
RESEARCH ARTICLE

Cardiorespiratory Information Dynamics
during Mental Arithmetic and Sustained
Attention
DevyWidjaja1,2, Alessandro Montalto3, Elke Vlemincx4, Daniele Marinazzo3, Sabine Van
Huffel1,2*, Luca Faes5

1Department of Electrical Engineering (ESAT)—STADIUS, KU Leuven, Leuven, Belgium, 2Medical
Information Technologies Department, iMinds, Leuven, Belgium, 3 Department of Data Analysis, Ghent
University, Ghent, Belgium, 4 Faculty of Psychology and Educational Sciences, Health Psychology, KU
Leuven, Leuven, Belgium, 5 IRCS-FBK and BIOtech, Department of Industrial Engineering, University of
Trento, Trento, Italy

* sabine.vanhuffel@esat.kuleuven.be

Abstract
An analysis of cardiorespiratory dynamics during mental arithmetic, which induces stress,

and sustained attention was conducted using information theory. The information storage

and internal information of heart rate variability (HRV) were determined respectively as the

self-entropy of the tachogram, and the self-entropy of the tachogram conditioned to the

knowledge of respiration. The information transfer and cross information from respiration to

HRV were assessed as the transfer and cross-entropy, both measures of cardiorespiratory

coupling. These information-theoretic measures identified significant nonlinearities in the

cardiorespiratory time series. Additionally, it was shown that, although mental stress is relat-

ed to a reduction in vagal activity, no difference in cardiorespiratory coupling was found

when several mental states (rest, mental stress, sustained attention) are compared. Howev-

er, the self-entropy of HRV conditioned to respiration was very informative to study the

predictability of RR interval series during mental tasks, and showed higher predictability dur-

ing mental arithmetic compared to sustained attention or rest.

Introduction
Work-related stress is estimated to cost the US industry yearly over 300 billion USD due to
lower productivity, absenteeism, turnover and medical, legal and insurance costs [1, 2]. In Eu-
rope, it has been estimated that work-related depression, a possible outcome of prolonged ex-
posure to stress, costs 617 billion EUR annually [3]. Additionally, job stress has been identified
as an important risk factor for other mental health problems, musculoskeletal disorders and
cardiovascular diseases [4–6].

When experiencing stress, the fight-or-flight response is activated to enable us to quickly re-
spond to life-threatening situations. This, in turn, stimulates the sympathetic branch of the au-
tonomic nervous system (ANS), acting amongst others on the cardiovascular system [7]. The
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autonomic control on the cardiovascular system is often studied by means of heart rate vari-
ability (HRV), which describes the interaction between the sympathetic and vagal nervous sys-
tem [8]. Because HRV can easily be assessed by means of simple ECG recordings, it is a
popular tool that has also often been used to study the response of the cardiovascular system to
mental stress; typically, the heart rate increases and the sympathovagal balance shifts towards
sympathetic dominance, while the vagal modulation is strongly reduced [5, 9–13].

Not only the heart rate, but also the breathing frequency increases due to exposure to mental
stress [14–16]. Vlemincx et al. also reported the effect on respiratory variability, and found a re-
duction in total respiratory variability during sustained nonstressful attention while the oppo-
site occurred during mental load [16]. Moreover, it is also important to note that respiration
has a major influence on HRV. This phenomenon is called respiratory sinus arrhythmia
(RSA), and comprises the modulation of the heart rate with respiration. Though RSA has been
identified as a vagally-mediated phenomenon [17–19], this has been debated since researchers
found that RSA magnitude and vagal activity can dissociate depending on the respiratory fre-
quency and tidal volume [20–23]. Therefore, a combined cardiorespiratory analysis during
mental stress is needed. Previous combined studies reported that mental stress decreases RSA
[24] and reduces the cardiorespiratory synchronization epochs [25]. In the past years, we have
tried to take the influence of respiration into account by separating respiratory-related heart
rate variations from nonrespiratory-related variations; in [26], we have conducted time-fre-
quency analyses during mental stress testing, in which respiration was taken into account by
computation of partial time-frequency spectra. In another study, we have shown that by sepa-
rating respiratory influences from nonrespiratory-related heart rate variations, an almost per-
fect classification in periods of rest and mental stress can be obtained [27].

