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In contrast to the common and genetically complex

senile form of Alzheimer’s disease (AD), the molecular

genetic dissection of inherited presenile dementias has

given important mechanistic insights into the patho-

genesis of degenerative brain disease. Here, we focus on

recent genotype–phenotype correlative studies in pre-

senile AD and the frontotemporal dementia (FTD)

complex of disorders. Together, these studies suggest

that AD and FTD are linked in a genetic spectrum of

presenile degenerative brain disorders in which tau

appears to be the central player.
Glossary

Cerebral amyloid angiopathy (CAA): CAA is a histopathological term referring

to the deposition of Ab in the blood vessel walls of the brain (angiopathy),

thereby predisposing individuals to brain bleeding (haemorrhagic strokes).

Severe CAA and haemorrhagic stroke are characteristic features of mutations

affecting the a-secretase-cleavage site of APP. CAA is a frequent observation in

AD brains but usually does not result in strokes.

Progressive supranuclear palsy (PSP): PSP is a sporadic neurodegenerative

Parkinson-like movement disorder. PSP is characterized by vertical eye

movement disturbances, rigidity (resistance to imposed movement), severe

gait and balance problems and FTD-like dementia later in the disease course.

Abundant tau pathology in the form of tau tangles characterizes PSP

neuropathologically. PSP is part of the FTD spectrum of disorders.

Corticobasal degeneration (CBD): CBD is a sporadic neurodegenerative

Parkinson-like movement disorder and has many clinical overlapping features

with PSP. The major difference with PSP is a marked asymmetry of the

symptoms at onset. CBD is further characterized by impaired balance and

abnormal muscle postures of the limb (dystonia). FTD-like dementia is also

often observed later in the disease course. Abundant tau pathology in the form

of fine filaments characterizes CBD neuropathologically. CBD is part of the FTD

spectrum of disorders.

Spastic paraparesis: Spastic paraparesis is characterized by insidiously

progressive bilateral lower extremity weakness and spasticity. The primary

pathology in spastic paraparesis is degeneration of the distal ends of the long

spinal axons of the cortical motor neurons. Some PS mutations are associated

with AD and spastic paraparesis.

Pick bodies: Pick bodies are tau-postive cytoplasmic neuronal inclusion and are

the pathological hallmark lesions of Pick’s disease, a neuropathological

subtype of tau-postive FTD. Pick bodies are not related to the Lewy bodies

observed in Parkinson’s disease, which are tau-negative and a-synuclein-

positive.

Niemann-Pick disease type C (NPC): NPC is a recessive lysosomal disorder of

childhood probably caused by lysosomal storage of cholesterol. In NPC the
Introduction

Through the genetic dissection of Alzheimer’s disease
(AD), we hope to increase our mechanistic understanding
of this prevalent and untreatable disorder in which intra-
and extraneuronal protein aggregates (known as tau
tangles and amyloid plaques, respectively) accumulate in
the degenerating brain. In particular, genetic studies of
the rare and genetically simple early onset or presenile
(onset before 65 years of age) forms of AD have led to the
identification of several single gene lesions in the amyloid
precursor protein (APP) [1] and the presenilins (PS) [2,3].
In addition, mutations in the gene encoding the micro-
tubule associated protein tau (MAPT) cause autosomal
dominant forms of frontotemporal dementia (FTD) [4,5], a
degenerative brain disease that has overlapping features
with AD (Box 1). Collectively, the discovery of these
mutations has been highly instructive in delineating our
current mechanistic understanding of AD and FTD. For
detailed and up-to-date information on APP, PS and
MAPT mutations, please see our interactive AD and
FTD mutation database (http://www.molgen.ua.ac.be/
ADMutations).

By contrast, similar to most frequent diseases, the
genetic architecture of the common late-onset or senile
form of AD (age of onset above 65 years; w90% of all AD
patients) is complex. So far the 34 allele of the gene
encoding apolipoprotein E (APOE) is the only well-
established genetic risk-factor for late-onset AD, but the
underlying mechanism remains poorly defined [6–8]. In
addition, several studies have investigated numerous
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candidate loci and genes, but none of these has reached
the established position of APOE. The current status of
potential candidate risk genes and loci has been exten-
sively reviewed recently [9]; for an update, see the
Alzheimer’s Research Forum genetic database, ‘Alzgene’
(http://www.alzgene.org).

