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ABSTRACT
Smart devices are omnipresent today and the design of these 

embedded systems requires a multidisciplinary approach.  It is 

important that students in electrical engineering and computer 

science learn all aspects of the design of such systems.  Our 

course on Complex Systems Design Methodology presents an 

overview of embedded systems design with a strong focus on the 

main concepts, preparing the students for more detailed follow up 

courses on specific topics. 

Imparting the theoretical concepts to the students is not sufficient, 

however.  Hands-on sessions are indispensable for the students to 

acquire the necessary skills.  In this paper we present our 

approach for these hands-on sessions, which is to pose relatively 

small problems in separate sessions, each focusing on a single 

design aspect.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information 

Science Education – computer science education, information 

systems education. 

General Terms
Design, Experimentation, Human Factors, Languages. 

Keywords
Embedded Systems Education, Specification, Transaction-level 

modelling, Architecture Exploration, Optimisation. 

1. INTRODUCTION
Our world is constantly changing.  Too a large extent, this is a 

consequence of the technological revolution that is taking place at 

an ever increasing pace.  It has a significant impact on our social 

lives, as exemplified by the exponential increase in the number of 

cell phone users over the last decades. 

The beginning of last century marked the industrial revolution.  

By the end of the same century, we were already amidst the 

technological revolution, bringing us the era of smart devices.

The tremendous increase in computational power available in 

appliances was brought mainly by the boom in digital design.  

Surfing on Moore’s Law, billions of chips could be produced at 

low cost and with ever increasing functional capabilities.  Yet, the 

exponential scaling also made the design of these chips much 

more difficult, requiring a step up into the hierarchy of abstraction 

levels in order for designers to be able to cope with the increased 

complexity.  At the same time, integration of software and 

hardware aspects has introduced embedded systems.   

Having become very relevant in an industrial context, embedded 

systems design cannot be left without a proper education of 

electronics and/or computer science engineers in this new domain.  

As acknowledged by the ARTIST Guidelines for a Graduate 

Curriculum on Embedded Software and Systems [1], embedded 

systems education should be multidisciplinary and contain aspects 

of control and signal processing, computing theory, real-time 

processing, distributed systems, optimisation and evaluation, and 

systems architecture and engineering.  In our view, this list should 

be extended with hardware design for embedded systems as often 

processing elements have to be augmented with specific hardware 

blocks performing special functions. 

As is apparent in multidisciplinary curricula, it is difficult for 

students to grasp the big picture from the separate pieces that are 

provided in courses within an embedded systems curriculum.  

Therefore, we claim it is important to provide students with an 

overview course that introduces the main concepts of embedded 

systems design and combines them to a complete picture of what 

embedded systems design entails.  This course should be 

considered a backpack enabling students to further extend their 

knowledge by taking more detailed courses on the various 

subjects and put them in their backpack.  This is the approach we 

have taken in designing an embedded systems curriculum at 

Ghent University in Belgium. 

Providing the students with the backpack (course) is not 

sufficient.  They also need to know how to wear the backpack and 

how to use the tools present inside the backpack.  Putting the 

courses into practice is therefore crucial.  This has also been 

acknowledged by the ARTIST Guidelines [1].  However, in this 

paper, we will elaborate on how this can be done in practice.  In 

contrast to the overview focus in the theoretical sessions, we do 

not advocate one big project where students have to actually 

design a complete system as this tends to make them get lost into 

the details.  We rather focus on the main concepts needed for a 

well-designed embedded system and on the skills students have to 

acquire for this.  Therefore, we present relatively small problems 

in separate sessions, each focusing on one aspect.  We also try to 

state problems from their own daily environment so that at least 

the problem is not new and they can focus on the concepts and 

skills that bring them to the right solution.  Once the students have 

finished these exercises, they are ready to learn how to combine 

these practical experiences into a big project, which is, in our 

university, possible in a separate hardware design project course. 
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In the remainder of this paper, we will explain the main 

intricacies of embedded system design in Section 2, showing the 

importance of educating engineers in this domain.  We then 

discuss the main concepts and skills for embedded systems design 

that we focus on in Ghent University.  In Section 3, we introduce 

the practical exercises to illustrate these concepts and skills in 

more detail.  Finally, Section 4 explains our way of interacting 

with the students and our yearly student evaluation of the course. 

2. WHY TEACHING EMBEDDED 

SYSTEMS DESIGN? 

