAAATTTCGC
yfbE NC_004431 E. coli CFT073   AAAAAATATAAAAATTTCAATATTTACGTCTAATATTAGTTTCTTAAGGTTAAGTTAATATTCTATCCTTAAAATTTTGC
yfbE NC_004337 S. flexneri      AAAAAATATAAAAATTTCAATATTTACGTCTAATATTAGTTTCTTAAGGTTAAGTTAATATTCTATCCTTAAAATTTCGC
yfbE NC_003197 S. typhimurium   CATAATTCCGTTAAAAATTATCTTTTTACTTCACCTTAATTTCTTAATGTTAATTTAATCTTCATCCAGTAGGGTTCAGC
STY2527 NC_003198 S. typhi      GCATAATTCCGTTAAAATTATCTTTTTACTTCACCTTAATTTCTTAATGTTAATTTAATCTTCATCCAGTAGGGTTCAGC
YPO2422 NC_003143 Y. pestis     CTGGGCTAATAATTGTTTTCCCCCTCAATAAAATAGTGTCTTCCTAAGGTTCATTTAAGGTTAGTAAACTAAAGTTAACC
y1917 NC_004088 Y. pestis       CTGGGCTAATAATTGTTTTCCCCCTCAATAAAATAGTGTCTTCCTAAGGTTCATTTAAGGTTAGTAAACTAAAGTTAACC

b2253 NC_000913 E. coli K12     TCCAAATGGCAAAATATACACAACACTCTTTATAGCAAATATAAG   
ECs3141 NC_002695 E. coli O157  TCTAAATGGCAAAATATACACAACACTCTTTATAGCAAATATAAG   
Z3511 NC_002655 E. coli O157    TCTAAATGGCAAAATATACACAACACTCTTTATAGCAAATATAAG   
yfbE NC_004431 E. coli CFT073   TCCAAATGGCAAAATATACACAACACTCTTTATAGCAAATATAAG   
yfbE NC_004337 S. flexneri      TCCAAATGGCAAAATATACACAACACTCTTTATAGCAAATATAAGTGGACAGGTATTCAATGGCGGAAGGAAAAGCAA   
yfbE NC_003197 S. typhimurium   TAAATGCGTTAAAAAATAAGCCCTTTTCTATTGCCGAAATATTTGAAAAGCGGCTTTCAA   
STY2527 NC_003198 S. typhi      TAAATGCGTTAAAAAATAAGCCCTTTTCTATTGCCGAAATATTTGAAAAGCGGCTTTCAA   
YPO2422 NC_003143 Y. pestis     ATAGCAGGTGACGCTCTTATCTGATTGGCGTTTAGTTTTCGTTAACTTATCTGGGCATATAGTTAATAGTCCATGAAGGT
y1917 NC_004088 Y. pestis       ATAGCAGGTGACGCTCTTATCTGATTGGCGTTTAGTTTTCGTTAACTTATCTGGGCATATAGTTAATAGTCCATGAAGGT

b2253 NC_000913 E. coli K12                        
ECs3141 NC_002695 E. coli O157                      
Z3511 NC_002655 E. coli O157                        
yfbE NC_004431 E. coli CFT073                        
yfbE NC_004337 S. flexneri                        
yfbE NC_003197 S. typhimurium                        
STY2527 NC_003198 S. typhi                        
YPO2422 NC_003143 Y. pestis     GTCCTAAGGGATTTATTAA
y1917 NC_004088 Y. pestis       GTCCTAAGGGATTTATTAA

PmrA −10

yjdB NC_000913 E. coli K12      NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATTCCCCTTAATCCAGCAAACATAAAAGCCAACCTTAAGAACTTAAGGTT
ECs5096 NC_002695 E. coli O157  NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATTCCCCTTAATCCAGCAAAGATAAAAGCCAACCTTAAGAACTTAAGGTT
yjdB NC_002655 E. coli O157     NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATTCCCCTTAATCCAGCAAAGATAAAAGCCAACCTTAAGAACTTAAGGTT
yjdB NC_004431 E. coli CFT073   NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATTCCCCTTAATCAAGCAAACATAAAAGCCAACCTTAAGAACTTAAGGTT
yjdB NC_004337 S. flexneri      NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATTCCCCTTAATCCAGCAAACATAAAAGCCAACCTTAAGAACTTAAGGTT
yjdB NC_003197 S. typhimurium   ACCACGTGTAGTTAATGTTATCGCAACAGGCCGGATAGCGCAGGTTATCCGGCCGCCACCAACATTAAGTTCTTAAGGTT
STY4492 NC_003198 S. typhi      ACCACGTGTAGTTAATGTTATCGCAACAGGCCGGATAGCGCAGGTTATCCGGCCACCACCAACATTAAGTTCTTAAGGTT

yjdB NC_000913 E. coli K12      GGCTTAATTTTGCTTTGCGAGCATA   
ECs5096 NC_002695 E. coli O157  GGCTTAATTTTGCTTTGCGAGCATA   
yjdB NC_002655 E. coli O157     GGCTTAATTTTGCTTTGCGAGCATA   
yjdB NC_004431 E. coli CFT073   GGCTTAATTT   
yjdB NC_004337 S. flexneri      GGCTTAATTT   
yjdB NC_003197 S. typhimurium   CACTTAATTTTACTTTGTCACGATTAGCGTCACCGAATCGATGGACGCATCAACA
STY4492 NC_003198 S. typhi      CACTTAATTTTACTTTGTCACGATTAGCGTCACCGAATCGATGGACGCATCAACA

PmrA −10

(a)

(b)
Genome Biology 2004, 5:R9



http://genomebiology.com/2004/5/2/R9 Genome Biology 2004,     Volume 5, Issue 2, Article R9       Marchal et al. R9.9

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

Figure 2 (continued from the previous page, see legend on next page)

ECs2829 NC_002695 E. coli O157  NATCTGATTTAATCAACAATAAAATTGAGGCCCGGCGTATATTGTACCGGGCTTTTTTTTGCCAATTATCTTATAGACTA
ugd NC_004431 E. coli CFT073    ATCTGATTTAACCAACATTAAAAATTGAGGCCCGGCGTATATTGCACCGGGCTTTTTTTTGCCAATTATCTTATAGACTA
ugd NC_000913 E. coli K12       NATCTGATTTAACCAACAATAAAATTGAGGCCCGGCGTATATTGCACCGGGCTTTTTTTTGCCAAATATCTTATAGACTA
ugd NC_002655 E. coli O157      NATCTGATTTAATCAACAATAAAATTGAGGCCCGGCGTATATTGTACCGGGCTTTTTTTTGCCAATTATCTTATAGACTA
ugd NC_003198 S.typhi           NNNNNNNNNNNNNATTTCTGCAAGCTTGTTTAAGCCCGGTTTAATACTGGGCTTTTTTTTATCTCTATTCTTATTGATTT
udg NC_003197 S. typhimurium    NNNNNNNNNNNNNATTTCTGCAAAAATGTTTAAGCCCGGTTTAATACCGGGCTTTTTTTTATCTCTATTCTTATTGATTT

ECs2829 NC_002695 E. coli O157  AATATCACTGCTTAATATTAACTTAATAAATATCAGCTATTCTTATAAAGAAAATCTGAATTGTTTTTCGCTGCGTTGAC
ugd NC_004431 E. coli CFT073    AATTTCACTGCTTAATATTAACTTAATAAATATCAGCTATCCTTATAAAGAAAATCTGAATTTTTTTTCGTTGCGTTGAC
ugd NC_000913 E. coli K12       AATTTCACTGCTTAATATTAACTTAATAAATATCAGCTATTCTTATAAAGAAAATCTGAATTGTTTTTCGTTGCGTTGAC
ugd NC_002655 E. coli O157      AATATCACTGCTTAATATTAACTTAATAAATATCAGCTATTCTTATAAAGAAAATCTGAATTGTTTTTCGCTGCGTTGAC
ugd NC_003198 S.typhi           ATCGCTTTTGCTTAATATTAACTTAATAATCTGTGTTTATCGTAATGAAGATAATCTGAATTGTTTTCGTCTGCGTTGCA
udg NC_003197 S. typhimurium    ATCGCTTTTGCTTAATATTAACTTAATAATCTGTGTTTATCGTAATGAAGATAATCTGAATTGTTTTCGTCTGCGTTGCA

