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Abstract

Type 1 diabetes (T1D) is characterized by the immune-mediated destruction of beta cells in the pancreas. Little is known about
the in vivo dynamic interactions between T cells and beta cells or the kinetic behavior of other immune cell subsets in the
pancreatic islets. Utilizing multiphoton microscopy we have designed a technique that allows for the real-time visualization of
diabetogenic T cells and dendritic cells in pancreatic islets in a live animal, including their interplay with beta cells and the
vasculature. Using a custom designed stage, the pancreas was surgically exposed under live conditions so that imaging of
islets under intact blood pressure and oxygen supply became possible. We demonstrate here that this approach allows for the
tracking of diabetogenic leukocytes as well as vascularization phenotype of islets and accumulation of dendritic cells in islets
during diabetes pathogenesis. This technique should be useful in mapping crucial kinetic events in T1D pathogenesis and in
testing the impact of immune based interventions on T cell migration, extravasation and islet destruction.
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Introduction

In type 1 diabetes (T1D), destruction of beta cells located in the

islets of Langerhans throughout the pancreas is extremely difficult

to study owing to the organ’s inaccessible location, diffuse tissue

architecture and abundance of potentially harmful digestive

enzymes that make it difficult to obtain biopsy tissue samples[1].

Despite some differences compared to the human pathophysiol-

ogy, our knowledge of how T1D develops has benefited

significantly from studies in rodent models such as the non-obese

diabetic mouse (NOD)[2]. In mouse and man, documentation of

autoimmune events in the pancreatic islets (a process termed

‘insulitis’) has been traditionally achieved by histological tech-

niques in cross-sectional studies[3]. While such data provide a one-

time ‘snapshot’ of islet destruction, there is no clear knowledge of

the precise cellular dynamics involved in this process.

Since first reported by Denk and coworkers[4], two-photon

microscopy has been applied extensively to image immune cells in

intact lymphoid organs[5,6]. The major advancement associated

with the technique is the use of a pulsed infrared laser for

fluorescent dye excitation[7]. This high excitation wavelength

allows for deep tissue imaging and its low energy constrained to

the focal plane limits phototoxicity. As a consequence, two-photon

microscopy has become the technique of choice to assess the

dynamic behavior of immune cells in vivo. To date, however, the

handful of studies that applied two-photon microscopy in the

context of autoimmune diabetes were limited to the pancreatic

draining lymph nodes[8,9,10], whereas the situation in the

pancreas remains uncharted territory. One group performed 2-

photon microscopy on islets transferred into the anterior chamber

of the eye, but the immune privileged nature of the site precludes

inclusion of the hallmark autoimmune component of T1D[11].

Another recent study by Nyman et al introduced the use of

intravital, high-speed confocal scanning in order to determine

blood flow dynamics in islets[12]. The latter approach, however,

poses considerable constraints in terms of imaging depth and laser

cytotoxicity and thus is unsuitable for tracking immune cells

around islets over longer time spans.

The dynamic behavior of immune cells is profoundly dependent

on physiological conditions[13], and it is particularly questionable

whether circulatory deprivation in explanted pancreas preparations

would leave the true in situ parameters of diabetogenic immune

responses unaltered. We report here a novel approach to visualize

the kinetic properties of immune cells during the development of

diabetes in the intact pancreas and islets of living animals. As such,

we provide the first real-time visualization of leukocyte-beta cell

interactions and dendritic cell recruitment to the islets.

Results

Design of a surgical approach for intravital two-photon
studies in the pancreas

The anatomical location of the pancreas, in between the curve

of the duodenum (widest part; ‘head’) and the spleen (smallest part;
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‘tail’), calls for a careful approach to avoid potentially fatal organ

damage or bleeding during imaging (Figure 1A). In addition, the

pancreas is softer and less compactly organized than most other

organs, requiring avoidance of excessive force during exposition.

