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Das Unendliche hat wie keine andere Frage von jeher so tief
das Gemüt des Menschen bewegt; das Unendliche hat wie kaum
eine andere Idee auf den Verstand so anregend und fruchtbar
gewirkt; das Unendliche ist aber auch wie kein anderer Begriff
so der Aufklärung bedürftig.

From time immemorial, the infinite has stirred men’s emotions
more than any other question. Hardly any other idea has stimu-
lated the mind so fruitfully. Yet, no other concept needs clarifi-
cation more than it does.

- David Hilbert, Über das Unendliche (On the infinite ) [39]





Preface

Kruskal claims in his now-classical 1972 paper [47] that well-partial-orders
are among the most frequently rediscovered mathematical objects. Well-
partial-orders have applications in many fields outside the theory of orders:
computer science, proof theory, reverse mathematics, algebra, combinatorics,
etc.

The maximal order type of a well-partial-order characterizes that order’s
strength. Moreover, in many natural cases, a well-partial-order’s maximal
order type can be represented by an ordinal notation system. However, there
are a number of natural well-partial-orders whose maximal order types and
corresponding ordinal notation systems remain unknown. Prominent exam-
ples are Friedman’s well-partial-orders of trees with the gap-embeddability
relation [76].

The main goal of this dissertation is to investigate a conjecture of Weier-
mann [86], thereby addressing the problem of the unknown maximal order
types and corresponding ordinal notation systems for Friedman’s well-partial-
orders [76]. Weiermann’s conjecture concerns a class of structures, a typical
member of which is denoted by T (W ), each are ordered by a certain gap-
embeddability relation. The conjecture indicates a possible approach towards
determining the maximal order types of the structures T (W ). Specifically,
Weiermann conjectures that the collapsing functions ϑi correspond to maxi-
mal linear extensions of these well-partial-orders T (W ), hence also that these
collapsing functions correspond to maximal linear extensions of Friedman’s
famous well-partial-orders.

For a more detailed overview and summary of the dissertation, we refer to
the introductory Sections 1.1 and 1.3.
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Chapter 1

Introduction

1.1 Historical background

In order that the reader can situate this dissertation in its context, we present
a brief overview of ordinal notation systems and well-partial-orders. One can
find more complete surveys and overviews of these subjects in the literature
(e.g. [20,47]).

1.1.1 Ordinal notation systems

Well-orders and ordinal notation systems have been studied for their own
order-theoretic and combinatorial interests. Additionally, also their appli-
cations in proof-theoretic investigations of formal systems are studied [13,
31, 59, 60, 71, 79]. In this dissertation, we especially focus on the orderings
themselves.

At the end of the 19th century, Cantor extended the natural numbers into
the transfinite by defining ordinals (also called ordinal numbers). It enabled
him to study the order of such infinite numbers. In 1908, Veblen [84] intro-
duced new fast growing functions on the class of ordinals by his techniques of
derivation (i.e. enumerating fixed points of monotonic increasing continuous
functions) and iteration. Veblen’s techniques of derivation and iteration can
be seen as a generalization of Cantor’s normal form. Veblen’s work gives
rise to ordinal representation systems for specific ordinals. Hence, in some
way, Veblen’s (or Cantor’s) work can be considered to be the starting point
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of ordinal notation systems and also of the notorious natural well-ordering
problem [20], which is known to be extremely difficult. The natural well-
ordering problem is a conceptual question about when a representation of
a well-ordering is considered natural. Veblen’s article [84] yields the Veblen
hierarchy, which is nowadays well-known among most proof-theorists. It
consists of a family of functions ϕα on ordinals, where α is also an ordinal
number. The function ϕα is defined as the enumeration function of the com-
mon fixed points of all ϕδ with δ < α. ϕαβ is interpreted as a binary function
ϕαβ. Using the binary function ϕ, one can define an ordinal notation system
for the ordinal Γ0, the limit of predicativity. Veblen extended this idea not
only to an arbitrary finite number of arguments but also to transfinitely many
arguments. In the finite case, this led to a notation system for the small Ve-
blen number or small Veblen ordinal number, denoted in this dissertation by
ϑΩω. In the case of transfinitely many arguments, i.e. ϕ(α0, . . . , αβ), where
only a finite number of the arguments αγ (with γ < β) are non-zero, this led
to a notation system for the big Veblen number or big Veblen ordinal number,
which is in this dissertation denoted by ϑΩΩ.

