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Summary 
 

The structure of adsorption layers of amphiphilic block and block-like 

copolymers of poly(isobornyl acrylate) (PiBA) and poly(acrylic acid) (PAA) on the 

surface of hydrophilic titanium dioxide (TiO2) and hydrophobic copper 

phthalocyanine (CuPc) pigments in aqueous dispersion has been studied by the 

electrokinetic sonic amplitude (ESA) method. The electroacoustic behaviour of the 

polyelectrolyte block copolymer coated particles could be described in the context 

of the polymer gel layer theory. The polymer layer around the particles was found 

to be much thinner for CuPc as compared to TiO2 substrate. This is attributed to 

differences in the adsorption mechanism and the composition of the adsorption 

layer normal to the substrate surface. Adsorption models were established which 

consider effects of the copolymer structure. 
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Introduction 

 

Amphiphilic polymers are effective colloidal stabilizers of aqueous 

dispersions.[1-4] In case of polyelectrolyte-type copolymers, this is due to the 

formation of adsorption layers of certain morphology providing electrosteric 

stabilization.[5-7] The interaction and layer formation of polyelectrolyte copolymers 

on, e.g., TiO2 (hydrophilic) and copper phtalocyanine CuPc (hydrophobic) particles 

dispersed in aqueous media strongly depend on the composition and structure of 

the copolymers as it was shown, e.g., with the example of a series of well-defined 

amphiphilic block and block like-copolymers of isobornyl acrylate (iBA) and acrylic 

acid (AA) [8]. 

 

The employed poly(isobornyl acrylate)-block-poly(acrylic acid) block 

copolymers PiBAx-b-PAAy and poly(isobornyl acrylate)-block-poly(acrylic acid-co-

isobornyl acrylate) block-like copolymers PiBAx-b-(PiBAy-co-PAAz) differ in the 

architecture of the hydrophilic block. In case of PiBAx-b-PAAy, the hydrophilic PAA 

block consists of acrylic acid (AA) repeat units only, whereas the hydrophilic 

PiBAy-co-PAAz block of the block-like copolymer PiBAx-b-(PiBAy-co-PAAz) 

contains a relatively low mole fraction of the hydrophobic iBA comonomer in a 

random sequence. The differences in the constitution of the block and block-like 

copolymers are illustrated in the schematic chain architectures shown in the 

captions of Fig. 1 and Fig. 2. For the synthesis and characterization of these 

tailored copolymers it is referred to the literature [9]. 

 

The following of the copolymer adsorption onto the pigments by the 

electrokinetic sonic amplitude (ESA) method (cf. [10]) revealed pigment specific 

anchoring of the copolymers, and a sequential adsorption process. [8] (cf. [7]) The 

ESA signal gives the dynamic mobility μ of the dispersed particle, and, at low 

frequencies of the applied electrical field, μ is only affected by the surface charge 

density of the particle, i.e., directly related to the zeta potential [11, 12]. This 

means that an observed change in the ESA signal upon addition of a (co)polymer 

directly reflects the altering of the surface charge density as related to the 

(co)polymer adsorption. As to the graphical illustration of the change of the ESA 
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signal with the amount of added copolymer to the particle dispersion, it may be 

advantageous to use the reduced dynamic mobility μ/μo, with μo representing the 

dynamic mobility of the non-treated particle, i.e., in the polymer-free dispersion [7]. 

For theoretical and practical details of this analytical method it is referred to the 

literature [12-15] and own work [7, 10]. 

 

From the investigation of the adsorption of PiBAx-b-PAAy block copolymers, 

and PiBAx-b-(PiBAy-co-PAAz) like copolymers on TiO2 or CuPc particles by the 

ESA method under constant low frequency, models of the interaction of the 

copolymers with the pigment surface and the thickness of the resulting polymer 

adsorption layer as a whole were proposed [8] (cf. [7]). However, insights on the 

dimensions of the inner structure of the adsorbed polymer layer as related to the 

copolymer architecture have not been accessible in these experiments. More 

detailed information about the inner structure and of the thickness of the 

adsorption layer can only be obtained by means of ESA measurements under 

variation of the applied alternating electrical field (cf. [12, 16]). This is reported in 

this communication. 

