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Escherichia coli remains the best established production organisms in industrial 

biotechnology. However, during aerobic fermentation runs at high growth rates, considerable 

amounts of acetate are accumulated as by-product. This by-product has negative effects on 

growth and protein production. Over the last 20 years, substantial research efforts have been 

spent to reduce acetate accumulation during aerobic growth of E. coli on glucose. From the 

onset it was clear that this quest should not be a simple nor uncomplicated one. Simple 

deletion of the acetate pathway, reduced the acetate accumulation, but instead other by-

products were formed. This minireview gives a clear outline of these research efforts and the 

outcome of them, including bioprocess level approaches and genetic approaches. Recently, 

the latter seems to have some promising results. 

 

1 Introduction 30 

Escherichia coli was the first and is still one of the most commonly used production 

organisms in industrial biotechnology. Aerobic high cell density cultures of E. coli are most 

frequently used to arrive at high biomass yields and high metabolite/protein concentrations. 

Normally, glucose is fed as a carbon source in these high cell density fed-batch cultures. 

Glucose is a cheap and simple molecule which enters the glycolysis (flow from glucose to 

acetyl CoA) and the central metabolism through a minimum of steps. Furthermore, in a 

medium with several carbon sources, glucose is first preferred one as a result of catabolite 

repression. The glycolyse is the trunk routes of intermediary sugar metabolism in enteric 

bacteria, which canalize 72% of the carbon supply. However, during aerobic fermentation 

runs at high growth rates, considerable amounts of acetate are accumulated, as described by 
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Akkeson et al. (1999) [1] and references therein. In addition to a loss of carbon and therefore 

an economic sink, acetate is also detrimental to recombinant protein production and inhibits 

cell growth [2]. For more information about overcoming acetate in E. coli recombinant 

protein fermentations see reference [3].  

Formation of acetate in E. coli cultures under fully aerobic conditions can be caused by two 

phenomena. On the one hand, a (local) lack of dissolved oxygen activates the fermentation 

pathways, causing acetate excretion. This is referred to as mixed-acid fermentation. On the 

other hand, this acetate excretion is also due to a metabolic overflow mechanism, caused by 

an imbalance between the rapid uptake of glucose and its conversion into biomass and 

products, diverting acetyl-CoA from the TCA-cycle towards acetate [1].  

 

The two major aerobically active acetate producing pathways in E. coli are pyruvate oxidase 

(poxB) and acetate kinase/phosphotransacetylase (ackA-pta). Two enzymes comprise the 

ackA-pta pathway: phosphotransacetylase [EC 2.3.1.8] reversibly converts acetyl-CoA and 

inorganic phosphate to acetyl phosphate and CoA, and acetate kinase [EC 2.7.2.1] reversibly 

converts acetyl phosphate and ADP into acetate and ATP [4]. The two genes include one 

operon [5] and are considered to be important for balanced carbon flux within the cell during 

exponential growth both, aerobically and anaerobically [6, 7]. E. coli uses the ackA-pta 

pathway as an ATP production source under anaerobic and even aerobic conditions [7].  

The second enzyme, pyruvate oxidase [EC 1.2.2.2], is a pheripheral membrane protein that 

converts pyruvate, ubiquinone and H2O to acetate, ubiquinol and CO2. It has been reported to 

be a nonessential aerobic enzyme active in the early stationary phase [8, 9]. However, more 

recent studies has shown that pyruvate oxidase plays an important role in the aerobic growth 

efficiency of E. coli [10], perhaps to preserve the pool of free CoA-SH. Dittrich et al. (2005) 

[2] confirm that the poxB pathway is more active during the late exponential and stationary 
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phases, whereas the ackA-pta pathway is more active in the exponential stage of the cell 

growth. They also report that the two acetate producing pathways are affected by culture 

conditions such as pH. Acidic environments repress the ackA-pta pathway, but activate the 

poxB pathway. In addition, acetate itselfs has a strong negative effect on the two pathways. 
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Acetate formation has several disadvantages: 

• acetate concentrations above ca. 1 g/l are damaging for both the biomass production 

and the production of recombinant proteins [11] 

• besides the inhibition on recombinant protein production, acetate has a negative effect 

on the stability of intracellular proteins [12] 

• organic acids already show negative effects at concentrations much lower than those 

for mineral acids. The non-dissociated form of acetate can move freely through the 

cell membrane and thus accumulates in the medium. A part of this extracellular, non-

dissociated form will re-enter the cell and dissociate due to the higher internal pH. 

