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Abstract

Gene duplications are believed to facilitate evolutionary innovation. However, the mechanisms shaping the fate of
duplicated genes remain heavily debated because the molecular processes and evolutionary forces involved are difficult to
reconstruct. Here, we study a large family of fungal glucosidase genes that underwent several duplication events. We
reconstruct all key ancestral enzymes and show that the very first preduplication enzyme was primarily active on maltose-
like substrates, with trace activity for isomaltose-like sugars. Structural analysis and activity measurements on resurrected
and present-day enzymes suggest that both activities cannot be fully optimized in a single enzyme. However, gene
duplications repeatedly spawned daughter genes in which mutations optimized either isomaltase or maltase activity.
Interestingly, similar shifts in enzyme activity were reached multiple times via different evolutionary routes. Together, our
results provide a detailed picture of the molecular mechanisms that drove divergence of these duplicated enzymes and
show that whereas the classic models of dosage, sub-, and neofunctionalization are helpful to conceptualize the
implications of gene duplication, the three mechanisms co-occur and intertwine.
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Introduction

In a seminal book, Susumu Ohno argued that gene duplication

plays an important role in evolutionary innovation [1]. He outlined

three distinct fates of retained duplicates that were later formalized

by others (for reviews, see [2,3]). First, after a duplication event, one

paralog may retain the ancestral function, whereas the other allele

may be relieved from purifying selection, allowing it to develop a

novel function (later called ‘‘neofunctionalization’’). Second, differ-

ent functions or regulatory patterns of an ancestral gene might be

split over the different paralogs (later called ‘‘subfunctionalization’’

[4,5]). Third, duplication may preserve the ancestral function in

both duplicates, thereby introducing redundancy and/or increasing

activity of the gene (‘‘gene dosage effect’’ [6]).

Recent studies have shown that duplications occur frequently

during evolution, and most experts agree that many evolutionary

innovations are linked to duplication [7–10]. A well-known

example are crystallins, structural proteins that make up 60% of

the protein in the lenses of vertebrate eyes. Interestingly, paralogs

of many crystallins function as molecular chaperones or glycolytic

enzymes. Studies suggest that on multiple occasions, an ancestral

gene encoding a (structurally very stable) chaperone or enzyme

was duplicated, with one paralog retaining the ancestral function

and one being tuned as a lens crystallin that played a crucial role in

the optimization of eyesight [11,12].

The molecular mechanisms and evolutionary forces that lead to

the retention of duplicates and the development of novel functions

are still heavily debated, and many different models leading to

Ohno’s three basic outcomes have been proposed (reviewed in

[2,3,13,14]). Some more recent models blur the distinction

between neo- and subfunctionalization [15]. Co-option models,

for example, propose that a novel function does not develop
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entirely de novo but originates from a pre-existing minor function

in the ancestor that is co-opted to a primary role in one of the

postduplication paralogs [2,13]. Examples of such co-option

models include the ‘‘gene sharing’’ or ‘‘Escape from Adaptive

Conflict’’ (EAC) model [5,16–19] and the related ‘‘Innovation,

Amplification and Divergence’’ (IAD) model [20–22]. The IAD

model describes co-option as a neofunctionalization mechanism. A

‘‘novel’’ function arises in the preduplication gene, and increased

requirement for this (minor) activity is first met by gene

amplification (e.g., through formation of tandem arrays). After

this, adaptive mutations lead to divergence and specialization of

some of the duplicate copies. The EAC model, on the other hand,

describes co-option rather as a subfunctionalization mechanism by

which duplication allows a multifunctional gene to independently

optimize conflicting subfunctions in different daughter genes.

Another aspect in which various models differ is the role of

positive selection. Some models emphasize the importance of

neutral drift, while in other models adaptive mutations play an

important role. For example, in the Duplication-Degeneration-

Complementation (DDC) model of subfunctionalization [4],

degenerative mutations (accumulated by neutral drift) lead to

complementary loss-of-function mutations in the duplicates, so

that both copies become essential to perform all of the functions

that were combined in the single preduplication gene. Whereas

this type of subfunctionalization only involves genetic drift [4,8],

other subfunctionalization models, such as the EAC model,

attribute an important role to positive selection for the further

functional optimization of the postduplication paralogs [2,14].

There is a sharp contrast between the large number of detailed

theoretical models of evolution after gene duplication, on the one

hand, and the lack of clear experimental evidence for the various

predictions made by these theories, on the other [2]. The key

problem is the lack of knowledge about the functional properties of

the ancestral, preduplication gene. Since these ancient genes and

the proteins they encode no longer exist, many details in the chain

of events that led from the ancestral gene to the present-day

duplicates remain obscure. In most studies, the activities of the

preduplication ancestor are inferred from unduplicated present-

day outgroup genes that are assumed to have retained similar

functional properties, but this is only an approximation. The

central hurdle to surpass to obtain accurate experimental data on

the evolution of gene duplicates involves rewinding the evolution-

ary record to obtain the sequence and activity of the ancestral

proteins. Recent developments in sequencing and bio-informatics

now enable us to reconstruct ancestral genes and proteins and

characterize them in detail [23–31]. However, most ancestral

reconstruction studies to date did not focus on the mechanisms

that govern evolution after gene duplication.

In this study, we used the yeast MALS gene family as a model

system to gain insight in the molecular mechanisms and

evolutionary forces shaping the fate of duplicated genes. The

MALS genes encode a-glucosidases that allow yeast to metabolize

complex carbohydrates like maltose, isomaltose, and other a-

glucosides [32,33]. Several key features make this family ideal to

study duplicate gene evolution. First, it is a large gene family

encompassing multiple gene duplication events, some ancient and

some more recent. Second, the present-day enzymes have

diversified substrate specificities that can easily be measured

[32]. Third, the availability of MALS gene sequences from many

fungal genomes enabled us to make high-confidence predictions of

ancestral gene sequences, resurrect key ancestral proteins, and

study the selective forces acting throughout the evolution of the

different gene duplicates. Fourth, the crystal structure of one of the

present-day enzymes, Ima1, has been determined [34]. Molecular

modeling of the enzymes’ binding pocket, combined with activity

measurements on reconstructed and present-day enzymes, allowed

us to investigate how mutations altered enzyme specificity and

gave rise to the present-day alleles that allow growth on a broad

variety of substrates. Combining these analyses, we were able to

study the evolution and divergence of a multigene family to an

unprecedented level of detail and show that the evolutionary

history of the MALS family exhibits aspects of all three classical

models of duplicate gene evolution proposed by Ohno (gene

dosage, neo-, and subfunctionalization).

Results

The Present-Day Maltase Enzymes Arose from a
Functionally Promiscuous Ancestor

Some yeast species have evolved the capacity to metabolize a

broad spectrum of natural disaccharides found in plants and fruits

(Figure 1, tree adapted from [35]). The origin of this evolutionary

innovation seems to lie in the duplication and functional

diversification of genes encoding permeases and hydrolases [32].

The common Saccharomyces cerevisiae laboratory strain S288c, for

example, contains seven different MALS genes (MAL12, MAL32,

and IMA1–5), which originated from the same ancestral gene but

allow growth on different substrates [32,33].

