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SOME CHALLENGING FEEDBACK-CONTROL APPLICATIONS IN 
BIOMEDICAL SYSTEMS  

 Natural biological control involves the normal functioning of the living organism (i.e. human body) to 
regulate its parameters such that the vital functions are kept within the normal operating range. When this 
natural control fails, the biological feedback (thus a closed loop system) is unstable and/or operates under non-
optimal conditions of the vital capacity of the subject. In this context, ensuring surviving capacity of the subject 
implies to artificially control the vital functions presenting the functional failure. Nowadays technology enables 
development of artificial closed loop devices to correct and provide the normal functions of the organism, 
replacing thus the damaged/non-optimal parts or helping in recovering their natural properties (rehabilitation 
techniques). Two of the most en-vogue applications of artificial control will exemplify the importance and the 
posed challenges: - a neuroprothesis device to control paralyzed skeletal muscles; this enables rehabilitation of 
drop-foot or hand-grasp movements with paretic or paralyzed skeletal muscles by use of a self-adaptive (auto-
tuning) control strategy; - and an artificial pancreas for diabetes type I patients; the blood glucose control in 
diabetic patients type I is made by use of an in-house developed model-based predictive control algorithm in 
which input (insulin rate) and output (glucose level) are constrained.   

1. INTRODUCTION 

1.1. REGULATION AND CONTROL IN PHYSIOLOGICAL SYSTEMS  

The field of biomedical engineering is relatively young compared to the field of control and 
automation and is one of the most spectacular in terms of interdisciplinarity. It takes knowledge of 
biology, physiology, medical, engineering sciences and so much more to make one ready to explore 
the terra nova of nowadays science. It has been known for many years that the biological world 
contains many feedback mechanisms and structures, and therefore it was appealing for control 
engineers as an un-explored application field [9, 13]. Nowadays, the result is a manifold of 
applications of classic and advanced control strategies to biological systems, as a clearly defined 
ongoing research topic. Scientists applied their knowledge of mathematical modelling and systems 
analysis to various areas of bio-medicine and identified those physiological functions not yet 
described in mathematical terms. This knowledge-information created a playground to control 
engineers but only nowadays, thanks to developments in instrumentation, their ideas and work has 

                                                           

Ghent University, Faculty of Engineering, EeSA Department of Electrical energy, Systems and Automation, 

Technologiepark 913, B9052 Gent, Belgium, *clara@autoctrl.UGent.be 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55793456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

been meaningful, offering practical solutions to modern control problems in biomedicine. The 
overall beneficial impact of controlled biological systems on contemporary societies is a strong 
motivation to pursue in this challenging field.  

Today’s control applications in the field of biomedical engineering can be categorised in four 
main groups: - cardio- and hemo- dynamics control; - artificial limbs, gait analysis; - artificial 
ventilation; - drug delivery systems. The contribution will present and analyse results from two of 
the four categories: locomotion control and drug delivery control. 

1.2. GOAL OF THIS CONTRIBUTION  

The goal of this contribution is to give a practical-oriented overview upon 2 of the hot-spots 
in control applications within biomedical engineering area. As mentioned earlier, they tackle 
locomotion control and drug delivery control. Such systems are usually time-variant, nonlinear and 
pose constraints. They are highly dependent on developments in instrumentation and have a 
significant impact in the patient’s life and consequently in the society. Performance analysis is 
provided both from the control engineering as well as from the physiological standpoint, in terms of 
real-life implementation.  

The first example deals with a paralyzed skeletal muscle control via functional electrical 
stimulation and is the subject of the second section of this paper. An autotuning technique – no 
model of the system to be controlled is required – is presented along with its simulation results. 
Direct adaptive control (DIRAC) strategy is implemented in a discrete manner to simulate real-life 
practical implementation aspects. A nominal linearized model of the skeletal muscle is used for 
simulation purposes.  

In a third section, the next example makes a comparison in terms of complexity between the 
use of a linearized model and a nonlinear model of a type I diabetic patient, in a predictive control 
scheme. An in-house Extended Predictive Self-Adaptive Control (EPSAC) algorithm is used to 
perform tests. Real-life constraints are imposed and results are provided by simulation.    

Results are discussed by means of implementation and performance analysis in a fourth 
section and the main ideas of feedback control loops within biomedical applications are stressed.  