Acetate thus acts as a proton conductor and the process causes a reduction in proton 

motive force [13] 

• accumulation of acetate in the medium will acidify the medium. When the pH is below 

5.0, cell lysis will appear due to the irreversible denaturation of proteins and DNA 

[14]. 

The level of acetate produced during aerobic fermentations is depending on the E. coli strain, 

the growth conditions, the actual glucose concentration in the medium and the overall 

composition of the fermentation medium. For more detailed information about why, when and 

how bacterial cells excrete acetate, see reference [15]. 

 

Researchers have tried a wide variety of strategies to reduce acetate accumulation in high cell 

density fed-batch E. coli fermentations. These strategies are situated at two levels: the 

bioprocess level and the genetic level. 
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2 Bioprocess level approaches to minimize acetate formation 94 

These methods mostly intervene in the medium composition and/or the cultivation conditions. 

The fermentation run can be optimized by controlling a range of parameters such as 

temperature, agitation regime, volume, foaming, dissolved oxygen tension (DOT), pH, optical 

density, (limiting) substrate concentration, etc.  

 

A culture of E. coli will generate acetate when the cells surpass a threshold specific rate of 

glucose consumption, regardless of the availability of oxygen to the culture [3]. In the 

literature, several specific fermentation strategies are mentioned to reduce acetate production 

[1, 16-20]. levels were developed. These methods are based on mathematical models that 

describe growth patterns and the expected demand for nutrients. These strategies include 

various glucose feeding approaches [21-27], limitations of growth rate by substrate-limited 

fed batch schemes [16, 18, 26, 28-30] and utilization of alternative feeds such as glycerol [26, 

31], mannose [32] or fructose [33]. For example, reduced acetate and an increase in protein 

yield have been reported when fructose was used as carbon source instead of glucose [33]. 

Also supplementing the medium has proven to be positive on reducing acetate [34]. Recently, 

the combination of glucose pulses with an amino-acid containing feed stream has been 

demonstrated to be successful to minimize acetate production [35]. Another approach to hold 

the growth rate below the threshold for acetate production, is the pH-stat, where a nutrient 

feed is activated when the pH increases and variants, where the culture is dosed with more 

nutrient than necessary. However a fundamental drawback of the pH-stat is that it detects 

starvation rather than the acetate threshold directly [3]. In general, a consequence of limiting 

the growth rate is that biomass is generated at a slower rate than the cells are capable of 

achieving. 
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Instead of lowering the growth rate, the produced acetate can be removed from the culture 

during the fermentation process to reduce the inhibitory effects of acetate. In literature, the 

use of a dialyse-fermentors is reported to remove acetate from the culture [36, 37]. Dialysis is 

defined as the separation of solute molecules by their unequal diffusion through a semi-

permeable membrane based on a concentration gradient. Recently, another method to remove 

acetate from the fermentor was reported via the use of macroporous ion-exchange resins [38]. 

However, methods to remove acetate from the culture tend to remove also nutrients. In 

addition, this strategy do not deal with the fact that carbon is diverted to a by-product and thus 

the economic sink. 

 

Although, these methods are extensively used in the industry, they are not the best solutions 

because they undermine the maximum growth and production capacity. Therefore, we will 

emphasize genetic approaches to minimize acetate formation. 

 

3 Genetic approaches to minimize acetate formation 133 

Several strategies which intervene with acetate formation on the genetic level have also been 

reported. These strategies are based on the alteration of the central metabolism of E. coli (see 

figure 1, table 1). First, the effect of alterations in the glucose uptake mechanism and in the 

TCA cycle will be discussed. The pathway from glycolysis to the TCA cycle is very 

important because of the many reactions which play a role in the pyruvate branch point. From 

this branch point, the carbon flux can be directed to acetate production via the genes coding 

for acetate kinase (ackA), phosphotransacetylase (pta), acetyl-CoA synthase (acs) and 

pyruvate oxidase (poxB). The flux can also be directed to the TCA-cycle (citrate synthase, 

gltA) where the glyoxylate bypass plays an important regulation control (isocitrate lyase, 
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ackA; malate synthase, aceB and isocitrate dehydrogenase; icd). In a final paragraph, the 

influence of alterations in coenzyme pools on the acetate metabolism will be discussed. 
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Since E. coli is a facultative anaerobic strain, part of the glucose (even under aerobic 

conditions) will be catabolized via fermentation (consuming no oxygen). Besides a lower 

energy yield per mol glucose obtained by anaerobic fermentation, this causes a faster 

utilization of glucose by the cells, as compared with aerobic respiration. [39]. Because of the 

occurrence of reactions which run normally anaerobically in aerobic conditions, some 

enzymes which are active under anaerobic growth conditions will be discussed. Strictly 

anaerobic culture strategies and strategies based on involvement of non-E. coli pathways (e.g. 

pyc pathway) will not be discussed.  