 

Experimental 
 
Materials and measurements 
 
Titanium dioxide TiO2 rutile pigment Kronos 2310 with a particle size of 0.3 

μm and breadth of particle size distribution of 60 nm, and copper phthalocyanine 

(CuPc, BASF AG, Ludwigshafen) with a primary particle size of 0.1 μm and a 

particle size distribution breadth of 15 nm were employed as received. The 

synthesis and characterization of both the tailored poly(isobornyl acrylate)-block-

poly(acrylic acid) block copolymers PiBAx-b-PAAy and block-like copolymers 

PiBAx-b-(PiBAy-co-PAAz) have already been described elsewhere [8, 9]. 

 

Electrokinetic sonic amplitude (ESA) measurements were carried out with an 

Acoustosizer 2 Instrument (Colloidal Dynamics, Sydney, Australia). 1 wt.-% 

aqueous dispersions of TiO2 of CuPc were employed in the copolymer adsorption 

studies. Frequency dependent ESA measurements (frequency range 1.0 - 18 MHz 
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were carried out for the saturation concentration SC (cf. [7]) of added copolymers. 

At SC, all the added polymer is adsorbed to the pigment surface, i.e., practically 

none is remaining in solution. For the evaluation of the ESA data according to the 

polymer gel layer theory [12], the following theoretical parameters were used: 

dynamic viscosity η = 0.95 N·s·m-2 (viscosity of water at 22 °C), Debye-Hueckel 

parameter κ = 0.2 nm-1, drag coefficient α = 0.02 N·s·m-2·nm-2, and relaxation 

frequency ω0 = 0.85 s-1. For details of the experimental protocol and data analysis 

it is referred to earlier publications [8, 16]. 

 

 

Results and discussion 
 

In agreement with the results reported earlier [8], the structurally similar iBA 

and AA based block and block-like copolyelectrolytes employed in this work 

revealed the same adsorption features as reflected from the ESA measurements 

under constant low frequency. The corresponding dynamic mobility μ vs. polymer 

concentration curves for aqueous TiO2 and CuPc dispersions are depicted in Fig. 

1 and Fig. 2. 

 

In the case of hydrophilic TiO2 particles, PiBA17-PAA72 block copolymer first 

adsorbs via ionic groups of PAA, forming a layer of more or less immobilized PAA 

chains in a train-like conformation, with islands of collapsed PiBA blocks on top (cf. 

[8]). This goes along with an overall decrease in surface hydrophilicity of the 

particles as reflected in the initial decrease of the ESA signal (dynamic mobility μ) 

upon addition of copolymer, finally reaching a minimum value. The monolayer 

covered TiO2 is subsequently stabilized by further adsorption of copolymer via 

interactions between the existing surface-immobilized PiBA blocks and PiBA 

blocks of dissolved block copolymer (cf. [8]) as reflected by an increase of the ESA 

signal after a minimum value has been passed (see Fig. 1, curve 1), resulting in a 

bilayer consisting of a PAA anchoring layer, a PiBA interphase, and an outer layer 

of PAA polyelectrolyte. ([8]; cf. [7]) 

 

In case of the PiBA20//PiBA3/PAA91 block-like copolymer, the initially 

increasing ESA signal (Fig. 1, curve 2) infers a distinctly different adsorption 
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mechanism that is related to the conformation and aggregation of single block-like 

copolymer molecules in aqueous solution. Micelle-like spheres consisting of a core 

of the collapsed PiBA block covered by loops and tails of PAA segments that are a 

result of the intramolecular interaction of isolated iBA units of the hydrophilic block 

with the hydrophobic PiBA core are attached to the TiO2 surface via a fraction of 

the carboxylate groups of the micelle like aggregate. In this way, a so-called 

solloid (cf. [2]) layer is formed. This adsorption process does not cause any 

decrease in the TiO2 surface charge density (screening of charges) as in the case 

of the initial adsorption of block copolymers (see above), but to the contrary 

increases the zeta potential of the coated particle in comparison to the bare 

particle. 