In this review, we emphasize that careful genotype–
proteotype–phenotype correlative studies, including mol-
ecular genetic, biochemical, neuropathological and clinical
investigations of inherited presenile forms of AD and FTD,
are instrumental in defining the complete phenotypic
spectrum associated with mutations in APP, PS and
MAPT and will significantly advance our biological under-
standing of these diseases. More specifically, we review
recent exciting evidence that AD-causing PS mutations
have intrinsic loss-of-function properties and that PS loss-
of-function has a role in FTD and amyloid-independent
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neuronal degeneration is characterized by prominent tau pathology in the form

of AD-like tau tangles. Mild adult-onset forms of this disease exist and then

present as psychatric disease and presenile dementia.

. doi:10.1016/j.tig.2005.09.005
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Box 1. Overlap between presenile AD and FTD

FTD and AD are primary degenerative dementias, meaning that a

gradual loss of neurons is responsible for the progressive brain

dysfunction. Within the group of presenile dementias (onset !65

years of age), FTD is the second most common form of

neurodegenerative dementia after AD. Clinically, AD is primarily a

disease of memory and cognition caused by a more genereralized

brain atrophy, starting in the medial temporal lobe. The hallmarks

of FTD are behavior and/or language dysfunction caused by a more

focal degeneration mainly affecting the frontal and temporal brain

regions. Nevertheless and despite the existence of usefud clinical

diagnostic criteria for both disorders, the distinction between

presenile AD and FTD can be difficult, especially in presenile

cases, which often have an atypical presentation. In particular, the

inherited forms of FTD have an extremely broad phenotype ranging

from typical FTD to cases where parkinsonism, amyotrophy or AD-

like memory impairment are the major disabling features. In

addition, focal variants of AD, where memory loss is not a

prominent early feature, are relatively common in a presenile

setting and can mimic FTD. Because deposition of tau protein

aggregates in affected brain regions is a common feature in AD and

tau-positive FTD, it is likely that both disorders share a common

pathogenetic mechanism.
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neurodegeneration. In addition, we review recent studies
that further confirm the primary genetic role of MAPT in
the FTD complex of disorders and give an update on a
novel genetic form of FTD linked to the MAPT region with
the striking absence of demonstrable MAPT mutations
and tau pathology.
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Figure 1. APP mutations. Schematic representation of the protein sequence

encoded by exons 16 and 17 of APP. Each circle represents an amino acid; those

with pathogenic missense mutations are shown in red and those with non-

pathogenic missense mutations are in green. Pathogenic mutations are always at

or close to sites that are cleaved by the a-, b- or g-secretases. The figure was adapted

with permission from the Alzheimer Research Forum (http://www.alzforum.org/)

and can also be found at our AD and FTD mutation database available at http://

www.molgen.ua.ac.be/ADMutations.
Defining the extremes: APP versus MAPT phenotypes

APP disorders: the ‘amyloidocentric’ view

Initial genetic linkage studies mainly targeted chromo-
some 21, because the brains of almost all middle-aged
Down syndrome patients, who have a trisomy of chromo-
some 21, contain the neuropathological hallmarks of AD.
The underlying hypothesis was that in Down syndrome
patients, AD is caused by over-representation of a gene on
chromosome 21 as a result of the trisomy 21, whereas in
AD, a mutation in that gene might result in the production
of an abnormal protein or the overproduction of a normal
protein [10,11]. Since the identification of the first AD-
causing mutation in APP at 21q21 [1], 18 different
causative APP mutations have now been reported
(Figure 1; AD and FTD Mutation Database: http://www.
molgen.ua.ac.be/ADMutations). Strikingly, all of these
mutations cluster at, or are near to, sites within APP
that are normally cleaved by proteases called the a-, b- and
g-secretases. These enzymatic activities regulate the
metabolism of APP including the generation of the Ab
peptide, which is the major constituent of the amyloid
plaques. Interestingly, the phenotypic outcome of these
mutations is strongly dependent on which cleavage site is
mutated. For example, mutations affecting the a-cleavage
site promote the self-aggregation of mutated Ab peptides,
leading to severe amyloid deposition within the cerebral
vessel walls or cerebral amyloid angiopathy (CAA) and
hence strongly predispose affected individuals to haemor-
rhagic strokes (Figure 2). However, with the exception of
the Dutch APP E693Q mutation, which causes a pure
CAA-related haemorrhagic stroke phenotype [12,13],
these mutations at the a-cleavage site also lead to the
deposition of amyloid plaques and tau tangles in the brain
parenchyma in addition to CAA, which together result in a
combined neurodegenerative and haemorrhagic stroke
disorder as illustrated by the Flemish APP A692G
mutation [14,15]. However, mutations affecting the b-
[16] and g-secretase sites [1] favor the release of
amyloidogenic Ab42 from its precursor and mostly result
in typical AD phenotypes characterized by amyloid
plaques and tau tangles with CAA being less prominent.
www.sciencedirect.com
Interestingly, the Austrian APP T714I mutation, which is
located at the g-secretase-cleavage site of APP, results in
an extremely aggressive AD phenotype with an onset age
of w35 years and is characterized by tau tangles and
extensive deposition of nonfibrillar ‘cotton wool’ amyloid
plaques [17].