Bachmann [5] used Veblen’s method of defining a hierarchy of functions.
He added an additional procedure of diagonalization for constructing new
functions. Bachmann’s new idea was the systematic use of uncountable ordi-
nals to keep track of systems of fundamental sequences. Later, Bachmann’s
work became very important for proof-theorists. Howard used Bachmann’s
work to classify the proof-theoretic strength of Bar recursion of type 0 by an
ordinal which later became known as the Howard-Bachmann ordinal. Bach-
mann’s system became the standard source of ordinal notations needed in
proof theory.

Bachmann’s approach for ordinal notation systems uses fundamental se-
quences, hence the systems can be very technical and involved if one goes
beyond the Howard-Bachmann ordinal. More and more layers of fundamen-
tal sequences are needed to describe larger and larger ordinals. Feferman [24]
succeeded in devising a notion of autonomous closure operations. This can
be used in favor of Bachmann’s complicated use of fundamental sequences to
construct ordinal notation systems for large ordinals. This in turn led to the
introduction of the collapsing functions θα : On→ On (α ∈ On), where On
is the class of ordinals, that extend the usual Veblen hierarchy. Later, this ap-
proach was modified by Buchholz [8,13] to obtain the functions θα, which are
better suited to proof-theoretic applications. After a few years of polishing,
a smooth theory of ordinal notation systems was built up by extending Fe-
ferman’s idea of autonomous closure (see e.g. [12,43,58]). In [9,14] Buchholz
simplified θα by introducing the ψν functions. Additionally, Gordeev [34] in-
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troduced different collapsing functions Dν based on Buchholz’s ψ-functions,
that have the following appealing behavior with respect to iterated collaps-
ing: DµDνα = Dmin{µ,ν}α, where equality means here that the normal forms
of the terms are the same. The correspondence of Gordeev’s Dν functions
with Buchholz’s Ψν functions is established in [34] and [83]. Next to all these
collapsing functions, other functions ϑn, with n < ω, were introduced (see
e.g. [91–93]). The functions ϑn are not so different from θα and θα because
e.g. θβ0 corresponds to ϑ0(Ω · β). In this dissertation, we use the collapsing
functions ϑi. For a discussion about the connection between ϑ, which is in
some sense ϑ0, and ψ, we refer the reader to [66]. In this context, it is also
definitely worth mentioning Rathjen’s results on extending ordinal notation
systems by using weakly Mahlo cardinals, weakly compact cardinals, and
even larger cardinals. He used these cardinals in the notation system for his
ordinal analysis of Π1

2-comprehension [64].

Takeuti [79] developed a different approach to ordinal notation systems using
ordinal diagrams. Later, this approach has been extended to far reaching
ordinal notation systems by Arai (e.g. see [3]). The connection of the ordinal
notation systems of the Japanese school with the traditional use of collapsing
functions is not yet entirely understood, although some work has already been
done (e.g., by Levitz [49] and Buchholz [12]).

In general, a notation system for ordinals is defined using (possibly partial)
recursive functions: an ordinal notation system T is a term representation
system consisting of a (least) set T and an ordering <T such that 0 ∈ T
and f(t1, . . . , tn) ∈ T provided that t1, . . . , tn are already in T , where f is a
constructor symbol from a given signature. The constructor symbols could be
function symbols, but more general operations may be allowed. In practice, a
notation system T is represented by a set of ordinals. More specifically, T is
the least set such that 0 ∈ T and if α1, . . . , αn ∈ T , then f(α1, . . . , αn) ∈ T ,
where the symbols f now represent functions on the class of ordinals. The
ordering <T is the usual order relation between the ordinals. The notation
system T = (T,<T ) then represents the least ordinal α such that α /∈ T .
This ordinal α is also called the closure ordinal of T. The ordinal α is equal
to the largest initial segment in T that is downwards closed in the ordinals,
and that is why we also call α the order type of T. A standard example is the
notation system for the ordinal ε0, which is the least ordinal that cannot be
described using 0 and the binary monotonic increasing function ξ, η 7→ ωξ+η
(see Sections 1.2.2 and 1.2.3).