We chose to seek access from the splenic side and image the tail

region after cauterization of the splenic arteries. This leaves the

vascular supply originating from the superior and inferior

pancreaticoduodenal arteries intact. Successful intravital two-

photon imaging is dependent on 3 major factors: (1) immobiliza-

tion of the tissue to minimize movement artifacts; (2) immersion in

heated buffer at precise physiological temperature for use with a

water dipping objective; (3) proper maintenance of anesthesia and

body temperature of the animal. We built a custom-designed

reservoir and incorporated a heating supply to satisfy these

requirements (Figure 1B). In this way, the tail region of the

pancreas could be gently exposed and its outer edges glued to an

imaging pedestal. The surrounding buffer was maintained at 37uC
by a recirculation system, which has the combined benefit that the

animal’s body temperature is preserved. Importantly, the animal’s

abdominal area itself was not exposed to the buffer, as water influx

was prevented by a small plastic barrier sealed with Vaseline in

between the inner reservoir and the imaging pedestal. Applying

Vaseline ensures proper sealing while avoiding any pressure on the

tissue that may block circulation. The minor remaining breathing

artifact was corrected post acquisition by use of the ImageJ

registration plugins TurboReg and StackReg[14]. Typical in vivo

2D islet morphology as imaged by two-photon microscopy is

depicted in Figure 1C and as a 3D rotating rendering in Movie S1.

This intravital approach has the notable advantage of allowing for

detailed visualization of pancreatic islet vasculature, as is achieved

by intravenous injection of fluorescently labeled agents (Figure 1D;

Movie S2). Moreover, the intact structural integrity of the local

microvessels clearly indicates that sufficient blood supply is

maintained around the islet site and adds physiological significance

to our findings.

Determining leukocyte motility and interactions with
beta cells in the pancreas

We have previously established an antigen-specific, virus-free

model of beta cell destruction that relies on adoptive transfer of

CD8 T cells ([15] and manuscript in press[16]). In brief, breaking

tolerance to enable these cells to access the islets requires a

remarkably extensive stimulation protocol, mimicking some of the

effects of acute viral infection by repeated stimulation, immuni-

zation and TLR ligation (Figure 2A). As a result, recipient mice

develop diabetes in a highly synchronized fashion 9–10 days after

transfer (Figure 2B). Prior to in vivo microscopy, we characterized

the phenotype of the T cells within the transferred population at

Figure 1. Surgical approach and maintenance of physiologic conditions during intravital imaging of the pancreas. A. Schematic
overview of the anatomical orientation of the pancreas in rodents. In order to gain access to the pancreatic tail region, we cauterized the splenic
vessels and performed a splenectomy. The red rectangle indicates the region of the pancreas subjected to imaging. B. Design of a custom-made
imaging reservoir for two-photon imaging of the pancreas. The outer reservoir is filled with saline buffer, covers the organ and is continuously
maintained between 36.5 and 37 degrees Celcius by a recirculation system. The inner reservoir containing the animal is sealed from the buffer by a
barrier (black) and a demountable bridge at the site of the imaging pedestal. To achieve sealing without pressuring the tissue, Vaseline is applied
between bridge and pancreas. The pancreatic tail region is gently exposed and its outer edges attached to the pedestal with surgical glue. Finally, the
water dipping objective is lowered onto the pancreas for imaging. C. Typical in vivo appearance of a healthy islet, showing coherent beta cell
architecture and uniform GFP expression (MIP of 76 z-planes spaced 2 mm; pixel w/h: 1.2 mm; corresponds to Movie S1). D. Islet microvasculature (red)
as revealed by intravital imaging after injection of Texas-Red labeled dextran. (MIP of 43 z-planes spaced 5 mm; pixel w/h: 0.6 mm). Scale bars in C and
D are 100 mm.
doi:10.1371/journal.pone.0015732.g001
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diabetes onset in the pancreas (Figure 2C). Transferred cells that

migrated into the pancreas had vigorously proliferated, acquired

an effector memory phenotype, and were producing considerable

amounts of IFN-ã. Our intent was to enhance our chances of

detecting transferred cells around the limited population of islets

accessible by two-photon microscopy through the acute and

synchronized nature of autoimmune diabetes observed in this

model. From earlier studies we concluded that the optimal time

window for imaging of T cells and beta cells was on day 7–8, right

before onset of clinical diabetes.

We applied the peptide/adjuvant-induced model to capture the

invasion process within islets at various stages of destruction

(Figure 3; Movie S3). For these studies, we crossed the CD8-TcR

transgenic P14 strain to mice ubiquitously expressing the red

fluorescent protein DsRed[17]. This setup allowed us to track ‘red’

CD8 T cells to attack ‘green’ islets and achieve sufficient spatial

resolution to characterize CD8 T cell-beta cell contacts.