Together, genotype–phenotype correlation studies of
APP mutations strongly implicate various forms of Ab

http://www.molgen.ua.ac.be/ADMutations
http://www.molgen.ua.ac.be/ADMutations
http://www.alzforum.org/
http://www.molgen.ua.ac.be/ADMutations
http://www.molgen.ua.ac.be/ADMutations
http://www.sciencedirect.com
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Figure 2. The genetic AD–FTD spectrum of degenerative brain disease This figure integrates the genotype–proteotype–phenotype correlations and suggests the existence of a

genetically interconnected spectrum of AD and FTD disorders. The FTD complex of disorders includes PSP and CBD, sporadic disorders with prominent parkinsonism

neuropathologically characterized by tau deposits. Throughout the spectrum the involvement of tau either histopathologically or genetically appears to be a constant

characteristic. Images in the histological phenotype panel represent prototypical examples of neuropathological dementia subtypes. CAA: Ab-positive blood vessels in the

temporal region of a patient with the Dutch APP E693Q mutation; CAA and AD: Ab-positive blood vessels and dense cored plaques in the temporal region of a patient with the

Flemish APP A692G mutation; AD: Ab-positive dense cored plaques in the temporal region of a patient with the PS1 I143T mutation; Tau positive FTD: tau-positive Pick bodies

in the hippocampus of a patient with the PS1 G183V mutation; Tau negative FTD: cytoplasmic and intranuclear ubiquitin (Ubi) positive inclusions in the temporal region of a

patient of a family linked to the MAPT locus but without MAPT mutations. Scale bars represent 200 mm except in Tau negative FTD, where the scale bare corresponds to

50 mm. In the proteotype panel: CCC indicates highly abundant; CC indicates abundant; (C) indicates present but inconsistently; G indicates sometimes present and –

means absent. In the genotype panel: arrows correspond to clearly established genotype–phenotype links, and dashed arrows correspond to probable links that need

confirmation.
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deposition, ranging from vascular CAA and fibrillar core-
containing plaques to non-fibrillar ‘cotton wool’ plaques,
as an essential characteristic of AD (Figure 2). Interest-
ingly, our own morphological studies of APP mutations in
human and mouse have strongly implicated the vascular
system in the formation of core-containing amyloid
plaques suggesting that vascular damage might be an
important contributing factor to AD pathogenesis [15,18].
Importantly and with the possible exception of the Dutch
APP mutation, tau deposits in the form of tangles are a
consistent but downstream consequence throughout the
APP spectrum of disorders.
MAPT disorders: the ‘tauocentric’ view

In 1998, the first mutations in MAPT causing autosomal
dominant FTD were identified [4,5] and 40 different
causative MAPT mutations have now been reported
(Figure 3 and FTD Mutation Database: http://www.
molgen.ua.ac.be/FTDMutations) [19]. Interestingly,
nearly all mutations are located in the C-terminus of the
protein and include missense, silent and intronic vari-
ations in addition to two single codon deletions clustered
in or near the microtubule-binding domains. Importantly
and in sharp contrast to APP phenotypes, MAPT disorders
are neuropathologically characterized by absence of Ab
deposits but share with AD the invariable presence of
www.sciencedirect.com
different forms of tau aggregates and are therefore called
pure tauopathies [20] (Figure 2). Clinically, MAPT
mutations most typically present with FTD. However,
the spectrum of MAPT disease is surprisingly wide and
ranges from phenotypes in which FTD is accompanied by
severe parkinsonism and motor neuron disease to
degenerative disorders that are, as in the case of the
MAPT R406W mutation, clinically hardly distinguishable
from AD [21,22].