Of course, one cannot say much about the order type of T in the general case,
but the situation changes somewhat surprisingly if we require conditions like
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increasingness, i.e. ti ≤T f(t1, . . . , tn) and monotonicity, i.e. f(t1, . . . , tn) ≤T
f(t′1, . . . , t

′
n) provided that ti ≤T t′i for all i ≤ n. Diana Schmidt characterized

completely the order types which could be generated from the ordinal 0 by
applying monotonic increasing functions [68]. A monotonic increasing binary
function generates from 0 no order type larger than ε0. (See an unpublished
paper of de Jongh. This is also mentioned in [68].) Functions of bigger arities
easily produce ordinals bigger than Γ0, and in fact they produce ordinals of
size comparable to the small Veblen number ϑΩω [68].

An important facet of these investigations is the role of associated well-
quasi-orders or well-partial-orders. This research program goes back to Di-
ana Schmidt. In her Habilitationsschrift [69], Diana Schmidt showed that
studying bounds on closure ordinals can best be achieved by determining
the maximal order types of well-partial-orderings that reflect the monotonic-
ity properties of the functions in question. She commented that by moving
to well-partial-orderings, she had been able to prove stronger results, with
sometimes even simpler proofs. For example, she classified the maximal or-
der types of various classes of structured labeled trees [69]. The basic idea
is to take the notation system T in question and to restrict the ordering
between terms to those cases that are syntactically justified, i.e. justified by
the monotonicity and increasingness conditions (the subterm property). The
new ordering becomes a well-partial-order, and its maximal linear extension
provides an upper bound for the order type of the original ordinal notation
system T. It is interesting that for several examples of natural well-orderings,
the order type of T coincides with the maximal order type of the underly-
ing well-partial-order. So in some sense, natural well-orderings produce the
maximal possible order type out of the syntactical material given for defin-
ing the corresponding notation system. This dissertation is written in line
with the continuation of Diana Schmidt’s research program, as suggested by
Weiermann. We investigate the connections between well-partial-orders and
ordinal notation systems.

This kind of research has already been taken up in [89], where Weiermann
extended Schmidt’s approach to transfinite arities. More specifically, mo-
tivated by order-theoretic properties of the functions considered by Veblen
and Schütte (see e.g., [70, 84] for further details), he investigated a well-
partial-order, denoted in this dissertation by T (M�(τ × ·)), and showed that
the maximal order type is bounded by ϑΩτ , thus giving rise to an ordinal
notation system for ϑΩτ . The underlying set of this well-partial-order was
introduced as follows: let 0 and ψ be two distinct symbols. For a countable
ordinal τ let T (M�(τ × ·)) be the least set T such that 0 ∈ T and such that
if ξ1 < · · · < ξn < τ and t1, . . . , tn ∈ T , then 〈ψ, 〈ξ1, t1〉, . . . , 〈ξn, tn〉〉 ∈ T .
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Let the underlying ordering ≤τ be the least binary reflexive and transitive
relation on T (M�(τ × ·)) such that

1. ti ≤τ 〈ψ, 〈ξ1, t1〉, . . . , 〈ξn, tn〉〉 (1 ≤ i ≤ n),

2. if h : {1, . . . ,m} → {1, . . . , n} is a one-to-one mapping and if ξi ≤ ξ′h(i)

and ti ≤τ t′h(i) for all i = 1, . . . ,m, then

〈ψ, 〈ξ1, t1〉, . . . , 〈ξm, tm〉〉 ≤τ 〈ψ, 〈ξ′1, t′1〉, . . . , 〈ξ′n, t′n〉〉.