2. APPLICATION I: PARALYZED SKELETAL MUSCLE CONTROL 

Artificial control of paralyzed or paretic muscles (i.e. neuroprothesis) became a challenging 
field and lately an important research topic, stimulated by the advances in technology and 
instrumentation. One of the latest research outcome in this topic is the use of functional electrical 
stimulation (FES) to produce force in a skeletal muscle control loop [14]. A DIRAC (DIRect 
Adaptive Control) control strategy makes the objective of this feedback-controlled application 
study. The DIRAC algorithm is both an auto-tuning as well as an adaptation method for the 
controller parameters. Since paralyzed or paretic muscles are time-varying systems, an 
adaptive/auto-tuning method is therefore justified. A simple simulation on a muscle model adapted 
from literature is performed and the controller performance for reference tracking is depicted. A 
comparison between a classical control approach (PI and PID) and a DIRAC-PI controller is given 
in [10], including some implementation aspects of a model without time-delay considerations.  



 

 

2.1. A SIMPLIFIED MUSCLE MODEL  

A linear model capturing the properties of a muscle under isometric conditions can be 
represented by a 2nd order transfer function [6]: 
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 The parameters (450, 5, 20, 0.005) are a set of nominal parameters and their value can 
change (considerably) from person-to-person. These parameters depend on the physical condition 
of the muscle, age etc. In case of a paralyzed muscle, important variations are observed during the 
rehabilitation period. The time delay occurring between the nervous activation and calcium release 
in muscle to obtain contraction has been taken into account (from control engineering standpoint, it 
is of no importance, because this time-delay is very small compared to the system time constants). 

The input to such a model is a stimulus occurring with a certain frequency and the 
output is the force given by the contraction of the muscle, as in Figure 1. The input 
frequency is limited between 5Hz – 50Hz (the frequencies for which the static characteristic 
is linear and corresponds to equation (1)). From a mathematical standpoint, the response y(t) 
of the process M(s) to an input ( )u t (= frequency F) is the effect of a series of impulses with 
period T (= 1/F) applied as input. A simple experiment (unit impulses) depicted by Figure 2 
shows the output of the process corresponding to (1) and, having the time constants: 
1/20=50 ms and 1/5=200 ms, a total open-loop settling time of about 1 second. 

+Force (N) Force (N)

Stimulator Muscle Model

0.005450( )
( 5)( 20)

seM s
s s

−

=
+ +

Frequency (Hz) s(t)

OL

Controller
-

e(t)

CL

w(t) u(t) y(t)

+Force (N) Force (N)

Stimulator Muscle Model

0.005450( )
( 5)( 20)

seM s
s s

−

=
+ +

Frequency (Hz) s(t)

OL

Controller
-

e(t)

CL

w(t) u(t) y(t)

 

Fig.1 Block scheme of muscle model simulation (open loop OL and closed loop CL configuration) 
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Fig.2 Single Twitch (dotted) and Summation of Twitches (continuous) at 5Hz (unit) impulse frequency in open 
loop (left) and a closed loop response with a DIRAC-PI controller (right)  



 

 

2.2. A DIRECT ADAPTIVE CONTROLLER: DIRAC  

Controller design is based on using the auto-tuning principle, which automatically finds a set 
of PI(D) parameters without an a priori process identification (i.e. no model required). A brief 
description is provided in this section and more details can be found in [3]. 

The PI(D) parameters can further be used in a discrete-time control scheme, with a software 
implemented controller: 

0 1 2( ) ( 1) ( ) ( 1) ( 2)u t u t c e t c e t c e t= − + + − + −                                     (2) 

with the error being the difference between the desired force w(t) and the measured force y(t):  

                                    ( ) ( ) ( )e t w t y t= −                                                            (3) 