Especially in Figure 3B, the coherent GFP signal as observed

under baseline conditions (see Figure 1C) is fragmented over what

appear to be numerous small apoptotic vesicles. In these proof-of-

concept studies we transferred unpurified splenocytes in order to

replicate the high diabetes incidence as presented in Figure 2B.

Considering that P14 mice typically harbor only ,2% CD4 T

cells in their splenocyte population, we therefore assume that the

majority of visualized events were CD8 T cells and that B

cells were the second most frequent population during the late

stages of insulitis, similar to what is observed in human islet

pathology[18].

After image registration in order to eliminate the breathing

artifact, three-dimensional tracking was performed on the time

series depicted in Movie S3 (Figure 3A–C). Calculation of mean

track velocities revealed variable cellular speeds, and most

velocities are broadly within the range observed previously by

tracking of T cells in the lymph nodes[5]. Interestingly, cellular

velocities were markedly lower (P = 0.0021 versus 3A; P = 0.0038

versus 3C) around the islet that showed incoherent GFP signal

(3B). Particularly in this movie S3B, cellular arrest in the proximity

of beta cells became prevalent (Figure 3D; Movie S4) as evidenced

by the high arrest coefficients (Figure 3B; P = 0.0328 versus 3A

and P = 0.0834 versus 3C). However, we found that only a minor

fraction of the cells established prolonged interactions with the

beta cells, but in these cases a stable interaction could last for more

than an hour (Figure 3A,B). In general, stable contacts with beta

cells were rare, as for instance only 1 cell was found to establish

prolonged interaction in movie S3C.

Given the extensive amount of inflammation observed in Movie

S3 (particularly right panel), we expected to see some of the beta

cells become GFP negative over time as they would commit to

apoptosis. However, beta cell apoptosis was only rarely detected

during our imaging time frame of 1–4 hours, despite the high

numbers of diabetogenic CD8 T cells present and further studies

are underway to precisely quantify such events.

Figure 2. An acute diabetes model suitable for in vivo pancreas imaging. A. Genetically labeled GP33-specific (‘P14’) splenocytes were
adoptively transferred into fluorescent reporter mice harboring green beta cells that express LCMV-GP antigen. The cells were stimulated in vivo by
repeated stimulation with peptide, CpG and Poly-IC (TLR ligation). B. These mice develop highly synchronized autoimmune diabetes with clinical
onset between day 9–10. BGM: blood glucose measurement C. Pancreatic draining lymph nodes (PLN) and pancreas (PAN) were harvested at time of
onset (day 8 post transfer) and stained for the P14 TCR chains Vá2 and Vâ8.1/2, CD8á, CD69, CD44 and CD62L. In conjunction with CFSE dilution and
ICCS for IFN-ã, this analysis reveals the influx of highly activated, memory phenotype GP33-specific CD8 T cells around the time of onset. PLN cells
from naı̈ve animals were used as controls for comparison since none of the cells homed to the pancreas in the absence of stimulation.
doi:10.1371/journal.pone.0015732.g002
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We conclude that our approach enables us to efficiently detect

the kinetics of autoreactive immune cells in the proximity of

pancreatic islets during diabetes development.

Imaging dendritic cells under steady-state versus insulitic
conditions

The CD11c-eYFP reporter mouse represents a valuable tool for the

efficient detection of endogenous dendritic cells by two-photon

microscopy[19]. Under baseline conditions, dendritic cells in the

pancreas are predominantly slowly moving cells (Figure 4B,C; Movie

S5) and, except for ,10 intra-islet DC’s[20], are not significantly

associated with the islets (Figure 4A; Movie S5). The cells spent a

significant portion of their time in virtual arrest (Figure 4B, D). In line

with a report by Calderon et al, we find that dendritic cells maintain

intimate contacts with the local microvasculature[20] (Figure 4E,

Movie S5 right panel). The constant extension/retraction of processes

could be seen, characteristic of their constant environmental sampling.