ECs2829 NC_002695 E. coli O157  CATCGAACAACGTAGCGTTAAAACTTTTAGCTCTTATCAGGATGTTAAAAACATCATGATTCACAGTTAAGTTAATTCTG
ugd NC_004431 E. coli CFT073    CATCGAACAACGTAGCGTTAAAACTTTTAGCTCTTATCAGGATGCTAAAAACATCATGATTCACAGTTAAGTTAATTCTG
ugd NC_000913 E. coli K12       CATCGAACAACGTAGCGTTAAAACTTTTAGCTCTTATCAGGATGCTAAAAACATCATGATTCACAGTTAAGTTAATTCTG
ugd NC_002655 E. coli O157      CATCGAACAACGTAGCGTTAAAACTTTTAGCTCTTATCAGGATGTTAAAAACATCATGATTCACAGTTAAGTTAATTCTG
ugd NC_003198 S.typhi           CTTTATATACTCAGGCGTTAAAACTTTGATATCTTATCAGGATGCGAAATACATCATGATTCATAATTAAGTTAATTCTG
udg NC_003197 S. typhimurium    CTTTATATACTCAGGCGTTAAAACTTTAATATCTTATCAGGATGCGAAATACATCATGATTCATAATTAAGTTAATTCTG

ECs2829 NC_002695 E. coli O157  AGAGCATGAAA
ugd NC_004431 E. coli CFT073    AGAGCATGAAA
ugd NC_000913 E. coli K12       AGAGCATGAAA
ugd NC_002655 E. coli O157      AGAGCATGAAA
ugd NC_003198 S.typhi           AGAGCGAATAA
udg NC_003197 S. typhimurium    AGAGCGAATAA

PmrA

PhoP

−10

−10 RscB

yibD NC_000913 E. coli K12      NNNNNNNNNNNNNNNNNNNNNNNNNNNNACACGAACAAGGGCTGGTATTCCAGCCCTTTTATCTGAGGATAATCTGTTAA
yibD NC_002655 E coli O157      NNNNNNNNNNNNNNNNNNNNNNNNNNNNACACGAAAAAGGGCTGGTATTCCAGCCCTTTTGCCTGAGGATAATCTGTTAA
ECs4493 NC_002695 E. coli O157  NNNNNNNNNNNNNNNNNNNNNNNNNNNNACACGAAAAAGGGCTGGTATTCCAGCCCTTTTGCCTGAGGATAATCTGTTAA
yibD NC_004431 E. coli CFT073   NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAGGGCTGGTATTCCAGCCCTTTTGCCTGAGGATAATCCGTTAA
yibD NC_003197 S. typhimurium   TATCGGGTCTGATATACGTTTCATCGTAAAAGGTTGGTGTCATTCGCCAACCTTTTTTGTTAGGGAAAATCTGGAAAGCC
STY4088 NC_003198 S. enterica   TATCGGGTCTGATATACGTTTCATCGTAAAAGGTTGGTGTCATTCGCCAACCTTTTTTGTTAGGGAAAATCTGGAAAGCT

yibD NC_000913 E. coli K12      ATATGTAAAATCCTGTCAGTGTAATAAAGAGTTCGTAATTGTGCTGATCTCTTATATAGCTGCTCTCATTATCTCTCTAC
yibD NC_002655 E coli O157      ATATGTAAAATCCTGTCAGTGTAATAAAGAGTTCGTAATTGCGCTGATCTTTTATATAGCTGTTCTCATTATCTCTCTAC
ECs4493 NC_002695 E. coli O157  ATATGTAAAATCCTGTCAGTGTAATAAAGAGTTCGTAATTGCGCTGATCTTTTATATAGCTGTTCTCATTATCTCTCTAC
yibD NC_004431 E. coli CFT073   ATATGTAAAATCCTGTCAGTGTAATCAAGATATCGTAATTGCGCTGATCTCTTATATAGCTGCTCTCATTATCTCTCTAC
yibD NC_003197 S. typhimurium   GTAAAGAATTGTCATAGACATCAAGCATTCGTAATTGCGCTTTACTCTTATTTTACTCGCTAACGTCACGCTCTACTCTG
STY4088 NC_003198 S. enterica   GTAAAGAATTGTCATAGACATCAAGCATTCGTAATTGCGCTTTAATCTTATTTTACTCGCTAACGTCACGCCCTACTCTG

yibD NC_000913 E. coli K12      CCTGAAGTGACTCTCTCACCTGTAAAAATAATATCTCACAGGCTTAATAGTTTCTTAATACAAAGCCTGTAAAACGTCAG
yibD NC_002655 E coli O157      CCTGAAGTGACTCTCTCACCTGTAAAAATAATATCTCACAGGCTTAATAGTTTCTTAATACAAAGCCTGTAAAACGTCAG
ECs4493 NC_002695 E. coli O157  CCTGAAGTGACTCTCTCACCTGTAAAAATAATATCTCACAGGCTTAATAGTTTCTTAATACAAAGCCTGTAAAACGTCAG
yibD NC_004431 E. coli CFT073   CCTGACGTGACTCTCTCACCGGTAAAAATAATATCTCACAGGCTTAATAGTTTCTTAATACAAAGCCTGTAAAACGTCAG
yibD NC_003197 S. typhimurium   AGTTTTGTGCTTGCTTTTTACTGTAAAAATTAATTATGGCGGCTTAATAGTTTCTTAATAGAGCCACAGTATAAAGGCAG
STY4088 NC_003198 S. enterica   AGTTTTGTGCTTGCTTTTTACTGTAAAAATTAATTATGGCGGCTTAATAGTTTCTTAATAGAGCCACAGTATAAAGGCAG

yibD NC_000913 E. coli K12      GATAACTTCAGAGGTCGTCGGTAATTTA   
yibD NC_002655 E coli O157      GATAACTTCAGAGGTCGTCGGTAATTTA   
ECs4493 NC_002695 E. coli O157  GATAACTTCAGAGGTCGTCGGTAATTTA   
yibD NC_004431 E. coli CFT073   GATAACTTCAGAGGTCGTCGGTAATTTA   
yibD NC_003197 S. typhimurium   GGTAAATTAAGGTTTTTCTGGTAATCGTTA
STY4088 NC_003198 S. enterica   GGTAAATTAAGGTTTTTCTGGTAATCGTTA

PmrA

(c)

(d)
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sequences analyzed (including that of Y. pestis). In pmrC,
encoding a gene with unknown function [15,22], the PmrA
motif is conserved in the intergenic regions of its orthologs in
E. coli strains, Salmonella species and Shigella. ugd encodes
a UDP-D-glucose dehydrogenase required for the synthesis of

Ara4N. Three two-component systems are involved in its reg-
ulation (PmrAB, PhoPQ and RcsCB) [12,15] and this is
reflected in the presence of the corresponding motifs: ugd
contains PmrA, PhoP and RcsB motifs. The experimentally
confirmed PmrA motif on the plus strand and part of the -10

Local alignments of the most promising targetsFigure 2 (Continued from previous page)
Local alignments of the most promising targets. Examples of local alignments obtained by phylogenetic footprinting of known PmrAB targets and of some 
promising potential targets. Known motifs or (putative) PmrA motifs are indicated by a box. (a) yfbE (pmrH); (b) yjdB (pmrC); (c) ugd; (d) yibD; (e) ybjG 
(mig-13); (f) STM1269 (aroQ); (g) sseJ.