More recently, several autosomal dominant FTD
families have been described that lack visible tau positive
lesions but are still conclusively linked to a chromosomal
region that contains MAPT [23–25]. In these families, the
neuropathological phenotype has been described as either
‘dementia lacking distinctive histopathology’ [23] or ‘FTD
with tau-negative and ubiquitin-positive inclusions’
[24,25], although it is currently unclear if these represent
distinct disease entities or are pathological manifestations
of the same primary defect. Strikingly however and
consistent with the absence of tau-positive lesions, no
causative MAPT mutations have been found in these
families, despite extensive sequencing of the whole
genomic MAPT locus [26]. Although this might be
explained by a defect in another gene in close proximity
to MAPT [24], others have suggested that this FTD
subtype is a ‘no tau tauopathy’ caused by a primary tau

http://www.molgen.ua.ac.be/FTDMutations
http://www.molgen.ua.ac.be/FTDMutations
http://www.sciencedirect.com
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Figure 3. MAPT mutations (a) Schematic representation of MAPT exons nine to 13 encoding the four microtubule-binding domains and inter-repeat regions of the tau protein.

Each circle represents an amino acid; those with pathogenic missense mutations are shown in red and those with non-pathogenic missense mutations are in green. (b) The 3 0

end of exon ten and 5 0 end of intron ten of MAPT, showing the pathogenic mutations in this region in red and how they destabilize the predicted stem-loop structure; thereby

affecting the splicing out of exon ten, resulting in an altered ratio of three- to four microtubule-binding repeats and hence affects the microtubule-binding properties of the tau

protein. This figure was reproduced with permission from the Alzheimer Research Forum (http://www.alzforum.org/) and can be found on our AD and FTD mutation

database: http://www.molgen.ua.ac.be/ADMutations.
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defect that leads to loss of brain tau but not tau mRNA
[27,28]. Nevertheless, this finding was not replicated and
remains controversial [29]. In this context however, it is
worthwhile mentioning that we and others have recently
shown that MAPT along with several other genes are
within a genomic 900-kb region flanked by inverted low-
copy repeats (LCRs) that through non-allelic homologous
recombination during primate evolution have induced a
genomic inversion polymorphism called H1 and H2
[30,26]. These observations suggest that these LCRs
render the MAPT region susceptible to genomic
rearrangements and that an as yet unidentified genomic
mutation might be the cause of FTD in these families [31].
Moreover, absence of visible tauopathy does not exclude
the possible genetic involvement of MAPT – studies in
Drosophila [32] and mouse models [33] have shown that
tau-mediated neurodegeneration can be dissociated from
visible pathologic tau aggregates. Because FTD without
www.sciencedirect.com
detectable tau pathology is a frequently observed neuro-
pathological FTD subtype [34,35], the identification of the
underlying gene defect in MAPT or a neighboring gene is
of great importance and will significantly contribute to our
understanding of the neurodegenerative process in this
type of FTD.

Although a causative role for MAPT in the degenerative
process in these FTD families appears possible but
remains unproven, a primary genetic role of MAPT as a
susceptibility gene in sporadic pure tauopathies called
progressive supranuclear palsy (PSP) and corticobasal
degeneration (CBD) is likely. PSP and CBD are sporadic
disorders with prominent parkinsonism neuropathologi-
cally characterized by tau deposits and are part of the FTD
complex of disorders [36]. Interestingly, homozygosity of
MAPT polymorphisms that segregate on the extended H1
haplotype are consistently overrepresented in patients
with PSP [37,38] and CBD [39]. Although the genetic