Note that in the last condition the comparison is based on comparing mul-
tisets of pairs consisting of ordinals (the ordinal addresses) and previously
defined terms. In [89] it is shown that the maximal order type of T (M�(τ×·))
is bounded by ϑΩτ so that it can give rise to an ordinal notation system for
ϑΩτ . Furthermore (by allowing the case τ = Ω), it has been indicated in [89]
that the order type T (M�(Ω×·)) is bounded by the big Veblen number ϑΩΩ.
In some sense, these results are not fully satisfying since they refer (what the
ordinal valued addresses in the terms concerns) to an underlying structure
of ordinals and not to terms of the corresponding ordinal notation system.
Therefore, the representation of ϑΩτ using T (M�(τ × ·)) provides an ordinal
notation system which can only be developed if we have an a priori effective
term description for the segment τ . And in the case of T (M�(Ω × ·)) it is
even more difficult to use this set to built up a constructive notation system.
Chapter 3 improves these results by replacing τ by previously defined terms.
This produces an order-theoretic characterization of the big Veblen number
ϑΩΩ. More specifically, we show that the maximal order type of T (M�(·×·))
is equal to ϑΩΩ. In Chapter 3, we also study what would happen if we replace
the multisets by sequences. To this end, we investigate the well-partial-order
T ((· × ·)∗), which is based on finite sequences of pairs of previously defined
terms. Weiermann wondered in the 90’s if any ordinal notation system which
respects the construction of finite sequences of pairs of terms is bounded in
order type by ϑΩΩ. Somewhat surprisingly we show that the relevant or-
der type is equal to ϑΩΩΩ

, which is considerably bigger than the big Veblen
number.

In [88], Weiermann showed that the Howard-Bachmann ordinal could be
characterized as a closure ordinal of so-called essentially monotonic increasing
functions. Since then, it has been an open question whether a corresponding
order-theoretic characterization in terms of maximal order types is possible.
In Chapter 4, we answer this question positively by investigating a sub-
ordering of Friedman’s famous well-partial-order which is defined using the
so-called gap-embeddability relation [76].
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1.1.2 Well-partial-orderings

The notion of well-partial-orders or well-partial-orderings appeared in Vázson-
yi’s conjecture (around 1940), stating that in an infinite collection of finite
trees, there are two trees such that one is homeomorphically embeddable into
the other one. Additionally, the concept of well-partial-orders occurred in a
problem about the natural numbers proposed by Erdös [22]. And in [56],
some indications of well-partial-order-theory were mentioned.

The first explicit use of well-partial-orders appeared simultaneously in two
independent articles in 1952. One was due to Higman [38], where he called
the determining property of a well-partial-order the finite basis property.
Nowadays, his results are still very useful, e.g. in commutative algebra. The
other paper where one uses well-partial-orders is that of Erdös and Rado [23].
They published an answer to the problem proposed by Erdös in [22]. Since
then, the concept of well-partial-orders occurred in more and more different
contexts, often independently. In [47], Kruskal claimed that well-partial-
orders are frequently rediscovered objects. For a nice overview of the history
of well-partial-orders, we also refer to that article. Nowadays, more refined
notions like α-well-quasi-orders [50,61] and better-quasi-orders [62,75] exist.

Well-partial-orders are very useful for constructing independence results. A
famous example is the gap-embeddability relation (or gap-ordering) between
labeled rooted trees, invented by Harvey Friedman [76] in 1985. This orde-
ring generates ordinals of size ψ0Ωω, the proof-theoretical ordinal of Π1

1-CA0.
These well-partial-orders, denoted by Twgapn and Tsgapn when the trees un-
der consideration have n labels, yield a spectacular independence result for
Π1

1-CA0, the strongest theory of the Big Five in reverse mathematics:

Π1
1-CA0 6` ∀n < ω ‘(Tn,≤gap) is a well-partial-order’.

wgap in Twgapn stands for the weak gap-embeddability relation and sgap in
Tsgapn stands for the strong gap-embeddability relation (see Definition 1.81).
It is an interesting problem to identify a natural sub-ordering of Friedman’s
order which matches the Howard-Bachmann ordinal. This will be answered
in Chapter 4 as mentioned above. In this context, it is worth mentioning that
a symmetric gap-condition on the set of labeled rooted trees was investigated
by Gordeev in [35,36] and that Kř́ıž [45] generalized Friedman’s partial order
to trees with labels that are ordinal numbers.