ybjG NC_000913 E. coli K12      TGCAATTTCTTCGCCAATAATAATCGCGCAGAGTTTAATAAAAGCGCAGCTAACGAGAAAGCGAATTTTGTAGCTGAAAC
ECs0921 NC_002695 E. coli O157  TGCAATTTCTTCGCCAATAATAATCGCGCAGAGTTTAATAAAAGCGCAGCTAACGAGAAAGCGAATTTTGTAGCTGAAAC
ybjG NC_002655 E. coli O157     TGCAATTTCTTCGCCAATAATAATCGCGCAGAGTTTAATAAAAGCGCAGCTAACGAGAAAGCGAATTTTGTAGCTGAAAC
ybjG NC_004431 E. coli CFT073   NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAAGTTTAATAAAAGCGCAGCTAACGAGAAAGCGAATTTTGTAGCTGAAAC
ybjG NC_004337 S. flexneri      TGCAATTTCTTCGCCAATAATAATCGCGCAGAGTTTAATAAAAGCGCAGCTAACGAGAAAGCGAATTTTGTAGCTGAAAC
ybjG NC_003197 S. typhimurium   NTACCATCTCTTCGCCAATAAAAACCGCGCAGAGTGTAATGAAAGTCGGGGAACTGAGATAGCGAATTATGAGGCTGCAA
ybjG NC_003198 S. typhi         NTACCATCTCTTCGCCAATAAAAACCGCGCAGAGTGTAATGAAAGTCGGGGAACTGAGATAGCGAATTATGAGGCTGCAA

ybjG NC_000913 E. coli K12      CACGGTTAAGCACATTCTTACATTATTACGAGTATAGCTACGCTTTCTTTAAGTTTTATTTAACCTATGCCCGTTACAAT
ECs0921 NC_002695 E. coli O157  CACGGTTAAGCACATTCTTACATTATTGCGAGTATAGCTACGCTTTCTTTAAGTTTTATTTAACCTATGCCCGTTACAAT
ybjG NC_002655 E. coli O157     CACGGTTAAGCACATTCTTACATTATTGCGAGTATAGCTACGCTTTCTTTAAGTTTTATTTAACCTATGCCCGTTACAAT
ybjG NC_004431 E. coli CFT073   CACGGTTAAGCACATTCTTACATTATTGCGAGTATAGCTACGCTTTCTTTAAGTTTTATTTAACCTTTGCCCGTTACAAT
ybjG NC_004337 S. flexneri      CACGGTTAAGCACATTCTTACATTATTGCGAGTATAGCTACGCTTTCTTTAAGTTTTATTTAACCTATGCCCGTTACAAT
ybjG NC_003197 S. typhimurium   GGGAAATAGCGCACATTTTTACAGAAAGCCGCTTAGCGCTTGCGTACTTTAAGGTTAATTTAAGTTTGCGCCGTTATCAT
ybjG NC_003198 S. typhi         GGGAAATAGCGCACATTTTTACAGAAAGCTGCTTAGCGCTTGCGTACTTTAAGGTTAATTTAAGTTTGCGCCGTTATCAT

ybjG NC_000913 E. coli K12      CACCCACCGTAAACAGGCCGCTTGAGGGAAATAAGACGATGCCGCTTTACCCAGTTTAACCTGCACTTTATTCTCAACGA
ECs0921 NC_002695 E. coli O157  CACCCACCGTAAACAGGCCGCTTGAGGGAAATAAGACGATGCCGCTTTACCCAGTTTAACCTGCACTTTATTCTCAACGA
ybjG NC_002655 E. coli O157     CACCCACCGTAAACAGGCCGCTTGAGGGAAATAAGACGATGCCGCTTTACCCAGTTTAACCTGCACTTTATTCTCAACGA
ybjG NC_004431 E. coli CFT073   CACCTACCGTAAACAGGCCGCTTGAGGGAAATAAGACGATGCCGCTTTACCCAGTTTAACCTGCACTTTATTCTCAACGA
ybjG NC_004337 S. flexneri      CACCCACCGTAAACAGGCCGCTTGAGGGAAATAAGACGATGCCGCTTTACCCAGTTTAACCTGCACTTTATTCTCAACGA
ybjG NC_003197 S. typhimurium   CAACGTTATTTTATGCCATTGTCTTAAATCTCTTCATGTTGCCGCCAAATAAGACAATACTGCTTTTCCTCCCTGTTACG
ybjG NC_003198 S. typhi         CAACGTTATTTTATGCCATTGTCTTAAATCTCTTCATGTTGCCGCCAAATAAGACAATACTGCTTTTCCTCCCTGTTACG

ybjG NC_000913 E. coli K12      CTTGCCTGTATTGGCTCCCTTTTAATCACTTTGCGTCGGGAAGTTA   
ECs0921 NC_002695 E. coli O157  CTTGCCTGTATTGGCTCCCTTTTAATCACTTTGCGTCGGGAAGTTA   
ybjG NC_002655 E. coli O157     CTTGCCTGTATTGGCTCCCTTTTAATCACTTTGCGTCGGGAAGTTA   
ybjG NC_004431 E. coli CFT073   CTTGCCTGTATTGGCTCCCTTTTAATCACTTTGCGTCGGGAAGTTA   
ybjG NC_004337 S. flexneri      CTTGCCTGTATTGGCTCCCTTTTAATCACTT   
ybjG NC_003197 S. typhimurium   CTGCATTTATGCTCAGTTTGCACGGGGATGAGCTGGCTATCCCTTTTGATTTCATTGCTCCGAGCCTGGATGTTA
ybjG NC_003198 S. typhi         CTGCATTTATGCTCAGTTTGCACGGGGATGAGCTGGCTATCCCTTTTGATTTCATTGCTCCGAGCCTGGATGTTA

PmrA

STM1269 NC_003197 S. typhimuri  TTAATACCCATCTGTAATAATTACTTAATGTTATCTTAATAAAGGTAAATTACTGTCAGGCCTCCGTAAAAGGAGGTTGA
aroQ NC_003198 S. typhi         TTAATACCCATCTGTAATAATTACTTAATGTTATCTTAATAAAGGTAAATTACTGTCAGACCTCCGTAAAAGGAGGTTGA

STM1269 NC_003197 S. typhimuri  TTAA
aroQ NC_003198 S. typhi         TTAA

PmrA

sseJ NC_003197 S. typhimurium  TTATAGTTAACTCACTTAAGAAATATTTAATATGAAAATAGAAATCAAAATGTCACATAAAACACTAGCACTTTAGCAAT

sseJ NC_003197 S. typhimurium  AATAGTCGGATGATAAGTTTGTCTGTTTTTCCTGAGTATCAAGCCAGCTCATACTCACGCCAGCACACTAAAATCAGGAG

sseJ NC_003197 S. typhimurium  TGGCTTCTTTTTTAGATCTTTGCCTTAGCCAGGCGCACACTCAATAATGATAGCAGTCAGATAATATGTACCAGGCATTA

sseJ NC_003197 S. typhimurium  ACCTCACGTTGTTGATGATATATTTACTTCGTTGAAAAACAATAAACATTGTATGTATTTTATTGGCGACGAAAAACTGT

sseJ NC_003197 S. typhimurium  TAAAGAAGCGTAATTCCATATACACCATTTACCTGATTACTTTTCTTGCTAATATTTGCTAATTAATTATTTGCTAAAGC

sseJ NC_003197 S. typhimurium  GTGTTTAATAAAGTAAGGAGGACACTA

PmrA

(e)

(f)

(g)
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sequence as determined by Aguirre et al. have been conserved
in S. typhimurium, S. typhi and E. coli [15]. The promoter of
ugd also has a hit of the PmrA motif on the minus strand. This
was, however, not confirmed by DNA footprint analysis [15]
and might represent a false positive. The PhoP motif on the
plus strand in ugd of Salmonella, although occurring as a
dyad, is not conserved in close orthologs and was recently
demonstrated to be non-functional [12]. The recognition site
for the RcsB protein [12] is also conserved in E. coli. Lastly,
yibD encodes a putative glycosyltransferase. The PmrA motif
is conserved in E. coli. yibD has recently been identified as a
PmrAB target by a genome-wide mutagenesis study. Its
actual function is still unknown [22].