To understand how duplications led to functionally different

MalS enzymes, we reconstructed, synthesized, and measured the

activity of key ancestral MalS proteins. We used the amino acid

(AA) sequences of 50 maltases from completely sequenced yeast

species, ranging from Saccharomyces cerevisiae to Pichia and Candida

species, for phylogenetic analysis and ancestral sequence recon-

struction (see Materials and Methods and Dataset S1). A consensus

amino-acid-based phylogenetic tree was constructed using

MrBayes [36] under the LG+I+G model with four rate categories

(see Figure S1, and see Materials and Methods for details). Trees

constructed using MrBayes under other models of sequence

evolution (WAG, JTT) generated largely identical results (unpub-

Author Summary

Darwin’s theory of evolution is one of gradual change, yet
evolution sometimes takes remarkable leaps. Such evolu-
tionary innovations are often linked to gene duplication
through one of three basic scenarios: an extra copy can
increase protein levels, different ancestral subfunctions can
be split over the copies and evolve distinct regulation, or
one of the duplicates can develop a novel function.
Although there are numerous examples for all these
trajectories, the underlying molecular mechanisms remain
obscure, mostly because the preduplication genes and
proteins no longer exist. Here, we study a family of fungal
metabolic enzymes that hydrolyze disaccharides, and that
all originated from the same ancestral gene through
repeated duplications. By resurrecting the ancient genes
and proteins using high-confidence predictions from many
fungal genome sequences available, we show that the very
first preduplication enzyme was promiscuous, preferring
maltose-like substrates but also showing trace activity
towards isomaltose-like sugars. After duplication, specific
mutations near the active site of one copy optimized the
minor activity at the expense of the major ancestral
activity, while the other copy further specialized in maltose
and lost the minor activity. Together, our results reveal
how the three basic trajectories for gene duplicates cannot
be separated easily, but instead intertwine into a complex
evolutionary path that leads to innovation.

Functional Innovation through Gene Duplication
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lished data). To further check the robustness of the AA tree

inferred by MrBayes, we inferred a maximum likelihood (ML) tree

under the LG+I+G model using PhyML (Figure S2) [37]. With the

exception of a few recent splits in the topology, the MrBayes and

PhyML trees agree, increasing our confidence in the constructed

tree. Codon-based tree reconstruction using MrBayes yielded

similar results (see further). Additional tests were performed to

control for potential long branch attraction (LBA) artifacts,

specifically to check the placement of the K. lactis branch as an

outgroup to the Saccharomyces and Lachancea clades (see Text S1 and

Figures S3, S4, S5, S6).

Next, we reconstructed the AA sequence of the ancestral

maltases under several commonly used models of protein evolution

(LG, WAG, JTT; see Materials and Methods). All models support

roughly the same ancestral protein sequences, increasing our

confidence in the reconstructed ancestral sequences. In particular,

all models identified the same residues for variable sites within

10 Å of the active center (based on the crystal structure of the

Ima1 protein), which are likely relevant sites with respect to

enzymatic activity. The residues for a few other sites located

further away from the active pocket vary between different models,

but differences generally involve biochemically similar AAs (see

Table S1).

Synthesis of the ancestral enzymes was based on the

reconstructed ancestral sequences obtained with the JTT model.

For ambiguous residues (i.e., sites for which the probability of the

second-most likely AA is .0.2) within 7.5 Å of the binding pocket,

we constructed proteins containing each possible AA, while for

Figure 1. Yeast species can grow on a broad spectrum of a-glucosides. Serial dilutions of each species were spotted on medium (Yeast Nitrogen
Base w/o amino acids) with 2% of each sugar (Me-a-Glu = methyl-a-glucoside). Growth was scored after 3 d incubation at 22uC. +, growth; 2, no
growth. # MALS genes, the number of maltase genes found in each of these strains. Genotypes are listed in Table S5.
doi:10.1371/journal.pbio.1001446.g001

Functional Innovation through Gene Duplication
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ambiguous residues outside 7.5 Å we considered only the most

likely AA. There is one ambiguous residue close to the active

center in the ancestral proteins ancMalS and ancMal-Ima, namely

residue 279 (based on Saccharomyces cerevisiae S288c Ima1 number-

ing). We therefore synthesized two alternative versions of these

proteins, one having G and one having A at position 279. Whereas

these alternative proteins show different activities for some

substrates, the relative activities are similar and our conclusions

are robust. Sequences for these reconstructed enzymes can be

found in Dataset S2. In the main figures, we show the variant with

the highest confidence. Enzymatic data for all variants can be

found in Table S2.

The activity of all resurrected ancestral enzymes was deter-

mined for different substrates (see Materials and Methods, Text

S1, and Figure 2). The results indicate that the very first ancestral

enzyme, denoted as ancMalS, was functionally promiscuous, being

primarily active on maltose-like substrates but also having trace

activity on isomaltose-like sugars. The activity data presented in

Figure 2 show how this promiscuous ancestral protein with

relatively poor activity for several substrates evolved to the seven

present-day enzymes that show high activity for a subset of

substrates, and little or no activity for others. This confirms the

existence of two functional classes of MalS enzymes that originated

from ancient duplication events. First, Mal12 and Mal32 show

activity against maltose-like disaccharides often encountered in

plant exudates, fruits, and cereals, like maltose, maltotriose,

maltulose, sucrose, and turanose (a signaling molecule in plants).

The five MalS enzymes of the second class (Ima1–5), which in fact

result from two independent ancient duplication events giving rise

to the Ima1–4 and Ima5 clades, show activity against isomaltose-

like sugars including palatinose (found in honey [38]) and

isomaltose. Differences in hydrolytic activity between members

of the same (sub)class are more subtle or even absent, which is not

surprising since some of these recent paralogs are nearly identical

(Mal12 and Mal32, for example, are 99.7% identical on the AA

level).

The more recent ancestral enzymes also show a similar split in

activity, with some enzymes (ancMal) showing activity towards

maltose-like substrates, and others (ancIma1–4) towards isomal-

tose-like substrates. Moreover, activity on isomaltose-like sugars

(isomaltose, palatinose, and methyl-a-glucoside) changes in a

coordinate fashion when comparing different enzymes, and the

maltose-like sugars also group together. Careful statistical analysis

reveals that the maltose-like group consists of two subgroups

(maltose, maltotriose, maltulose, and turanose, on one hand, and

sucrose, on the other) that behave slightly different, showing that

the enzymes show quantitative differences in the variation of

specificity towards these substrates (two-way ANOVA analysis

followed by Games-Howell test on log-transformed kcat/Km

values; p values can be found in Table S3).

Interestingly, the most ancient ancestral enzymes do not show a

clear split in activity towards either maltose-like or isomaltose-like

sugars after duplication, and the transition of ancMalS to ancMal-

Ima even shows an increase in activity for all substrates. This

suggests that (slight) optimization for all substrate classes simulta-

neously was still possible starting from ancMalS. A clear

divergence of both subfunctions occurred later, after duplication

of ancMal-Ima, resulting in ancMal and ancIma1–4. AncMal

shows a significant increase in activity on maltose-like sugars

accompanied by a significant drop in activity on isomaltose-like

sugars compared to ancMal-Ima; and the reverse is true for

ancIma1–4 (see also Table S3 for exact p values for each enzyme–

enzyme comparison on the different sugars tested). Together, this

illustrates how, after duplication, the different copies diverged and

specialized in one of the functions present in the preduplication

enzyme.

In two separate instances, a major shift in specificity is observed,

from maltose-like sugars to isomaltose-like sugars (transition from

ancIMA5 to IMA5, and from ancMAL-IMA to ancIMA1–4). The

shift in activity from ancMAL-IMA to ancIMA1–4 is particularly

pronounced. The ancMAL-IMA enzyme hydrolyzes maltose,

sucrose, turanose, maltotriose, and maltulose but has hardly any

measurable activity for isomaltose and palatinose, whereas

ancIMA1–4 can only hydrolyze isomaltose and palatinose (and

also sucrose). For the evolution of the maltase-like activity from the

ancestral MalS enzyme to the present-day enzyme Mal12, we see a

2-fold increase in kcat and a 3-fold decrease in Km for maltose,

indicating an increase in both catalytic power and substrate affinity

for this sugar. For the evolution of isomaltase-like activity in the

route leading to Mal12, kcat decreases more than 3-fold for methyl-

a -glucoside. kcat for isomaltose and palatinose and the affinity for

isomaltose and palatinose are so low that they could not be

measured (see Table S2 for the exact values of kcat and Km for

each enzyme and each sugar; results of two-way ANOVA analysis

followed by Games-Howell test comparing log-transformed kcat/

Km values for different enzymes on each of the sugars can be

found in Table S3).