 

As to the hydrophobic CuPc pigment, the initial adsorption of copolymer 

always proceeds via the hydrophobic PiBA block, presumably again in a train-like 

conformation, with the hydrophilic block reaching into to the aqueous phase. In 

case of block copolymer adsorption (PiBA51-PAA30), the dispersed particle is 

stabilized by the dangling PAA block, and in case of the block-like copolymer, by 

loops of PAA segments that are attached to the adsorbed PiBA block by isolated 

iBA units. The copolymer adsorption results in a pigment hydrophilization, as it is 

reflected from the increase of the ESA signal from the very beginning of the 

copolymer addition. 

 

Irrespective of the pigment type or copolymer, an upper limit of the dynamic 

mobility is observed upon polymer addition, and a so-called polymer saturation 

concentration SC is defined [7, 8, 10] beyond which no further changes of the 

dynamic mobility μ is observed. 

 

Further details, and how the observed phenomena were explained by 

differences in the conformation of the adsorbed copolymers as related to the 

copolymer architecture have been already discussed elsewhere. [8] 

 

The amount of polymer adsorbed to the pigment surface, and thus the overall 

thickness of an adsorption layer can be calculated for collapsed coils by relating 

the saturation concentration values SC as determined from the curves depicted in 
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Fig. 1 and Fig. 2 to the surface area of the uncoated pigment (cf. [8, 16]). Here the 

saturation concentration SC is given by the concentration of added copolymer 

above which the dynamic mobility of the dispersed particle remains more or less 

constant, i.e. becomes independent of polymer concentration. The significant 

differences in the thickness of the adsorption layer on TiO2 and CuPc (Tab. 1) is in 

full agreement with the previously proposed [8] (and outlined above) adsorption 

mechanisms: Monolayer formation with hydrophobic PiBA anchor blocks in case of 

CuPc, and multilayer formation for TiO2. 

 

In order to further elucidate the structure of the polymer adsorption layer, 

ESA measurements under variation of the frequency of the applied alternating 

electrical field have been carried out. In principle, such data can be used to get 

detailed information about the structure of adsorption layers, as first shown and 

theoretically treated for the adsorption of poly(vinyl alcohol) to colloidal silica [12], 

and was confirmed for the adsorption cellulose based polymers to titanium dioxide 

and ferrous oxide [16]. According to the polymer gel layer theory [12], it is 

assumed that the structure of the adsorbed polymer layer consists of an inner 

layer of polymer molecules adsorbed on the particle surface, and an outer, more 

permeable layer toward the solution. The inner layer is characterized by a 

comparatively higher density, and its formation is a direct result of pigment surface 

- polymer interactions [12,16]. This is schematically depicted in Fig. 3. 

 

The procedure and formula given in literature [12, 16] for the calculation of 

the thicknesses of the inner (Δ) and outer (δ) polymer layer from frequency 

dependent measurements of the reduced dynamic mobility μ/μo was applied for 

both TiO2 and CuPc particles, and block as well as block-like PiBA/PAA 

copolymers. According to the boundary conditions of the polymer gel layer theory, 

requiring that no free polymer is left in the solution after the process of polymer 

adsorption is completed [12], the ESA measurements were carried out for the 

saturation concentration SC of added copolymers. At SC, all the added polymer is 

adsorbed to the pigment surface, i.e., practically none is remaining in solution. 

 

The changes of the reduced dynamic mobility (ratio μ/μo of the dynamic 

mobility of polymer-coated to uncoated particle) measured for the frequency range 
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1.0 - 18 MHz are given by the data points in Fig. 4 and Fig. 5. The averaged 

thicknesses of the inner (Δ) and outer (δ) adsorption layers (see Fig. 3) as 

obtained from the analysis of these experimental data according to literature 

protocols (cf. [16]) are compiled in Table 1. 