http://www.alzforum.org/
http://www.molgen.ua.ac.be/ADMutations
http://www.sciencedirect.com
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mechanism explaining this well-replicated association
remains unresolved, in vitro studies have suggested that
the MAPT H1 haplotype might be more efficient at driving
MAPT gene expression than the H2 haplotype [40]. To
further understand the genetic mechanism explaining the
association, we recently generated a high-density single
nucleotide polymorphism (SNP) map by sequencing
138 kb of the genomic region of MAPT (R. Rademakers
et al., personal communication) and identified a 22-kb
PSP-risk-containing regulatory region in the large intron
preceding the first coding exon of MAPT, which was fully
explained by one SNP, htSNP167, creating a transcription
factor CP2 (TFCP2) binding site. Recently, Pittman et al.
[41] published SNP haplotype association data from a PSP
patient–control sample that overlapped with the extended
American sample we used in our study and identified a
56.3-kb risk-increasing interval that also contained
htSNP167.

Together these data strongly indicate that MAPT,
through a toxic gain-of-function mechanism, is capable
of inducing neuronal death leading to a wide range of
degenerative phenotypes that can be grouped under the
FTD or Pick complex of degenerative brain disorders [36]
(Figure 2). A toxic gain-of-function is also supported by
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several animal model studies in which overexpression of
mutant and wild-type tau causes neurodegeneration
[42,43,32].

In between the extremes: PS disorders?

Although the phenotypes induced by APP and MAPT
lesions are strongly supportive for an ‘amyloidocentric’
and ‘tauocentric’ view of neurodegeneration, respectively,
recent genetic evidence suggests that these pathways
might converge at the level of PS (Figure 2).

First, strong evidence exists for a direct etiological link
between PS and APP processing. Since the identification
of mutations in PS [2,3], the most common cause of
inherited presenile AD, 154 different PS mutations (144 in
PS1 and ten in PS2), mostly of the missense type, have
been identified (Figure 4 and AD Mutation Database:
http://www.molgen.ua.ac.be/ADMutations). Similar to
mutations at the b- or g-secretase-cleavage site, PS
mutations generally result in typical AD phenotypes
with amyloid plaques and tau tangles. In addition, AD-
causing PS mutations increase the in vitro ratio of Ab42 to
Ab40? [44], and it is now well established that PS is a core
component if not the catalytic subunit of the multimeric
g-secretase [45,46]. In general, patients with PS1
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mutations have a more aggressive disease course and
earlier age of onset compared with those carrying PS2
mutations [47].

Interestingly, PS mutations appear capable of inducing
a relatively wide spectrum of clinical and neuropatholo-
gical phenotypes. However, some PS mutations, particu-
larly in cases in which the mutation lies beyond codon 200,
are associated with a prominent CAA [48], sometimes,
even reminiscent of the Flemish APP A692G a-secretase
mutation [14] (e.g. the PS1 L282V mutation [49]). In
contrast to mutations at the APP a-secretase-cleavage site
and with one reported exception [50], PS-related CAA is
generally not sufficiently severe to cause haemorrhagic
strokes. Another type of PS mutations leads to ‘variant’
AD, presenting with spastic paraparesis and diffuse
‘cotton wool’ plaques [51,52], similar to those observed in
carriers of the Austrian APP mutation [17]. It was
suggested that cases with ‘variant’ AD represent an
aggressive subtype of AD because PS mutations causing
this condition lead to exceptionally high in vitro amyloid
concentrations [53]. Nevertheless, although these PS
mutations have interesting and unusual features, they
are consistent with aberrant APP processing being the
primary underlying mechanism in these disorders. Again,
it is important to emphasize that all these PS mutations
also lead to prominent tau pathology, albeit to a different
extent. Unfortunately, no studies are available that,
similar to CAA [48], have systematically addressed
whether the severity of tau pathology is also determined
by PS mutation position.

More recently, the phenotypic spectrum of PS
mutations has been extended to FTD [54]. For example,
PS1 L113P, G183V and insArg352 were identified in
families with clinical FTD [55–57]. Interestingly, neuro-
pathological examination in a patient with PS1 G183V
revealed tauopathy in the form of Pick bodies and
complete absence of amyloid plaque pathology [57].
Consistent with the idea that PS mutations can produce
Pick bodies [57], co-existent AD and Pick body pathology
was observed in patients with PS1 M146L and A260V
mutations [58,59].