 

3.1 The phosphoenolpyruvate (PEP):carbohydrate phosphotransferase systems (PTSs) 155 

The phosphoenolpyruvate (PEP):carbohydrate phosphotransferase systems, which are both 

transport and sensing systems, are an example of group translocation enzymes. PTS (figure 2) 

is involved in the transport and the phosphorylation of a large number of carbohydrates (PTS 

carbohydrates), in the movement of cells towards these carbon sources (chemotaxis), and in 

the regulation of a number of metabolic pathways. The PTS catalyzes the following overall 

process: 

 

)()()()( inin
PTS

outin PtecarbohydrapyruvatetecarbohydraPEP −+⎯⎯→⎯+  

 

Carbohydrate phosphorylation is coupled to carbohydrate translocation across the cytoplasmic 

membrane, the energy for these processes being provided by the glycolytic intermediate PEP. 

PTS consists of three kinds of proteins: enzyme I and histidine protein (HPr), which 
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participate in the phosphorylation of all PTS carbohydrates and thus have been called the 

general PTS proteins, and enzyme II, which is carbohydrate specific. 

Chou et al. (1994)[40], tried to reduce the acetate excretion by knocking out the ptsG gene, 

coding for the glucose specific enzyme II of PTS [EC 2.7.1.69]. This method did not totally 

prevent the uptake of glucose, but its uptake rate was reduced. Consequently, the flux through 

the glycolysis was decreased, causing a reduced acetyl-CoA accumulation. Chou et al. (1994) 

[40] observed no acetate excretion in cultures of this mutant. Similar results where found by 

[41-43]. Moreover, Han et al. (2004)[41] found an increase in biomass and recombinant 

protein production as result of knocking out ptsG. Another way to intervene in the PTS is to 

influence the regulation of ptsG. It was found that the regulator ArcA binds to the promoter of 

ptsG. Deletion of the arcA gene caused about a 2-fould increase in the ptsG expression. 

Overexpression of arcA significantly decreased glucose consumption and hence decreased the 

acetate accumulation [44]. Knocking out ptsG and overexpressing arcA, however, are a 

genetic variant of limiting the glucose feed rate. Moreover, mutation of a PTS gene causes an 

efficiency reduction in the energy metabolism [17]. 

However, recently it is been reported that the deletion of the ArcA gene in combination with 

the overexpression of a heterologous NADH oxidase increased the glycolytic flux and 

reduced acetate production [45, 46].  

 

3.2 Pyruvate branch point 187 

Many strategies of metabolic engineering are focussing on the enzymes around the pyruvate 

branch point since the intracellular level of pyruvate has an immediate influence on acetate 

excretion. Pyruvate is the substrate or end product of many reactions and thus an interesting 

target for manipulation. The enzymes of the main reactions around pyruvate are: pyruvate 
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kinase (pyk), pyruvate dehydrogenase (pdh), pyruvate formate lyase (pfl), lactate 

dehydrogenase (ldh), PEP-carboxylase (ppc) and PEP-carboxykinase (pck).  
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Lowering the pyruvate pool has been many times described in the literature as a way to 

reduce acetate production [47, 48]. 

Pyruvate kinase (pyk) 

Pyruvate kinase [PYK, EC 2.7.1.40] is one of the key enzymes of glycolysis. It catalyzes the 

conversion of PEP into pyruvate and simultaneously converts ADP to ATP: 

ATPpyruvateADPPEP PYK +⎯⎯→⎯+  

In almost each cell type, the flux through this reaction controls the global flux through the 

glycolysis. There are two isoenzymes of pyruvate kinase, encoded by pyk-I (or pyk-F) and 

pyk-II (or pyk-A). The enzyme PYK-F is activated by fructose-1,6-bisphosphate while PYK-A 

is activated by intermediary products of the pentose phosphate pathway, such as ribose-5-

phosphate [49]. 

Inactivation of one or both pyruvate kinase isoenzymes has already been tried several times to 

reduce acetate production [50-52]. Several studies have reported that the glycolysis was down 

regulated in E. coli pykF mutants under aerobic conditions [50, 53]. It was found that the flux 

through phosphoenol pyruvate carboxylase and malic enzyme were up-regulated in the pykF– 

mutant as compared with the wild type, and acetate formation was significantly reduced in the 

mutant. Inactivation of one pyk-enzyme caused a slight decrease of the maximum growth rate. 