Present-Day Enzymes from Other Yeast Species Show
Similar Patterns of Functional Diversification

To further explore the evolution of MALS genes and consolidate

the measured activities of the ancestral enzymes, we expressed and

purified additional present-day a-glucosidase alleles from other

yeast species and measured their activities (Figure 3). We focused

primarily on enzymes that are directly related to one of the

ancestral proteins but did not undergo any further duplication

events, and therefore have a higher probability of having retained

a similar activity as their (sub)class ancestor. Indeed, the only

present-day MalS enzyme of the yeast L. elongisporus has a broad

but relatively weak activity comparable to the very first ancestral

MalS enzyme, providing extra support for the accuracy of our

ancestral reconstructions. Also in K. lactis, which contains two Mal

alleles, one of the paralogs retains the broad specificity of

ancMalS. The other paralog (GI:5441460) has a deletion of five

AAs close to the active pocket that likely explains the general lack

of activity of this enzyme (see Materials and Methods and Figure

S7). In contrast, yeasts that show multiple duplication events, like

K. thermotolerans and S. cerevisiae, exhibit specialization, with some

enzymes showing only activity for maltose-like substrates and

others for isomaltose-like substrates. Moreover, the activities

(maltase- or isomaltase-like) of homologs in S. cerevisiae and K.

thermotolerans derived from the same intermediate ancestor are

often similar, except in the IMA5 clade. Here, the K. thermotolerans

and S. cerevisiae homologs have very different substrate specificities,

indicating species-specific evolutionary trajectories and/or recip-

rocal paralog loss in the different species (Figures 3 and 4).

Molecular Modeling and Resurrection of Ancestral
Proteins Identify Residue 279 in the Enzymes’ Binding
Pocket as a Key Determinant of Substrate Specificity

Next, we investigated which mutations underlie the observed

functional changes. We used the recently resolved crystal structure

of Ima1 (pdb entry 3A4A) [34] as a template to study the

molecular structure of the enzymes’ substrate binding pocket (see

Materials and Methods). All enzymes share a highly conserved

molecular fold, suggesting that changes in activity or substrate

preference are likely caused by mutations in or around the

Functional Innovation through Gene Duplication
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substrate binding pocket. We identified nine variable AA residues

within 10 Å of the center of the binding pocket in the various

paralogs (Figure 4, right panel). Site-directed mutagenesis and

crystallographic studies by Yamamoto et al. confirmed the

importance of several of these residues for substrate specificity in

the present-day Ima1 protein [39,40]. In particular, Yamamoto et

al. [40] characterized the influence of residues 216-217-218 (Ima1

numbering), which covary perfectly with each other and with the

observed substrate specificity shifts across the phylogeny presented

in Figure 4. Sequence co-evolution analysis on 640 MAL12

Figure 2. Duplication events and changes in specificity and activity in evolution of S. cerevisiae MalS enzymes. The hydrolytic activity of
all seven present-day alleles of Mal and Ima enzymes as well as key ancestral (anc) versions of these enzymes was measured for different a-glucosides.
The width of the colored bands corresponds to kcat/Km of the enzyme for a specific substrate. Specific values can be found in Table S2. Note that in
the case of present-day Ima5, we were not able to obtain active purified protein. Here, the width of the colored (open) bands represents relative
enzyme activity in crude extracts derived from a yeast strain overexpressing IMA5 compared to an ima5 deletion mutant. While these values are a
proxy for the relative activity of Ima5 towards each substrate, they can therefore not be directly compared to the other parts of the figure. For
ancMalS and ancMal-Ima, activity is shown for the variant with the highest confidence (279G for ancMalS and 279A for ancMal-Ima). Activity for all
variants can be found in Table S2.
doi:10.1371/journal.pbio.1001446.g002

Functional Innovation through Gene Duplication
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Figure 3. Activities of present-day Mal enzymes in distant fungi correspond well with activities of reconstructed ancestral enzymes.
Basic phylogeny of the MALS gene family with different clades, showing the ancestral bifurcation points (indicated by *). Length of the colored bands
corresponds to the measured kcat/Km of the enzyme for a specific substrate. Bands for Ima5 represent relative enzyme activity in crude extracts
derived from a yeast strain overexpressing IMA5 compared to an ima5 deletion mutant. For ancMalS and ancMal-Ima, activity is shown for the variant
with the highest confidence (279G for ancMalS and 279A for ancMal-Ima). Error bars represent standard deviations. Activity for all variants and the
corresponding standard deviations can be found in Table S2.
doi:10.1371/journal.pbio.1001446.g003

Functional Innovation through Gene Duplication
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homologs identified another cluster of three co-evolving residues

among these nine residues (positions 218, 278, and 279 in Ima1),

which we investigate here in detail.

Together with residues 216 and 217, residues 218, 278, and 279

seem to contribute to the activity shift observed in the evolution of

Ima1–4 (see Figures 4–6, Figure S8, and Supplementary

Information for details). Molecular modeling of the mutations at

218-278-279 on the branch leading to ancIma1–4 (see Figure 4)

suggests that the change from alanine to glutamine at residue 279

shifts the binding preference of the pocket from maltose-like to

isomaltose-like sugars (Figure 5B–E). The two co-evolving residues

at positions 218 and 278 are spatially close to AA 279 and cause

subtle structural adaptations that help to better position the Q

residue.

To investigate if changes at all three positions are necessary for

the observed shift in substrate specificity from ancMAL-IMA to

ancIMA1–4 and to investigate the possible evolutionary paths

leading to these three interdependent mutations, we synthesized all

possible intermediate ancIMA1–4 enzyme variants with mutations

at positions 218, 278, and 279. We subsequently expressed,

purified, and measured activity of these enzyme variants. Figure 5F

depicts the results of these enzyme assays and shows that these

residues indeed affect substrate specificity, with the largest shift

depending on the A to Q change at position 279, as expected from

structural analysis. For one mutational path (GVA to GVQ to

SVQ to SMQ), we observe a gradual increase in activity towards

isomaltose and palatinose, demonstrating that there is a muta-

tional path that leads to a consistent increase in isomaltase activity

without traversing fitness valleys. Moreover, in keep with the

stabilizing role of the mutations at positions 218 and 278, the A to

Q change at position 279 along this path takes place before the

two other mutations at positions 218 and 278 (Figure 5F).