2.1 Embedded Systems Design 
The technological revolution is mainly driven by Moore’s law, 

stating that the number of transistors per chip is doubling every 18 

months.  This law originally (in the ‘60s) was an empirical 

observation made by IBM employee Gordon Moore but it quickly 

began driving the EDA (Electronic Design Automation) industry, 

thus turning into a self-fulfilling prophecy.  Moore’s law has 

enabled ever more powerful systems on the same die area.  The 

doubling of the number of transistors per unit area every 

technology generation allowed designers to put more functionality 

on a single chip, even to the amount that it is no longer 

manageable.  This leads to the infamous design gap as the number 

of designers or the time needed for a large design can no longer 

keep up with Moore’s law.  In order to further improve 

productivity, the only solution is to reuse big existing designs and 

combine these.  This is called IP (Intellectual Property) Reuse.  

Where this combination of ‘chips’ to a complete system used to 

be done at the board level, it is now possible at the chip level, 

leading to a System-on-Chip (SoC) design methodology.  In such 

a SoC, scheduling and arbitration are becoming more important, 

bringing software issues to the hardware designer’s world. 

With the increase in compute power, also the applications are 

getting more demanding.  Ubiquitous computing is becoming the 

name of the game and people are starting to expect access to high 

quality multimedia data (especially video) everywhere.  This puts 

an enormous pressure on multimedia hardware systems and 

requires the use of specialised architectures and the exploitation 

of massive parallelism.  At the same time, however, applications 

demand a high amount of flexibility from the devices as they are 

rapidly changing and frequent updates need to be possible in the 

devices that have to run the applications.  This is not possible with 

Application Specific Integrated Circuits (ASICs) and requires a 

processor architecture.  Current systems therefore generally 

consist of hardware acceleration blocks that co-exist with a 

software oriented processor environment.  Hardware design has 

thus turned into hardware/software co-design, with a lot of 

emphasis on the new bottleneck: the communication between the 

processor and dedicated hardware. 

While embedded systems design in Europe has mainly been 

driven from a software and real-time perspective (as exemplified 

by the successful European ARTIST Network), the original need 

for more abstract levels of design and the introduction of system 

design on a single chip have been arisen out of the hardware 

world, mainly the hardware design gap.  Using our background as 

a hardware design group, we tend to look at embedded systems 

design from this hardware perspective.  This provides us with a 

rather unique view on embedded systems education. 

Given the strong link between hardware and software design in 

today’s systems, university education should focus on 

hardware/software co-design and train new electrical engineers 

and computer scientists in this new cross-disciplinary domain. 

Figure 1: The design methodology for designing complex 

systems. 

2.2 Embedded Systems Education 
At Ghent University, we recently adopted a new educational 

(Bachelor/Master) structure, with a separate option within the 

Master of Computer Science Engineering dedicated to Embedded

Systems.  This new option is specifically targeted at the 

hardware/software interface.  This was intended to address the 

need for a more modern education at the forefront of the technical 

evolutions.  A key course in this is the course on Complex

Systems Design Methodology, which is the main subject of this 

paper.  It is drafted to be the basic complex (embedded) systems 

design course, providing a broad overview of the systems design 

methodology (see Figure 1).  Within this methodology, many 

hooks are provided for other courses that go much deeper into the 

details of several aspects of complex systems design, such as 

analog design, sensors and actuators, digital hardware design 

(ASICs and FPGAs), advanced computer architectures, 

scheduling and RTOS (Real Time Operating Systems), interface 

design etc.  Not all these courses are available at our university 

(yet), but students can choose several detailed courses within their 

curriculum that fit into this complex systems design framework. 

Our course on Complex Systems Design Methodology follows the 

design flow described in Figure 1 and focuses on the front end 

design steps of specification, architecture exploration and 

hardware/software partitioning.  Fully in line with the backpack 

approach, the remaining design steps are only briefly touched 

upon and presented as hooks for further courses, such as existing 

courses on hardware/software co-design (that is more focused on 

digital hardware design), a course on analog design and several 

courses on software architectures, software design and 

compilation.  However, in the second part of the course, we do 

focus on some specific optimisation aspects for embedded 

systems design.  We first emphasise early performance estimates 

(of speed, area, power, cost, etc.) that are needed for a good 

architecture exploration.  A chapter is also devoted to 

optimisations of data locality (to optimise memory structures and 
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data transfers).  And because interfaces between hardware and 

software are not part of any other course, this important aspect of 

embedded systems design is also addressed in our course. 