This indicates that the other pyk-enzyme can compensate for the supply of the pyruvate pool, 

together with the PTS. Inactivation of both pyk-enzymes causes a major decrease in the 

growth rate and the acetate production [51]. Emmerling et al. (2002) [50] reported that 

relatively more oxaloacetate is derived from PEP and more pyruvate from malate in 

comparison with the wild type. This mechanism is probably activated to compensate to some 

extent for the pyruvate kinase knock-out.  
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Pyruvate dehydrogenase (pdh), expressed  under aerobic culture conditions, in E. coli 217 
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Pyruvate dehydrogenase [PDH, EC 1.2.4.1] complex catalyzes the conversion of pyruvate 

into acetyl-CoA with the formation of one molecule CO2.  

2
PDH COHNADHCoAacetylNADSHCoApyruvate +++−⎯⎯ →⎯+−+ ++  

A too large  pool of acetyl-CoA contributes to a large extent to the overflow of acetate. 

Elmansi & Holms (1989) [54] tried to reduce the acetate excretion by decreasing the flux 

from pyruvate to acetyl-CoA. This was achieved by adding 3-bromopyruvate, an inhibitor 

which directly acts on the active domain of pyruvate dehydrogenase. They reported no acetate 

production at all. However, there was still lactate produced and a decrease of the growth rate 

with respect to the wild type was observed. 

PEP carboxylase (ppc) and PEP carboxykinase (pck) 

PEP carboxylase [PPC, EC 4.1.1.31] converts PEP into oxaloacetate and is referred as PPC 

shunt by Noronha et al (2000) [55]: 

i
PPC PteoxaloacetaCOPEP +⎯⎯→⎯+ 2  

This reaction is activated by acetyl-CoA, guanosinetriphosphate and fructose-1,6-biphosphate, 

and inhibited by aspartate and malate [56]. 

PEP-carboxykinase [PCK, EC 4.1.1.49] catalyzes the reverse reaction with consumption of 1 

molecule ATP: 

2COADPPEPATPteoxaloaceta PCK ++⎯⎯→⎯+  

PCK is inhibited by high levels of PEP and nucleotides [56]. The purpose of PCK is to 

maintain the PEP:oxaloacetate ratio and stabilize the pool of intermediate products of the 

Krebs cycle. The net reaction of the cycle formed by both reactions consumes one molecule 

of ATP. In E. coli wild type strains, this futile cycle is strongly regulated. Inactivation of the 

pck gene causes a decrease of PEP carboxylation and a stimulation of the glyoxylate cycle. 

Yang et al. (2003) [57] reported that pck deletion mutants are able to grow on high 

concentrations of glucose without acetate production.  
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Chao & Liao (1994) [58] decided that overexpression of both enzymes gives an increased 

activation of the futile cycle with a higher production of fermentative products as a 

consequence. The double overexpression was also responsible for less growth and a higher 

consumption of glucose and oxygen. All these are consequences of the leakage of energy via 

the futile cycle.  

Simple overexpression of the pck causes a slight increase in acetate production [59]. On the 

other hand, overexpression of ppc can completely eliminate acetate production [59, 60]. 

According to Chao & Liao (1993) [59], overexpression of ppc decreases the glucose 

consumption rate and organic acid excretion, while growth and respiration rate remain 

unchanged. Farmer (1997) [17] described the effect of overexpressing PPC in E. coli VJS632 

aerobic cultures and conclude that the final acetate concentration is reduced by 60%. A 

reduction of 60% of the acetate excretion by overexpression of PPC was also obtained for E. 

coli ML308 by Holms (1996) [61]. Knocking out ppc has a negative effect on the overall cell 

metabolism: growth rate is impaired and the excretion of undesirable metabolites increases 

[60, 62 , 63]. 

Noronha et al. (2000) [55] showed that the TCA cycle/PPC shunt flux ratio is differing 

between a low acetate producer, E. coli BL21 and a high acetate producer, JM109. The PPC 

shunt is active in BL21 and inactive in JM109. This was confirmed by Yang et al. (2003) 

[57]. In contrast to the wild type, ppc overexpression mutants show more activity of the 

glyoxylate bypass [57] making a higher flux through the Krebs cycle possible. This means 

that the ratio PPC bypass:Krebscycle will decrease strongly. According to Yang et al (2003) 

[57], this ratio is very important for the production of acetate.  

It is generally accepted that PPC activity strongly regulates the PCK activity. In the wild type, 

PPC is more active than PCK, firstly, to compensate for the activity of PCK and secondly, to 

supply the Krebs cycle with sufficient intermediates. Inactivation of pck leads immediately to 
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a decrease in PPC activity, since compensation of PCK is no longer needed [57]. 

Overexpression of pck deregulates this system, causing an increase of the acetate production.  