Figure 4. Positive selection on residues near binding pocket resulted in distinct subgroups with different substrate preference. An
unrooted codon-based phylogenetic tree of the MALS gene family is shown on the left. Branches are colored according to the v (dN/dS) rate classes
inferred from GA Branch analysis [41]. Branches for which branch-site tests for positive selection were performed are indicated by colored
arrowheads. Since v rate classes cannot be inferred reliably for very small branches, branches ,0.01 are not colored. The right part of the figure
shows the nine variable AA residues located near the substrate binding pocket of the respective enzymes (numbering based on Ima1 sequence).
Sequences of ancestral enzymes are shaded in grey. Subgroups of enzymes that show similar substrate specificity are colored accordingly. Residues
indicated in bold were found to be under positive selection by the branch-site tests. Perfectly co-varying residues are boxed. Substrate preference of
extant and ancestral enzymes was deduced from enzyme assays on S. cerevisiae, K. lactis, K. thermotolerans, L. elongisporus, and reconstructed
ancestral enzymes (see Figure 3 and Table S4).
doi:10.1371/journal.pbio.1001446.g004

Functional Innovation through Gene Duplication
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Figure 5. Three co-evolving residues determine the shift in activity observed in the evolution of Ima1–4. (A) Global structure of the
MalS proteins with maltose, represented as spheres, bound in the active site. Panels (B–E) show details of the active site, with substrates as sticks
(maltose in panels B and C; isomaltose in panels D and E). The variable AAs are shown as spheres. Structural analysis of the binding site suggests that
the A279Q mutation affects substrate specificity the most. The side chain of Q279 sterically hinders binding of maltose but stabilizes isomaltose
binding through polar interactions. The G218S and V278M changes cause subtle adaptations of the fold, causing Q279 to protrude further into the
binding pocket, which allows optimal interaction with isomaltose. (F) Activity (kcat/Km) of all possible intermediary forms in the evolution of three co-

Functional Innovation through Gene Duplication
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Besides allowing the development of isomaltase activity in the

Ima proteins, duplication also permitted further increase of the

major ancestral function (hydrolysis of maltose-like sugars) in

Mal12 and Mal32. Structural analysis reveals that this increase in

maltase activity, from ancMalS to Mal12/32, is due to mutations

D307E and E411D (Figure 6G–J). These mutations increase the fit

for maltose-like substrates but also completely block the binding of

isomaltose-like substrates (Figure 6). Similar to what is seen for the

evolution of AncMal-Ima to AncIma1–4, changes that increase the

binding stability of one type of substrate cause steric hindrance

evolving residues in AncIma1–4, obtained from enzyme assays performed for all reconstructed proteins. Values for kcat and Km can be found in Table
S2.
doi:10.1371/journal.pbio.1001446.g005

Figure 6. Evolution of the promiscuous AncMalS enzyme into isomaltose- and maltose-hydrolyzing enzymes. AncMalS is a
promiscuous enzyme that hydrolyzes both maltose- and isomaltose-like substrates, whereas the present-day enzymes Ima1,2 and Ima5 preferentially
hydrolyze isomaltose-like sugars and Mal12–32 preferentially hydrolyzes maltose-like sugars. First, the presence of a Thr or Val residue at position 216
affects the binding affinity of the enzyme through changes in the hydrophobic/hydrophilic interactions with the different substrate classes (panels A
to D; see also Figure S8). The case of Ima1,2 and Ima5 (panels C to F) illustrates that an additional shift in substrate specificity can be obtained via
different evolutionary routes. In the case of Ima1 and Ima2, the change of G279 to Q279 interferes with binding of maltose-like substrates, but the
side chain of Gln can undergo polar interactions with isomaltose (panels C and D). The G218S and V278M changes cause additional subtle
adaptations of the protein fold, causing Q279 to protrude further into the binding pocket, allowing optimal interaction with isomaltose (see also
Figure 5). The evolution of isomaltase activity in Ima5 also occurred via the introduction of steric hindrance in the binding pocket, although in this
case the change involved was L219M (panels E and F). In ancMalS, residues D307 and E411 allow binding of both maltose- and isomaltose-like
substrates (panels G and H). In the maltose-specific enzymes Mal12 and Mal32, however, these residues have evolved to E307 and D411 (panels I and
J). These changes not only increase the affinity for maltose-like substrates but also make this site incompatible with isomaltose-like substrates.
Subpanels are graphical representations of the binding pocket, with key amino acids depicted as spheres. Maltose and isomaltose are represented as
sticks.
doi:10.1371/journal.pbio.1001446.g006
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that prevents binding of the other class of substrates. These signs of

incompatibilities between substrates indicate that it is difficult to

fully optimize one enzyme for both maltose-like and isomaltose-

like substrates, with the highly suboptimal ancMalS being a

notable exception. After partial optimization of ancMalS, dupli-

cation of ancMAL-IMA likely enabled further optimization of the

conflicting activities in separate copies.

Different Evolutionary Routes Can Lead to Similar
Changes in Substrate Specificity

Interestingly, the transition from AncMalS to Ima5 shows a

similar shift in substrate specificity as the transition of AncMal-

Ima to AncIma1–4. However, the residue at position 279, a key

factor in the evolution of AncMal-Ima to AncIma1–4, remains

unaltered in the evolution of AncMalS to Ima5. Instead, L219, a

residue located proximal to position 279, has changed into M219

in the Ima5 enzyme (Figure 6C–F). How can such seemingly

very different mutations yield a similar change in substrate

specificity?

Structural analysis shows that the L-to-M mutation at position

219 in Ima5 causes a very similar structural change as the G279Q

change in AncIma1–4 (Figure 6), indicating that different

evolutionary routes may produce a similar shift in activity. In

both cases, the evolution of isomaltase-like activity involved

introducing a residue that can stabilize isomaltose-like substrates

but causes steric hindrance for maltose-like sugars in the binding

pocket. Based on the phylogeny of binding pocket configurations

and on our enzyme activity tests, this functional shift in the IMA5

clade most likely occurred after a duplication in the common

ancestor of S. kluyveri and S. cerevisiae (Figures 3–4).

Key Residues in Binding Pocket of MalS Enzymes Show
Signs of Positive Selection

Next, we investigated the role of selective pressure during the

different evolutionary transitions. We used MrBayes to construct a

codon-based phylogeny under a GTR codon model of evolution,

including 32 MALS genes that share the same nuclear genetic

code. The resulting codon-based phylogeny was the same as the

AA-based phylogeny generated using the LG+I+G protein model

for all 50 sequences, apart from two exceptions in the ancIMA1–4

clade. First, S. mikitae IFO1815 c789 and S. paradoxus N45 branch

off separately from S. kudriavzevii IFO1802 c1888 instead of

together. Second, S. kudriavzevii IFO1802 c1565 now branches off

separately instead of multifurcating with S. mikitae IFO1815 c633

and the branch leading to the S. cerevisiae IMA2–4 genes. Relative

branch lengths between genes were similar to the branch lengths

calculated under protein models of evolution. The topology of the

codon-based tree is presented in Figure 4.

GA Branch analysis [41] identified a branch class with an

elevated v (dN/dS) rate (v= 0.66) but did not detect branch

classes with v.1 that would be considered strong proof for

positive selection (see Materials and Methods and Figure 4). These

results, combined with our activity test results and the observed

sequence configurations around the active center, suggest,

however, that positive selection might have been operating on

specific sites in three specific postduplication branches associated

with enzyme activity shifts, namely the ancIMA1–4, ancIMA5b,

and ancMAL branches, indicated with arrows on Figure 4. We

used the modified branch-site model A implemented in PAML to

assess positive selection along these branches (see Materials and

Methods) [42]. Results are presented in Table S4. For both the

ancIMA1–4 and ancIMA5b branches, p values and parameter

estimates suggest that a proportion of sites has strongly elevated v

values, consistent with the GABranch results. On the branch from

ancMAL-IMA to ancIMA1–4, four sites show signs of positive

selection, with a posterior Bayes Empirical Bayes (BEB) probability

.0.95, of which two, 216 and 279, are within 10 Å of the active

center and known to be important for substrate specificity. On the

ancIMA5b branch, four sites show signs of positive selection

(BEB.0.95), including again site 216. For ancMAL, the null model

(no positive selection) was not rejected at the 95% significance

level. Both the corresponding parameter estimates and results of

the GABranch analysis, however, suggest relaxation of purifying

constraints on this branch.