As stated in the introduction, the focus of the course is on the 

basic concepts and skills needed for embedded systems design.  

This already begins with the system specification, where the 

importance of a formal functional specification is addressed, 

together with the need to also describe non-functional design 

aspects to clearly formalise the requested performance.  Formal 

ways of describing concurrency, state machines, communicating 

processes lay the basis for the following design steps. 

One of the important things we feel students should learn is that 

there is no single embedded systems design methodology.  

Designing always is a matter of making trade-offs.  Depending on 

the problem at hand, the desired performance features and the 

available options in the design space, a completely different 

solution might be suggested for two designs that are intrinsically 

very similar.  This may seem natural to people designing systems, 

it makes teaching system design very difficult.  The course 

therefore spends ample time on the most important performance 

measures: currently power, cost, time-to-market, latency, 

bandwidth, and area are the major ones.  Not only should students 

know why these are important, also the impact of current 

technologies on these performance measures is important. 

One of the critical issues is the design level at which trade-offs 

are made.  In the first design stages, the design description is very 

abstract.  Yet, one immediately is confronted with very important 

design decisions on the architecture of the system.  In this 

architecture exploration step, not a lot is known about the details 

of the final implementation (as the idea is exactly to abstract most 

of this away).  This leaves a lot of implementation choices for 

later but it also means it is hard to say something about the 

relative performance of the solutions to choose from.  Therefore, 

very early high-level performance estimations are paramount.  

The estimates at this level will not be very accurate but they 

should give a good relative appreciation of the solutions in order 

to retain the right architectures. 

After (and sometimes during) architecture exploration, one also 

has to decide which parts of the problem will be handled by 

software and which parts should be taken care of by a hardware 

component.  This hardware/software partitioning again induces a 

very important trade-off, that of flexibility versus computing 

strength (time needed to perform a certain task). 

Imparting the above theoretical concepts to the students is not 

sufficient, however.  When teaching a course on complex systems 

design, hands-on sessions are very important.  Indeed, students 

can only learn the intricacies of complex systems design by 

hands-on experience.  Hence, we specifically paid attention to 

setting up relevant practical exercise sessions for the students.  

For each of the main steps in the flow, important concepts and 

skills are illustrated in practical examples and exercises, as 

described in Section 3. 

3. HANDS-ON SESSIONS 
Our practical sessions elaborate on the basic parts of the em-

bedded systems design flow presented in Figure 1: specification 

and architecture exploration.  The hardware/software partitioning 

step has a major impact on the design of the communication 

infrastructure.  These aspects are covered in a session on 

transaction-level modelling.  Finally, as the second part of the 

course details important performance aspects in embedded 

systems design, a last set of practical sessions introduces the 

students to optimisations of data locality. 

3.1 System Specification 
The first step in the design methodology of embedded systems is 

the specification of the system.  This specification describes the 

desired behaviour of the system as a black box with inputs and 

outputs.  At this stage in the design flow the implementation 

details of the proposed system are not important yet.  The 

specification merely defines exactly how the system should 

respond to its inputs.  It needs to be clear, unambiguous and 

readable for humans as well as for computers.  Specification in 

this context is purely functional.  Although non-functional 

properties are evenly important, commonly used system 

specification languages have no means to describe them.  

Therefore, we deal with non-functional properties during 

architecture exploration in Section 3.3. 

In this course several specification languages are discussed.  For 

the hands-on exercises we have selected only two of them: 

StateCharts [4] and Petri nets [6].  StateCharts are chosen because 

they are an extension of the basic concept of finite automata that 

was already introduced in a preceding course on Digital

Electronics.  Petri nets are handled because they express impor-

tant and often critical properties of dynamic systems: mutual 

exclusivity and concurrency.  UML diagrams are also discussed 

in the theory sessions but not included in the practical sessions 

because they are already extensively treated in software courses. 

We want to focus on several interesting aspects of StateCharts and 

Petri nets separately.  To take all these aspects into consideration 

without loosing the overview or without overwhelming the 

students, we have prepared several small pencil and paper 

exercises.  The students learn to make an exact, unambiguous and 

standardised specification out of a vague initial system 

description.  Attention is also given to interpreting the behaviour 

of systems by means of a formal specification. 