Experimental validation by expression analysis
Our in silico predictions pointed towards putative targets of
the PmrAB regulatory system. Some of these have functions
that were previously not associated with the PmrAB system.
To prove the strength of our in silico approach, four potential
targets were selected for biological validation: yibD (novel at
the time of our analysis), aroQ (STM1269), mig-13 and sseJ.
aroQ and yibD were selected because a perfect repeat of the
previously described PmrA half-site (CTTAAT [15]) was
detected in their respective intergenic regions. mig-13 (Figure
2) was chosen because it has previously been reported as a
gene selectively induced in macrophages, but with further
unknown regulation [40]. sseJ (Figure 2) was further ana-
lyzed because although PmrAB-regulated genes have been
implicated in animal virulence [2], no direct link between
SPI-2 (Salmonella pathogenicity island 2) gene regulation
and PmrAB has been demonstrated yet.

For each of these targets, green fluorescent protein (GFP)
reporter fusions were constructed and their expression was
determined by fluorescence-activated cell sorter (FACS) anal-
ysis in wild-type S. typhimurium and a pmrA::Tn10d mutant.
Because the PmrAB system is sensitive to Mg2+ and Fe3+ con-
centration, we tested the effect of these signals on the expres-
sion of the fusions [22] (Table 2). All experiments were
performed at pH 5.8 and pH 7.7. All fusions tested exhibited
the same PmrAB-dependent expression behavior at both pH
levels. In all experiments, pmrC was used as a positive
control.

The pmrC fusion showed a clear induction by either Mg2+

deprivation or Fe3+ excess. The observed level of induction
was higher for the Fe3+-dependent signal than for the Mg2+-
dependent signal and the combination of both signals seemed
to act synergistically. For both signals, induction was abro-
gated in a pmrA::Tn10d background, indicating that induc-
tion by Mg2+ and Fe3+ is solely PmrAB dependent. For the
mig-13 fusion, similar observations were made, although
induction by low Mg2+ and the synergistic effect of both sig-
nals were less pronounced. mig-13 also exhibited a consider-
able background expression level both in a pmrA::Tn10d
mutant and in the uninduced state in a wild-type background.

aroQ was strongly induced by low Mg2+ and induction was
abrogated in a pmrA::Tn10d background. The influence of
Fe3+ was less pronounced. In the case of yibD, the opposite
was found: the yibD gene was barely induced by low Mg2+ but
Fe3+ excess resulted in a large induction. For the yibD fusion,
although Fe3+ excess, but not Mg2+ deprivation, seemed to be
a sufficient signal to trigger expression, both signals acted
synergistically. Also, induction of yibD was abrogated in a
pmrA::Tn10d background. Compared to the other fusions,
the observed expression levels of the sseJ fusion were rather
low in the test conditions. Because sseJ showed a higher over-
all expression level at pH 5.8, these data were considered
most representative (see Table 2). Results show an upregula-
tion of sseJ expression in elevated Fe3+ concentrations that
was absent in the pmrA::Tn10d background. As observed for
mig-13, sseJ was expressed at a background level in the
mutant pmrA::Tn10d. Interestingly, even at low concentra-
tions, Mg2+ seemed to counteract the Fe3+-dependent
induction.

Site-directed mutagenesis of the PmrA box
We constructed a set of mutant PmrA box sequences by site-
directed mutagenesis of the PmrA box of yibD. AT → GC and
GC → AT substitutions were introduced in the first half-site of
the PmrA box (Figure 3a). We focused on the first half-site, as
in the experimentally verified target pmrC, the second half-
site overlaps with the -35 promoter site [14]. Expression was
compared in different mutagenized fusions and the nonmu-
tated fusion in the wild type and in the pmrA::Tn10d strain in
all conditions mentioned above. For simplicity, only the
expression values for two inducing conditions are displayed
in Figure 3b. One is induction by the combined action of high
Fe3+ and low Mg2+ concentrations and the other is the
induction by raised Fe3+ levels in the presence of high Mg2+.
Observations under all other conditions allowed us to draw
similar conclusions. Substitutions in the third and fifth posi-
tions of the motif box completely abrogated PmrAB-depend-
ent expression. Mutations of the first, second, fourth or sixth
position reduced PmrAB-dependent induction. Note that for
the mutation in the second position, expression was very low
but not completely abrogated. Results from this site-directed
mutagenesis experiment of one representative PmrAB target
allowed us to demonstrate unequivocally that the PmrA box
we identified was responsible for PmrAB-dependent tran-
scriptional activation. It also allowed us to further delineate
the sequence requirements of the PmrA consensus.

Other promising PmrAB targets
On the basis of the instances of the PmrA motif in experimen-
tally verified PmrAB targets of Salmonella (verified previ-
ously or validated in this study), a PmrA consensus was built
(Figure 4). The motif consensus of PmrA was converted into
a regular expression (A/C)(C/T)T(A/T)A(T/G/A) N5NTT(A/
T)A(T/A/G). To construct this regular expression we only
considered the two conserved half-sites, because the PmrA
motif is believed to be a dyad [15]. We preferred the part
Genome Biology 2004, 5:R9
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between the conserved half-sites of the regular expression to
be represented as degenerate (that is, N5). Indeed, the
observed degree of conservation in the intermediate part of
the motif model (Figure 4b) is probably related to the
restricted sample size of the training set rather than being an
intrinsic property of the motif. Promising motifs (indicated in
bold in Table 1) are, therefore, motifs that match this regular
expression and thus contain nucleotides that occur in the con-
served half-sites of one of the experimentally verified exam-
ples. Promising targets for which the putative PmrA motif
was also conserved in species other than Salmonella were
mig-13, yrbF, yjgD, ybdO, yejG, lasT and ybdN. Promising
targets only present in S. typhimurium and/or S. typhi were
STM1269 (aroQ), STM1273, sseJ and lpfA. Note that this list-
ing is just based on an arbitrary selection criterion, that is, a
preliminary PmrA motif consensus that will be improved as
more PmrAB targets become experimentally validated. As
well as the targets mentioned above, Table 1 contains other
targets that are of interest because their annotation relates to
the PmrAB system (such as yncD).

Discussion
Putative PmrAB targets were detected by genome-wide
screening of S. typhimurium intergenic sequences using a
PmrA motif model. If possible, the confidence in the pre-
dicted motifs was strengthened by a cross-species compari-
son: we tested whether the PmrA motif was conserved in the
intergenic regions of close homologs in related species. To
this end, we developed a two-step procedure for phylogenetic
footprinting. In the first step, a motif-detection procedure

based on Gibbs sampling was performed to generate a list of
motifs. In the second step, these motifs were used as seeds to
generate local multiple alignments. Eventually, the biological
relevance of the obtained alignments was assessed.

We used the alignments rather than a listing of the high-scor-
ing motifs obtained by Gibbs sampling for the following rea-
sons. First, we observed, as also reported by McCue et al., a
high overall similarity in intergenic regions of the selected
species [34]. In general, the overall degree in conservation
between the intergenic sequences of close homologs is about
93.56% for the sequenced representatives of Escherichia and
Shigella species, 69.21% for Shigella and Salmonella and
53.31% for Salmonella and Yersinia. As a result of this prop-
erty (high correlation in the data), not only the motif itself
turns out to be conserved, but also its local neighborhood.
Moreover, the degree of conservation between the aligned
sequences in a biologically relevant alignment will reflect, in
most cases, the phylogenetic relatedness of the species from
which the sequences are derived (see Figure 2 for examples).
By selecting the most promising alignment seeds (based on
the appropriate heuristics for the scores) and constructing a
local alignment with these seeds, we could also evaluate the
local neighborhood of the seed. If this one seemed to be con-
served as well, we could be more confident in the obtained
alignment and in the motifs contained within the conserved
parts. Therefore, the use of local alignments allows a better
judgment on the reliability of the motifs.