Denoting the shift-operator: 1 ( ) ( 1)q e t e t− = − , results: 
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and the control loop is depicted in Figure 1.  
In [3] is mentioned that “the DIRAC algorithm can be considered as an auto-tuning as well as 

an adaptation method”. Indeed, since the identification of the controller parameters is done within 
the DIRAC strategy, there is no need for a priori specifying a model of the process, thus 
functioning as an auto-tuning method. Secondly, if used on-line, the PI(D) parameters are adapted 
continuously, resulting thus in a direct adaptive controller. The use of auto-tuning or adaptive 
control seems appropriate for control of skeletal muscles, since they are known to be time-varying. 
The adaptive control method described in this section is easy to understand and simple to apply. In 
the context of an unknown process model, the assumption that the muscle and the stimulator are 
described by an unknown (discrete-time) transfer function 1( )MS q−  leads to the closed loop 
transfer function: 
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The design performance of the closed loop is specified by a reference model, 1( )R q− , given a 
priori. For example, one of the desired characteristics of the closed loop response can be the settling 
time. The task of controller tuning is to find 1( )C q−  (i.e. 0 1 2,  and c c c ) such that the closed-loop 
transfer function from (5) approximates the desired reference model 1( )R q− . This can be written as: 

1 1 1 1 1( )(1 ( )) ( ) (1 ) ( )C q R q MS q q R q− − − − −− ≅ −                                 (6) 

Applying (6) to the time-signal ( )u t , results in 
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and becomes:                          1 1 1 1( )(1 ( )) ( ) (1 ) ( ) ( )C q R q y t q R q u t− − − −− ≅ −                                       (8) 

Defining the filtered signals:     1 1 1( ) (1 ) ( ) ( ),  ( ) (1 ( )) ( )f fu t q R q u t y t R q y t− − −= − = −                 (9) 

and introducing the error signal ( )tε , (8) becomes: 

1( ) ( ) ( ) ( )f fu t C q y t tε−= +                                               (10) 

The final step is to estimate (e.g. via least-squares estimator) the parameters in the polynomial 
1( )C q−  such that the errors ( )tε  are minimized. The overall scheme is presented in Figure 3. 
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Fig.3. Scheme of the DIRAC Strategy  Fig.4. Effect on results of the numerical errors in the stimulus function 

Notice that for the simulation presented in this contribution, DIRAC algorithm has been used 
off-line, for initial tuning of a PI controller; nevertheless, the method can be easily implemented on-
line, as a direct adaptive controller. The DIRAC-PI controller parameters applied in this case are: 
Kp=0.01 and Ti=0.01, with a sampling period of Ts=10 ms. 

2.3. PERFORMANCE ANALYSIS  

The experiment consisted in changing the reference set-point (= force) from 45N to 95N. On 
a scale of 22.5N-225N (corresponding to the nominal input range of 5Hz-50Hz), a set-point change 
of 50N is about 25%. The result given by the controller is depicted in Figure 2 along with its 
corresponding control input. Applying adaptive control techniques for skeletal muscle control is 
strongly motivated by the time-varying character of the system (i.e. in rehabilitation systems). In 
[10] it has been shown that a similar performance can be obtained with an adaptive control strategy 
as with a controller which is designed based on the model of the system. However, the obvious 
advantage is that DIRAC strategy does not require an a priori knowledge of the model, it can be 



 

 

easily used on-line (and implemented in discrete time) and tackles the problems imposed by time-
varying systems. 

An interesting challenge is posed by the software implementation of such a stimulus function, 
due to its discrete nature. If some conditions for numerical accuracy (timing) are not respected, the 
results are strongly influenced (Figure 4). More detailed description of this issue is given in [10]. 

3. APPLICATION II: GLUCOSE LEVEL CONTROL IN TYPE I DIABETIC PATIENTS 

Diabetes Mellitus is an incurable disease affecting millions of people worldwide. Belgium is 
one of the leading countries in the astringent fight against the increasing number of diabetic patients 
so that this contemporary disease does not reach its current prediction of 50 million victims in 
Europe by 2025 [8]. In parallel, scientists are focusing on developing a manifold of new techniques 
and feasible instrumentation to offer wearable solutions and improve the life of type I diabetic 
patients. Type I, or insulin-dependent diabetes mellitus, is characterized by insufficient secretion of 
insulin from the pancreas, resulting in plasma glucose concentrations elevated beyond the 
normoglycemic range (65-120mg/dL). 

The treatment methods for insulin-dependent diabetes, subcutaneous insulin injection or 
continuous infusion of insulin, usually result in frequent variations of glucose concentration in 
blood. Therefore, a significant effort has been put toward the development of a device to control 
glycemia [1, 7, 12] and the methods are continuously improved. A device of this type would contain 
three major components: i) a pump; ii) an in vivo glucose sensor; and iii) a processor with a 
mathematical algorithm to regulate the pump given a sensor measurement. Technological advances 
allowed a wide variety of programmable and variable-rate infusion pumps to become available. 

