
Gathering Skills for Embedded Systems Design

Peter Bertels
peter.bertels@ugent.be

Michiel D’Haene
michiel.dhaene@ugent.be

Dirk Stroobandt
dirk.stroobandt@ugent.be

Tom Degryse
tom.degryse@ugent.be

Department of Electronics and Information Systems
Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

ABSTRACT
Smart devices are omnipresent today and the design of these

embedded systems requires a multidisciplinary approach. It is

important that students in electrical engineering and computer

science learn all aspects of the design of such systems. Our

course on Complex Systems Design Methodology presents an

overview of embedded systems design with a strong focus on the

main concepts, preparing the students for more detailed follow up

courses on specific topics.

Imparting the theoretical concepts to the students is not sufficient,

however. Hands-on sessions are indispensable for the students to

acquire the necessary skills. In this paper we present our

approach for these hands-on sessions, which is to pose relatively

small problems in separate sessions, each focusing on a single

design aspect.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information

Science Education – computer science education, information

systems education.

General Terms
Design, Experimentation, Human Factors, Languages.

Keywords
Embedded Systems Education, Specification, Transaction-level

modelling, Architecture Exploration, Optimisation.

1. INTRODUCTION
Our world is constantly changing. Too a large extent, this is a

consequence of the technological revolution that is taking place at

an ever increasing pace. It has a significant impact on our social

lives, as exemplified by the exponential increase in the number of

cell phone users over the last decades.

The beginning of last century marked the industrial revolution.

By the end of the same century, we were already amidst the

technological revolution, bringing us the era of smart devices.

The tremendous increase in computational power available in

appliances was brought mainly by the boom in digital design.

Surfing on Moore’s Law, billions of chips could be produced at

low cost and with ever increasing functional capabilities. Yet, the

exponential scaling also made the design of these chips much

more difficult, requiring a step up into the hierarchy of abstraction

levels in order for designers to be able to cope with the increased

complexity. At the same time, integration of software and

hardware aspects has introduced embedded systems.

Having become very relevant in an industrial context, embedded

systems design cannot be left without a proper education of

electronics and/or computer science engineers in this new domain.

As acknowledged by the ARTIST Guidelines for a Graduate

Curriculum on Embedded Software and Systems [1], embedded

systems education should be multidisciplinary and contain aspects

of control and signal processing, computing theory, real-time

processing, distributed systems, optimisation and evaluation, and

systems architecture and engineering. In our view, this list should

be extended with hardware design for embedded systems as often

processing elements have to be augmented with specific hardware

blocks performing special functions.

As is apparent in multidisciplinary curricula, it is difficult for

students to grasp the big picture from the separate pieces that are

provided in courses within an embedded systems curriculum.

Therefore, we claim it is important to provide students with an

overview course that introduces the main concepts of embedded

systems design and combines them to a complete picture of what

embedded systems design entails. This course should be

considered a backpack enabling students to further extend their

knowledge by taking more detailed courses on the various

subjects and put them in their backpack. This is the approach we

have taken in designing an embedded systems curriculum at

Ghent University in Belgium.

Providing the students with the backpack (course) is not

sufficient. They also need to know how to wear the backpack and

how to use the tools present inside the backpack. Putting the

courses into practice is therefore crucial. This has also been

acknowledged by the ARTIST Guidelines [1]. However, in this

paper, we will elaborate on how this can be done in practice. In

contrast to the overview focus in the theoretical sessions, we do

not advocate one big project where students have to actually

design a complete system as this tends to make them get lost into

the details. We rather focus on the main concepts needed for a

well-designed embedded system and on the skills students have to

acquire for this. Therefore, we present relatively small problems

in separate sessions, each focusing on one aspect. We also try to

state problems from their own daily environment so that at least

the problem is not new and they can focus on the concepts and

skills that bring them to the right solution. Once the students have

finished these exercises, they are ready to learn how to combine

these practical experiences into a big project, which is, in our

university, possible in a separate hardware design project course.

30

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55778932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In the remainder of this paper, we will explain the main

intricacies of embedded system design in Section 2, showing the

importance of educating engineers in this domain. We then

discuss the main concepts and skills for embedded systems design

that we focus on in Ghent University. In Section 3, we introduce

the practical exercises to illustrate these concepts and skills in

more detail. Finally, Section 4 explains our way of interacting

with the students and our yearly student evaluation of the course.