3.1.1 StateCharts
As indicated above StateCharts are an extension of finite 

automata which are introduced in a preceding course.  One of the 

most important new aspects is hierarchy which enables large 

complex systems to be expressed comprehensibly.  In 

StateCharts, hierarchy is expressed in AND and OR super states.  

AND super states express that the system is concurrently in 

several states, one of each AND part.  OR super states indicate 

that the system is either in one of several states. 
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In the first exercise we specify an intelligent light switch with two 

buttons: an on/off button and a dimmer button.  Our system, 

depicted in Figure 2, has 6 brightness levels which can be 

accessed by pushing the dimmer button several times.  The 

intelligent switch remembers the brightness level of the last time 

the light was on.  The dimmer button increases the level from 1 to 

6.  When the maximum is reached the level starts decreasing 

again.  Therefore the direction (increasing/decreasing) has to be 

modelled as an explicit state.  The system intrinsically has 24 

states in total (6 x 2 x 2).  Nevertheless, StateCharts can express 

this in a smaller and comprehensible diagram using hierarchical 

states. 

The second assignment builds on the first intelligent switch to 

make an even more intelligent switch with just one button.  

Holding the button for more than half a second increases or 

decreases the brightness level.  Pushing the button for a short time 

(less than 0.2 seconds) toggles the light on or off.  This additional 

time behaviour can be represented in StateCharts by using timeout 

blocks as shown in Figure 3. 

To further practise the newly learned concepts we present a few 

more problems such as an underground car park with sensors to 

count the incoming and outgoing cars and a traffic light system 

with a pedestrian button. 

3.1.2 Petri Nets 
Petri nets originate from the Ph.D. thesis of Carl Adam Petri and 

have been augmented with several other types.  We discuss three 

of these types in the session: basic condition event nets, place 

transition nets and coloured Petri nets.  In condition event nets the 

conditions are either true or false, represented by the presence or 

absence of a token.  Place transition nets take this concept to a 

higher level by allowing multiple tokens in one place.  For these 

nets also transitions can require or produce multiple tokens.  In 

place transition nets all tokens are equivalent, which is not the 

case in coloured Petri nets where each individual token has its 

own identity. 

Petri nets can express fundamental relations between operations in 

the system such as concurrency or exclusivity, illustrated in our 

examples.  A detailed description of all examples is beyond the 

scope of this paper.  In short we have an exercise on a call centre 

where each operator has a specialisation to handle certain calls.  

This example illustrates queuing where callers have to wait until a 

suitable operator becomes available.  Another exercise is about an 

airport where multiple runways cross each other.  A Petri net is 

used to express the mutually exclusive use of these runways. 

 Figure 2: First version of the intelligent switch. Figure 3: Second version of the intelligent switch. 

In addition to exercises on the transformation of vague 

descriptions into a formal specification, Petri nets are particularly 

suited for exercises on formal analysis and even proof of certain 

system properties.  Examples of these exercises include a satellite 

communication system where the students prove that no message 

can get lost and a memory model guaranteeing exclusive memory 

access by a CPU and a DMA unit. 

3.2 Transaction-level modelling 
The growing complexity of embedded systems (Section 2.1) has 

created the need for high level system modelling.  Transaction-

level modelling was proposed to raise the abstraction level and 

keep the design complexity manageable.  A transaction-level 

model separates the details of communication among modules 

from the details of the implementation of functional units or of the 

communication architecture.  The different possible implemen-

tations of the communication in the system are abstracted in 

generic communication channels which enables a general 

formulation and modelling of the system.  Later in the design 

flow an implementation of a specific communication channel can 

be plugged in without affecting the overall system. 

An important model for embedded systems is Kahn Process 

Networks [5].  A Kahn process network is a network of proces-

sing units connected by FIFO communication channels.  Together 

these processes incrementally transform an infinite flow of data.  

Processors can work sequentially or in parallel.  This model of 

computation is commonly used for streaming applications and for 

embedded systems.  Kahn process networks fit nicely in the more 

general concept of transaction-level modelling with the restriction 

that FIFO channels are used. 