Second, Gibbs sampling is a stochastic procedure. The algo-
rithm has to be run repeatedly on the same dataset, each time

Table 2

Expression analysis of the GFP reporter fusions

Fusion Strain 10 mM MgCl2 10 µM MgCl2 100 µM FeCl3 10 mM MgCl2
100 µM FeCl3

10 µM MgCl2
100 µM FeCl3

pmrC::GFP WT 6.06 (0.18) 16.8 (1.42) 70.53 (3.84) 27.39 (4.41) 83.2 (3.21)

pmrA- 1.00 (0.01) 1.02 (0.02) 1.08 (0.03) 1.03 (0.03) 1.16 (0.12)

mig-13::GFP WT 6.17 (1.55) 13.50 (2.02) 35.81 (4.67) 17.86 (5.04) 49.23 (5.43)

pmrA- 2.69 (0.11) 4.32 (0.48) 5.2 (0.09) 2.67 (0.16) 9.64 (1.19)

aroQ::GFP WT 2.32 (0.22) 20.39 (1.54) 19.39 (0.53) 4.38 (0.19) 19.48 (2.07)

pmrA- 1.06 (0.02) 1.09 (0.02) 1.71 (0.09) 1.02 (0.01) 1.09 (0.03)

yibD::GFP WT 1.25 (0.02) 1.67 (0.26) 33.35 (7.01) 27.52 (5.64) 52.46 (8.98)

pmrA- 1.26 (0.02) 1.21 (0.06) 1.30 (0.02) 1.14 (0.02) 1.81 (0.44)

sseJ::GFP WT 7.68 (1.55) 11.25(1.46) 22.58 (1.01) 3.80 (1.13) 8.03 (1.27)

pmrA- 5.64 (0.72) 8.72 (1.05) 7.35 (1.55) 2.99 (0.43) 6.47 (1.36)

All experiments were performed twice. Values indicate the average mean peak fluorescence measurements of at least three samples for the 
populations grown under the conditions indicated for one representative experiment. Values in parentheses represent standard deviations. All values 
are expressed in arbitrary units. Strains used: WT = ATCC14028s and pmrA- = pmrA::Tn10d. For pmrC, aroQ, mig-13 and yibD, values represented in 
the table correspond to experiments performed at pH 7.7. Similar results were obtained at pH 5.8 (data not shown). For sseJ, values correspond to 
experiments performed at pH 5.8 because at this pH the overall measured expression was higher. The constitutive gfp fusion (pFPV25.1) varied less 
than 10% between the conditions tested.
Genome Biology 2004, 5:R9
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generating potentially different motifs. As a consequence, the
output of a motif-detection approach can be simultaneously
redundant and non-exhaustive: some statistically strong
motifs are detected repeatedly in different runs. On the other
hand, some motifs might never be detected. Indeed, because
Gibbs sampling was originally designed for unrelated
sequences and because of the high correlation in the data, the

number of possible equally scoring motifs (local optima)
might be so high that many runs have to be performed before
all motifs have been covered. All these local optima coincide
with motifs that, when used as seeds, will result in a similar
alignment. The same alignment can thus be obtained by sev-
eral motifs, but there is no guarantee that all possible motifs
that result in the same alignment will be detected by Gibbs

Site-directed mutagenesis of the PmrA box in yibDFigure 3
Site-directed mutagenesis of the PmrA box in yibD. (a) Construction of six species of the yibD promoter mutant, designated pCMPG5615 to pCMPG5620, 
each with a single base substitution (T → G or A → C) in the PmrA box. Promoters were fused to GFP and promoter activity was assessed by FACS 
analysis. (b) Plot of the normalized expression values of the six mutant fusions and the wild-type fusion measured in two distinct conditions in the wild 
type and pmrA::Tn10d mutant background. Gray bars represent condition 1 (pH 7.7, 100 µM FeCl3 + 10 µM MgCl2), white bars correspond to the 
expression values observed in condition 2 (pH 7.7, 100 µM FeCl3 + 10 mM MgCl2). w, wild-type background; m, pmrA::Tn10d mutant background. The 
pmrC::GFP fusion was included as a positive control. Bars represent the standard deviations of three independent measurements.

yib
D

pC
M

PG56
15

pC
M

PG56
16

pC
M

PG56
17

pC
M

PG56
18

pC
M

PG56
19

pC
M

PG56
20

pm
rC

N
or

m
al

iz
ed

 m
ea

n 
flu

or
es

ce
nc

e

CTGTAAAAATTAATTATGGCGGCTTAATAGTTTCTTAATAGAGCCACAG
GACATTTTTAATTAATACCGCCGAATTATCAAAGAATTATCTCGGTGTC

A
T

G
C

G
C

C
G

C
G

5′ 3′
3′ 5′

C
G

pCMPG5615

pCMPG5616

pCMPG5617

pCMPG5618

pCMPG5619

pCMPG5620

0

0.2

0.4

0.6

0.8

1

mww m mww m mww m mww m mww m mww m mww m mww m

(a)

(b)
Genome Biology 2004, 5:R9



R9.14 Genome Biology 2004,     Volume 5, Issue 2, Article R9       Marchal et al. http://genomebiology.com/2004/5/2/R9
sampling. Therefore, an alignment is a better summary of the
degree of conservation between the intergenic regions than a
listing of the highest-scoring motifs.

Moreover, regulatory systems such as PmrAB might have
acquired some very species-specific targets. For such highly
specialized regulatory systems, motifs are likely to be present
in the intergenic sequences of a selected subset of orthologs
only. Because such motifs occur in a restricted number of
sequences of the dataset, they will not necessarily correspond
to the highest-scoring motifs. Thus, they might be overlooked
when selecting on high-scoring motifs by, for instance, setting
a threshold on the score. Once a reliable local alignment of a
set of intergenic sequences is obtained, one can judge the
degree of confidence to put on the prediction of the motif of
interest not only by checking in which subset of species the
motif is conserved, but also by taking into consideration other
factors, such as the functional annotation of the putative tar-
get. The motifs that we select on the basis of our heuristic will
result in a biologically relevant alignment that includes the
maximal number of species. As such, our heuristic tries to
overcome the fact that Gibbs sampling is intrinsically unable
to cope with correlated data. Note that the motif of interest
(PmrA motif) does not necessarily have to correspond to the
motif used to produce the alignment.

We showed that our in silico phylogenetic footprinting
approach can be used to confirm targets detected by genome-
wide screening. So far, it can only be used for species that
show a high degree of conservation in their intergenic
regions, similar to the conservation observed in this study. As
more complete genomic data become available, the approach
might be extended to other species.

As suggested previously [34], the high observed similarity in
intergenic sequences might be due to the small phylogenetic
distance between the species we analyzed. However, it cannot
be excluded that because of the small size of the intergenic
regions in bacteria and the very similar habitat and mecha-
nism of regulation among the γ-proteobacterial species used
in this study, a large part of the complete intergenic region is
functional and therefore conserved. This hypothesis was also
put forward by Rajewsky et al. [41]. The alignment of the
intergenic region of the well-characterized ugd indeed points
in that direction. Large parts of the conserved regions of the
alignments correspond to experimentally verified motifs.