2. WHY TEACHING EMBEDDED

SYSTEMS DESIGN?

2.1 Embedded Systems Design
The technological revolution is mainly driven by Moore’s law,

stating that the number of transistors per chip is doubling every 18

months. This law originally (in the ‘60s) was an empirical

observation made by IBM employee Gordon Moore but it quickly

began driving the EDA (Electronic Design Automation) industry,

thus turning into a self-fulfilling prophecy. Moore’s law has

enabled ever more powerful systems on the same die area. The

doubling of the number of transistors per unit area every

technology generation allowed designers to put more functionality

on a single chip, even to the amount that it is no longer

manageable. This leads to the infamous design gap as the number

of designers or the time needed for a large design can no longer

keep up with Moore’s law. In order to further improve

productivity, the only solution is to reuse big existing designs and

combine these. This is called IP (Intellectual Property) Reuse.

Where this combination of ‘chips’ to a complete system used to

be done at the board level, it is now possible at the chip level,

leading to a System-on-Chip (SoC) design methodology. In such

a SoC, scheduling and arbitration are becoming more important,

bringing software issues to the hardware designer’s world.

With the increase in compute power, also the applications are

getting more demanding. Ubiquitous computing is becoming the

name of the game and people are starting to expect access to high

quality multimedia data (especially video) everywhere. This puts

an enormous pressure on multimedia hardware systems and

requires the use of specialised architectures and the exploitation

of massive parallelism. At the same time, however, applications

demand a high amount of flexibility from the devices as they are

rapidly changing and frequent updates need to be possible in the

devices that have to run the applications. This is not possible with

Application Specific Integrated Circuits (ASICs) and requires a

processor architecture. Current systems therefore generally

consist of hardware acceleration blocks that co-exist with a

software oriented processor environment. Hardware design has

thus turned into hardware/software co-design, with a lot of

emphasis on the new bottleneck: the communication between the

processor and dedicated hardware.

While embedded systems design in Europe has mainly been

driven from a software and real-time perspective (as exemplified

by the successful European ARTIST Network), the original need

for more abstract levels of design and the introduction of system

design on a single chip have been arisen out of the hardware

world, mainly the hardware design gap. Using our background as

a hardware design group, we tend to look at embedded systems

design from this hardware perspective. This provides us with a

rather unique view on embedded systems education.

Given the strong link between hardware and software design in

today’s systems, university education should focus on

hardware/software co-design and train new electrical engineers

and computer scientists in this new cross-disciplinary domain.

Figure 1: The design methodology for designing complex

systems.

2.2 Embedded Systems Education
At Ghent University, we recently adopted a new educational

(Bachelor/Master) structure, with a separate option within the

Master of Computer Science Engineering dedicated to Embedded

Systems. This new option is specifically targeted at the

hardware/software interface. This was intended to address the

need for a more modern education at the forefront of the technical

evolutions. A key course in this is the course on Complex

Systems Design Methodology, which is the main subject of this

paper. It is drafted to be the basic complex (embedded) systems

design course, providing a broad overview of the systems design

methodology (see Figure 1). Within this methodology, many

hooks are provided for other courses that go much deeper into the

details of several aspects of complex systems design, such as

analog design, sensors and actuators, digital hardware design

(ASICs and FPGAs), advanced computer architectures,

scheduling and RTOS (Real Time Operating Systems), interface

design etc. Not all these courses are available at our university

(yet), but students can choose several detailed courses within their

curriculum that fit into this complex systems design framework.

Our course on Complex Systems Design Methodology follows the

design flow described in Figure 1 and focuses on the front end

design steps of specification, architecture exploration and

hardware/software partitioning. Fully in line with the backpack

approach, the remaining design steps are only briefly touched

upon and presented as hooks for further courses, such as existing

courses on hardware/software co-design (that is more focused on

digital hardware design), a course on analog design and several

courses on software architectures, software design and

compilation. However, in the second part of the course, we do

focus on some specific optimisation aspects for embedded

systems design. We first emphasise early performance estimates

(of speed, area, power, cost, etc.) that are needed for a good

architecture exploration. A chapter is also devoted to

optimisations of data locality (to optimise memory structures and

31

data transfers). And because interfaces between hardware and

software are not part of any other course, this important aspect of

embedded systems design is also addressed in our course.