Together, the phenotypic spectrum associated with PS
mutations appears to be broad, ranging from phenotypes
strongly resembling the APP mutations at the a-secretase-
cleavage site to FTD without Ab pathology (Figure 2).

Do APP and PS mutations have gain- or loss-of-function

properties?

An important but still unresolved issue, with respect to
clinical APP and PS mutations, is whether they represent
gain- or loss-of-function alleles. The answer to this
question is important not only from a mechanistic point
of view, but also with respect to the development of
therapeutics targeting the g-secretase complex. Indeed, if
APP and PS mutations reduce g-secretase cleavage of
APP, the proposed use of g-secretase inhibitors as
therapeutic agents in AD might lead to an unwanted
enhancement of the neuronal degeneration.

Because of their dominant mode of inheritance and
ability to increase the ratio of Ab42 to Ab40 in vitro [44],
APP and PS mutations are generally considered toxic
www.sciencedirect.com
gain-of-function alleles in the context of AD pathogenesis.
However, when taking, for example, Notch signaling as a
functional readout of PS or g-secretase function, several
studies suggest that AD-causing PS mutations are
intrinsically at least partial loss-of-function mutations.
Indeed, loss of Notch cleavage or signaling has been
demonstrated in mammalian cell lines [60,61] and in
Caenorhabditis elegans [62,63]. Further support for this
idea comes from a strong loss-of-function mutation in the
C. elegans PS homologue sel-12 (C60S), isolated in a
forward genetic screen [64], which corresponds to the
human PS1 C92S mutation and is known to cause AD [65]
by increasing the ratio of Ab42 to Ab40 [66,67]. Never-
theless, the situation is not completely clear because,
although all PS mutations and the partial reduction of
normal PS1 activity [68] increase the ratio of Ab42 to
Ab40, the total loss of PS results in loss of both Ab40 and
Ab42 [45]. In addition, it is not well established if the
increased Ab42:Ab40 ratio induced by the PS mutation is
caused by a decrease in Ab40, an increase in Ab42 or a
combination of both.

Interestingly, recent studies show that with respect to
the generation of Ab peptides from APP, AD-causing PS
mutations have reliable loss-of-function properties. In a
recently developed, highly reproducible cellular assay, we
observed that all nine tested PS mutations consistently
decreased Ab40 and accumulated direct g-secretase
substrates in the form of APP C-terminal fragments, a
sign of decreased PS activity (S. Kumar-Singh et al.,
unpublished). Although the Ab42:Ab40 ratio was signifi-
cantly increased for all, in only four PS mutations a
significant increase in Ab42 was noted. A recent report on
PS2 mutations has also shown Ab40 loss [69] and similar
results were obtained using PS-deficient cells (B. De
Strooper et al., unpublished). The interesting conclusion
from these studies is that AD-related PS mutations are
less efficient in cleaving several g-secretase substrates
including APP and therefore behave as intrinsic biological
partial loss-of-function alleles regarding g-secretase func-
tion. Consistent with decreased g-secretase activity for
clinical AD mutations, a recent study has shown that both
PS and APP mutations located in the vicinity of the
g-secretase-cleavage site reduce g-secretase-mediated
liberation of the APP C-terminal fragment [70].

Together these results suggest that the consistently
increased Ab42:Ab40 ratios induced by AD-causing APP
and PS mutations are the consequence of reduced
g-secretase activity. However, the exact mechanism is
not understood.

Is there a role for loss of PS in amyloid-independent

neurodegeneration?

With respect to this gain- versus loss-of-function discus-
sion, interesting results have come from several recent
studies. Conditional knockout mice lacking both PS in the
post-natal forebrain showed progressive synaptic impair-
ments and, importantly, severe age-dependent neurode-
generation characterized by cytoplasmic accumulations of
hyperphosphorylated tau [71,72] but no Ab deposits [73].
Because these results show that complete loss of PS can
lead to an amyloid-independent form of tau-positive

http://www.sciencedirect.com


Tau neuronal death

Aβ Vascular damage 

?

Aβ

AD

FTD

?

MAPT∗

(toxic GOF)

PS∗

(partial LOF)

APP∗

(partial LOF)

Figure 5. Tau is central in the AD–FTD spectrum. A speculative model for tau-

mediated neurodegeneration in the genetic AD–FTD spectrum of brain disorders.