In this study, we aim to continue with this approach of a combined analysis of cardiorespi-
ratory time series during mental stress testing. Now, we will use information dynamics to assess
information storage and internal information of HRV, and information transfer and cross in-
formation from respiration to HRV [28]. Information theory has proven to be useful to assess
directional interactions between cardiorespiratory time series [28–30], and we hypothesize that
information-theoretic measures may reveal altered cardiorespiratory patterns during mental
stress. In this paper, measures of information storage and transfer are estimated via a nonlinear
model-free approach [31, 32]. Additionally, not only the response to mental arithmetic is eval-
uated, also the response to a nonstressful attention task is assessed.

Information Decomposition
Consider a system that consists of two interacting subsystems X and Y, and we are interested

in the information contained in the present sample Yn. Let V
X
n ¼ ½Xn�1;Xn�2; . . .� and

VY
n ¼ ½Yn�1;Yn�2; . . .� be the past states of X and Y respectively, then we can define the predic-

tive information of our target process Y as:

PY ¼ HðYnÞ � HðYnjVX;Y
n Þ; ð1Þ

whereH(Yn) is the Shannon entropy that is given byH(Yn) = −∑p(yn) ln p(yn), and where
HðYnjVX;Y

n Þ is the conditional entropy with VX;Y
n ¼ ½VX

n ;V
Y
n � the past states of both X and Y.

The predictive information PY, then, determines how much of the information carried by Yn

can be predicted by the knowledge of the past of X and Y.
Let X, the driver signal, be the respiratory signal and Y, the target signal, the RR interval se-

ries, then we can decompose the predictive information PY in one term that describes the infor-
mation transfer going from the respiratory signal X to the RR interval series Y, and another
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term that contains the information storage of Y:

PY ¼ HðYnÞ � HðYnjVY
n Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SY

þ HðYnjVY
n Þ � HðYnjVX;Y

n Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TX!Y

; ð2Þ

with SY the self-entropy, a measure of information storage that quantifies how much informa-
tion carried by Yn can be predicted by the knowledge of its own past [33], and TX ! Y the well-
known transfer entropy, a measure of information transfer that quantifies how much of the in-
formation carried by Yn can be predicted by the past of X, conditioned to the knowledge of the
past of Y [34]. As such, TX ! Y describes the additional predictability that the past of X brings
about the present of Y that was not brought already by the past of Y.

Alternatively, the predictive information of Y can be decomposed by first considering the
past of driver X, leading to

PY ¼ HðYnÞ � HðYnjVX
n Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

CX!Y

þ HðYnjVX
n Þ � HðYnjVX;Y

n Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SY jX

; ð3Þ

with CX ! Y the cross-entropy from X to Y and SYjX the conditional self-entropy [28]. CX ! Y is
a measure of cross information that quantifies how much information carried by Yn can be pre-
dicted by the knowledge of the past of X. SYjX constitutes a measure of internal information
that describes how much information carried by Yn can be predicted by its own past, condi-
tioned to the past of X, and thus SYjX describes the additional predictability that the past of Y
brings about its present that was not brought already by the past of X.

In [28], an extensive theoretical analysis of both decompositions of predictive information
was carried out. It was shown that self-entropy measures the information storage, but cannot
be related in a straightforward way to the internal dynamics of the target process Y, as the past
of Ymay be driven by the past of X. On the other hand, the conditional self-entropy reflects the
internal information in the target process because it will always be zero in the absence of inter-
nal dynamics in the target, and it is not influenced by the dynamics of the driver process. Like-
wise, the cross-entropy measures the cross information from the driver process X to the target
process Y, and thus, it reflects the information that is carried by the target process that can be
explained by the driver’s past, regardless of the origin of the driver’s past. Therefore, the cross-
entropy cannot be taken as an index of causality since it can be nonzero, even in the absence of
any causal link from driver to target. Transfer entropy, on the other hand, measures the infor-
mation transfer from the driver to the target process and will always be zero in the absence of a
causal link from driver to target.

With X = RSP the respiratory signal and Y = RR the RR interval series, we then have PRR,
TRSP ! RR, SRR, CRSP ! RR and SRRjRSP as information-theoretic measures, where TRSP ! RR and
CRSP ! RR can be considered as indices reflecting the cardiorespiratory dynamics.