An in-house predictive control algorithm (EPSAC) [4] has been implemented to control blood 
glucose level in type I diabetic patients, by controlling the insulin infusion rate of a pump. 
Comparison between the performance obtained with a linear model and a nonlinear model used in 
the prediction algorithm is discussed. Controller performance was assessed in terms of its ability to 
reject a meal disturbance (30g glucose) around the normoglycemic setpoint (81mg/dL) and around a 
glycemic point of no practical interest, but for academic purposes. Results from unconstrained 
control are presented, and the control strategy has discrete representation, being feasible for 
implementation in wearable embedded processor devices. 

3.1. A GENERALIZED PATIENT MODEL 

An injected glucose load in normal (glucose tolerant) individuals immediately elevates the 
glucose concentration in plasma. This initiates the secretion of insulin from the pancreatic ß-cells. 
The provoked hyperglycemia induces an immediate peak in the insulin concentration in plasma, and 
the glucose uptake in muscles, liver and adipose tissue is raised by the remote insulin in action. This 
lowers the glucose concentration in plasma, affecting the ß-cells to secrete less insulin (biological 
feedback). By 1 hour the glucose concentration is normalized and in the following 2 hours a 
moderate undershoot is observed. After 2-3 hours, it is usually found that the perturbed insulin and 
glucose concentrations have returned to normal. A simple yet reliable mathematical representation 
of glucose and insulin kinetics is necessary before implementing the EPSAC model-based control 
scheme. The Bergman minimal model was investigated [2]. A generalized (averaged) model has 
been derived based on the patient data from [2] and the values of the coefficients describing 
glucose kinetics are: p1=-3.38*10-2 min-1 ; p2=-2.09*10-2 min-1 ;  p3=7.512*10-6 min-2/µU/ml, 
respectively, the values of the coefficients describing the insulin kinetics are: γ=2.756*10-3 



 

 

µU/mg min2 ; h=98.08 mg/dl; n=0.214 min-1. These coefficients are used in the following 
differential equations: 
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where:  
 

p1 – a constant rate for glucose uptake in muscles, liver and tissues;  
p3 is referred to as the insulin-dependent increase in glucose uptake ability in tissue; 
p2 – a constant denoting intra-cellular metabolism of the remote insulin effect; 
I(t) – plasma insulin, fills a remote insulin compartment with a constant rate p3; 
X(t) - denotes the dynamic insulin response proportional to the active insulin in the remote 

compartment and describes the time dependent effect of the insulin on the net glucose 
disappearance; 

G(t) - the plasma glucose concentration governed by the balance between the glucose 
production/uptake by the liver and the utilization of glucose by the peripheral tissues;  

GB and IB - basal levels of glucose and insulin 
n - the fractional disappearance of insulin  
h - threshold level for ß-cells release 
γ - the rate of ß-cells release 
U(t) - the insulin infusion rate delivered by the pump.  
A detailed description for the compartmental model and its parameters can be found in [2].  

3.2. AN IN-HOUSE PREDICTIVE CONTROL: EPSAC 

The EPSAC strategy [4] is based on a generic process model:  

( ) ( ) ( )y t x t n t= +                                                                 (13) 

The disturbance n(t) includes the effects in the measured output y(t) (in this case: glucose 
concentration G(t)) which do not come from the model input u(t) (in this case: insulin infusion rate 
U(t)) via the available model. These non-measurable disturbances have a stochastic character with 
non-zero average value, which can be modelled by a coloured noise process: 

1 1( ) ( ) / ( ) ( )n t C q D q e t− −⎡ ⎤= ⋅⎣ ⎦                                                        (14) 
with: e(t) - uncorrelated (white) noise with zero mean value;  C(q-1) and D(q-1) - monic 

polynomials in the backward shift operator q-1 of orders nc and nd. The filter C(q-1)/D(q-1) is 
considered to be a design filter [5]. The model output x(t) represents the effect of the control input 
u(t) on the process output y(t) and is also a non-measurable signal, and the relationship between u(t) 
and x(t) is given by the generic dynamic system model, which can be obtained from (12): 



 

 

[ ]( ) ( 1), ( 2), , ( 1), ( 2),x t f x t x t u t u t= − − − −                                    (15) 