Remarkably, most potential PmrAB-regulated genes exhib-
ited a footprint of the PmrA motif in E. coli only, and several
target genes had no counterpart at all in organisms other than
Salmonella species. This indicates a high degree of specializa-
tion of the PmrAB two-component system in Salmonella.
Such specialization could also explain the considerable differ-
ences between PmrAB-dependent regulons in related species.
For instance, in both Y. pestis and S. typhimurium the atten-
uated virulence of phoP mutants is ascribed to a defect in LPS
modification, a process shown to be PmrAB-dependent [42].
So far, two S. typhimurium loci have been postulated to be
involved in this LPS remodeling: pmrHFIJKLM and ugd.
Only for pmrH did we detect an ortholog in Y. pestis and a
conserved footprint of the PmrA motif in the promoter region
of this ortholog. The Ugd protein does not even have a func-
tional counterpart in Y. pestis. This low similarity in PmrAB
regulon composition indicates that a different network of
genes must be responsible for a similar phenotype in distinct
species. This is not completely unexpected in view of the very
different LPS composition of Salmonella and Y. pestis [42].

For most of the known experimentally verified targets, clear
phylogenetic footprints of the PmrA motif could be detected
in the intergenic regions of close homologs. In the intergenic
region of pmrD we could recover the consensus sequence
only partially (that is, one half-site) because the second half-
site overlaps with the coding region (data not shown) and this
was not included in the current analysis. Another PhoPQ-
dependent gene that contributes to resistance to antimicro-
bial peptides is mig-14 [10]. However, we could not find the
presence of a clear PmrA consensus in the promoter of mig-
14. Neither could we detect a PmrA motif in dgoA, which was
previously shown to be regulated by PmrAB [22]. This would
indicate that both targets are only indirectly dependent on

Refined consensus of the PmrA boxFigure 4
Refined consensus of the PmrA box. (a) Alignment of all experimentally 
verified PmrA sites ([15] or this work) in S. typhimurium [1]. PmrA sites in 
the orthologs of these respective experimentally verified genes are also 
displayed if these PmrA motif instances deviated from the PmrA motif in S. 
typhimurium. (b) An adapted motif model of the PmrA site was built 
(represented by its logo) on the basis of the sequences represented in (a).

ugd     (S. typhimurium) CTTAAT ATTAA CTTAAT
pmrC (S. typhimurium)        CTTAAG GTTCA CTTAAT
pmrC (E. coli)            CTTAAG GTTGG CTTAAT 
pmrH (S. typhimurium)        CTTAAT GTTAA TTTAAT
pmrH (E. coli)               CTTAAG GTTAA GTTAAT
pmrH (Y. pestis)      CCTAAG GTTCA TTTAAG
pmrD (S. typhimurium)        ATTAAT GTTAG GTTAAT
mig-13  (S. typhimurium) CTTTAA GGTTA ATTTAA
mig-13  (E. coli)    CTTTAA GTTTT ATTTAA
STM1269 (S. typhimurium) CTTAAT GTTAT CTTAAT
yibD (S. typhimurium) CTTAAT AGTTT CTTAAT
sseJ (S. typhimurium) CTTAAG AAATA TTTAAT

(a) Experimentally verified PmrA targets of S. typhimurium 

12 PmrA binding sites

(b) Adapted motif logo
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PmrAB. It can, however, not be excluded that they represent
false negatives of our screening.

As well as the known targets, several putative new predictions
could be made. Some of these predictions are consistent with
previously published observations. Indeed, the PmrAB sys-
tem is part of a complex regulatory cascade acting down-
stream of the pleiotropic PhoPQ system. The PhoPQ regulon
is responsible for intracellular survival of bacteria and genes
dependent on PhoPQ are induced in bacteria inside macro-
phages. Part of the PhoPQ regulon has been discovered to be
dependent only indirectly on PhoPQ, via PmrAB. This
PmrAB-dependent subset is known to confer resistance to
cationic peptides by encoding genes involved in LPS modifi-
cation and genes contributing to resistance to raised Fe3+ con-
centration. Genes encoding proteins involved in modification
of membrane components and outer-membrane proteins are
therefore sensible additional putative PmrAB targets.
Another target worth mentioning in view of the Fe3+-sensitiv-
ity of the PmrAB system is yncD, which encodes a putative
outer-membrane receptor for iron transport.

Phage remnants, such as mig-3, have been described as mac-
rophage inducible, PhoPQ-dependent genes [40], and thus
can be PmrAB-dependent. This might explain the PmrA motif
in the intergenic region between STM1868A and mig-3.
Detweiler et al. showed that two genes, virK and somA, both
coexpressed with the SPI-2 system, confer resistance to cati-
onic peptides and their expression is PhoPQ-dependent. Also,
four fimbrial operons had genes that were coexpressed with
SPI-2 [43]. Predictions of the PmrAB-dependence of sseJ,
which encodes a secreted effector of the SPI-2 system, or of
genes that are involved in fimbrial synthesis (such as in lpfA,
encoding the S. typhimurium long polar fimbria A precur-
sor), could therefore be in agreement with these findings.
Recently, the study of Kim et al. related PmrAB-dependent
regulation to swarming motility functions in S. typhimurium
[44]. This could explain why we detected a putative PmrA
motif in the intergenic region of flhC, which encodes a master
transcriptional activator of flagellar genes.

To confirm the predictive power of our methodology further,
four putative PmrAB targets were validated biologically.
Expression analysis clearly demonstrated PmrAB-depend-
ence of yibD, which confirms the recent observations of
Tamayo et al. [22]. The observed PmrA-dependence of mig-
13 accords with its being upregulated in macrophages in in
vivo conditions [40]. The clear PmrAB-dependence of aroQ,
which encodes a periplasmic chorismate mutase, is striking.
In general, chorismate mutases are involved in the synthesis
of tyrosine and phenylalanine and are key to the synthesis of
a plethora of secondary metabolites [45]. The function of
periplasmic chorismate mutases, which differ from the cyto-
plasmic chorismate mutases in their long carboxy-terminal
extension [46], is still unclear. Periplasmic AroQ proteins
have also been detected in Y. pestis, Pseudomonas aerugi-

nosa, Mycobacterium species, Erwinia herbicola and in the
phytoparasitic nematode Meloidogyne javanica [46]. Strik-
ingly, all these organisms containing AroQ interact with a
eukaryotic host. This observation, together with the fact that
AroQ is dependent on the key virulence regulator PmrAB in S.
typhimurium, suggests that the as-yet-unknown function of
AroQ might be involved in bacteria-host interactions.

Despite its low expression level in our in vitro conditions, the
sseJ fusion showed a clear PmrAB-dependent induction by
Fe3+ excess. SseJ is a secreted effector protein that is translo-
cated across the membrane of the Salmonella-containing
vacuole (SCV) by SPI-2. From recent evidence it was specu-
lated that the putative acyltransferase activity of SseJ would
be involved in modifying the lipid composition of the SCV
[47,48], thereby interfering with the trafficking and matura-
tion properties of the SCV in infected cells. The PmrA-
dependence of sseJ would therefore link expression of genes
involved in bacterial LPS modification with those involved in
regulating the lipid composition of the SCV membrane.

Further experimental analysis will shed light on how these
previously undescribed PmrAB-dependent proteins, with
unknown functions, relate to the known part of the PmrAB-
dependent regulon.

The extent to which each of the tested strains reacted to the
signals Fe3+ or/and Mg2+ varied considerably. This is not sur-
prising in view of the complex regulatory system that inte-
grates both these signals. Indeed, both signals are transduced
via the PhoPQ, PmrD, PmrAB multicomponent system,
which includes a posttranslational signal transduction and a
transcriptional feedback loop [1]. Depending on the affinities
between the interacting components of such dynamic sys-
tems, small changes in the initial concentrations of the com-
ponents might result in large differences in the observed
expression levels [49]. A more detailed study of the dynamics
of this system might reveal how such systems can integrate
signals so differently.