Classifying the strength of Friedman’s assertion for the case that the set
of the labels on the trees consists of n elements where n is fixed from the
outside, is still an open problem. That is, the maximal order types of these
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famous well-partial-orders Twgapn and Tsgapn are still unknown. In [76], it is
only shown that the maximal order type is bounded from below by ψ0Ωn.
In this dissertation, we address this problem by investigating a conjecture of
Weiermann. Weiermann introduced in [86] special tree-classes T (W ), all of
them equipped with a sort of gap-embeddability relation. For each specific
parameter W , T (W ) corresponds to subclasses of Friedman’s partial orders.
Weiermann’s conjecture describes what the maximal order type of T (W )
looks like. More specifically, the conjecture states that one can read off a
maximal linear extension of T (W ) by looking at the related ordinal notation
system based on the ϑ-functions. This involves defining a maximal linear
extension of Twgapn by a straightforward use of the collapsing functions ϑi.
From this, it follows that the maximal order type of the countable well-
partial-order Twgapn can be described by the nth uncountable cardinal number
Ωn. The origin of this connection seems magical.

1.2 Preliminaries

1.2.1 Notations

If s is a finite sequence, let lh(s), respectively si, denote the length, re-
spectively the ith element, of the sequence, where we start counting at zero.
Hence,

s = (s0, . . . , slh(s)−1).

If s = (s0, . . . , slh(s)−1) and t = (t0, . . . , tlh(t)−1) are two finite sequences,
define the concatenation sat as the finite sequence

(s0, . . . , slh(s)−1, t0, . . . , tlh(t)−1).

If X and Y are two sets, the disjoint union of X and Y is the set X + Y :=
{(x, 0) : x ∈ X}∪{(y, 1) : y ∈ Y } and the cartesian product X×Y is the set
{(x, y) : x ∈ X, y ∈ Y }. Let f : X → Y be a function and A ⊆ X. Define
f(A) as {y ∈ Y : ∃a ∈ A(f(a) = y)}.

1.2.2 Partial orders, linear orders, well-orders and or-
dinals

A quasi order or quasi ordering ≤ on a set X is a binary relation ≤⊆ X×X
that is reflexive (x ≤ x) and transitive (x ≤ y ∧ y ≤ z → x ≤ z). A partial
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order or partial ordering is a quasi order that is anti-symmetric (x ≤ y∧y ≤
x→ x = y). If X and Y are two partial orders, then X is order-isomorphic
to Y (denoted by X ∼= Y ) if there exists a bijective function f from X to Y
such that x ≤X x′ ⇔ f(x) ≤Y f(x′) for every x, x′ ∈ X.

A linear order or linear ordering is a partial order that is total (x < y ∨ x =
y ∨ x > y). If X is a linear order, define X + 1 as the linear order that adds
one extra element bigger than any other element of X.

A partial order X is well-founded if every subset of X has at least one min-
imal element. Define a well-order as a well-founded linear order. Cantor
defined the order type of a well-order as the equivalence class of all well-
orders equivalent to it under ∼=. Nowadays, an order type of a well-ordering
X is defined as the ordinal which is isomorphic to X. This ordinal is denoted
by otype(X).

Ordinals

Ordinals are generalizations of the natural numbers developed by Cantor in
the 19th century. The original definition of the ordinals, as the representa-
tives of the equivalence classes of well-orders under ∼=, might give trouble
when used in the framework of an arbitrary set theory, as the equivalence
class of an ordering is not necessarily a set. In ZFC, one avoids this problem
by defining an ordinal as a transitive set (z ∈ y ∈ X → z ∈ X) which is
well-ordered under ∈. Denote the class of ordinals by On.

Intuitively, ordinals start with

0, 1, 2, 3, 4, . . .

ω denotes the supremum of this sequence, i.e. the order type of N. It is also
the least infinite ordinal. Cantor’s theory allows us to continue counting

ω + 1, ω + 2, . . .

and further

ω + ω = ω · 2, . . . , ω · 3, . . . , ω · ω = ω2, . . . , ωω, . . . , ωω
ω

, . . .

The limit of ωω
··
·

is denoted by ε0. After this point, we can start counting
again: ε0 + 1, . . .