The fundamental step in MBPC methodology consists in prediction of the process output 
y(t+k) at time instant t, indicated by { }2( | ), 1y t k t k N+ = … , over the prediction horizon N2, and 
based on: 

- the measurements available at sampling time instant t: { }( ), ( 1), , ( 1), ( 2),y t y t u t u t− − − ; 

- the future values of the input signal (postulated at time t): { }( | ), ( 1| ),u t t u t t+ . 
Using the generic process model, the predicted values of the output are: 

( | ) ( | ) ( | )y t k t x t k t n t k t+ = + + +                                                   (16) 

Prediction of x(t+k|t) and of n(t+k|t) can be done respectively by recursion of the process 
model (13) and by using filtering techniques on the noise model (14). 

The future response is considered as being the cumulative result of two effects: 

base optimize( | ) ( | ) ( | )y t k t y t k t y t k t+ = + + +                                          (17) 

Refer to Figure 5 for the concepts of base and optimizing controls. Notice that u(t+k|t) is 
constrained to be constant from k=Nu on (and this is realized by selecting ubase(t+k|t) constant from 
k=Nu on and by imposing that δu(t+k|t) should be constant from k=Nu on). The design parameter Nu 
is called the control horizon (a well-known concept in Model Based Predictive Control literature). 
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Fig. 5   The EPSAC concept of base/optimizing controls 

Equation (17) is valid, however, for linear systems only (from the principle of superposition). 
For nonlinear systems, by selecting the base control strategy ( / )baseu t k t+  appropriately, the term 

( / )opty t k t+  can be made zero in an iterative way. This will result in an optimal solution for 
nonlinear systems, without a preliminary linearization of the system. The nonlinear model is then 
used directly to calculate the base responses ( / )basey t k t+  at every iteration and also for calculating 
the required step and impulse response coefficients (G-matrix). The key EPSAC-MBPC equation is: 

= +Y Y GU                                                                  (18) 

where (with [...]T  denoting the matrix transpose):  
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The controller output is then the result of minimizing the cost function: 
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with ( | )r t k t+  the desired reference trajectory (desired glucose level) and the horizons N1, 
N2 being design parameters. 

The cost function (20) is a quadratic form in U, having the following structure using the 
matrix notation from (19) and with R defined similarly to Y (but containing the ( | )r t k t+  values): 

( ) [ ] [ ]TV = − − − −U R Y GU R Y GU                                               (21) 

which leads after minimization w.r.t. U to the optimal solution: 

* 1[ ] ( )T T−= −U G G G R Y                                                     (22) 

The matrix GTG which has to be inverted has dimension Nu x Nu. For the default case Nu=1, 
this results in a simple scalar control law. Only the first element ( / )u t tδ in U* is required in order 
to compute the actual control input applied to the process: 

base base( ) ( | ) ( | ) ( | ) (1)u t u t t u t t u t tδ ∗= + = +U                                         (23) 

At the next sampling instant t+1, the whole procedure is repeated taking into account the new 
measurement information y(t+1). This is called the principle of receding horizon control, another 
well-known MBPC-concept. A detailed description of the algorithm is given in [4] with some 
practical guidelines for implementation, extensions to constrained control and multi-input, multi-
output case with examples. 



 

 

3.3. LINEAR VERSUS NONLINEAR EPSAC PERFORMANCE 

If insulin is applied in excess, the blood glucose level goes below normal (<65mg/dL) causing 
hypoglycemia. On a short term, hypoglycemia can induce fainting, muscle convulsions, deeper state 
of consciousness-loss such as coma. On the other hand, if insulin is supplied insufficiently, the 
blood glucose level elevates above the normoglycemia values (>120mg/dL) causing the condition 
known as hyperglycemia. It is thought that most of the long-term complications associated with 
diabetes, such as nephropathy (any kidney disease) and retinopathy (diseased condition of the eye-
retina, esp. non-inflammatory) result from sustained hyperglycemia [11], thus an immediate return 
to the normoglycemic values is important.  