 

The μ/μo – frequency dependency (solid curves in Figs. 4 and 5) calculated 

after the polymer gel layer theory by using the averaged layer thickness data of 

the inner (Δ) and outer (δ) adsorption layers (given in Tab. 1) corresponds well 

with the experimentally observed change in the reduced dynamic mobility data 

with frequency of the applied electrical field (data points in Fig. 4 and Fig. 5). This 

means that the polymer gel layer theory that was originally developed for neutral, 

i.e., non-ionic polymers can be applied to the adsorption of polyelectrolyte 

copolymers on hydrophilic as well as hydrophobic surfaces. 

 

The sum of the inner (Δ) and outer (δ) adsorption layer (Tab. 1, columns 4 

and 5, respectively) according to the polymer gel layer theory, as obtained by the 

analysis of the frequency dependent reduced dynamic mobility data, is in good 

agreement with the values of the thickness of the whole adsorption layer (Tab. 1, 

column 3) that are based on the polymer saturation concentration (SC) as 

established independently by the concentration dependency of the ESA signals at 

constant, low frequency of the applied electrical field (see also Fig. 1 and 2). This 

is clear evidence for the conclusiveness of the complementary experimental 

approaches, i.e., frequency independent and frequency dependent ESA 

measurements. 

 

As already explained above, it is plausible that the initial PiBA-b-PAA block 

copolymer adsorption on TiO2 particles takes place via anchoring of the PAA block 

in a train-like conformation, turning the particle surface less hydrophilic because of 

the hydrophobic PiBA block, as reflected by a decrease in the ESA signal (see Fig. 

1). This is followed by a bilayer formation that is driven by hydrophobic interactions 

of collapsed PiBA of already adsorbed block copolymer with PiBA blocks of still 

dissolved PiBA-b-PAA unimers in order to provide a thermodynamically more 

favourable ionic hydrophilic outer surface, as reflected by the recovery of the ESA 
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signal (cf. [7, 8]). The formation and structure of the adsorption layer is sketched in 

Fig. 6a. 

 

According to this model, the inner, dense adsorption layer as defined by the 

polymer gel layer theory consists of flatly adsorbed PAA blocks and overlaying 

islands of collapsed PiBA blocks. Because of the differences in chain length 

between the long PAA and comparatively short PiBA block, the PAA adsorption 

layer will not be completely covered by collapsed PiBA. Therefore the zeta 

potential ξ∆ at the border between the inner and outer layer (see Fig. 3) will be still 

partially affected by PAA that is not covered by PiBA. The thickness Δ of this inner 

adsorption layer (1.6 nm) correlates with the molecular (chain cross-sectional) 

dimension of the PAA and PiBA chain. The thickness (4.2 nm) of the significantly 

thicker outer adsorption layer is related to the random flight coil dimensions of 

dangling PAA blocks as estimated for a PAA chain of about 70 repeat units 

assuming a characteristic ratio Cn = 11.3 [17]. 

 

In contrast to this, the adsorption model of block-like copolymers PiBA-b-

P(iBA-co-AA) to TiO2 is based on the adsorption of micelle-like aggregates 

consisting of the collapsed PiBA block as core and a shell of predominantly loop-

like PAA attached to the PiBA core by isolated iBA units of the P(iBA-co-AA) block. 

Considering the iBA mole content of the P(iBA3-co-AA91) block, and the random 

incorporation of iBA as given by the copolymerization parameters [9], the PAA 

loops or tails comprise in average about 23 AA units. The aggregates adsorb to 

the TiO2 via ionic interactions of the PAA loops and dangling ends. The formation 

and structure of the adsorption layer is sketched in Fig. 6b. 

 

The resulting solloid monolayer can be divided into an inner adsorption layer 

of thickness ∆ consisting of immobilized PAA that is ionically bond to the TiO2 

surface, and the overlaying PiBA layer, and an outer layer of PAA loops and tails 

of thickness δ. The thicker inner layer as compared to the case of block copolymer 

adsorption may be associated to both the comparatively large volume of the 

aggregate’s core consisting of a collapsed PiBA block, and steric restrictions in the 

interaction of relatively short PAA loops of the P(iBA3-co-AA91) block of the block-

like copolymer in comparison to the much longer PAA block of the PiBA17-b-PAA72 



 9 

block copolymer. Accordingly, the much thinner outer adsorption layer in case of 

the block-like copolymers is related to restrictions in the permeability of the 

comparatively shorter PAA loops (average of 23 AA repeat units) of the P(iBA-co-

AA) block that are less mobile than the only single tethered, and much longer PAA 

block (72 AA repeat units) of PiBA-b-PAA. This view is supported by a rough 

estimate of the differences in the end-to-end distance between a PAA73 block and 

a PAA23 loop, using the same characteristic ratio as above. 