Upon induction of diabetes, however, dendritic cells were found

to accumulate in dense clusters around the islets, wedging in

between the remaining beta cells (Figure 4F; Movie S6). Dendritic

cells were seen to be gradually recruited to the site of inflammation

(Movie S6, arrows in left panel). Under these conditions, dendritic

cells virtually arrest at the site of inflammation (Figure 4G,H).

Discussion

We have presented here an in vivo approach to visualize the

cellular kinetics of diabetes development in a novel adoptive transfer

model based on the well-studied viral RIP-LCMV model. In a 2008

review article, we previously theorized an approach for ‘real-time

imaging of the pancreas during development of diabetes’, based on

our experience with an inverted confocal microscope[15]. Upon

implementation, we found here that the diabetes transfer model

proposed in that article is indeed suitable for imaging purposes but

its rudimentary surgical approach was soon abandoned.

Taking into account the notorious inaccessibility of the pancreas

for in vivo studies we have taken advantage of two-photon micro-

scopy for deep-tissue intravital imaging of cellular interactions in an

intact soft organ. In doing so, we provide a first impression of the

dynamic interplay between diabetogenic immune cells and beta

cells.

Advantages
First, we developed a surgical procedure which allows us to

expose the pancreatic tail region to the extent that it could be

placed under our upright microscope objective. We estimate that

this technique enables us to access approximately one third of the

Figure 3. In vivo imaging captures T cell motility and interactions with beta cells in the pancreas. A. Corresponds to left panel of Movie S3
(MIP from 15 z planes, 11 mm apart, pixel w/h: 0.6 mm). Mean track velocities, arrest coefficients and beta cell contact times were determined after 3D
tracking. B. As immune-mediated destruction advances, the GFP signal disintegrates in what appear to be multiple small GFP-containing vesicles (MIP
from 15 z planes, 12 mm apart, pixel w/h: 0.9 mm; corresponds to middle panel of Movie S3). Mean track velocities, arrest coefficients and beta cell
contact times were determined after 3D tracking. C. Reduced islet size and considerable infiltrate is observed (MIP from 15 z planes, 7.2 mm apart,
pixel w/h: 0.5 mm; corresponds to right panel of Movie S3). Only mean track velocities and arrest coefficients were determined as only 1 cell was found
to establish prolonged contact with beta cells. D. Isosurface rendition of a T cell (red) in contact with beta cells (green), derived from Movie S4 (left
panel). White scale bars are 100 mm, except for D, 10 mm.
doi:10.1371/journal.pone.0015732.g003
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pancreas from the tail side. Any islet in that region, regardless of its

size, can be reliably visualized, provided it lies close enough to the

surface (,250 mm two-photon depth limit).

We next built a custom-designed imaging reservoir enabling

proper maintenance of hydration and tight temperature control.

To date, Nyman et al were the only group to achieve in vivo

imaging of pancreatic beta cells at cellular resolution[12]. Our

present method not only offers improved physiological control but,

in conjunction with adoptive transfer of fluorescently labeled

effector cells, allows for visualization of diabetogenic responses in

situ. Like in the work by Nyman et al, microvascular blood flow is

maintained around the islets in our studies and accentuates the

validity of our intravital approach with respect to obtaining

physiologic, meaningful results.

An acute transfer model for autoimmune diabetes was employed

by introduction of fluorescently labeled splenocytes harboring

diabetogenic TCR-transgenic CD8 T cells into recipients express-

ing both antigen and GFP in their beta cells. We propose that two

factors are pivotal for successful two-photon imaging of islet

autoimmunity: induction of synchronized insulitis and genetic

labeling of the transferred cell population with a strong fluorophore.

The first requirement is associated with the limited amount of islets

that are close enough to the surface to be scanned by common two-

photon microscopy systems. Synchronicity of beta cell decay by use

of an aggressive, acute-onset induction protocol therefore enhances

the chances of capturing beta cell destruction in real-time. In

conjunction with the availability of mice expressing GFP under the

insulin promoter in both B6 and NOD background and strains

expressing red or far-red fluorophores controlled by a variety of

promoters, we believe there is ample opportunity to translate our

approach to other diabetes models. In the NOD mouse, several

options exist to synchronize/accelerate insulitis such as injection of

cyclophosphamide[21], adoptive transfer of highly diabetogenic T

cell clones[22] or even viral infection with coxsackievirus[23].