To get more support for the PAML branch-site test results, we

performed an additional analysis using an alternative branch-site

method that was recently implemented in the HyPhy package

[43]. This method identified in total seven branches that possibly

experienced positive selection: ancIMA1–4 (p,0.0001), ancI-

MA5b (p = 0.0232), ancMALS (p = 0.0228), S. kluyveri SAK-

L0A05698g (p,0.0001), K. thermotolerans GI: 255719187

(p,0.0001), the branch leading from ancIMA5 to the ancIMA5b

branch (p = 0.0168), and finally the branch leading up to S.

cerevisiae IMA2, IMA3, IMA4, and YPS606 within the ancIMA1–4

clade (p = 0.0353). In other words, the ancMALS, ancIMA1–4,

and ancIMA5b branches are suggested to have evolved under

positive selection, together with four other branches. The branch-

site method implemented in HyPhy currently does not allow the

identification of specific sites that may have evolved under

positive selection on these branches.

Together, our analyses indicate that some residues near the

active pocket, in particular the key residues 216 and 279 that

determine substrate specificity (see above), may have experienced

positive selection in the postduplication lineages leading to

isomaltose-specific enzymes. It should be noted, however, that

the specificity and sensitivity of the currently available methods for

detecting positive selection, in particular branch-site methods, is

heavily debated [42,44–47]. Possible pitfalls include fallacies in the

assumption that synonymous substitutions are neutral, a reported

increase in the number of false positives due to sampling errors

when the number of (non)synonymous substitutions and sequences

is low, and potential inadequacies in the null and alternative

models that are being compared, leading to difficulties with

completely ruling out other explanations for perceived positive

selection. For these reasons, the positive selection test results

reported here should be approached as indications rather than

definitive proof.

Recent Duplicates MAL12 and MAL32 Are Maintained
Because of Gene Dosage Effects

The previous results show how duplication of a promiscuous

ancestral enzyme with limited activity towards two substrate

categories allowed the evolution of separate enzyme clades that

each show increased activities for a specific subset of substrates.

The functional diversification of the different clades ensures their

retention. However, why are recent, near-identical duplicates such

as MAL12 and MAL32 conserved?

To investigate if selective pressure might protect the MAL12/

MAL32 duplicates, we determined the fitness effect of inactivating

each of them. The results in Figure S9 show that strains lacking

just one of the MAL12 and MAL32 paralogs show a considerable

fitness defect compared to a wild-type strain when grown on

maltose. These results suggest that gene dosage may play a

primary role in preserving these recent paralogs [6]. Dosage effects

increasing maltase and/or isomaltase activity may also have

played a role after the earliest MALS duplications, before the

duplicates were optimized for different activities.
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Discussion

One of the major issues in the field of molecular evolution is the

plethora of theoretical models and variants of models concerning

the evolution of gene duplicates, with few of the claims supported

by solid experimental evidence. On many occasions, inherent

properties of the evolutionary process make it extremely hard to

find or generate experimental evidence for a given model.

However, recent developments in genome sequencing, evolution-

ary genomics, and DNA synthesis open up exciting possibilities.

Using these new opportunities, we were able to resurrect ancient

MALS genes and the corresponding enzymes and provide a

detailed picture of the evolutionary forces and molecular changes

that underlie the evolution of this fungal gene family. The MALS

gene family is an ideal model for the study of duplicate gene

evolution, since it underwent several duplication events and

encodes proteins for which we could accurately measure different

activities. The availability of multiple fungal genome sequences

provided sufficient data to robustly reconstruct ancestral alleles

and study the selective forces that propelled divergent evolution of

the paralogs. Additionally, the existence of a high-quality crystal

structure of one of the present-day enzymes made it possible to

predict the functional effects of mutations and to study the

mechanistic basis of suspected adaptive conflicts between the

maltase-like and isomaltase-like subfunctions.

Our results paint a complex and dynamic picture of duplicate

gene evolution that combines aspects of dosage selection and sub-

and neofunctionalization (see Figure 7). The preduplication

ancMalS enzyme was multifunctional and already contained the

different activities found in the postduplication enzymes (the basic

idea of subfunctionalization), albeit at a lower level. However, the

isomaltase-like activity was very weak in the preduplication

ancestor and only fully developed through mutations after

duplication (increase of kcat/Km with one order of magnitude for

isomaltase-like substrates from ancMalS to Ima1), which resembles

neofunctionalization. The ancestral maltase-like activity also

improved substantially but to a lesser extent (factor 6.9 on average

from ancMalS to Mal12), which therefore perhaps fits better with

the subfunctionalization model. Moreover, our activity tests on

Mal12/Mal32 mutants indicate that gene dosage may also have

played a role in preserving MALS paralogs, especially right after

duplication. This may not only have been the case for the recent

MAL12–32 and IMA3–4 duplications but also for more ancient

duplications involving multifunctional ancestors. In summary,

whereas the classical models of dosage, sub-, and neofunctiona-

lization are helpful to conceptualize the implications of gene

duplication, our data indicate that the distinction between sub-

and neofunctionalization is blurry at best and that aspects of all

three mechanisms may intertwine in the evolution of a multigene

family.

Although it is difficult to classify our results decisively under one

of the many models of evolution after gene duplication, most of

our findings agree with the predictions of the ‘‘Escape from

Adaptive Conflict’’ (EAC) model [5,16,17,19], a co-option-type

model in which duplication enables an organism to circumvent

adaptive constraints on a multifunctional gene by optimizing the

subfunctions separately in different paralogs. The EAC model

makes three key predictions: (i) the ancestral protein was

multifunctional, (ii) the different subfunctions could not be

optimized simultaneously in the ancestral protein (or at least not

in an evolutionarily easily accessible way), and (iii) after

duplication, adaptive changes led to optimization of the different

subfunctions in separate paralogs [13,16,48]. In general, our

findings fit with these predictions: (i) we find that several of the

ancestral preduplication maltase enzymes (ancMALS, ancMAL-

IMA, and ancIMA5) were multifunctional; (ii) we provide evidence,

through molecular modeling and activity tests of present-day

enzymes, ancestors, and potential intermediates, that the maltase

and isomaltase functions are difficult to optimize within one

protein (but see also below); and (iii) we find that duplication

resolved this adaptive conflict, and we find indications that positive

selection might have driven key changes that optimized the minor

isomaltase-like activity of the preduplication enzyme in one

paralog, while the major maltase-like activity was further

optimized in the other paralog.

Figure 2 and the statistical analysis in Table S3 indicate that

the activity of the different enzymes changes significantly at

certain points along the evolutionary path. Interestingly, the

overall image that emerges suggests that the enzymes developed

activity towards either maltose-like or isomaltose-like sugars, but

not both. This pattern is most clear in the evolution of ancMal-

Ima to ancMal and ancIma1–4. The postduplication improve-

ment of the different activities present in the ancestral allele, with

each of the new copies displaying increased activity for one type

of substrate and concomitantly decreased activity towards the

other substrate class, could be indicative of trade-offs in the

evolution of the MALS gene family. However, the word ‘‘trade-

off’’ implies that the two incompatible functions are both under

selection, which is difficult to prove for the ancient enzymes.

Moreover, our results indicate that for the ancient ancMalS

enzyme, it is possible to simultaneously increase the activity

towards both maltose-like and isomaltose-like substrates. Togeth-

er, our analyses show that it is possible to optimize (to a certain

extent) one function of a multifunctional enzyme without

significantly reducing the other (minor) activity. However,

analysis of the complete evolutionary path and molecular

modeling of the active pockets of the enzymes shows that full

optimization of both functions in a single enzyme is difficult to

achieve, due to steric hindrance for one substrate class when fully

optimizing the active pocket for binding of the other substrate

type. This problem can be most easily overcome by duplication of

the enzyme, allowing optimization of the different subfunctions in

different paralog copies, as can be seen in the transition of

ancMal-Ima to ancMal and ancIma1–4.

While most aspects of our data fit with the EAC model, some

results are more difficult to reconcile with the EAC theory.