3.3 Phosphotransacetylase (pta) and acetate kinase (ackA) 270 

Phosphotransacetylase [PTA, EC 2.3.1.8] and acetate kinase [ACKA, EC 2.7.2.1] are the 

enzymes that accomplish the production of acetate from acetyl-CoA. Phosphotransacetylase 

catalyzes the conversion of acetyl-CoA to acetylphosphate with production of CoA-SH. 

Phosphotransacetylase is activated by pyruvate and inhibited by NADH+H+ [64] 

SHCoAphateacetylphosPCoAacetyl PTA
i −+⎯⎯→⎯+−  

Acetate kinase uses the product formed by phosphotransacetylase as substrate; this is the last 

step of the acetate pathway. 

ATPacetateADPphateacetylphos ACKA +⎯⎯ →⎯+  

Both reactions are reversible. As such, the cell can convert acetate to acetyl-CoA and 

subsequently use it for biosynthesis reactions.  

 

Mutations in both pta and ackA have frequently been investigated [2, 11, 54, 65]. All data 

report a strong reduction of acetate production, when ackA and/or pta are eliminated. This is 

at the expense of the growth rate and is accompanied by an increase in the production of other 

fermentation products such as lactate and formate. Though lactate and formate are less toxic 

to the cells, they are still disadvantageous for cell growth. 

 

3.4 Acetyl-CoA synthetase (acs) 288 

When glucose is used in high cell density cultures, acetate is produced and excreted in the 

medium. Acetyl-CoA synthethase [ACS, EC 6.2.1.1] can use the re-absorbed acetate and 
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convert it to acetyl-CoA via a two step reaction scheme. These reactions are irreversible and 

thus they are only responsible for acetate consumption and not for acetate production. 

i
ACS PPAMPCoAacetylSHCoAATPacetate ++−⎯⎯→⎯−++  

The enzyme has a strong affinity for acetate (Km of 200µM), which allows it to function at 

low acetate concentrations, but it is inhibited by glucose [66, 67]. On the other hand, the 

reversible ackA-pta pathway can assimilate acetate only at high acetate concentrations [15]. 

 

Contiero et al. (2000) [11] investigated the effect of the deletion of acs on the growth on 

glucose at high cell densities in fed-batch fermentations. No clear conclusion could be drawn 

from their research. It only indicated that acetyl-CoA plays a key role in accomplishing high 

cell densities and has no or few importance during normal growth. 

The overexpression of acs in E. coli resulted in a significant reduction in acetate formation 

during glucose metabolism. It also enhanced the assimilation of acetate when used as the sole 

carbon source. These characteristics guarantee acs overexpression as a positive approach to 

coping with acetate in E. coli fermentations [68]. 

 

3.5 Pyruvate oxidase (poxB) 307 

Pyruvate oxidase [POXB, EC 1.2.2.2] catalyses the oxidative carboxylation of pyruvate to 

acetate and CO2 [69]. This ‘non-essential’ enzyme is a part of the respiratory chain. 

88 22 −++⎯⎯ →⎯−++ ubiquinolCOacetateubiquinoneOHpyruvate POXB  

An elevated intracellular concentration of pyruvate activates this enzyme, suggesting that 

POXB regulates the flux partitioning of pyruvate, presumable to reduce the carbon flux 

towards acetyl-CoA in order to maintain the intracellular pool of CoA for other metabolic 

functions [10]. Abdel-Hamid et al. (2001) [10] investigated the function of poxB in E. coli by 
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knock-out mutants. Inactivation of poxB results in a decrease of 24% of the carbon converted 

into biomass. The amount of carbon necessary for energy production increased with 23%. 

They concluded that puruvate oxidase is essential for a good functioning of the overall 

metabolism. They advised not to use poxB as target to decrease acetate production. However, 

Causey et al. (2004), have reported the beneficial effect of poxB- mutation on pyruvate 

production and cell growth. The relationship between POXB and acetate formation has been 

studied. Vemuri et al. (2005) [70] studied the physiological response of Escherichia coli 

central metabolism to the expression of heterologous pyruvate carboxylase (PYC) in the 

presence or absence of pyruvate oxidase. The presence of PYC activity in E. coli substantially 

increases the cell yield from glucose, particularly for a poxB mutant, biomass which appears 

to be derived directly or indirectly from acetate [70]. Recently, a poxB knockout strain (and 

also knockouts in ldhA and pflB genes) demonstrated significantly reduced acetate formation 

when the strain was subjected to oscillatory oxygenation [71]. 
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3.6 Citrate synthase (gltA) 328 

Citrate synthase [CS, EC 2.3.1.1] is the first enzyme of the Krebs cycle. It delivers acetyl-

CoA in the cycle via binding with oxaloacetate. During this reaction one molecule of citrate is 

formed. 