The entropies and conditional entropies appearing in Eqs (1–3) are estimated using a non-
linear model-free approach that is able to capture in principle any type of (linear and nonline-
ar) dynamics underlying the observed interactions. Additionally, a test is set up to determine
the significance of the contribution of nonlinear dynamics with respect to linear interactions.

Estimation of Information Dynamics
In the model-free estimation approach adopted in this study [31, 32], the conditional entropy
is computed according to a procedure for nonuniform conditioning, designed to select—
among all possible lagged components forming the past of X and Y—only those components
which contribute significantly to the description of the present of the target Yn. This is essential
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to counteract the curse of dimensionality and provide reliable estimates of information dynam-
ics in short data sets [31, 32, 35]. In essence, the procedure for nonuniform conditioning builds
iteratively the vector VX;Y

n selecting terms from a set of candidate components O = {Xn−1, . . .,

Xn−L, Yn−1, . . ., Yn−L}. Starting from an empty vector VX;Y
n ¼ ½��, the procedure tests at each step

all the candidate components of O, computing for each candidate the mutual information be-

tween the set of components selected up to that step, VX;Y
n , incremented with the test candidate,

and the present of the target; the candidate leading to the maximum mutual information is se-

lected and included in VX;Y
n . This achieves a criterion for maximum relevance and minimum

redundancy in the selection of components. Finally, the selection is terminated by means of a
randomization test which generates surrogates of the selected component and uses them to set
a significance threshold for the mutual information. This allows to include in the final condi-

tioning vector VX;Y
n only the components that bring statistically significant information to the

present of the target. After termination of the procedure, the subvectors VX
n and V

Y
n are de-

duced from VX;Y
n by simply taking the terms that belong respectively to the past of X and the

past of Y. Finally, the information measures PY, SY, SYjX, CX ! Y, and TX ! Y are estimated
from the embedding vectors VX;Y

n , VX
n and V

Y
n as indicated in Eqs (1–3). The computation of all

conditional entropy and mutual information terms is based on coarse-grained quantization
using Q quantization levels, followed by approximation of the probability distributions with
the frequencies of occurrence of the quantized values. In our study, lags up to 5 s (L = 10) were
considered to cover the past of the respiratory series X and the RR interval series Y, and Q = 8
quantization levels were adopted for entropy estimation.

All entropies are computed using the MuTE toolbox [32].

Testing Significance and Nonlinearity
The computation of the measures of information dynamics above described is complemented
with statistical tests aimed at assessing the significance of each measure, and the contributions
of nonlinear dynamics to the measure.

The information about the statistical significance is extracted from the randomization test
employed by the procedure for candidate selection. Indeed, as a result of the selection proce-

dure and the exploitation of the full and reduced vectors VX;Y
n , VX

n and V
Y
n , the estimated infor-

mation measures PY, SY, SYjX, CX ! Y, and TX ! Y result as strictly positive when at least one
relevant candidate component is selected from the past of X or Y according to the definitions
in Eqs (1–3), thus yielding statistically significant predictive information, information storage,
internal information, cross information or information transfer, and are exactly zero otherwise.
Therefore, we considered as statistically significant the information measures when they are
larger than zero, and nonsignificant when they are exactly zero.

Further, in order to determine the significance of the contribution of nonlinear dynamics
on the predictive information and on the measures of its decomposition, a test was set up to es-
timate the information dynamics of ‘linearized’ versions of each observed bivariate time series.
For this purpose, firstly, 100 linearized surrogates of the cardiorespiratory time series are con-
structed for each bivariate time series. These surrogates are created from a vector autoregres-
sive (VAR) model that is estimated on the bivariate process [36], and is then fed with
independent realizations of pairs of white uncorrelated Gaussian noises with the same variance
as the residuals of the estimated VAR model. This yields several realizations of linear Gaussian
processes sharing the same linear structure of the original observed bivariate process. The opti-
mal model order is determined via the minimum description length method. Next, PY, SY, SYjX,
CX ! Y, and TX ! Y of the 100 surrogates are computed using the model-free approach, giving
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rise to the distribution of these measures under the null hypothesis of linear Gaussian cardiore-
spiratory time series. The null hypothesis is rejected when the original value obtained using the
model-free approach falls outside the 95% confidence interval of the null distribution, thus in-
dicating the presence of nonlinear dynamics.