Limitations
In advancing two-photon microscopy towards in vivo imaging of

the pancreas, we have encountered some limitations that are

inherent to deep-tissue imaging. The micrometer resolution in

conjunction with the high number of optical stacks required for

reconstruction of an islet over time introduces a considerable

breathing artifact. We successfully corrected for this using

commonly available software, avoiding image distortion or

affecting the results of cellular tracking.

In the current study, we aimed to capture ongoing insulitis

within entire islets. The z-step size we used to acquire such large

volumes is higher than the conventionally used five microns[24,25]

and likely introduces some degree of inaccuracy in determining the

center of cell mass during 3D tracking. In particular some

broadening can be expected in the velocity distribution[26]. That

said, smaller z-stepping is certainly possible for more precise

measurements of e.g. instantaneous velocity of individual cells in

the islets, but will come at the expense of captured cell numbers,

which in our case are scattered around the pancreatic islet.

Since the imaging depth is in the order of a few hundred mm,

only the most superficial subset of islets is accessible. It is

conceivable that this restraint leads to some degree of experimen-

tal bias as the largest islets are predominantly located in the core of

Figure 4. Pancreatic dendritic cells constitute a static population in the steady state, but are recruited to the islets under conditions
of inflammation. A. Dendritic cells (yellow) can be seen in the normal pancreas at relatively low densities, in no particular association with the islets
(MIP of 35 slices spaced 8 mm apart; pixel w/h: 1.5 mm; corresponds to Movie S5, left panel). Injection of a Texas-Red labeled dextran reveals the dense
vascular network (magenta) in the pancreas. Yellowish color of the islets is due to spectral bleedthrough. B,C,D. Tracking of DC in the exocrine
pancreas under normal conditions was performed in triplicate (representative experiment in B) and shows low average track velocities (C) and a high
portion of cells that virtually arrested during imaging as judged from their arrest coefficients (D). E. Dendritic cells remain in close interaction with the
local microvasculature under normal conditions. Images are MIPs spanning total z-volumes of 50 to 70 mm with a step size of 3 to 5 mm. Pixel w/h:
0.3 mm (lower planes), 0.2 and 0.1 mm (upper left and right, resp.). F. Upon diabetes induction, DC accumulate (MIP of 30 planes spaced 6 mm apart;
pixel w/h: 1.5 mm; corresponds to Movie S6, middle panel) and completely arrest for prolonged periods of time in dense clusters, wedged in an
around the islets. Tracking of CD11c+ cells in the exocrine pancreas showed little motility (G, H) Experiments were performed in triplicate (see 3
panels in Movie S6). The vasculature can be seen in red. White scale bars are 100 mm, except E, 10 mm. All tracking data are representative of
duplicate experiments.
doi:10.1371/journal.pone.0015732.g004
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the pancreas. On the other hand, it was shown previously that the

smallest, peripherally located islets are the first to be destroyed

during diabetes development in the NOD model[27]. This

population may therefore in the NOD mouse constitute an ideal

target for imaging T cell behavior at the stage of early immune-

mediated beta cell loss.

This technique is to be considered terminal and is therefore not

intended for extended longitudinal studies of beta cell mass

fluctuation. The imaging time is in the order of hours and is thus

relatively short in comparison to body window-enabled methods

[28]. Techniques such as in vivo optical coherence microscopy[29]

or ex vivo optical projection tomography[27] are more suitable for

the purpose of following beta cell mass over time but are currently

restricted to imaging at islet resolution. Instead, the technique

presented here is designed to image individual T cell interactions

with beta cells in vivo over the course of hours in order to assess

parameters such as their retention time in islets, potential

migration between islets or interactions with the vasculature.

Interpretation
Although we wish to avoid overinterpretation of the presented

dataset, we observed a low overall frequency of prolonged

leukocyte-beta cell interactions. This is consistent with our earlier

notion that most beta cells in this model die by cytokine-mediated

effects rather than through perforin[30]. The observation that a

small fraction of the cells does arrest in contact with beta cells for

extended time periods is reminiscent of the results obtained in

tumor models, where a recent study suggested that CTL establish

interactions with tumor cells lasting an average of 6 hours [25].