  SHCoAcitrateCoAacetylteoxaloaceta CS −+⎯→⎯−+

Citrate synthase is inhibited by α-ketoglutarate and activated by NADH+H+ [56] 

This reaction is often indicated as the rate limiting step of the Krebs cycle. Overexpression of 

gltA showed a decrease of acetate production but no real elimination of it [60]. Knocking out 

gltA caused a strong increase of the acetate production, accompanied by an increase in 

formate and pyruvate excretion [72].  
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3.7 Isocitrate lyase (aceA), malate synthase (aceB) and isocitrate dehydrogenase (icd) 339 
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Isocitrate lyase [ICL, EC 4.1.3.1] and malate synthase [MS, EC 2.3.3.9] catalyse the reactions 

of the glyoxylate bypass. Isocitrate lyase converses isocitrate in one molecule succinate and 

one molecule glyoxylate. 

succinateglyoxylateisocitrate ICL +⎯→⎯  

Malate synthase convert glyoxylate and acetyl-CoA into one molecule malate. 

SHCoAmalateCoAacetylOHglyoxylate MS −+⎯→⎯−++ 2  

Besides their role in the Krebs cycle, oxaloacetate and α-ketoglutarate are also used for 

further biosyntheses. This can cause an exhaustion of the Krebs cycle intermediates, because 

of the continuous need for those essential intermediates. The glyoxylate bypass has as goal to 

provide the Krebs cycle with additional oxaloacetate. The switch over from the Krebscycle to 

the glyoxylate bypass occurs at the isocitrate dehydrogenase [IDH, EC 1.1.1.42] step.  

2COHNADPHateketoglutarNADPisocitrate IDH +++−⎯⎯→⎯+ ++ α  

Isocitrate dehydrogenase has more affinity for isocitrate than isocitrate lyase. This regulation 

takes place by reversible phosphorylation of isocitrate dehydrogenase under the influence of 

the intracellular oxaloacetate level. At high levels of oxaloacetate, isocitrate dehydrogenase is 

phosphorylated; this phosphorylated form of isocitrate dehydrogenase is not active and as a 

result, the glyoxylate shunt is activated [57]. 

 

Aoshima et al. (2003) [73] found that knocking out isocitrate dehydrogenase results in an 

increase of citrate. El-Mansi et al. (1994) [74] tried to delete the glyoxylate shunt by 

overexpression of isocitrate dehydrogenase. Because of this, the flux through isocitrate lyase 

decreased, but the intracellular pool of isocitrate became exhausted; they concluded that 

isocitrate dehydrogenase is not the rate limiting step in the Krebs cycle. Farmer and Liao 

(1997) [17] stimulated the flux through the glyoxylate shunt by inactivation of the fadR 
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operon. This operon negatively controls the expression of isocitrate lyase and malate 

synthase. Acetate production decreased with 13% by stimulating the glyoxylate shunt.  

 

Yang et al. (2003) [57] concluded that the glyoxylate bypass is of big importance in the 

regulation of the ratio PPC-shunt/Krebs cycle. A high ratio should give a higher acetate 

production. When the oxaloacetate concentration in the cell is too low, the balance between 

the glycolyse and the Krebs cycle is deregulated, causing acetate production. It has also been 

observed that the glyoxylate shunt is active in a low acetate producer, while it is inactive in a 

high acetate producer [55]. 

 

3.8 Alterations in the coenzyme pools 374 

Most current metabolic engineering studies have focused on enzyme levels and on the effect of 

amplification, addition, or deletion of a particular pathway. 

When enzyme levels are not limiting, the availability and occurrence of coenzymes can 

become limiting. It is conceivable that in coenzyme-dependent production systems, coenzyme 

availability and the proportion of coenzyme in the active form may play an important role in 

dictating the overall process yield. Hence, the manipulation of these coenzyme levels may be 

crucial in order to further increase production [75-78]. 

NADH+H+/NAD+ 

NAD+ plays a significant role in primary metabolism. It is a coenzyme of more than 300 

redox reactions. By using this coenzyme, the cell can maintain its redox state in balance. 

NAD+ and NADH+H+ play a major role in catabolism. To catabolize glucose into precursors, 

NAD+ is used as coenzyme and converted to NADH+H+. In anabolism, NADP+ and 

NADPH+H+ occur more frequently, but with a similar function. The cell regenerates the 

produced NADH+H+ into NAD+ by the reduction of oxygen (under aerobic conditions), or via 
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another oxidising product or via fermentation. It is also generally known that the ratio 

NADH+H+/NAD+ regulates the expression of certain genes, such as adhE, coding for alcohol 

dehydrogenase [EC 1.1.1.1], and the activity of certain enzymes, such as the enzymes of the 

pyruvate dehydrogenase complex [75]. 