Data and Statistical Analysis

Data Acquisition
The data were recorded at the Faculty of Psychology and Educational Sciences of the KU Leu-
ven (Leuven, Belgium) [11, 16]. The electrocardiogram (sampling frequency fs = 200 Hz) and
respiration (fs = 50 Hz) of 40 healthy students (age: 18–22 years) were simultaneously recorded
using the LifeShirt System (Vivometrics Inc., Ventura, CA). The tidal volume was taken as re-
spiratory signal and was estimated by means of inductive plethysmography around the abdo-
men and ribcage.

During the experimental protocol, the participants were instructed to conduct two types of
tasks. The first type of task was a mental arithmetic task that was designed to induce mental
stress. They indicated the correct answer of three solutions using a mouse cursor after which
feedback was given. The experimenter was seated next to the participant. A free movie ticket
was awarded to the five participants who achieved the most correct answers. Mental arithmetic
is often used to induce stress, as it has been shown that it affects several physiological indices of
stress [37, 38]. The second task was a nonstressful attention task where the participants had to
indicate the largest number on a computer using a mouse cursor. The attention task required
the same motor movement as the mental arithmetic task, but the task difficulty was extremely
low; there were no time constraints, nor performance rewards.

The whole protocol consisted of an attention task (AT) and 2 mental stress tasks (MT1 and
MT2), each followed by a recovery period. The order of the tasks was randomized. Prior to any
task, a baseline recording (BASE) was taken during which the participants watched a relaxing
documentary. All periods had a duration of 6 minutes. Prior to the experiment, the participants
were instructed not to speak or move their lips, and not to change posture or move their body
except for the dominant hand to use the mouse cursor.

All participants provided written informed consent. The experiment was approved by the
Ethics Committees of the Department of Psychology and Educational Sciences and of the Fac-
ulty of Medical Sciences of the KU Leuven. The study was in accordance with the Declaration
of Helsinki (2008).

Data Preprocessing
The R peaks in the ECG are detected using the Pan-Tompkins algorithm. Parabolic interpola-
tion using the 5 samples around the detected R peak is conducted to obtain an accuracy of 1 ms
when composing the tachogram. Next, the tachogram and respiratory signal are resampled at 2
Hz using cubic spline interpolation. Baseline wander of the respiratory signal is removed using
a high-pass filter with a cut-off frequency of 0.05 Hz, while the tachogram is detrended accord-
ing to [39]. In order to reduce the transient behaviour, present mainly in the first minute of
each task [26], and obtain stationary conditions, only the last 5 minutes of each period are se-
lected for the analysis of information dynamics. Possible delays between the respiratory drive
and the recorded tidal volume that might affect the driver-response relation, are taken into ac-
count by including a time lag of 0.5 s in the respiratory signal [40]. In order to obtain a more
robust estimation using the binning approach, ordinal sampling of the cardiorespiratory time
series was conducted, thereby transforming the signal into its ranks, as is done in most non-
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parametric statistical tests [41]. Next, stationarity was tested according to the test described in
[42]. Signals that failed the stationarity test are discarded from the analysis.

All processing steps of the data are conducted in MATLAB R2012a (MathWorks, Natick,
MA).

Statistical Analysis
After computation of PRR, TRSP ! RR, SRR, CRSP ! RR and SRRjRSP, differences in cardiorespirato-
ry information dynamics between the resting, attention, and two stress conditions are assessed
by means of the Friedman test. Tukey’s honestly significant difference criterion is used to take
multiple comparisons into account. A significance level of α = 0.05 is used.

Results
Fig 1 displays the RR interval series and the respiratory signals during the baseline recording,
the attention and the first stress task. From these plots, it is immediately clear that mental arith-
metic increases both the heart rate and the respiratory rate. During the attention task, there is
also an increase in both rates, but not as much as during MT1. Both during AT and MT1, HRV
decreases significantly compared to BASE, though there is nearly any difference between both
tasks. An elaborate HRV study with appropriate statistical analysis on these data is presented
in [11].

For the study of information dynamics, data of 5 subjects were discarded due to the lack of
stationarity.