As stated in the introduction, the focus of the course is on the

basic concepts and skills needed for embedded systems design.

This already begins with the system specification, where the

importance of a formal functional specification is addressed,

together with the need to also describe non-functional design

aspects to clearly formalise the requested performance. Formal

ways of describing concurrency, state machines, communicating

processes lay the basis for the following design steps.

One of the important things we feel students should learn is that

there is no single embedded systems design methodology.

Designing always is a matter of making trade-offs. Depending on

the problem at hand, the desired performance features and the

available options in the design space, a completely different

solution might be suggested for two designs that are intrinsically

very similar. This may seem natural to people designing systems,

it makes teaching system design very difficult. The course

therefore spends ample time on the most important performance

measures: currently power, cost, time-to-market, latency,

bandwidth, and area are the major ones. Not only should students

know why these are important, also the impact of current

technologies on these performance measures is important.

One of the critical issues is the design level at which trade-offs

are made. In the first design stages, the design description is very

abstract. Yet, one immediately is confronted with very important

design decisions on the architecture of the system. In this

architecture exploration step, not a lot is known about the details

of the final implementation (as the idea is exactly to abstract most

of this away). This leaves a lot of implementation choices for

later but it also means it is hard to say something about the

relative performance of the solutions to choose from. Therefore,

very early high-level performance estimations are paramount.

The estimates at this level will not be very accurate but they

should give a good relative appreciation of the solutions in order

to retain the right architectures.

After (and sometimes during) architecture exploration, one also

has to decide which parts of the problem will be handled by

software and which parts should be taken care of by a hardware

component. This hardware/software partitioning again induces a

very important trade-off, that of flexibility versus computing

strength (time needed to perform a certain task).

Imparting the above theoretical concepts to the students is not

sufficient, however. When teaching a course on complex systems

design, hands-on sessions are very important. Indeed, students

can only learn the intricacies of complex systems design by

hands-on experience. Hence, we specifically paid attention to

setting up relevant practical exercise sessions for the students.

For each of the main steps in the flow, important concepts and

skills are illustrated in practical examples and exercises, as

described in Section 3.

3. HANDS-ON SESSIONS
Our practical sessions elaborate on the basic parts of the em-

bedded systems design flow presented in Figure 1: specification

and architecture exploration. The hardware/software partitioning

step has a major impact on the design of the communication

infrastructure. These aspects are covered in a session on

transaction-level modelling. Finally, as the second part of the

course details important performance aspects in embedded

systems design, a last set of practical sessions introduces the

students to optimisations of data locality.

3.1 System Specification
The first step in the design methodology of embedded systems is

the specification of the system. This specification describes the

desired behaviour of the system as a black box with inputs and

outputs. At this stage in the design flow the implementation

details of the proposed system are not important yet. The

specification merely defines exactly how the system should

respond to its inputs. It needs to be clear, unambiguous and

readable for humans as well as for computers. Specification in

this context is purely functional. Although non-functional

properties are evenly important, commonly used system

specification languages have no means to describe them.

Therefore, we deal with non-functional properties during

architecture exploration in Section 3.3.

In this course several specification languages are discussed. For

the hands-on exercises we have selected only two of them:

StateCharts [4] and Petri nets [6]. StateCharts are chosen because

they are an extension of the basic concept of finite automata that

was already introduced in a preceding course on Digital

Electronics. Petri nets are handled because they express impor-

tant and often critical properties of dynamic systems: mutual

exclusivity and concurrency. UML diagrams are also discussed

in the theory sessions but not included in the practical sessions

because they are already extensively treated in software courses.

We want to focus on several interesting aspects of StateCharts and

Petri nets separately. To take all these aspects into consideration

without loosing the overview or without overwhelming the

students, we have prepared several small pencil and paper

exercises. The students learn to make an exact, unambiguous and

standardised specification out of a vague initial system

description. Attention is also given to interpreting the behaviour

of systems by means of a formal specification.

3.1.1 StateCharts
As indicated above StateCharts are an extension of finite

automata which are introduced in a preceding course. One of the

most important new aspects is hierarchy which enables large

complex systems to be expressed comprehensibly. In

StateCharts, hierarchy is expressed in AND and OR super states.