Specifically, one of the pillars of the EAC model is that positive

selection drives the specialization of both paralogs after duplica-

tion. While our data demonstrate that duplication of ancMAL-IMA

has led to optimization of both subfunctions in different duplicate

lineages (maltase-like activity in ancMAL and isomaltase-like

activity in ancIMA1–4), our selection tests only reveal indications

of positive selection in the ancIMA1–4 lineage but not in the

ancMAL lineage. Moreover, as discussed above, positive selection is

difficult to prove [44,49], and we cannot exclude the possibility of

both false positive and false negative artifacts.

Recently, some other likely examples of the EAC mechanism

have been described [16,17,50–52]. These studies also presented

plausible arguments for ancestral multifunctionality, adaptive

conflict, and/or adaptive optimization of subfunctions in different

paralogs, but as in the present case, none could provide strong

experimental evidence for all three predictions made by the EAC

model [48,53]. Instead of classifying the evolutionary trajectory of

particular gene duplicates into one of the many models for gene

duplication, it may prove more useful to distill a more general

picture of duplicate evolution across a gene family that includes

aspects of dosage selection, and sub- and neofunctionalization, like

the one depicted in Figure 7.
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Our study is the first to investigate multiple duplication events in

the same gene family in detail. Interestingly, we found that

evolution has taken two different molecular routes to optimize

isomaltase-like activity (the evolution of ancMAL-IMA to an-

cIMA1–4 and ancIMA5 to IMA5). In both cases, only a few key

mutations in the active pocket are needed to cause shifts in

substrate specificity. Some of these key mutations exhibit epistatic

interactions. For example, the shift in substrate specificity

occurring on the path from ancMAL-IMA to ancIMA1–4 depends

in part on mutations at three co-evolving positions (218, 278, and

Figure 7. Multiple evolutionary mechanisms contribute to the evolution of the MalS gene family in S. cerevisiae. (A) Overview of
evolutionary mechanisms in the evolution of an ancestral gene with two conflicting activities (major function, red; minor function, blue). Duplication
can help resolve this ‘‘adaptive conflict’’ by allowing optimization of these activities in two separate copies. Increased requirement for either of these
activities, for example by changes in the environment, can first be met by duplication of the ancestral gene. Selection for increased gene dosage can
help to preserve both copies until adaptive mutations optimize the different functions in separate copies. (B) Evolution of the promiscuous ancestral
MalS enzyme into the seven present-day MalS alleles shows how different evolutionary forces contribute to the evolution of gene duplicates. Activity
towards isomaltose-like sugars first existed only as a trace activity in the ancestral, preduplication enzyme. The nature of the binding pocket
prevented simultaneous optimization of the major and minor function in the ancestral enzyme. Duplication allowed the (full) optimization of the two
conflicting activities of the ancestral enzyme in separate copies. Several key residues in the enzymes’ binding pocket responsible for these shifts in
substrate specificity (shaded in grey) show signs of positive selection (indicated both in red and with red arrows; see also Figure 4). Preservation of
more recent, highly similar duplicates like Mal12–Mal32 may be mediated through gene dosage effects (see also Figure S9). Sequences above each
enzyme represent the nine variable residues in the binding pocket (numbering based on Ima1 sequence). AA changes that led to improvement of
one of the hydrolyzing activities are shaded in grey.
doi:10.1371/journal.pbio.1001446.g007
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279), but only one mutational path (279-218-278) shows a

continuous increase in isomaltase-like activity. Interestingly, there

is also a different path in the opposite direction (218-279-278) that

shows a continuous increase in the ancestral maltase-like activity.

This implies that the complex co-evolution at these three positions

may be reversible. Interestingly, a recent study of the evolutionary

history of plant secondary metabolism enzymes also identified AA

changes that appear to be reversible [51], in contrast to the

situation for, for example, glucocorticoid receptor evolution,

where evidence was found for an ‘‘epistatic ratchet’’ that prevents

reversal to the ancestral function [54].

It is tempting to speculate that complex mechanisms like those

driving the evolution of the MALS gene family may be a fairly

common theme. Many proteins display some degree of multi-

functionality or ‘‘promiscuity’’ [55–57], just like the ancestral

ancMal enzyme. Moreover, directed ‘‘in vitro’’ protein evolution

experiments have shown that novel protein functions often develop

from pre-existing minor functions [58,59]. Although the different

functions within an enzyme often exhibit weak trade-offs, allowing

optimization of the minor activity without affecting the original

function of the enzyme [55,59,60], this may not always be the

case. If there are stronger trade-offs between different subfunc-

tions, duplication may enable the optimization of the conflicting

functions in different paralogs.

While it is difficult to obtain accurate dating of the various

duplication events, the duplication events studied here appear to

postdate the divergence of Saccharomyces and Kluyveromyces clades,

estimated to have occurred 150 mya [61], but predate the

divergence of Saccharomyces and Lachancea and the yeast whole

genome duplication, about 100 mya. MALS diversification may

thus have happened around the appearance and spread of

angiosperms (Early Cretaceous, between 140 and 100 mya [62])

and fleshy fruits (around 100 mya). Tentative dating results can be

found in Table S6, but these should be approached with caution

(see Text S1). The major shift in the earth’s vegetation caused by

the rise of the angiosperms almost certainly opened up new niches,

and it is tempting to speculate that duplication and diversification

of the MALS genes may have allowed fungi to colonize new niches

containing sugars hydrolyzed by the novel Mal (Ima) alleles. In

other words, the availability of novel carbon sources in

angiosperms and fleshy fruits could have provided a selective

pressure that promoted the retention of MALS duplicates and the

ensuing resolution of adaptive conflicts among paralogs.

Materials and Methods

Phylogenetic Tree Construction
In total, the nucleotide and protein sequences of 169 extant

maltases were collected for yeast species ranging from Saccharomyces

cerevisiae to Pichia and Candida species. For Kluyveromyces thermotoler-

ans, Saccharomyces kluyveri, and Kluyveromyces lactis, sequences were

downloaded from Génolevures (www.genolevures.org). Sequences

for many of the Saccharomyces cerevisiae and Saccharomyces paradoxus

genes were obtained from the sequence assemblies provided by the

Wellcome Trust Sanger Institute (http://www.sanger.ac.uk/

research/projects/genomeinformatics/sgrp.html). All of the re-

maining extant maltase sequences were downloaded from NCBI

(www.ncbi.nlm.nih.gov/). Sequences with greater than 92%

pairwise protein sequence similarity to other sequences in the

dataset were removed to reduce the phylogenetic complexity. All

seven Saccharomyces cerevisiae S288c alleles were kept, however,

yielding a final dataset of 50 sequences (see also Dataset S1).

We used ProtTest 2.4 [63] to score different models of protein

evolution for constructing an AA-based phylogenetic tree. All

possible models with all improvements implemented in the

program were taken into account. An initial tree was obtained by

Neighbor-Joining (BioNJ), and the branch lengths and topology

were subsequently optimized for each evolutionary model

independently. The LG+I+G model came out as best with a

substantial lead over other protein models using 2lnL, AIC, and

AICc selection criteria (AICc = 43,061.26 with AICw = 1.00,

while the second best model was WAG(+I+G) with

AICc = 43,158.00 and AICw = 0.00). Consequently, an AA-

based phylogeny for the 50 sequences was determined using

MrBayes 3.1.2 [36] with a LG invariant+gamma rates model

(four rate categories). Since the LG model is not implemented by

default in MrBayes, we used a GTR model and fixed the

substitution rate and state frequency parameters to those

specified by the LG model. The BMCMC was run for 106

generations, sampling every 100 generations, with two parallel

runs of four chains each. A burn-in of 2,500 samples was used,

and the remaining 7,501 samples were used to construct a 50%

majority-rule consensus phylogeny (Figure S1). The AWTY

program [64] was used to check proper MCMC convergence

under the given burn-in conditions. MrBayes AA tree construc-

tions were also performed under other evolutionary models

(WAG, JTT). Additional tests were performed to exclude Long

Branch Attraction (LBA) artifacts (see Text S1). We also inferred

a maximum likelihood (ML) tree using PhyML under the

LG+I+G model with four rate categories [37]. The initial tree

was again obtained by BioNJ; tree topology, branch lengths, and

rate parameters were optimized in a bootstrap analysis with

1,000 replicates.