Fig 1. RR interval series and respiratory signals during baseline (BASE), sustained attention (AT) and the first mental stress task (MT1).

doi:10.1371/journal.pone.0129112.g001
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Significance and Nonlinearity
Fig 2 shows the percentage of subjects that have strictly positive information-theoretic mea-
sures (given in plain colored bars). While for PRR, SRR and SRRjRSP, almost all subjects have
strictly positive values, not even half of the subjects have any information transfer or cross in-
formation, indicating that in the conditioning vector, in many subjects, no candidate of the
driver process was selected.

The procedure to test the presence of nonlinearities was followed for each information-the-
oretic measure, each subject and each mental state. The percentage of rejected null hypotheses
is given in the hatched colored bars in Fig 2, indicating that for PR, SRR and SRRjRSP, in the ma-
jority of the subjects and in all mental states, the null hypothesis was rejected, and thus signifi-
cant nonlinearities were observed. In fact, during MT1, the null hypothesis for SRRjRSP was
rejected in all subjects except for the one which also did not have a significant SRRjRSP. For TRSP

! RR and CRSP ! RR, the null hypothesis was rejected in not even half of the subjects, which is
evident, given the percentage of significant transfer and cross-entropies. Interestingly, nonline-
arities contributed to the transfer entropy TRSP ! RR only in a small subset of the significant
measures in the baseline condition, and in almost all cases during MT1.

Information Dynamics
Fig 3 displays boxplots of PRR, TRSP ! RR, SRR, CRSP ! RR and SRRjRSP during BASE, AT, MT1
and MT2, estimated using the nonlinear model-free approach. The post hoc contrasts reveal
that BASE and MT2 are significantly different fromMT1 in terms of PRR (p< 0.01). TRSP ! RR,
SRR and CRSP ! RR present no differences between mental states, while SRRjRSP is significantly
larger during the first mental task than during the other states (p< 0.0001).

Fig 2. Bar graphs indicating the percentage of significant information-theoretic measures (plain) and the percentage of significant nonlinearities
(hatched), during baseline (BASE), sustained attention (AT) and the mental stress tasks (MT1 andMT2).

doi:10.1371/journal.pone.0129112.g002
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In order to determine the importance of nonlinear cardiorespiratory dynamics, boxplots of
PRR, TRSP ! RR, SRR, CRSP ! RR and SRRjRSP for the linear surrogates are displayed in Fig 4. For
each subject and each mental state, the mean of the 100 surrogates was taken as input for the
boxplots. Comparing these boxplots to the ones of Fig 3 obtained using the real cardiorespira-
tory time series and the model-free approach, several differences can be observed; PRR and SRR
differ significantly between AT and MT1, whereas when nonlinear interactions are taken into
account, no differences between those two states for these measures could be observed. Addi-
tionally, SRR is also significantly different between MT1 and MT2, while for SRRjRSP there is no
difference between BASE and MT1 when the linear surrogates are used.

Discussion

Mental Arithmetic and Sustained Attention
In a previous study using these data, traditional time and frequency domain HRV measures
were computed to study the effect of mental arithmetic and sustained attention [11]. Almost all
measures showed significant differences between BASE and the tasks, with increased heart and
respiratory rates, and reduced HRV during the tasks. The strongest effect was observed during
MT1, then during AT. A habituation effect was noted in the HRV measures during the second
mental task. Between the tasks, differences were found between MT2 and the other tasks, but
only few measures were able to prove the additional mental load of MT1 compared to AT, as
could also be visually observed in Fig 1. Thus, in terms of discrimination of different mental
states, no new differences could be found with the analysis of information dynamics that could
not be observed with the traditional HRV analysis. The added value lies in the type of informa-
tion that we can acquire using information dynamics. With the results of these analyses, we
can gain more insight in the complex, underlying behavior of the cardiorespiratory system

Fig 3. Boxplots of information-theoretic measures PRR (p < 0.01), TRSP ! RR (p > 0.05), SRR (p > 0.05),CRSP ! RR (p > 0.05) and SRRjRSP (p < 0.0001),
estimated using the nonlinear model-free approach, during baseline (BASE), sustained attention (AT) and the mental stress tasks (MT1 and MT2).
The square brackets indicate significant differences between those two mental states as determined by the Friedman test and post hoc contrasts.

doi:10.1371/journal.pone.0129112.g003
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during these different mental states in terms of entropy, and thus predictability of the RR inter-
val time series.