However, it remains uncertain whether these stable contacts

represent beta cell killing or rather antigen recognition, although

the highly activated memory phenotype of the infiltrating

population may suggest the former event. Our studies also suggest

that beta cell death requires the presence of considerable numbers

of activated CD8 T cells patrolling in the immediate vicinity of the

islet site. The fact that actual beta cell death was only rarely

observed is in line with our data in the conventional RIP-

LCMV.GP model (manuscript in preparation). This may in part

explain why T1D development in humans requires several years,

particularly when the substantially lower degree of insulitis is taken

in consideration as compared to mouse models [18]. Additionally,

there likely is a delay between apoptosis commitment and loss of

GFP signal, which may lead to an underestimation of ‘dying’ cell

numbers at any given time.

Conclusion
In summary, we have developed a novel approach for live in vivo

assessment of diabetogenic immune responses in the pancreas and

islets of Langerhans under physiological conditions. We believe

this will greatly enhance our understanding of the kinetic events

underlying beta cell destruction and its counter-regulation by

suitable immune-based therapies.

Methods

Mice
We crossed B6.Cg-Tg(CAG-DsRed*MST)1Nagy/J mice[17]

mice to P14 mice[31], which express a TCR specific for the GP33

CD8 epitope of the LCM virus. Mice expressing GP antigen from

the LCMV-WE [32] strain under control of the rat insulin

promoter (RIP-GP) were bred to a strain with beta cell-restricted

GFP expression (MIP-GFP)[33]. For visualization of dendritic

cells, mice expressing eYFP under the control of the CD11c

promoter were used[19] and bred to the MIP-GFP/RIP-GP

strain. All animal procedures were approved by the Animal Care

Committee of the La Jolla Institute for Allergy and Immunology

(protocol nr. AP121-MvH3-0510).

Diabetes induction protocol
On day 0, a single cell suspension of 1.5*10(7) P14 splenocytes

were transferred into recipient mice via retroorbital injection. On

day 1 and 3, mice were intraperitoneally injected with 2 mg of

GP33 peptide (Abgent, NH2-KAVYNFATM-COOH) in ultra-

pure water containing 50 ug of CpG adjuvant (Sigma). Finally, on

day 6, mice received 500 ug of polyinosinic:polycytidylic acid (Poly

I:C) i.p. (Sigma). All imaging was done on day 7 and 8.

Flow cytometry
Single cell suspensions were prepared from spleen, pancreatic

draining lymph nodes and pancreas. Red blood cell lysis was

performed on splenocyte preparations. All antibodies used were

purchased from BD. For intracellular cytokine staining, cells were

restimulated with GP33 antigen for 5 hours in the presence of

Brefeldin A (GolgiPlug, BD), stained for surface markers and

subsequently fixed and permeabilized (Cytofix/Cytoperm, BD) for

intracellular staining. Acquisition was performed on an LSRII flow

cytometer (BD).

Surgery and temperature control
Mice were injected with an initial dose of 90 mg/kg ketamine

hydrochloride and 15 mg/kg xylazine hydrochloride, which we

previously titrated for efficient and safe induction of long-term

anesthesia. Mice were given half this dose approximately every 45

minutes. The abdominal area was shaved and a longitudinal

incision was made at the site of the spleen. The spleen was gently

exposed with the pancreatic tail region attached and the splenic

vessels were cauterized and splenectomy was performed. The

edges of the pancreatic tail region were attached with surgical glue

(Histoacryl, Braun) to the pedestal of a custom-made imaging

reservoir. The imaging reservoir’s temperature was controlled by a

recirculation system based on a Gaymar T/Pump. Local

temperature at the pedestal was checked with a sensitive probe

(Warner instruments). Heart rate and arterial oxygen saturation

were monitored using a MouseOx pulse oximeter (Starr Life

Sciences Corp) and were found to be similar in animals

undergoing surgery as compared to anesthetized controls.