AND super states express that the system is concurrently in

several states, one of each AND part. OR super states indicate

that the system is either in one of several states.

32

In the first exercise we specify an intelligent light switch with two

buttons: an on/off button and a dimmer button. Our system,

depicted in Figure 2, has 6 brightness levels which can be

accessed by pushing the dimmer button several times. The

intelligent switch remembers the brightness level of the last time

the light was on. The dimmer button increases the level from 1 to

6. When the maximum is reached the level starts decreasing

again. Therefore the direction (increasing/decreasing) has to be

modelled as an explicit state. The system intrinsically has 24

states in total (6 x 2 x 2). Nevertheless, StateCharts can express

this in a smaller and comprehensible diagram using hierarchical

states.

The second assignment builds on the first intelligent switch to

make an even more intelligent switch with just one button.

Holding the button for more than half a second increases or

decreases the brightness level. Pushing the button for a short time

(less than 0.2 seconds) toggles the light on or off. This additional

time behaviour can be represented in StateCharts by using timeout

blocks as shown in Figure 3.

To further practise the newly learned concepts we present a few

more problems such as an underground car park with sensors to

count the incoming and outgoing cars and a traffic light system

with a pedestrian button.

3.1.2 Petri Nets
Petri nets originate from the Ph.D. thesis of Carl Adam Petri and

have been augmented with several other types. We discuss three

of these types in the session: basic condition event nets, place

transition nets and coloured Petri nets. In condition event nets the

conditions are either true or false, represented by the presence or

absence of a token. Place transition nets take this concept to a

higher level by allowing multiple tokens in one place. For these

nets also transitions can require or produce multiple tokens. In

place transition nets all tokens are equivalent, which is not the

case in coloured Petri nets where each individual token has its

own identity.

Petri nets can express fundamental relations between operations in

the system such as concurrency or exclusivity, illustrated in our

examples. A detailed description of all examples is beyond the

scope of this paper. In short we have an exercise on a call centre

where each operator has a specialisation to handle certain calls.

This example illustrates queuing where callers have to wait until a

suitable operator becomes available. Another exercise is about an

airport where multiple runways cross each other. A Petri net is

used to express the mutually exclusive use of these runways.

 Figure 2: First version of the intelligent switch. Figure 3: Second version of the intelligent switch.

In addition to exercises on the transformation of vague

descriptions into a formal specification, Petri nets are particularly

suited for exercises on formal analysis and even proof of certain

system properties. Examples of these exercises include a satellite

communication system where the students prove that no message

can get lost and a memory model guaranteeing exclusive memory

access by a CPU and a DMA unit.

3.2 Transaction-level modelling
The growing complexity of embedded systems (Section 2.1) has

created the need for high level system modelling. Transaction-

level modelling was proposed to raise the abstraction level and

keep the design complexity manageable. A transaction-level

model separates the details of communication among modules

from the details of the implementation of functional units or of the

communication architecture. The different possible implemen-

tations of the communication in the system are abstracted in

generic communication channels which enables a general

formulation and modelling of the system. Later in the design

flow an implementation of a specific communication channel can

be plugged in without affecting the overall system.

An important model for embedded systems is Kahn Process

Networks [5]. A Kahn process network is a network of proces-

sing units connected by FIFO communication channels. Together

these processes incrementally transform an infinite flow of data.

Processors can work sequentially or in parallel. This model of

computation is commonly used for streaming applications and for

embedded systems. Kahn process networks fit nicely in the more

general concept of transaction-level modelling with the restriction

that FIFO channels are used.

SystemC [3] is a set of libraries on top of C++ developed for

describing and simulating complex systems. It provides flexible

templates to specify functional units (modules) whose ports can

be connected through communication channels. On the other

hand SystemC also has a built-in simulation kernel. These

features make SystemC very convenient to put transaction-level

modelling in practice.

33

In this session we will therefore use SystemC to build and study a

reasonably complex Kahn process network. As an example we

have chosen the administrative procedures in our Faculty of

Engineering. Forms enter this system and are processed by

several persons. The processing of forms often leads to the

creation of new forms. A feedback loop allows additional

processing. Eventually all forms disappear in the archive or in the

paper basket.