 

As already elucidated above, the adsorption model of block and block-like 

copolymers to the hydrophobic CuPc does not only significantly differ from the 

adsorption of copolymers on TiO2, but is quite similar for both block and block-like 

copolymers. The anchoring of the copolymers on the CuPc surface is given by the 

hydrophobic PiBA block in a presumably train-like fashion, and the CuPc coating 

consists of a monolayer only (cf. [8]). This means that the adsorption process of 

PiBA chains to the CuPc surface involves a decoiling of the globular, collapsed 

conformation of the PiBA block of the copolymers in aqueous solution. The 

formation and structure of the adsorption layer according to the polymer gel layer 

theory is sketched in Fig. 6c. 

 

The inner, dense adsorption layer is comparatively thin and consists of flatly 

adsorbed PiBA blocks. This is in accordance with the determined thickness Δ 

(Tab. 1, column 4) which corresponds to the geometrical dimension of the 

isobornyl residue. The even thinner outer layer (Tab. 1, column 5: thickness δ), 

which consists of dangling PAA ends in case of block copolymers, and of PAA 

loops in case of block-like copolymers, is explained by the fact that the PiBA block 

is not only much longer but also larger in volume than the PAA or P(iBA-co-AA) 

block., respectively. As a consequence, only a fraction of the inner PiBA 

adsorption layer (see Fig. 3: zeta potential ξ∆) is shielded by the mobile PAA, 

meaning that the shear plane (see Fig.3, zeta potential ξ∆+δ at the polymer layer 

surface), in average, is not that much shifted. This explanation is in agreement 

with the differences of the thickness of the outer adsorption layer of the block and 

block-like copolymer coating on the CuPc particle: the permeable “outer layer” is 

expected to be thinner for the in average 6 AA repeat units comprising loops of the 
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P(iBA5-co-AA39) block of the block-like copolymer as compared to the 30 AA 

repeat units long PAA block of the PiBA51-b-PAA30  block copolymer. 

 

 

Conclusion 
 

New insights into the adsorption mechanism of amphipolar 

copolyelectrolytes on hydrophilic or hydrophobic particles dispersed in aqueous 

media, and on the layer structure formation, were obtained by electrokinetic sonic 

amplitude (ESA) measurements and analysis of the electroacoustic data on the 

basis of the polymer gel layer theory. It was established that the polymer gel layer 

theory can be applied to polyelectrolytes, and it was found that both the surface 

characteristics of the dispersed (pigment) particles and the architecture of the 

iBA/AA comonomer based copolymers distinctly affected not only the copolymer – 

particle interaction but also the thickness and structure of the coating layer formed 

around the particles.  

 

In particular, the data revealed that particles with hydrophobic surface such 

as the CuPc pigment are covered for both the block and block-like copolymers by 

a relatively thin copolymer monolayer, with the hydrophobic PiBA blocks acting as 

anchor and the PAA blocks as electrosteric stabilizing moieties. In terms of the 

polymer gel layer theory, the PiBA blocks form the inner dense layer, and the PAA 

blocks represent the outer, permeable region of the adsorbed layer. Contrarily, 

different adsorption mechanisms of block and block-like copolymers were 

observed for the hydrophilic TiO2 pigment.  