Berrios-Rivera et al. (2002) [75] investigated mainly alterations in the ratio 

NADH+H+/NAD+. Under aerobic conditions, formate was added to activate pathways that 

normally do not function. The results were depending on whether the formate dehydrogenase 

was endogenous or not (originating from Candida boidinii). Adding formate to the strain with 

the cell-own formate dehydrogenase under aerobic conditions resulted in a large increase in 

the acetate production compared to the strain with the heterologous enzyme, were a small 

increase of the acetate production was observed [75]. 

Acetate overflow at high glucose consumption rates is believed to result from an enzymatic 

limitation in the TCA cycle causing excess carbon from glycolysis to be shunted acetate or 

from a saturation of the respiratory pathways used to reoxidize NADH [46]. Since the 

glycolysis and TCA cycle generate NADH while acetate formation does not, saturation of 

NADH oxidation at high glucose consumption rates could cause the cell to form acetate in 

order to modulate the redox balance [45]. Recently a strong link was demonstrated between 

redox ratio (in vivo molar concentration ratio NADH/NAD) and acetate overflow metabolism 

in E. coli [45]. The authors revealed that the initiation of acetate overflow metabolism 

occurred above a critical NADH/NAD ratio of 0.06. In addition, the acetate production could 

be delayed by the expression of the heterologous NADH oxidase. Expression of the 

heterologous NADH oxidase coupled with the deletion of the regulatory arcA gene in E. coli, 

increased the glycolytic flux and reduced acetate production [46]. The presence of the 

heterologous NADH oxidase or the absence of ArcA reduced acetate about 50% and 

increased the recombinant protein production by 10-20%. The presence of the heterologous 
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Coenzyme A (CoA-SH) 

A second important type of coenzymes is coenzyme A and its derivates (acetyl-CoA, 

succinyl-CoA,…). Acetyl-CoA is an essential intermediate in many energy yielding 

processes. More than 100 different reactions of the central metabolism depend on this 

substrate. It is the main source of activity of the Krebs cycle [78].  

The intracellular pool contains mainly short chain CoA-thioesters such as acetyl-CoA and 

succinyl-CoA. CoA A-thioesters of long chain fatty acids form the intermediates of the β-

oxidation route and in the production of phospholipids. Besides the major role of CoA-SH in 

these pathways, it has a substantial regulatory effect. CoA-SH inhibits or activates reactions 

of the central metabolism and of the fatty acid biosynthesis [79]. 

The ratio acetyl-CoA/free acetyl-CoA is constant in E. coli cells grown on glucose. This ratio 

might regulate certain enzymes of the central metabolism [56]. 

San et al. (2002) [78] investigated the production and availability of CoA-SH by means of the 

biosynthesis of isoamylacetate. This pathway does not occur in E. coli wild type cells. Acetyl-

CoA is used as substrate for the production of isoamylacetate and thus manipulation of the 

CoA-SH pool influences the production of isoamyl acetate. Pantothenate kinase is the rate 

limiting step in the CoA-SH production. This enzyme is inhibited by CoA-SH and acetyl-

CoA. San et al. (2002) [78] observed small differences in the central metabolism when coaA 

is overexpressed. Acetate and ethanol concentration increased hardly with respect to the 

isoamyl acetate level, which increased 3 times. 
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3.9 Alteration in ATP level 436 
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Metabolic control theory postulates that flux control can be shared by many enzymes in a 

pathway and that control could also reside outside the pathway, for instance, in the process 

that consumes the ATP generated in the glycolysis (ATP demand). Koebmann et al. (2002) 

[80] investigated whether ATP consumption by cellular processes determines the steady-state 

flux through glycolysis, by increasing the current ATP consumption rate. Therefore, they 

introduced an ATP-consuming process that does not interfere with other aspects of 

metabolism. The added ATP activity resulted in up to 70% increase in the rate of glycolysis 

and they estimate that major control (>75%) resides outside the glycolysis, i.e., in enzymes 

that consume ATP.  