SystemC [3] is a set of libraries on top of C++ developed for 

describing and simulating complex systems.  It provides flexible 

templates to specify functional units (modules) whose ports can 

be connected through communication channels.  On the other 

hand SystemC also has a built-in simulation kernel.  These 

features make SystemC very convenient to put transaction-level 

modelling in practice.
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In this session we will therefore use SystemC to build and study a 

reasonably complex Kahn process network.  As an example we 

have chosen the administrative procedures in our Faculty of 

Engineering.  Forms enter this system and are processed by 

several persons.  The processing of forms often leads to the 

creation of new forms.  A feedback loop allows additional 

processing.  Eventually all forms disappear in the archive or in the 

paper basket. 

The session consists of two parts.  In the first part the students 

start from a given SystemC model describing the connections 

between modules in the system.  The actual communication 

details of these modules are left to the students.  The emphasis is 

on reading and writing to the FIFO channels in a blocking or a 

non-blocking way.   

During the second part of the exercises the students gain insight in 

the system.  They learn which components and which interactions 

are critical for the behaviour of the system as a whole.  The 

students make the conversion from the ideal world of conceptual 

Kahn process networks with infinitely large buffers to the real 

world where true infinity does not exist.  All internal buffers are 

now downsized to their optimal size.  Handling the restrictions of 

real systems is an important skill which we wanted to teach in this 

session. 

The learning climax is reached when after adding a few extra 

forms the system suddenly blocks: a deadlock has occurred.  The 

concept of a deadlock was already mentioned in preceding 

courses but this concrete and sudden appearance opens the eyes of 

most students.  After this exercises they will never forget this 

concept.

3.3 Architecture Exploration 
The design space for the realisation of a complex system is often 

very large.  Different implementations are possible and a lot of 

these possibilities meet the functional requirements set out in the 

specification step.  The designer then uses the non-functional 

properties to make a well-founded design choice.  This exercise 

discusses the most important non-functional properties: cost, 

energy consumption and execution time.  Other non-functional 

properties are handled in the theory sessions. 

The designer has to find a suitable implementation for the 

application at hand in the sea of possibilities that is the design 

space.  This is the task of the architecture exploration.  

Eventually, this exploration leads to a Pareto curve with all Pareto 

optimal solutions. 

The goal of this session is threefold.  First we want to illustrate 

that the design space is very large, even for a rather simple 

application.  Second, the concept of Pareto optimality and Pareto 

curves has to be made explicit in this session.  Finally we want to 

teach the students how to find their way in the vast design space 

without trying every possible implementation, which is of course 

impossible.  We do this by means of early back of the envelope 

estimations of the non-functional properties of several 

architectures. 

Figure 4: Transaction-level modelling of the administrative 

procedures in our Faculty of Engineering. 

Several tools have been developed for architecture exploration, 

but in our experience no tool exists which can perform the entire 

exploration on any example.  Therefore we have chosen to do the 

estimations by hand with a pencil and paper approach and the 

exploration in Microsoft Excel.  This way we can impart the 

important insights without losing ourselves in the nasty details 

and singularities of specific tools.  Another advantage of not using 

a tool is that we do not end up with a lot of figures that came

automagically out of a tool.  The lack of accuracy of our manual 

estimations is not deemed as a problem as gaining insight is more 

important.

For this exercise we use a real world example: a digital camera 

with a JPEG encoder in its core.  This encoder consists of four 

sequential blocks: RGB to YUV conversion, a discrete cosine 

transformation (DCT), a quantisation step and a Huffman 

encoder.

After a short introduction, we will make estimates for software 

implementations on an inherently sequential microprocessor and 

parallel hardware implementations of the different blocks of the 

JPEG encoder.  Several architectures are possible for each of 

these blocks: a fully sequential implementation, massive 

parallelism, a pipelined architecture…  In a class discussion 

various implementations of the RGB to YUV conversion are 

estimated, preparing the students for estimating the DCT by 

themselves. 

In the second part of this session the estimates for separate 

subsystems are combined to form an estimate for the digital 

camera as a whole.  A new design space arises at a higher level: 

all parts could be implemented in specialised hardware, 

everything can be done in software on a microprocessor, …  

Several combinations are possible.

For the exploration the students get a framework in Microsoft 

Excel with some basic figures for the cost of several 

microprocessors and the cost and energy consumption of several 

hardware implementations.  In this framework the students then 

add estimates for the execution time.  For the combined estimates 

for the camera as a whole, the students have to also consider the 

communication cost between different software or hardware 

components and the memory.  Based on this the students draw 

Pareto curves, neglecting non-optimal solutions. 