The session consists of two parts. In the first part the students

start from a given SystemC model describing the connections

between modules in the system. The actual communication

details of these modules are left to the students. The emphasis is

on reading and writing to the FIFO channels in a blocking or a

non-blocking way.

During the second part of the exercises the students gain insight in

the system. They learn which components and which interactions

are critical for the behaviour of the system as a whole. The

students make the conversion from the ideal world of conceptual

Kahn process networks with infinitely large buffers to the real

world where true infinity does not exist. All internal buffers are

now downsized to their optimal size. Handling the restrictions of

real systems is an important skill which we wanted to teach in this

session.

The learning climax is reached when after adding a few extra

forms the system suddenly blocks: a deadlock has occurred. The

concept of a deadlock was already mentioned in preceding

courses but this concrete and sudden appearance opens the eyes of

most students. After this exercises they will never forget this

concept.

3.3 Architecture Exploration
The design space for the realisation of a complex system is often

very large. Different implementations are possible and a lot of

these possibilities meet the functional requirements set out in the

specification step. The designer then uses the non-functional

properties to make a well-founded design choice. This exercise

discusses the most important non-functional properties: cost,

energy consumption and execution time. Other non-functional

properties are handled in the theory sessions.

The designer has to find a suitable implementation for the

application at hand in the sea of possibilities that is the design

space. This is the task of the architecture exploration.

Eventually, this exploration leads to a Pareto curve with all Pareto

optimal solutions.

The goal of this session is threefold. First we want to illustrate

that the design space is very large, even for a rather simple

application. Second, the concept of Pareto optimality and Pareto

curves has to be made explicit in this session. Finally we want to

teach the students how to find their way in the vast design space

without trying every possible implementation, which is of course

impossible. We do this by means of early back of the envelope

estimations of the non-functional properties of several

architectures.

Figure 4: Transaction-level modelling of the administrative

procedures in our Faculty of Engineering.

Several tools have been developed for architecture exploration,

but in our experience no tool exists which can perform the entire

exploration on any example. Therefore we have chosen to do the

estimations by hand with a pencil and paper approach and the

exploration in Microsoft Excel. This way we can impart the

important insights without losing ourselves in the nasty details

and singularities of specific tools. Another advantage of not using

a tool is that we do not end up with a lot of figures that came

automagically out of a tool. The lack of accuracy of our manual

estimations is not deemed as a problem as gaining insight is more

important.

For this exercise we use a real world example: a digital camera

with a JPEG encoder in its core. This encoder consists of four

sequential blocks: RGB to YUV conversion, a discrete cosine

transformation (DCT), a quantisation step and a Huffman

encoder.

After a short introduction, we will make estimates for software

implementations on an inherently sequential microprocessor and

parallel hardware implementations of the different blocks of the

JPEG encoder. Several architectures are possible for each of

these blocks: a fully sequential implementation, massive

parallelism, a pipelined architecture… In a class discussion

various implementations of the RGB to YUV conversion are

estimated, preparing the students for estimating the DCT by

themselves.

In the second part of this session the estimates for separate

subsystems are combined to form an estimate for the digital

camera as a whole. A new design space arises at a higher level:

all parts could be implemented in specialised hardware,

everything can be done in software on a microprocessor, …

Several combinations are possible.

For the exploration the students get a framework in Microsoft

Excel with some basic figures for the cost of several

microprocessors and the cost and energy consumption of several

hardware implementations. In this framework the students then

add estimates for the execution time. For the combined estimates

for the camera as a whole, the students have to also consider the

communication cost between different software or hardware

components and the memory. Based on this the students draw

Pareto curves, neglecting non-optimal solutions.

In the end the students must make a motivated choice for the final

architecture. The students are divided in groups with a different

set of non-functional properties for each group: a professional

camera, a low cost camera, several resolution levels…

34

3.4 Optimisation of hot code
Most embedded systems consist of small computationally

intensive code parts. Such hot code plays an important role in

optimisation of the system: small improvements in this code can

make a huge difference for the overall performance. Today

optimisation skills have become indispensable for engineering

students in computer science or electronics.

Although software optimisation in general is already present in

the curriculum of our students, we feel the need for specific

optimisations aimed at embedded systems. Especially optimi-

sations which improve the data locality in programs such as the

well known loop transformations proved to be lacking in other

courses. We also want to illustrate the use of scratch pad memory

and parallelisation.