We also used MrBayes to construct a codon-based phylogeny,

using a GTR codon model of evolution. The original dataset of 50

sequences contained 18 sequences for species that employ the

alternative yeast nuclear genetic code (all of them outgroup

species). These sequences were removed from the dataset, resulting

in a reduced dataset of 32 sequences. The codon alignment was

obtained by translating the AA alignment obtained earlier.

BMCMC analysis and consensus phylogeny construction were

performed as described above for the AA trees. We contrasted

models that did and did not allow for v rate variation (i.e., the

‘‘Equal’’ versus ‘‘M3’’ codon model in MrBayes). AWTY analysis

indicated that the latter was not able to converge properly, so we

used the results of the Equal model.

Ancestral Sequence Reconstruction
The PAML package [65] was used to infer the posterior AA

probability per site in the ancestors of interest under several

commonly used models of protein evolution (LG, WAG, JTT),

using the corresponding Bayesian consensus phylogenies. Both

marginal and joint probability reconstructions were performed.

The marginal reconstructions are presented in Table S1. Protein

sequences resulting from marginal reconstructions under the JTT

model were used to synthetize ancestral enzymes.

Positive Selection Tests
We performed tests for positive selection on the codon-based

phylogeny obtained as described above. Various branch methods

and branch-site methods included in the PAML [65] and HyPhy

[66] packages were used.

Branch tests. We first explored the change in selective forces

over time using the branch models implemented in the PAML

package. The fit of the free-ratio model, which assigns an

independent v value for each branch, was found to be significantly

better than that of null model assigning only one v value to the

whole tree (LRT stat = 438.43; df = 60; p,0.0001). This test
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confirms the presence of variability in selection pressure across

branches of the codon tree, but its v estimates are not reliable

because the free-ratio model suffers from overparameterization.

We therefore applied the GABranch method, available as an

extension to the HyPhy package [41,66], as described in [67]. This

method uses a genetic algorithm to search through the space of

possible models and divides the branches of the phylogenetic tree

in subsets of branches that share the same v estimate, reducing

parametric complexity. We used the 012034 GTR nucleotide

model, selected by a HyPhy model selection routine from all 203

available GTR models. We repeated the GABranch procedure on

five replicates and pooled results for postprocessing, after ensuring

that all replicates reached similar solutions. The postprocessing

resulted in a final branch partitioning model with four v rate

categories. Since the GABranch method itself is focused on finding

the best branch-clustering scheme rather than finding the best v
estimates, the estimated v values obtained in the GABranch

analysis were further optimized using a HyPhy model optimization

routine that allows for nonsynonymous rate heterogeneity. The net

effect was an increase of the estimated v values for all four rate

categories (see Figure 4).

Branch-site tests. We used the modified branch-site model

A implemented in PAML, which allows v to vary both among sites

in the sequence alignment and across branches on the tree, to

screen for positive selection on sites along specific branches [42].

We used the ancIMA1–4, ancMAL, and ancIMA5b branches

separately as the foreground branch, while the rest of the

phylogeny was considered as the background, and assessed

deviation from the null model (no positive selection) using a

Likelihood Ratio Test following a x1
2 distribution [68]. A

Bonferroni correction was employed to control for multiple testing

[69], and a posteriori BEB inference was used to identify the sites

that are most likely under positive selection [70].

We also used an alternative branch-site method that was

recently implemented in the HyPhy package [43]. This method

similarly identifies branches that are subject to episodic diversify-

ing selection but differs from the branch-site tests implemented in

PAML in that no background and foreground branches need to be

specified a priori. Instead, the method fits a sequence of

increasingly more complex models to the data, including a model

that permits unrestricted combinations of selective regimes across

sites and branches. Subsequently, all branches with some

proportion of sites with v.1 were tested for positive selection

using a series of LRTs.

Co-Evolving Residue Detection
Co-evolving residues in the MALS gene family were detected

using the framework described by [71]. The NCBI Blast server

was used to collect Saccharomyces cerevisiae S288c MAL12 maltase

homologs, with an E-value ,10e-70, resulting in a set of 1,211

sequences. Proteins were removed that were shorter than 400 AAs,

longer than 800 AAs, and more than 95% similar to another

protein in the dataset. This resulted in a dataset of 640 maltase

homologs with sequence similarity .40% compared to Saccharo-

myces cerevisiae S288c MAL12. These sequences were aligned with

MAFFT and only the most reproducible residue–residue couplings

(present in at least 90% of the splits) were retained.

Statistical Analyses
A two-way ANOVA using log-transformed kcat/Km (to obtain

values that are normally distributed) as the variable and the

different enzymes and sugars as factors was performed using the

aovSufficient function from the HH package in R. This analysis

was followed by pairwise comparisons using the Games-Howell

post hoc test (since samples had unequal variances, as demon-

strated by Levene’s test). Results can be found in Table S3.

Microbial Strains, Growth Conditions, and Molecular
Techniques

Ancestral maltase genes were synthesized and cloned into

vectors for overexpression in E. coli host cells by GENEART

(www.geneart.com). Sequences can be found in Table S1 and

Dataset S2. The inferred protein sequences were reverse translated

in order to optimize their codon usage for E. coli. These gene

sequences were synthesized including an N-terminal 6xHis tag

(ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCG-

GCCTGGTGCCGCGCGGCAGCCAT) and 59UTR (TC-

TAGAAATAATTTTGTTTAACTTTAAGAAGGAGA TATA-

CC), cloned into in-house vectors at GENEART, and then

sequenced. Subsequently, the inserts were subcloned into pET-

28(a) vectors (Merck) via XbaI/XhoI sites. All of the overexpres-

sion plasmids were transformed into E. coli strain BL21*. All E. coli

strains were grown under selection in standard LB media+kana-

mycin (Sigma Aldrich). Details on protein expression and

purification can be found in Text S1.

Enzyme Assays and Data Analysis
The activities of the purified ancestral and present-day enzymes

were determined by measuring glucose release from a-glucosides

(maltose, sucrose, turanose, maltotriose, maltulose, isomaltose,

palatinose, and methyl-a-glucoside) using a standard glucose

oxidase/peroxidase coupled reaction. All sugars were purchased in

their highest available purity. More information on the purchased

sugars as well as a detailed protocol can be found in Text S1.

For each protein and substrate, the reaction velocity (amount of

glucose produced per time unit) was determined. Subsequently,

reaction velocities normalized by enzyme concentration as a function

of substrate concentration were plotted and fitted using a nonlinear

least squares fitting routine (Levenberg-Marquardt algorithm) both

to Michaelis-Menten-style kinetics and Hill-style kinetics:

v

½E�~
kcat½S�n

(Km)nz½S�n :

The data fits were compared using an F statistic (i.e., Michaelis-

Menten is a specific case of Hill kinetics with n = 1), and the

Michaelis-Menten model was rejected with a= 5%. From these fits,

errors (standard deviations) were computed by jack-knifing over the

individual substrate concentrations (12 data points in total). For

numerical optimization, code was written in Python using NumPy.

Model parameters of interest, along with their associated errors, were

extracted (i.e., kcat and Km; see Table S2). Processing (http://

processing.org) was used to draw Figure 2 and Figure 5F by writing

code. Enzyme efficiencies were plotted (as vertical lines) at different

points on the tree, and values between were interpolated.