Site-directed mutagenesis of the PmrA box in the yibD pro-
moter indicated a crucial role for the T at position 3 and the A
at position 5 of the first half-site of the motif. As can be
deduced from the consensus site in Figure 4, no degeneracy is
allowed at positions 3 and 5. This observation allows us to
extrapolate to a certain extent the sequence requirements of
the PmrA box in yibD to other PmrAB targets. Some positions
seem essential, whereas it appears that the specific choice of
nucleotide at the other positions affects the level of induction.
By altering the nucleotides, the binding affinities of the regu-
latory protein to the box can be modified, allowing specific
fine-tuning of gene expression in a cell.
Genome Biology 2004, 5:R9



R9.16 Genome Biology 2004,     Volume 5, Issue 2, Article R9       Marchal et al. http://genomebiology.com/2004/5/2/R9
Conclusions
We conclusively demonstrate that our in silico approach reli-
ably identifies additional PmrAB-dependent targets.
Although false positives will still be present among these pre-
dicted targets, the method offers an interesting approach for
further elucidation of genetic networks involved in the
expression of S. typhimurium virulence genes. We predicted
the PmrAB-dependent regulation of four additional targets:
yibD, aroQ, mig-13 and sseJ. Our approach might become
extendable to other species when more genome sequences
become available.

Materials and methods
Selection of intergenic sequences
Genome sequences were obtained from GenBank [50]. All
intergenic regions used in this study were extracted using the
modules of INCLUSive [51] to automatically parse GenBank
entries [52]. Here, we define an intergenic sequence as a
region that contains the noncoding sequence between two
coding regions. No overlap with coding regions is allowed.
Intergenic regions with lengths smaller than 10 base-pairs
(bp) were discarded because of computational reasons.

Construction of motif models
A motif model (a probabilistic representation of the consen-
sus DNA pattern that is recognized by the respective regula-
tory protein) for PmrA was constructed using MotifSampler
[53]. The PmrA training set consisted of the promoter regions
of three known PmrAB-regulated genes (ugd [7,15,17], pmrH
[7,14,17,19] and pmrC [2,14]) for which the binding of the
PmrA protein to the promoter regions was verified by DNA
footprint analysis [14,15].

Genome-wide screening
The intergenic regions of the complete genome of S. typhimu-
rium LT2 (NC_003197 [38]) were screened using MotifLoca-
tor [54,55]. The scoring scheme used by MotifLocator is
extensively described in Thijs et al. [55] and uses an extension
of the classical position-weight matrix scoring scheme [56].
Given the motif model θ and the background model Bm a score
W(x) is computed for each window x of length l in the
sequence S. W(x) compares the score of the subsequence
within the window being generated by the motif model to the
score of the subsequence within the window being generated
by the background model. bj: nucleotide at position j in the
segment.

Both the plus and minus strand were screened using a back-
ground model of order 3. The higher-order background
allows implicit compensation for motifs that are located in a
context highly resembling the global nucleotide composition

of the genome. To apply a threshold on the scores, the scores
of different motifs were normalized such that their values
ranged between 0 and 1. The normalized scores  are dis-
played in Table 1.

Hits with a score above 0.75 were retained (corresponding to
a selection of the 0.003% top-scoring hits of the total number
of possible motif positions in the genome. Possible positions
are identified as overlapping windows of length l). To give a
rough assessment of the number of hits with a score similar to
the chosen threshold that could be expected from the specific
nucleotide composition of the genome, we generated 100 ran-
dom sets of intergenic sequences using a third-order back-
ground model. These random sets were scored with the same
PmrA motif model. From these results it appeared that the
true set contained three times more hits with a score above
the threshold than an average random genome.

Identification of datasets
Highly similar homologs of the putative PmrAB-regulated
genes were identified in the genome sequences of S. typhimu-
rium (NC_003197), S. typhi (NC_003198), S. flexneri
(NC_004337), E. coli O157:H7 (NC_002695), E. coli
O157:H7 EDL933 (NC_002655), E. coli K12 (NC_000913), Y.
pestis CO92 (NC_003143) and Y. pestis KIM (NC_004088).
In general, only true orthologs are likely to have retained a
similar function and therefore a similar mechanism of regula-
tion [35]. However, ortholog identification is a difficult prob-
lem and discriminating between true orthologs and paralogs
is not always straightforward. Because our motif-detection
algorithm is, to some extent, robust against the presence of
noise and allows for the presence of sequences that do not
contain the motif [57], we did not make an a priori distinction
between true orthologs and paralogs if both appeared highly
similar to the original protein. This motivated us to use the
principle of clusters of orthologs for dataset construction
[58]. The pairwise BLAST scores obtained by mutually align-
ing the whole-genome sequences using BlastP [59] were used
as input of the cluster program TRIBE-MCL [60]. Stringent
criteria were applied to retain only closely related orthologs
and paralogs (cut-off of the BLAST hit was an E-value of 1e-

80). For those proteins that, when BLASTed against them-
selves, gave rise to an E-value higher than 1e-80 (yjbE,
STM1926, STM0344, yhcN, STM1868A, yceP, atpF, yjgD,
csrA, ybfA) the threshold was relaxed (E-value 1e-20). The
choice of the stringent threshold was essential to maximally
reduce the noise in the datasets.

Phylogenetic footprinting by Gibbs sampling
We used a two-step procedure for phylogenetic footprinting.
In the first step, Gibbs sampling is performed to generate a
list of motifs. Subsequently, local alignments are generated by
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selecting motifs that can be used as alignment seeds and by
assessing the relevance of the alignments by a test statistic.

Motif detection by Gibbs sampling
An advanced Gibbs sampling procedure for motif detection
was used (MotifSampler). MotifSampler allows us to search
for overrepresented motifs in each dataset. The motif length,
the maximal number of different motifs and the background
model are user-defined parameter settings of the algorithm
described in Thijs et al. [53]. A recent extension of the algo-
rithm allows to automatically determine the number of
instances of a certain motif per sequence [55] and requires a
predefined indication on the prior probability of expecting at
least one motif per sequence. For each dataset, 100 runs of the
MotifSampler were performed under the following
conditions: motif lengths varying from 6, 8, 10, 12; back-
ground order 0; prior probability default value 0.7. Because
Gibbs sampling is a stochastic procedure, each run can give
rise to different motifs. To summarize the results from the
100 runs, all detected motifs were mutually compared and
similar motifs were grouped. The information content was
used as a similarity measure to compare motifs. For each
dataset, therefore, a list of different potential motifs was
obtained. Motifs in this list were ranked according to their
log-likelihood score (LL-score) [53].

Generating reliable local alignments using the detected motifs
From the obtained list, motifs that could be used as seeds to
generate a biologically relevant alignment were selected using
a heuristic [61]. Motifs with a high LL-score that occurred
preferentially once in each sequence were chosen (starting
with those motifs that had the highest consensus score).
Moreover, we preferentially selected motifs that occurred in
the maximal number of species. For each dataset, multiple
alignments were constructed using the position of these
retrieved motifs as alignment initializations (seeds) until a
reliable alignment was obtained. The alignment was consid-
ered biologically relevant if within a window of 100 bp around
the motif it exhibited a degree of conservation that reflected
the overall observed homology between intergenic sequences
of the selected species (interspecies homology).

To assign a more quantitative criterion to the alignment, a p-
value was assigned to each alignment that was calculated as
follows: for each window of 100 bp around the motif, the larg-
est conserved block not overlapping with the core motif was
identified (using the consensus score of minimal 0.7 as mini-
mal similarity measure). This p-value expresses the probabil-
ity of observing a conserved block of the same length in a
randomly aligned dataset of similar composition. Distribu-
tions of conserved blocks in randomly aligned sequences were
constructed [62]. These random datasets take into account
the observed high pairwise sequence homology between
intergenic sequences derived from similar species (serovars)
(homology between E. coli sequences, homology between Sal-
monella sequences, homology between Y. pestis sequences),

but not the interspecies homology between intergenic regions
(for example, between E. coli and Salmonella). All alignments
with a p-value less than 0.15 (the p-value of ugd) were consid-
ered as relevant (indicated in Table 1 with 'm'). Because the
obtained alignments are local, they are gapless. In some
cases, more than one alignment might be essential to cover
the complete intergenic region.