Two-photon imaging and analysis
We used a Leica SP5 microscope system equipped with an IR

Laser Chameleon ultra ps, tunable from 690 to 1040 nm. For this

study we used 3 channels with non-descanned detectors with filter

sets suitable for separation of GFP (513/17 nm), eYFP (542/27)

and DsRED (692/40 nm) in combination with 520 nm and

560 nm dichroic mirrors. We used an Olympus Super 20

(XLUMPLFL20XW, NA0.95) water dipping objective controlled

by a piezo Z-focus element (Piezosystem Jena). At 900 nm

excitation wavelength, photon penetration and efficient detection

is up to 250 mm deep into the tissue. Laser power at the sample

was 220 mW and was determined using a Thorlabs PM100D

power meter after galvo-scanning was stopped (thus parking the

beam) and AOTF blanking was shut off. Post-acquisition

enhancement (i.e. ‘normalization’ or altering the range of pixel

intensity values for viewing purposes), MIP and panel combination

were performed using ImageJ. The Turboreg and Stackreg

plugins[34] were used for registration within Z-stacks (i.e.

elimination of breathing artifact). 3D tracking was performed

using Imaris (Bitplane) after correction for tissue drift. True
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cellular contact was confirmed by looking at the individual Z-

planes. In most movies, spectral overlap at the islet site was

corrected for by subtracting signal from the ‘red’ from the ‘green’

channel, rendering all islets uniformly green for the sake of clarity.

Finally, image sequences were converted to TIFF or AVI format.

Pixel width and height (w/h) are provided in microns for each

image and movie in the legends.

The confinement ratio corresponds to the ratio of the distance

between the initial and the final positions of each cell to the total

distance covered by the same cell. The arrest coefficient is defined

as the proportion of time each cell’s instantaneous velocity

(calculated for every time interval) is ,3 mm/min.

Visualization of vasculature was achieved by the i.v. injection of

250 mg of 70 kDa Texas-Red labeled dextran in PBS (Invitrogen).

Supporting Information

Movie S1 Imaging islets in the normal pancreas. 3D

rendition of a normal islet as visualized in vivo by two-photon

imaging. Note the coherent beta cell architecture and uniform

GFP expression. Gridlines are 50 mm apart. For xyz dimensions

see figure legend 1C.

(AVI)

Movie S2 Imaging blood flow in the normal pancreas
ascertains physiologic conditions. In order to ascertain that

local vascular supply is fully maintained, pancreatic islets (green)

and their surrounding microvessels (red) were captured at high

frame rates (insets represent single z-planes at 9fps) in normal

animals. Blood flow and vascular integrity are shown here in 2

distinct pancreatic regions (Region 1/2 are MIPs from 43 and 35

planes respectively, each at 3 mm intervals) from a single

representative animal. White scale bars are 100 mm. Pixel w/h

for overview images is 1.5 mm, for insets 1 mm.

(AVI)

Movie S3 Imaging of Diabetogenic Immunity in a
Peptide-Induced Transfer Model. Inflamed islets (green)

are imaged at several stages of beta cell decay with varying levels of

diabetogenic infiltrate (red). All movies were acquired at day 7–8

after cell transfer, right before clinical diabetes onset. For xyz

dimensions, see figure legend 3. Time resolution is 1 minute.

(AVI)

Movie S4 Imaging of leukocyte-beta cell interactions in
a peptide-induced transfer model. Isosurface rendering of

leukocytes (red) interacting with beta cells (green), derived from the

raw fluorescence data presented in Movie S3. Bars in lower left

corner are 10 mm. Time resolution is 1 minute.

(AVI)

Movie S5 Dynamics of pancreatic dendritic cells under
steady-state conditions. Dendritic cells (yellow) can be seen in

the normal pancreas at relatively low densities, in no particular

association with the islets (left panel). Grid lines are 50 mm apart.

Injection of Texas-Red labeled dextran (magenta) reveals the

dense vascular network in the pancreas. The dendritic cells

constantly engage in interactions with the local microvasculature

(right panels). For xyz dimensions, see figure legend 4. Time

resolution is 1 minute.

(AVI)

Movie S6 Imaging of pancreatic dendritic cells during
diabetes development. Visualization of dendritic cell (green,

left panel; yellow, middle and right panel) recruitment to inflamed

islets (left panel, white arrow). Once the DC enter the islet site, they

virtually arrest and remain wedged in and around the islet for

prolonged periods of time (middle-right panel). Real time injection of

Texas-Red dextran (red) was performed to reveal the islet

vasculature. Grid lines are 50 mm apart. All movies are 1 minute

interval sequences containing MIPs of 30 planes spaced 6 mm

apart and with pixel w/h of 1.5 mm.

(AVI)
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