Fitness Measurements
Relative Malthusian fitness was determined by competing

unlabelled WT (KV1042), mal12 (KV1151), and mal32

(KV1153) strains against a reference strain (KV3261), expressing

GFP from the TDH3p. Details can be found in the Supporting

Information section.

Molecular Modeling
All molecular modeling was performed using the MOE 2010.10

package (The Molecular Operating Environment, The Chemical

Computing Group, Montréal, Canada). The recently released
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crystal structure of the Ima1 protein (pdb entry: 3A4A), with

glucose in the binding pocket, was used as a template to construct

the different MALS homology models, with implementation of the

Amber99 force field. Since the AAs contacting this glucose

molecule are conserved within the different MALS subgroups, this

glucose was used to model the different sugar substrates within the

active sites, using the MOE 2010.10 ligX implementation.

Full methods and any associated references can be found in the

Supporting Information section.

Supporting Information

Dataset S1 MAFFT alignment of the 50 MalS sequences (fasta

format).

(ZIP)

Dataset S2 AA sequences of resurrected enzymes (fasta format).

(ZIP)

Dataset S3 MAFFT alignment of the 50 MalS sequences.

(TXT)

Dataset S4 AA sequences of resurrected enzymes.

(TXT)

Figure S1 Bayesian consensus topology of the 50 MALS genes.

MrBayes consensus tree of the 50 MALS genes (AA-based,

LG+I+G model with four rate categories). Posterior probabilities

are indicated on the branches.

(TIF)

Figure S2 Maximum likelihood phylogeny of the 50 MALS genes.

Maximum likelihood phylogeny of the 50 MALS genes calculated

with PhyML (AA-based, LG+I+G model with four rate categories,

1,000 bootstraps). Bootstrap values are indicated on the branches.

(TIF)

Figure S3 Bayesian consensus topology of the 50 MALS genes

with fast evolving sites removed. MrBayes consensus tree of the 50

MALS genes (AA-based, LG+I+G model with four rate categories).

All AA sites with more than three variable AAs in the outgroup

were stripped from the alignment. Posterior probabilities are

indicated on the branches.

(TIF)

Figure S4 Bayesian consensus topology of the MALS genes

without K. lactis. MrBayes consensus tree of the MALS genes (AA-

based, LG+I+G model with four rate categories). The K. lactis

branch was not included in the tree reconstruction. Posterior

probabilities are indicated on the branches.

(TIF)

Figure S5 Bayesian consensus topology of the MALS genes

without the outgroup. MrBayes consensus tree of the MALS genes

(AA-based, LG+I+G model with four rate categories). The

outgroup branches were not included in the tree reconstruction.

Posterior probabilities are indicated on the branches.

(TIF)

Figure S6 Schematic tree showing inferred orthology–paralogy

relationships between different MALS genes. A schematic version

of the codon-based phylogenetic tree inferred with MrBayes (see

Figure 4) is shown. Duplication events, D; speciation events, S.

Asterisks denote nodes along a segment with ambiguous

speciation/duplication history.

(TIF)

Figure S7 Structural differences between K. lactis [GI:

50312678] and K. lactis [GI:5441460] can explain lack of

glucosidase activity in the latter enzyme. Cartoon representation

of K. lactis [GI: 50312678] (A and C) and K. lactis [GI:5441460] (B

and D) in two different orientations (A and B result in C and D,

respectively, after a 90u rotation) with maltose represented as black

and red spheres. Comparing the sequence of K. lactis [GI:

50312678] and K. lactis [GI:5441460] reveals the absence of five

AAs in the latter protein. Mapping the position of these residues

(the five AAs as well as two flanking residues are shown as yellow

spheres in A and C; in B and D only the flanking residues are

shown) shows that this region is located below the active site of the

enzyme. Its deletion creates a larger cavity. This in turn could be

compensated in the tertiary structure and explain the lack of

activity detected for maltose- and isomaltose-like substrates for K.

lactis [GI:5441460].

(TIF)

Figure S8 Crucial role for the residue at position 216 in

determining substrate affinity. Structural analysis of the active site

reveals a crucial role for position 216 in determining substrate

affinity, by affecting the hydrophobic/hydrophilic interactions

with the different substrate classes. Subpanels are graphical

representations of the binding pocket, with the residue at position

216 shown as spheres. Panels A and B depict an active site with

threonine at position 216, whereas C and D depict an active site

with valine at position 216. Maltose (A and C) and isomaltose (B

and D) are represented as sticks. This structural analysis shows that

threonine is able to form a hydrogen bond with a hydroxyl of the

secondary glucose in maltose (A). The secondary glucose of

isomaltose, however, is positioned in such a way that it causes

unfavorable interactions (B). On the other hand, when residue 216

is a valine, it can form hydrophobic interactions with isomaltose

(D).The hydrophobic side chain of valine is incompatible with the

hydrophilic binding mode of maltose (C).

(TIF)

Figure S9 Strains lacking one of the MAL12/MAL32 paralogs

have a fitness defect on maltose compared to wild type. mal12

(KV1151) and mal32 (KV1153) strains show a significant fitness

defect compared to the wild-type strain (KV1042) on maltose. A

mal12 mal32 double deletion strain does not grow on maltose.

Asterisks indicate significant differences between mutant and wild-

type strains (a= 0.05). Error bars represent 95% confidence

intervals.

(TIF)

Table S1 Results of ancestral sequence reconstruction assuming

different models of protein evolution. Except for the protein

evolution models used, all reconstructions were performed using

the same PAML settings. The JTT reconstruction, which was used

to synthesize the ancestral proteins, was performed using PAML

v4.2a, while the WAG and LG reconstructions were performed

using PAML v4.4c. The residue numbering in the first column

follows the numbering of the S. cerevisiae Mal12 protein, which was

used to fill gaps in the alignment that were treated as missing data

by PAML. Column 2 contains the corresponding S. cerevisiae Ima1

residue numbering, which is used throughout the article.

Subsequent columns labeled JTT, WAG, and LG contain the

results of ancestral state reconstruction using the respective models

of protein evolution and based on the corresponding consensus

phylogenies calculated with MrBayes. For ambiguous ancestral

residues (i.e., if there are multiple residues at a certain site with a

posterior probability .0.20), a list with posterior probabilities is

provided. If an AA has a posterior probability equal to 1 or if the

ancestral AA could not be calculated due to alignment gaps

(Dataset S1), no probabilities are listed.

(XLS)
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Table S2 kcat and Km values for different enzymes on different

sugars. File contains kcat and Km values for each enzyme for the

different sugars tested. Values of Km too high to be measured (due

to the very low affinity of enzyme for a specific substrate) were set

to 10,000. Standard deviations were computed by jack-knifing

over the individual sugar concentrations. Details on measurement

can be found in Text S1.

(XLS)

Table S3 Results of two-way ANOVA analysis on log-

transformed kcat/Km. Activities of the different enzymes on each

sugar were compared using a two-way ANOVA on log-

transformed kcat/Km, followed by the Games-Howell post hoc

test (taking into account the differences in variance between the

different activities, as demonstrated by Levene’s test).

(XLS)

Table S4 Results of PAML branch-site tests. Values in Table S4

show the result of PAML branch-site tests to identify residues that

are under positive selection on three specific branches of the MALS

phylogeny. Branch identifiers follow the nomenclature of Figure 4.

(DOC)

Table S5 Genotypes of yeast strains used in this study.

(DOC)

Table S6 Dating results for key splits in the MALS gene tree.

Mean, median, and geometric mean refer to different average age

estimates obtained from the sampled traces across the different

MCMC chains, and 95% HDP upper and lower can be regarded

as 95% confidence intervals (see BEAST documentation). The

effective sample size (ESS) is a measure of convergence (higher is

better).

(DOC)

Text S1 Full Materials and Methods.

(DOC)
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