From Fig 3, we could only observe differences between mental states for PRR and SRRjRSP.
Though transfer TRSP ! RR and cross-entropy CRSP ! RR are both measures of cardiorespiratory
coupling and were expected to decrease during mental stress, we could not witness any task ef-
fect. It is, however, important to note that RSA is in essence a measure of gain of the cardiore-
spiratory interaction and not of cardiorespiratory coupling; one could have differences in gain,
but with a preserved coupling. In this analysis, we already found a low coupling during rest,
which stayed low during other mental states. This suggests that the reduction in RSA amplitude
during mental stress, as found in [11], is not accompanied by a reduction in cardiorespiratory
coupling. Nevertheless, our results document an increased contribution of nonlinear dynamics
to the transfer entropy TRSP ! RR during MT1 compared to rest (Fig 2), thus suggesting that
mental stress may induce an alteration in the nature of cardiorespiratory interactions, although
this alteration seems not to have an impact on the magnitude of the coupling.

We also observed in Fig 3 that the differences in PRR emanate from the internal information
as determined by SRRjRSP. This conditional self-entropy indicates how well the RR interval se-
ries can be predicted based on information of its own past, taking at first the information of
respiration into account. The higher values of SRRjRSP during MT1 indicate that the RR inter-
vals can be better predicted than during the other states and thus reveals that the cardiac sys-
tem is more predictable when experiencing mental stress. The finding of higher predictability
of RR confirms previous findings suggesting a reduction of HRV complexity during stress [12].
Taking into account that predictability of the heart rate is typically related to an unhealthier
cardiovascular system that shows a reduced rapidity to respond to bodily demands [43], the
difference in conditional self-entropy is in accordance with our hypothesis. Additionally,

Fig 4. Boxplots of mean information-theoretic measures PRR (p < 0.01), TRSP ! RR (p > 0.05), SRR (p < 0.001),CRSP ! RR (p > 0.05) and SRRjRSP
(p < 0.01), estimated using the model-free approach using the linear surrogates as input, during baseline (BASE), sustained attention (AT) and the
mental stress tasks (MT1 andMT2). The square brackets indicate significant differences between those two mental states as determined by the Friedman
test and post hoc contrasts.

doi:10.1371/journal.pone.0129112.g004
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SRRjRSP is not only able to distinguish MT1 from a resting baseline condition, but also from a
lower level of mental load, i.e. during AT. SRRjRSP is also able to describe the habituation effect
during MT2 compared to MT1, and as such seems a valuable measure to reflect different levels
of sympathetic activation.

It is also interesting to note here that the predictive information already gave a hint about
the changes in HRV complexity during mental stress; however, these changes are statistically
more evident after accounting for respiration, i.e. by computing the conditional self-entropy
rather than the predictive information. Additionally, the conditional self-entropy can also be
seen as the internal memory of the tachogram, which appears to be stronger during mental
stress, and thus points to reduced flexibility and reactivity of the heart. This has been related
to an increase in sympathovagal balance, which is indeed expected to occur during mental
stress [44].

Information Decomposition
Two decompositions of the predictive information have been proposed, each with their own
advantages and disadvantages. The information transfer as quantified by TRSP ! RR proves real
transfer of information, but might underestimate it, especially when the interactions are highly
unidirectional [28]. In contrast to what we hypothesized, neither TRSP ! RR nor CRSP ! RR are
affected by the mental state. These measures of information transfer and cross information are
indices of the cardiorespiratory coupling, but in a different way than RSA, as mentioned before.
In addition, the low values for TRSP ! RR indicate that the additional predictability of the RR in-
terval series based on RSP given the past of RR is very limited. This can be explained by the fact
that in the traditional decomposition of PRR, we first consider the past of the target process,
thereby favouring the information storage.

However, the information storage as quantified by SRR might also contain some information
from the driver that is captured in the past of RR. SRRjRSP, on the other hand, proves internal in-
formation of the RR interval series since it will be zero in the absence of internal dynamics in
the target series [28]. Using the linear surrogates, no differences between SRR and SRRjRSP can
be noted, apart from a constant bias. However, when nonlinear interactions are taken into ac-
count, the conditional self-entropy has more discriminative power, whereas the self-entropy
has none. It is thus important for cardiorespiratory time series to condition first on the past of
RSP to determine the information carried by RR that is unrelated to respiration. The obtained
results confirm previous HRV studies in which the effect of respiration was taken into account
by separating the tachogram into a component that is strictly related to respiration, and a com-
ponent that contains all residual heart rate variations [27]. We found that the residual compo-
nent of the tachogram is highly informative to classify periods of rest and mental stress, while
the component related to respiration does not have discriminative power. The latter can be as-
sociated to the self-, cross- and transfer entropy while the residual component can be linked to
the conditional self-entropy.