In the end the students must make a motivated choice for the final 

architecture.  The students are divided in groups with a different 

set of non-functional properties for each group: a professional 

camera, a low cost camera, several resolution levels… 
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3.4 Optimisation of hot code 
Most embedded systems consist of small computationally 

intensive code parts.  Such hot code plays an important role in 

optimisation of the system: small improvements in this code can 

make a huge difference for the overall performance.  Today 

optimisation skills have become indispensable for engineering 

students in computer science or electronics.

Although software optimisation in general is already present in 

the curriculum of our students, we feel the need for specific 

optimisations aimed at embedded systems.  Especially optimi-

sations which improve the data locality in programs such as the 

well known loop transformations proved to be lacking in other 

courses.  We also want to illustrate the use of scratch pad memory 

and parallelisation. 

Several optimisation techniques and concepts are discussed in 

these sessions: loop transformations, memory hierarchy, low level 

and higher level parallelism detection.  Each concept is 

introduced with a short academic example.  Afterwards the 

students can try for themselves on a real world example. 

We have chosen a medical image processing application for our 

example: the cavity detector [2].  It is a relatively simple 

application but it nevertheless offers lots of optimisation 

possibilities which make it ideal for our hands-on sessions. 

These optimisation and parallelisation sessions link education and 

the research in our own hardware and embedded systems research 

group.

4. THE EFFECT OF THE MESSAGE LIES 

IN THE HANDS OF THE MESSENGER 
The course on Complex Systems Design Methodology was first 

taught in 2004-2005.  Since then students evaluate this course as 

very good.  We believe that this is due to our personal attention 

on top of the intrinsic qualities of the course.  Key factors are 

enthusiasm and motivation, interactivity, evaluation and real 

world examples.  In this section we will elaborate on these items. 

Interactivity   Interaction between teachers and students 

improves their commitment.  In the first sessions on specification 

languages we strongly encourage this interaction.  Students are 

invited to bring their own solutions on the blackboard for a class 

discussion.

The computer sessions are obviously more individual but even in 

these sessions we try to encourage interaction and cooperation. 

Evaluation   The Faculty of Engineering at Ghent University has 

set up a biyearly student evaluation for each course, based on a 

standard questionnaire.  For Complex Systems Design 

Methodology we extended this evaluation process with our own 

yearly survey with more specific questions about each chapter of 

the syllabus and each hands-on session.  Based on the results of 

this evaluation we could improve the course to its current quality. 

Real world examples   For the hands-on sessions we have chosen 

to use small examples each focusing on a single concept.  In 

contrast to a project based approach we cannot afford the time for 

a large introduction of each example.  Using practical examples 

close to the daily environment the students are used to, a lengthy 

introduction is redundant.  Furthermore, real world examples keep 

the students focused and motivated. 

Enthusiasm and motivation   The last key factors are enthusiasm 

and motivation of the teachers.  It is clear that students 

automatically appreciate a learning experience more if it is 

brought with enthusiasm.  It is important for a student to feel that 

the teacher really believes in what he or she is teaching and in the 

way he or she is teaching it. 

5. CONCLUSIONS
Given the omnipresence of embedded systems and the continuous 

lack in industry of sufficient numbers of good embedded systems 

designers, it is clear there is a strong need for efficient embedded 

systems curricula, especially for computer science and electrical 

engineering students. 

In this paper, we have described the approach we took at Ghent 

University in this matter.  It is based on a few golden rules:  

(i) a good systems designer has to know and understand the 

basic concepts and skills underneath systems design, 

(ii) our basic embedded systems design course gives a bird’s 

eye overview of embedded systems design and provides 

hooks for many other courses that elaborate on some aspects 

in a much greater detail, and 

(iii) theory sessions have to be augmented by relevant practical 

hands-on sessions.  We believe it is important that these 

practical sessions provide a step-by-step learning environ-

ment for the students, rather than sending them through the 

woods on a big project assignment. 

Our practical exercises, described in this paper, illustrate this step-

by-step approach.  However, the quality of the course itself 

cannot be separated from the way in which the material is 

presented by the teaching staff.  The very positive student 

evaluations indicate we are on the right track and the recent 

addition of a follow-up hardware/software co-design course has 

shown that the students do master the concepts and skills, an 

indication that the right focus is present in the basic course this 

paper presents. 
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