 

In case of block copolymers, the inorganic pigment is covered by a 

multilayer: PAA of a first adsorption layer of block copolymer act as anchor blocks, 

an interphase layer consisting of interpenetrating PiBA blocks of this first and a 

second copolymer absorption layer follows, and PAA polyelectrolyte blocks of the 

second adsorption layer form an outer shell layer. For block-like copolymers, a 

solloid monolayer is formed, with some of the PAA loops acting as anchor, and 

some as electrosteric stabilizing moieties. Here, according to the polymer gel layer 

theory, the PAA anchor block layer together with the PiBA core of the solloids 
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correspond to the dense inner layer, and the remaining PAA loops and short 

dangling ends represent the permeable outer layer. 
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Table 1: Saturation concentration SC of PiBAx-b-PAAy block or block-like PiBAx-b-
(PiBAy-co-PAAz) copolymers adsorbed to the surface of TiO2 and CuPc particles, 
total thicknesses d of the copolymer adsorption layer, and thickness ∆  of the inner 
as well as thickness δ of the outer adsorption layer of the copolymers. 
 

System 
Saturation 

concentration 
SCa, wt.-% 

Thickness d 
of the total 
adsorption 
layerb, nm 

Thickness (Δ) 
of the inner 
adsorption 
layerc, nm 

Thickness (δ) 
of the outer 
adsorption 
layerc, nm 

TiO2 + PiBA17-b-PAA72 1,0 5,5 1,6 4,2 
TiO2 + 

PiBA20-b-P(iBA3-co-PAA91) 
3,0 3,6 2,3 1,2 

CuPc + PiBA51-b-PAA30 0,5 1 0,6 0,5 
CuPc + 

PiBA45-b-P(iBA5-co-PAA39) 
0,7 0,8 0,6 0,3 

 

aObtained from reduced dynamic mobility μ/μ0 vs. polymer concentration curves 
Fig. 1 and Fig. 2. 
bCalculated on the basis of the saturation concentration SC (cf. [7]). 
cCalculated from the frequency dependent ESA data (Fig. 4 and Fig. 5) according 
to the polymer gel layer theory (cf. [12, 16]). 
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Figure 1. Dependence of the dynamic mobility μ on the relative (to TiO2) polymer 
concentration of block copolymer PiBA17-b-PAA72 () and block-like copolymer 
PiBA20-b-P(iBA3-co-PAA91) () for 1 wt.-% TiO2 aqueous dispersion 
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Figure 2. Dependence of the dynamic mobility μ on the relative (to CuPc) polymer 
concentration of block copolymer PiBA51-b-PAA36 () and block-like copolymer 
PiBA45-b-P(iBA5-co-PAA39) () for 1 wt.-% CuPC aqueous dispersion 
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Figure 3. Shear plane displacement caused by the adsorbed layer of a polymer on 
the particle surface (after [12]). 
Δ – thickness of the inner, dense adsorption layer. 
δ – thickness of the outer, more permeable layer. 
ξ0 – zeta potential of the pristine surface. 
ξΔ – zeta potential at the border between the inner and outer layer. 
ξΔ+δ – zeta potential at the polymer layer surface. 
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Figure 4: Dependence of the reduced dynamic mobility μ/μ0 on the frequency of 
the applied alternating electric field for aqueous TiO2 dispersions stabilized by 
copolymers at saturation concentration SC. Points: experimental data; solid line: 
calculated theoretical curve. A: block copolymer PiBA17-b-PAA72; B: block-like 
copolymer PiBA20-b-P(iBA3-co-PAA91). 
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Figure 5: Dependence of the reduced dynamic mobility μ/μ0 on the frequency 
of the applied alternating electric field for aqueous CuPc dispersions stabilized by 
copolymers at saturation concentration SC. Points: experimental data; solid line: 
calculated theoretical curve. A: block copolymer PiBA51-b-PAA30; B: block-like 
copolymer PiBA45-b-P(iBA5-co-PAA39). 
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Fig. 6: Schematic representation of the assumed structure of adsorption layers 
formed by isobornyl acrylate (iBA) / acrylic acid (AA) based block and block-like 
copolymers:  
A: Adsorption model for block copolymers PiBAx-b-PAAy
B: Adsorption model for block-like copolymers PiBA

. 
x-b-(PiBAy-co-PAAz

Δ: thickness of inner adsorption layer; δ: thickness of outer adsorption layer; d: 
total thickness of the adsorption layer (see Table 1). 
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