For α ∈ On, define α+1 as the least ordinal strictly above α. Ordinals of the
form α + 1 are called successors , the remaining non-zero ordinals are called
limits . Note that if β is a limit and α < β, then α + 1 < β.
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In this dissertation, we use the principles transfinite induction and transfinite
recursion. Transfinite induction is the following scheme for formulas F :

∀α((∀β < α)F (β)→ F (α))→ ∀αF (α).

Transfinite recursion states that given a class-function G, there is an H with
domain On such that

H(α) = G(H � {β : β < α}, α).

Using transfinite recursion, we can define addition, multiplication and expo-
nentiation on the class of ordinals (see e.g. [59]).

If α and β are two ordinals with β > 1 and α > 0, then there exist unique
ordinals α1, . . . , αn, δ1, . . . , δn such that

α = βα1δ1 + · · ·+ βαnδn

with α ≥ α1 > · · · > αn and 0 < δ1, . . . , δn < β. If β is the ordinal ω, then
δ1, . . . , δn are finite ordinals, i.e. natural numbers. So

α = ωα1 + · · ·+ ωαn

with α1 ≥ · · · ≥ αn. We call this representation of α (using the base ω) its
Cantor normal form (or in short normal form) and we sometimes write =NF

or =CNF to make this clear (see e.g. [71]).

Define P (in the literature also known as H) as the class of additively closed
ordinals, i.e.

P = {α ∈ On : ∀β, γ ∈ On(β, γ < α→ β + γ < α)}.

One can prove that P is equal to {ωα : α ∈ On}. An ordinal α is said to be
multiplicatively closed if ∀β, γ < α(β ·γ < α). One can prove that an ordinal
is multiplicatively closed iff α = ωω

β
for some β ∈ On.

Define the epsilon numbers as the ordinals that are closed under ω-exponen-
tiation, i.e. ∀β < α(ωβ < α). Let E be the class of all epsilon numbers. The
notation ωn[α] is defined as ω0[α] = α and ωn+1[α] = ωωn[α]. We abbreviate
ωn[1] by ωn. Let εα denote the enumeration function of the class E. For
example, ε0 is the first ordinal that is closed under ω-exponentiation, hence

ε0 = sup
n
ωn.

Note that every ordinal below ε0 has a unique Cantor normal form. Further-
more, we point out that εΩ = Ω, where Ω is the first uncountable ordinal.



10 Section 1.2. Preliminaries

If α =NF ωα1 + · · · + ωαn and β =NF ωαn+1 + · · · + ωαn+m , we define the
natural sum of α and β, denoted by α⊕ β as

ωαπ(1) + · · ·+ ωαπ(n+m) ,

where π is a permutation on {1, . . . , n+m} such that απ(1) ≥ · · · ≥ απ(n+m).
We define the natural product α⊗ β of α and β as⊕

i=1,...,n
j=1,...,m

ωαi⊕αn+j .

For a set of ordinals A and an ordinal α, we write A < α if ∀β ∈ A(β < α)
and α < A if ∃β ∈ A(α < β). More details on ordinals can be found in e.g.,
[2, 44,57,59,60].

1.2.3 Ordinal notation systems below Γ0

As mentioned before, an ordinal notation system T is in general a term
representation system consisting of a (least) set T and an ordering <T such
that 0 ∈ T and f(t1, . . . , tn) ∈ T provided that t1, . . . , tn were already in
T , where f is a constructor symbol from a given signature. In practice, a
notation system T is represented by a set of ordinals, the constructors f are
functions on ordinals and <T is the order relation between the ordinals. We
refer to Section 1.1.1 for an overview about ordinal notation systems. We
describe here the notation systems for ε0 and Γ0. Both systems are based
on ordinal functions mentioned in the previous sections. In later subsections
(Subsection 1.2.4 and 1.2.5), we discuss several other examples.

The epsilon number ε0

This is the ordinal notation system that appears if we use the binary function
f : ξ, η 7→ ωξ + η. Using this ordinal notation system, some ordinals below
ε0 have infinitely many (term) representations in this system. To achieve
uniqueness of the terms, a subset OT is defined using the property of Cantor’s
normal form.

• 0 ∈ OT ,

• If α0, . . . , αn−1 ∈ OT and α0 ≥T · · · ≥T αn−1, then ωα0 + · · ·+ ωαn−1 ∈
OT ,
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where <T represents the ordering relation of the original ordinal notation
system. (OT,<T ) yields a unique representation for all ordinals below ε0.