Linear versus Nonlinear Information Dynamics
From Figs 3 and 4, it can be observed that PRR, SRR and SRRjRSP differ significantly when as-
sessed on the original data and on their linear counterparts. The higher magnitudes that are ob-
served, are in large part determined by the significant contribution of nonlinear dynamics
when the real data were used (cfr. Fig 2). It is, however, also important to add that when we
look at the candidates that were selected for the conditioning vector, we can notice a difference
in the number of candidates that were chosen using the real cardiorespiratory time series and
using the linear surrogates; on average, 2.8 candidates were selected with the real data, whereas
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2.25 candidates were chosen with the linear surrogates. A higher number of candidates in the
conditioning vector may create some bias towards zero in the conditional entropy, and thus
some bias towards higher values in the information-theoretic measures we consider. This bias
may partly explain the differences in entropy magnitudes between the real data and the linear
surrogates. No differences could be noted between the number of candidates that were selected
in several mental states.

When further comparing the information-theoretic measures of the real data and their line-
ar surrogates, other differences between mental states were found for PRR, SRR and SRRjRSP.
These differences could possibly originate from a larger nonlinear predictability during MT1
and AT. In the traditional decomposition of PRR, the increased nonlinearities in MT1 and AT
seem to be distributed over both TRSP ! RR and SRR, thereby abolishing the differences in men-
tal states that were seen in SRR when the linear surrogates were used. On the other hand, in the
alternative decomposition of PRR, the nonlinear dynamics seem to contribute substantially to
the internal information of RR during the first mental task, leading to significantly larger values
during MT1 for SRRjRSP compared to all other mental states. The increase of the impact of non-
linear dynamics on RR during AT seems to be distributed over CRSP ! RR and SRRjRSP. It ap-
pears thus important to include nonlinear interactions. In fact, seeing that other differences are
found using the real cardiorespiratory data and the linear surrogates, it might be interesting for
future studies to consider both computations, as information on linear and nonlinear interac-
tions can be deduced separately.

Methodological Comments and Future Work
In cardiorespiratory time series, information dynamics are typically determined using a beat-
to-beat approach, and thus not by resampling of the time series. However, taking into account
that there are substantial differences between the heart rates during rest (typically around 60
bpm) and stress (up to 120 bpm), we chose to resample the tachogram such that lags up to 5 s
can be taken into account in the conditioning vector.

A last remark concerns the need for stationary data segments to assess the information dy-
namics. For this purpose, the data were high-pass filtered and the transient behavior at the
start of a mental task was discarded by excluding the first minute of each task. Additionally, or-
dinal sampling was used for the cardiorespiratory time series and their stationarity was tested,
resulting in exclusion of data of 5 subjects due to nonstationary behavior. However, time-fre-
quency analyses showed that the strongest effect of mental stress occurs in the first two minutes
of the task [26]. Therefore, there is need for a time-varying approach to capture the informa-
tion dynamics in fastly varying physiological conditions.

Conclusion
The aim of this paper was to conduct a combined cardiorespiratory analysis during mental
arithmetic and sustained attention via information dynamics. The results suggest that many
nonlinearities are present in the cardiorespiratory time series. Also, the comparison between
the linear and nonlinear analysis revealed other differences between mental states, motivating
not only the use of the nonlinear model-free approach for future studies, but also the approach
using the linear surrogates. Additionally, it was shown that, in contrast to the hypothesized re-
duction in cardiorespiratory coupling, the information transfer and cross information from
respiration to HRV were not influenced by the mental state. Likewise, the information storage
of HRV seemed to substantially incorporate possible influences from respiration, thus exhibit-
ing no differences between mental states. On the other hand, the internal information mea-
sured by the conditional self-entropy of HRV given respiration showed higher predictability
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during mental stress compared to sustained attention or rest, thus appearing as a very informa-
tive quantity for reflecting different levels of activation of the sympathetic nervous system
evoked by graded levels of stress.
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