Several optimisation techniques and concepts are discussed in

these sessions: loop transformations, memory hierarchy, low level

and higher level parallelism detection. Each concept is

introduced with a short academic example. Afterwards the

students can try for themselves on a real world example.

We have chosen a medical image processing application for our

example: the cavity detector [2]. It is a relatively simple

application but it nevertheless offers lots of optimisation

possibilities which make it ideal for our hands-on sessions.

These optimisation and parallelisation sessions link education and

the research in our own hardware and embedded systems research

group.

4. THE EFFECT OF THE MESSAGE LIES

IN THE HANDS OF THE MESSENGER
The course on Complex Systems Design Methodology was first

taught in 2004-2005. Since then students evaluate this course as

very good. We believe that this is due to our personal attention

on top of the intrinsic qualities of the course. Key factors are

enthusiasm and motivation, interactivity, evaluation and real

world examples. In this section we will elaborate on these items.

Interactivity Interaction between teachers and students

improves their commitment. In the first sessions on specification

languages we strongly encourage this interaction. Students are

invited to bring their own solutions on the blackboard for a class

discussion.

The computer sessions are obviously more individual but even in

these sessions we try to encourage interaction and cooperation.

Evaluation The Faculty of Engineering at Ghent University has

set up a biyearly student evaluation for each course, based on a

standard questionnaire. For Complex Systems Design

Methodology we extended this evaluation process with our own

yearly survey with more specific questions about each chapter of

the syllabus and each hands-on session. Based on the results of

this evaluation we could improve the course to its current quality.

Real world examples For the hands-on sessions we have chosen

to use small examples each focusing on a single concept. In

contrast to a project based approach we cannot afford the time for

a large introduction of each example. Using practical examples

close to the daily environment the students are used to, a lengthy

introduction is redundant. Furthermore, real world examples keep

the students focused and motivated.

Enthusiasm and motivation The last key factors are enthusiasm

and motivation of the teachers. It is clear that students

automatically appreciate a learning experience more if it is

brought with enthusiasm. It is important for a student to feel that

the teacher really believes in what he or she is teaching and in the

way he or she is teaching it.

5. CONCLUSIONS
Given the omnipresence of embedded systems and the continuous

lack in industry of sufficient numbers of good embedded systems

designers, it is clear there is a strong need for efficient embedded

systems curricula, especially for computer science and electrical

engineering students.

In this paper, we have described the approach we took at Ghent

University in this matter. It is based on a few golden rules:

(i) a good systems designer has to know and understand the

basic concepts and skills underneath systems design,

(ii) our basic embedded systems design course gives a bird’s

eye overview of embedded systems design and provides

hooks for many other courses that elaborate on some aspects

in a much greater detail, and

(iii) theory sessions have to be augmented by relevant practical

hands-on sessions. We believe it is important that these

practical sessions provide a step-by-step learning environ-

ment for the students, rather than sending them through the

woods on a big project assignment.

Our practical exercises, described in this paper, illustrate this step-

by-step approach. However, the quality of the course itself

cannot be separated from the way in which the material is

presented by the teaching staff. The very positive student

evaluations indicate we are on the right track and the recent

addition of a follow-up hardware/software co-design course has

shown that the students do master the concepts and skills, an

indication that the right focus is present in the basic course this

paper presents.

6. REFERENCES
[1] ARTIST network of excellence. Guidelines for a graduate

curriculum on embedded software and systems. 2003.

[2] M. Bister, Y. Taeymans, and J. Cornelis. Automatic

segmentation of cardiac MR images. IEEE Journal on

Computers in Cardiology, 1989.

[3] T. Grötker, S. Liao, G. Martin, and S. Swan. System design

with SystemC. Kluwer Academic Publishers, 2002.

[4] D. Harel. Statecharts: a visual formalism for complex

systems. Science of Computer Programming, 8(3):231–274,

June 1987.

[5] G. Kahn. The semantics of a simple language for parallel

programming. In Proceedings of the IFIP Congress, North-

Holland, Amsterdam, 1974.

[6] C. A. Petri. Kommunikation mit Automaten. PhD thesis,

Rheinisch-Westfälisches Institut für instrumentelle

Mathematik an die Universität, Bonn, 1962.

35