The limit of predicativity Γ0

The famous ordinal Γ0 is the proof theoretic ordinal of the formal theory
ATR0 [29]. Γ0 is commonly called the the limit of predicativity because it
cannot be reached by a bootstrapping procedure, but every ordinal ξ < Γ0

can (see e.g. [57]). The underlying idea is to call a notion predicative if it can
be defined without referring to itself. Γ0 is also called the Schütte-Feferman
ordinal and it is normally defined as the least strongly critical ordinal [57].

The notation system is based on Veblen’s hierarchy ϕαβ [84], where ϕ0α
is ωα and · 7→ ϕα· is an enumeration of the commonly fixed points of all
functions · 7→ ϕβ· with β < α. So ϕ1α = εα for all α ∈ On. In this context,
Γ0 = min{β : ϕβ0 = β}. More specifically, Γα is an enumeration function
of the set {β : ϕβ0 = β}. The key in the development of the representation
system is the following lemma (see e.g. [60]).

Lemma 1.1. For every ordinal α ∈ P such that α < ϕα0, there are uniquely
determined ordinals ξ and η such that α = ϕξη and ξ, η < α.

Therefore, using Cantor’s normal form, every ordinal α strictly below Γ0 can
uniquely be written as ϕξ1η1 + · · ·+ ϕξnηn such that ξi, ηi < α. The ordinal
Γ0 is therefore the least ordinal that cannot be defined using ϕ and + without
referring to itself.

To state it clearly, we define the representation system.

• 0 ∈ T ,

• If α0, . . . , αn−1, β0, . . . , βn are all in T , ϕα0β0 ≥T · · · ≥T ϕαn−1βn−1 >T

0 and αi, βi < ϕαiβi for all i, then ϕα0β0 + · · ·+ ϕαn−1βn−1 ∈ T ,

• 0 <T α, for all α ∈ T\{0},

• ϕαβ <T ϕγδ with ϕαβ, ϕγδ ∈ T iff one of the following conditions is
satisfied

– α <T γ and β <T ϕγδ,

– α = γ and β <T δ,

– α >T γ and ϕαβ <T δ,



12 Section 1.2. Preliminaries

• ϕα0β0 + · · · + ϕαn−1βn−1 <T ϕγ0δ0 + · · · + ϕγm−1δm−1 with ϕα0β0 +
· · · + ϕαn−1βn−1, ϕγ0δ0 + · · · + ϕγm−1δm−1 ∈ T iff one of the following
conditions is valid

– ϕα0β0 <T ϕγ0δ0, or

– ϕα0β0 = ϕγ0δ0 and ϕα1β1 + · · · + ϕαn−1βn−1 <T ϕγ1δ1 + · · · +
ϕγm−1δm−1.

This yields ϕα0β0 + · · · + ϕαn−1βn−1 <T ϕγ0δ0 if ∀i < n(ϕαiβi <T ϕγ0δ0).
In this system, every ordinal below Γ0 has a unique representation.

1.2.4 Ordinal notation systems going beyond the limit
of predicativity

There are various ways to describe a notation system for bigger ordinals. For
a short, but not complete, history about this subject, we refer to Subsection
1.1.1. In this dissertation, we work with the ϑ-functions. They can be defined
in two different ways. One definition uses the closure sets C(α, β) to define
ϑm with m < ω (see e.g. [91–93]). The other one defines ϑm directly without
referring to the closure sets C(α, β). In this dissertation, we will use the
second approach. In [10,11] it is proved that these approaches are equivalent.

Up to Howard-Bachmann

In this subsection, we discuss an example for an ordinal representation system
for the ordinals less than or equal to the Howard-Bachmann ordinal η0. The
ordinal η0 (which is also denoted by ψεΩ+1, ϑεΩ+1, θεΩ+1

0, dεΩ+1) belongs
to the most well-established arsenal of proof-theoretic ordinals of natural
theories for developing significant parts of (impredicative) mathematics. η0

is the proof-theoretic ordinal of the first order theory ID1, which extends
PA by schemes for smallest fixed points of non-iterated positive inductive
definitions. The ordinal η0 is also the proof-theoretic ordinal of the theory
KPω which formalizes an admissible universe containing ω, and η0 is also
the proof theoretic ordinal of ACA0 + (Π1

1-CA0)− which formalizes lightface
Π1

1-comprehension and of the theory RCA0 + BI which extends RCA0 by the
scheme of bar induction.