Selected alignments are displayed in the supplementary
information at [39]. Sequence editing was done in BioEdit
[63].

Functional annotation
Functional annotation was derived from the National Center
for Biotechnology Information (NCBI) [38,52] and from the
Sanger annotation of S. typhi [64]. Specific genomic context
was derived from NCBI [38,52]. The distribution of the puta-
tive targets (unique for Salmonella species versus more
widely distributed), as derived from our clusters of ortholo-
gous groups (COGs), was verified by comparison to the anal-
ysis of McClelland et al. [38], who included, in addition to the
species we used, several subspecies of Salmonella (six
genomes), and species more distantly related to Salmonella
(Klebsiella pneumoniae).

Bacterial strains and growth conditions
The bacterial strains and plasmids used in this study are listed
in Table 3. Bacteria were grown overnight at 37°C with aera-
tion in Luria-Bertani (LB) broth or in the nitrogen minimal
medium of Nelson and Kennedy [65] with modifications as
previously described [66]. The pH of the medium was buff-
ered with 100 mM Tris-HCl, adjusted to pH 7.4 or pH 5.8.
MgCl2 was added at a final concentration of 10 µM or 10 mM.
FeCl3 was used at a final concentration of 100 µM from a
freshly prepared 10 mM stock. Antibiotics were used, when
appropriate, at the following concentrations: tetracycline, 30
µg/ml; and ampicillin, 100 µg/ml.

Molecular methods
Plasmid DNA, after passage through S. typhimurium LB5010
[67], was introduced into bacterial strains by electroporation.
Polymerase chain reaction (PCR) was carried out in a Per-
sonal Mastercycler (Eppendorf, Hamburg, Germany) with
Pfx DNA polymerase, using the manufacturer's instructions.
The constructs containing the putative promoter regions of
yibD, mig-13, aroQ, sseJ and pmrC and the site-directed
mutated yibD promoter fragments were all verified by
sequence analysis.

Construction of plasmids
To construct the gfp reporter fusions of yibD, mig-13, aroQ,
sseJ and pmrC, the primers listed in Table 4 were used in a
PCR reaction (as described above) to amplify the respective
promoter regions from the ATCC14028s genome. Restriction
sites in the primers are indicated in bold face in Table 4. The
promoter fragments were digested with EcoRI and BamHI
Genome Biology 2004, 5:R9
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and cloned into pCRII-TOPO that had been digested with
EcoRI and BamHI. The promoter fragments were subcloned
as EcoRI/BamHI fragments into the corresponding sites of
pFPV25 [40], resulting in the pCMPG plasmids listed in Table
3. These plasmids were electroporated into ATCC14028s and
JSG421 [21] after propagation through LB5010, as described
above. Cloning steps were carried out in E. coli DH5α.

The single base-pair substitutions in the putative PmrA motif
occurring in the yibD promoter sequence were introduced via
a PCR approach using the QuickChange Site-Directed muta-
genesis kit (Stratagene, La Jolla, CA), according to the manu-
facturer's instructions. The yibD promoter sequence
introduced into pCRII-TOPO was used as the parent plasmid
and appropriate primers were applied (sequences not

Table 3

Bacterial strains

Strain or plasmid Relevant genotype Reference or source

Salmonella ATCC 14028s Wild type ATCC

JSG421 pmrA::Tn10d [21] kind gift of J.S. Gunn

LB5010 metA22 metE551 ilv-452 leu-3121 trp∆2 xyl-404 galE856 hsdLT6 hsdSA29 
hsdSB121 rpsL120

[67]

E. coli DH5α Fφ80∆lacZM15 ∆(lacZYAargF)U169 deoP recA1 endA1 hsdR17 (rk
-mk

-) Gibco BRL

Plasmids pCRII-TOPO Cloning vector, AmpR Invitrogen

pFPV25 ColE1 mob bla promoterless gfpmut3, AmpR [40] kind gift of R. Valdivia and S. Falkow

pFPV25.1 Constitutive rpsM promoter in pFPV25, AmpR [40] kind gift of R. Valdivia and S. Falkow

pCMPG5611 pFPV25 with yibD promoter This work

pCMPG5612 pFPV25 with ybjG promoter This work

pCMPG5613 pFPV25 with STM1269 promoter This work

pCMPG5614 pFPV25 with yjdB promoter This work

pCMPG5621 pFPV25 with sseJ promoter This work

pCMPG5615 pCMPG5611 with point mutated putative PmrA motif C→A This work

pCMPG5616 pCMPG5611 with point mutated putative PmrA motif T→G This work

pCMPG5617 pCMPG5611 with point mutated putative PmrA motif T→G This work

pCMPG5618 pCMPG5611 with point mutated putative PmrA motif A→C This work

pCMPG5619 pCMPG5611 with point mutated putative PmrA motif A→C This work

pCMPG5620 pCMPG5611 with point mutated putative PmrA motif T→C This work

Table 4

Primers used to construct the GFP promoter fusions

Name Sequence 5' to 3' Description

Amplification of promoter regions

Pro-115 CCGAATTCTAATTCGAGTTGCTTAAAGGCGGC Amplification of yibD promoter region

Pro-116 CCGGATCCGCTCCCGCATTATATAACGGG Amplification of yibD promoter region

Pro-117 CCGAATTCGCCAATAAAAACCGCGCAGAGTG Amplification of mig-13 promoter region

Pro-118 CCGGATCCAGCGAGTTGTTAAGGTTTTCCAGC Amplification of mig-13promoter region

Pro-119 CCGAATTCGAAGATTCCGCAGAATCAACGGCC Amplification of aroQ promoter region

Pro-120 CCGGATCCGGTGCTGCACATCAATAAAGAACAAAG Amplification of aroQ promoter region

Pro-121 CCGAATTCGTATTGCATCTGGGCGGTCATCG Amplification of pmrC promoter region

Pro-122 CCGGATCCAGGCGATTTGCCCAAGAACAGG Amplification of pmrC promoter region

Pro-224 ATGAATTCGCTTCCCCATCCCAAACCACC Amplification of sseJ promoter region

Pro-225 ATGGATCCGGAAGGCGTGCGCTTTCTTTTATC Amplification of sseJ promoter region

Restriction sites in the primers are indicated in bold type.
Genome Biology 2004, 5:R9
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shown). The site-directed mutated yibD promoter fragments
were subcloned into pFPV25 (EcoRI/BamHI), resulting in
plasmids pCMPG5615 → pCMPG5620, as listed in Table 3.
These reporter plasmids were electroporated into
ATCC14028s and JSG421.

Fluorescence-activated cell sorter-based expression 
analysis
Bacterial strains harboring the reporter constructs were
grown overnight in nitrogen (N)-minimal medium pH 7.4
plus 10 mM MgCl2, harvested, washed in N-minimal medium
pH 7.4 without MgCl2, and diluted 1:100 in N-minimal
medium pH 7.4 plus 10 mM MgCl2. Mid-log-phase bacteria
were then inoculated into the indicated media and grown for
3 h to allow expression of GFP. Bacteria were diluted into PBS
and analyzed by flow cytometry with a Becton Dickinson
FACSCalibur and CellQuest acquisition and analysis software
[40] with gates set to forward and side scatters characteristic
of the bacteria.

Nomenclature
As the gene names used in the annotation of the S. typhimu-
rium genome sequence do not always match the 'common'
names used in the PmrAB literature, we give a summary of
the synonyms below. STM1269 (aroQ); ybjG (mig-13);
pmrAB (basSR); ugd (udg, pagA, pmrE); pmrHFIJKLM
(yfbE, pmrF, yfbG, STM2300, pqa, STM2302, STM2303);
pmrC (yjdB); pmrG (ais); pbgP (yfbE,pmrH).

Availability of data
All additional information of our analysis is available on our
supplementary website [39].
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