The asterisks (*) refer to disease-associated genetic alterations in APP, PS and

MAPT that, through gain- (GOF) or loss-of-function (LOF) mechanisms, result in tau-

positive neurodegeneration (shown in the center). The relative presence (shown in

the upper panel) or absence (lower panel) of Ab pathology is indicated (Ab). The

diagram shows that, in addition to tau pathology, APP and typical PS mutations

lead to Ab-positive pathology causing vascular damage and hence neuronal death.

By contrast, genetic alterations in MAPT lead to Ab-independent tau-mediated

neuronal death. Recent evidence suggests that loss of PS function might result in

Ab-negative tau-mediated neurodegeneration (dashed line) further emphasizing

that tau is the central molecule in the AD-FTD spectrum.

Review TRENDS in Genetics Vol.21 No.12 December 2005670
neurodegeneration, recent findings of PS mutations in
FTD become highly intriguing. It was suggested that the
PS1 G183V mutation, which is associated with FTD and
with tauopathy in the form of Pick’s disease but not with
Ab plaques, might also have loss-of-function properties
because it affects the splice signal at the junction of the
sixth exon and intron [57]. Interestingly, follow-up studies
indeed revealed that this mutation, in addition to
producing full-length PS1 G183V protein, also generates
alternative transcripts that either lack exon six or exons
six and seven leading to truncated proteins. In addition,
cellular g-secretase assays show that the truncated
proteins behave as complete null alleles also suggesting
a loss-of-function mechanism (Dermaut et al., unpub-
lished). Strikingly, a loss-of-function mechanism has also
been proposed for the PS1 insArg352 mutation that
strongly inhibits g-secretase cleavage of both Notch and
APP [74] and is associated with FTD [56] without amyloid
pathology (B. Boeve, personal communication).

Although additional confirmation is needed to establish
a role of PS in amyloid-independent FTD, these studies
suggest that throughout the PS spectrum of disorders,
ranging from AD with a strong amyloid component to
possibly tau-positive AD [57], partial PS loss-of-function
might be the common theme, an idea that is also
supported by studies suggesting that AD-risk-increasing
alleles in the regulatory region of PS1 significantly
decrease PS expression levels [75,76]. In addition, several
recent cell biological studies have suggested that PS
mutations through reduced PI3K-Akt signaling promote
glycogen synthase kinase 3b (GSK3b) activity and hence
tau hyperphosphorylation [77–79], further suggesting a
direct mechanistic link between PS loss-of-function and
tau pathology.

Another line of recent evidence has linked dysfunction
of the endosomal-lysosomal degradative system to loss of
PS function [80,81]. This is interesting, because neurode-
generation is a frequent observation in lysosomal dis-
orders [82] and abnormalities in the endosomal-lysosomal
system have long been thought to be an early and
prominent feature in AD [83]. In addition, tauopathy in
the form of tau tangles is a highly consistent feature in the
lysosomal disorder Niemann-Pick Type C [84] that, in its
adult onset form, can present with FTD-like dementia.
Strikingly, the recent finding that mutations in the
charged multivesicular body protein 2B (CHMBP2B) on
chromosome 3 cause FTD [85] further implicates dysfunc-
tional late-endosomal or lysosomal activity in neuronal
degeneration.

Is tau the central molecule in the AD–FTD spectrum?

When placed in the context of previous genotype–
phenotype correlation studies, recent findings show that
FTD and AD not only share important clinical and
neuropathological features but are also etiologically
linked at the molecular genetic level, implying that
these disorders are part of a genetically interconnected
spectrum of presenile degenerative brain disorders. In
addition, recent studies showing that: (i) genetic altera-
tions at the level of MAPT are strongly associated with
different types of tau-mediated neurodegeneration; (ii)
www.sciencedirect.com
AD-causing PS mutations are intrinsically loss-of-func-
tion alleles; and (iii) PS loss-of-function can lead to tau
pathology, lead us to propose that tau is the major player
throughout this AD–FTD spectrum (Figure 5). Within this
framework, the further etiologic and mechanistic estab-
lishment of PS loss-of-function in amyloid-independent
and tau-mediated neurodegeneration as well as the
identification of the molecular defect leading to tau-
negative FTD (caused by MAPT or another gene nearby)
are the most exciting and important future research
topics.
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