As mentioned before in the beginning of this section, the effect of infusing (exogenous) 
glucose is examined and controllers (linear-LEPSAC, nonlinear-NEPSAC) are compared. Notice 
that the insulin infusion rate is also constrained between 0-100 mU/ml (it cannot go negative 
because it cannot be taken out of patient’s body). It is expected that the nonlinear model used with 
NEPSAC leads to improved results compared to the linearized model used in LEPSAC. A bolus 
(e.g. meal) of 30g glucose is considered as the input disturbance to the closed loop system. In the 
first case, the reference is considered within the normoglycemic range: 81mg/dL and the output 
result (glucose level) along with its corresponding control effort (insulin injection rate) are depicted 
in Figure 6-left.  
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Fig. 6 Disturbance rejection around the normoglycemic point of 81.1mg/dL (left) and 50mg/dL (right) 

Looking at Figure 6-left, can be observed that the linear EPSAC (based on a linearized model 
around the 81.1mg/dL point on the static characteristic of the system – equation 24) gives similar 
performance as the nonlinear EPSAC (based on the direct use of the nonlinear model of the patient). 
This observation is however based on a comparison between the two controllers which is not 
realistic: the command for the nonlinear EPSAC between 0.5–1hour is zero and the system can be 
considered in open loop! Therefore, in order to make a real performance comparison, the system 



 

 

must be tested in an operating point where the control effort is not enter the constrained area (here 
we are not using constrained EPSAC algorithm; the constraints are imposed after the calculation of 
the optimal command). The point of 50mg/dL has been considered as the novel operating point and 
the results are given in Figure 6-right (LEPSAC uses the corresponding linearized model – equation 
25). Notice that the control design parameters are always the same for both situations and both 
linear and nonlinear EPSAC algorithm: Nu=1, N1=1,N2=20, with a sampling period of 3 minutes.  

4. DISCUSSION 

The use of adaptive autotuning control strategies such as DIRAC in closed-loop control of 
paralyzed skeletal muscles is strongly justified by the inter- and intra- patient variability. The 
muscle properties differ from person to person (e.g. age, weight, fit) as well as from one time-
interval to another (e.g. in recovery, rehabilitation systems). In [10] has been shown that 
comparable results can be obtained without knowledge of a muscle-model (thus no need for a 
preliminary identification of the muscle!). This means that a wearable device can be supported, 
applied and used successfully on any patient, due to the auto-tuning, adaptive character of the 
DIRAC control strategy. Taking into account the time delay present in the system is important for 
real life applications, and satisfactory and stable results are obtained.  

Regarding the second example, using predictive control gives a possibility to estimate the 
future glucose behaviour based on the past insulin inputs. The measurement of the patient’s actual 
glucose level is used as feedback signal to correct the glucose concentration predictions (based on 
the patient model). By definition, the predictive controller takes action for a predicted hypo- or 
hyperglycemic state of the patient before it occurs. Moreover, if used in constrained control, the 
predictive algorithms provide optimal results in coping with the imposed constraints on input-
output variables. However, in the present contribution has not been applied constrained control to 
EPSAC, but the design of the Nu, N1 and N2 parameters had been made such that it copes 
reasonably well within the imposed constraints (limits are applied after calculation of the controller 
output).  

An interesting application of the EPSAC algorithm to blood glucose control in type I diabetic 
patients has been provided, with a practical interpretation of the control problem. Constrained 
control and robustness tests within the normoglycemic range are the subject of ongoing research 
with possibilities for implementation in a wearable device. The example for second linearization 
point (50mg/dL) has no relevance in practice, but it is used to compare the performance of the two 
controllers, whereas the control action lies within the constrained zone (0-100mU/ml insulin 
infusion rate).  

In the context of real-life implementation, a common advantage of the DIRAC-PI and 
EPSAC-MBPC strategies stand in their discrete nature, making them feasible for implementation in 
nowadays DSP (digital signal processing) circuit technology. 

5. CONCLUSIONS 

The present contribution has given a brief overview upon the practical problems posed to a 
control engineer. The task of developing stable and robust control algorithms does not limit to a 
simple mathematical description. Real-life constraints and hardware/software limitations are to be 
tackled in an optimal manner, providing a feasible, practical oriented solution. 

Although a more advanced control can be applied to these 2 examples (i.e. constrained 
nonlinear predictive control), the aim of this presentation has been limited to a simple but 



 

 

satisfactory solution. Performance is discussed from practical implementation requirements, as well 
as from an academic point of view. A more technical description of the implemented algorithms is 
provided by use of referenced publications.  

Robustness tests make the objective of an on-going research for both applications, with the 
long-term aim to be implemented in a real-life wearable device. 
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