 

4 Conclusion and perspectives 447 

Over the last 20 years, substantial research efforts have been spent to reduce acetate 

accumulation during aerobic growth of E. coli on glucose. From the onset it was clear that this 

quest should not be simple. Simple deletion of the acetate pathway, reduced the acetate 

accumulation, but instead other by-products were formed. From the current state of the 

literature, we can conclude that reduction of acetate requires a multigene action. In particular, 

one has to pay attention to the regulation of futile cycles, anapleurotic pathways, coenzyme 

levels, acetate producing pathways and ATP consuming pathways. The expression of the 

heterologous NADH oxidase in an arcA knock-out strain seems promising. However, the 

intuitive prediction of the manipulation consequences of several genes is difficult. In most 

cases the construction of a producer strain did not turn out to be as straightforward as was 

initially anticipated. Indeed, in complex metabolic networks, it is often a difficult task to ad 

hoc predict the impact, both qualitatively and quantitatively, of a genetic intervention [81]. 

Moreover, as the focus in metabolic engineering is shifting from massive overexpression and 
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inactivation of genes towards the fine tuning of gene expression [82-90], the need for a 

reliable, quantitative predictor, i.e. a model, is rapidly growing. The use of metabolic flux 

analysis is vital here. Metabolic models allow a better prediction of genetic interventions and 

can help to predict the construction of the ideal E. coli phenotype.  
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Figure legends 

Figure 1. The central metabolism of Escherichia coli 

 

Figure 2. PTS-system and regulation 

 



Tables 739 

740 Tabel 1. Influence of genetic approaches to minimize acetate formation. Abbreviations: KO: knock-out; OE: overexpression 

pathway  gene protein KO/OE result reference 

PTS ptsG glucose specific enzyme II KO glycolyse flux ↓, 

no acetate excretion 

 

energy metabolism ↓ 

 

acetate ↓ 

 

growth rate ↓, flux to TCA cycle ↑ 

 

acetate ↓, recombinant protein ↑, biomass ↑ 

 

[40] 

 

 

[17] 

 

[43] 

 

[42] 

 

[41] 

 

 arcA regulator ptsG KO 

 

ptsG ↑ 

 

[44] 
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OE glucose consumption ↓ 

acetate accumulation ↓ 

[44] 

   KO ptsG, pykF and 

pykA 

acetate ↓ [43, 91] 

Glycolyse pfk phophofructokinase OE ethanol ↓,lactate and acetate ↑ [92] 

Pyruvate 

branchpoint 

pyk pyruvate kinase KO 

 

 

 

KO PykF 

KO_1: growth rate and acetate ↓ 

 

KO_2: growth rate and acetate ↓↓ 

 

[50] 

 

[51] 

 

[53] 

 pdh pyruvate dehydrogenase Inhibition PDH no acetate production, growrh rate ↓, lactate ↑ [93] 

 pfl 

 

ldh 

pyruvate formate lyase 

 

lactate dehydrogenase 

KO 

 

OE 

 

KO pfl and ldh 

lactate ↑, small ↓ flux acetyl CoA to acetate 

 

acetate ↓ 

 

acetate and lactate ↓, malate ↑ 

[94-96]  

 

[97] 

 

[98] 
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 ppc 

 

 

 

 

pck 

PEP carboxylase 

 

 

 

 

PEP carboxykinase 

KO 

 

 

OE 

 

KO 

 

 

OE 

 

OE ppc and pck 

 

OE ppc or pck 

acetate ↓, growth rate ↓, glyoxylate shunt ↑, 

glycolysis and PPpw ↓ 

 

no/↓ acetate , growth yield ↑,  

 

PEP carboxylation ↓, glyoxylate ↑, no acetate 

on high glucose 

 

acetate ↑ 

 

fermentative products ↑,growth yield ↓ 

 

PPC bypass:Krebscycle ↓↓ 

[60, 62, 63] 

 

 

[17, 59-61] 

 

[57] 

 

 

[59] 

 

[58] 

 

[55, 57] 

 ackA 

pta 

acetate kinase 

phosphotransacetylase 

KO ackA or pta acetate ↓↓, groxth rate ↓, formate and lactate ↑ [2, 11, 54, 97, 99] 

 acs acetyl-CoA synthetase KO no clear conclusions [11] 
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 36

 

OE 

 

acetate ↓↓ 

 

[68] 

 poxB pyruvate oxidase KO C-yield ↓↓ [10] 

 gltA citrate synthase KO 

 

OE 

acetate ↑↑, pyruvate and formate ↑ 

 

acetate ↓ 

[72] 

 

[60] 

 aceA 

aceB 

 

icd 

isocitrate lyase 

malate synthase 

 

isocitrate dehydrogenase 

stimulation shunt 

 

 

KO 

 

OE 

acetate ↓ 

 

 

accumulation citrate 

 

no rate limiting step Krebs 

[17] 

 

 

[73] 

 

[74] 
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