First, we introduce an ordinal function ϑ that is a collapsing function, i.e.
it maps uncountable ordinals to countable ordinals. This function is used
in Chapters 2, 3, 4. Then, we introduce an ordinal representation system
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OT (ϑ). This is used in Chapter 6 and is needed to work more rigorously
with these ordinals in a formal theory. In Chapter 6, we also use a different
notation system OT ′(ϑ) to represent the ordinal ϑ(Ωω).

Before we give the definition of ϑ, we should note that we use this collaps-
ing function and not other ones from the literature because for our purpose,
the ϑ-function is more closely related to a tree-structure: it has the subterm
property, i.e. increasingness and monotonicity. Increasingness here means
kα < ϑα (see below) and monotonicity means ϑα < ϑα′ where α′ is con-
structed from α by replacing one element of kα in α by a bigger one. Both
properties also hold if we work with trees. Other collapsing functions from
the literature, e.g. Buchholz’s ψ (see [9, 14]), do not necessarily have both
properties.

Definition 1.2. Let Ω denote the first uncountable ordinal. Every ordinal
0 < α < εΩ+1 can uniquely be written as Ωα1β1 + · · ·+Ωαnβn with 0 < βi < Ω
and α > α1 > · · · > αn. Define the set of coefficients recursively as Kα =
{β1, . . . , βn} ∪ Kα1 ∪ · · · ∪ Kαn. Let K(0) be {0}. Define then kα as the
ordinal max(Kα).

Definition 1.3. For an ordinal α, define Ω0[α] as α and Ωn+1[α] as ΩΩn[α].

Definition 1.4. Let P denote the set of the additively closed ordinal numbers
{ωα : α ∈ On}. For every ordinal α < εΩ+1, define ϑα as

min{ζ ∈ P : kα < ζ and ∀β < α (kβ < ζ → ϑβ < ζ)}.

The Howard-Bachmann ordinal number is defined as

η0 = ϑ(εΩ+1) = sup
n

(ϑ (Ωn[1])) .

It can be shown by a cardinality argument that ϑα < Ω (see for example
[11] or Lemma 2.2 in [10]). The definition of ϑ yields easily that the ordering
between ϑ-terms can be described as follows.

Lemma 1.5. ϑα < ϑβ ⇐⇒

α < β and kα < ϑβ

β < α and ϑα ≤ kβ.

Proof. Assume ϑα < ϑβ. If α < β, then kα < ϑα < ϑβ. Assume α > β. If
ϑα > kβ, then the definition of ϑα yields ϑα > ϑβ, a contradiction. This
finishes the left-to-right direction.
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Assume α < β and kα < ϑβ. The definition of ϑβ yields ϑα < ϑβ. Assume
β < α and ϑα ≤ kβ. Then ϑα ≤ kβ < ϑβ. This finishes the right-to-left
direction.

Lemma 1.6. Assume α ∈ P ∩ Ω, but α /∈ Im(ϑ). If for β < εΩ+1

k(β) < α < ϑ(β),

we obtain an ordinal γ < β such that

k(γ) < α < ϑ(γ).

Proof. Using the definition of ϑ, the inequalities k(β) < α < ϑ(β) yield

¬ (∀ξ < β(k(ξ) < α→ ϑ(ξ) < α)).

Hence, there exists an ordinal γ < β such that k(γ) < α and α ≤ ϑ(γ).
α /∈ Im(ϑ) implies

k(γ) < α < ϑ(γ).

Corollary 1.7. Assume α ∈ P ∩ Ω. If there is an ordinal β < εΩ+1 such
that

k(β) < α < ϑ(β),

then α ∈ Im(ϑ).

Proof. If not, one can construct an infinite strictly decreasing sequence of
ordinals, hence a contradiction.

Hence, if α ∈ P and α < ϑ(β) for a certain β, but α /∈ Im(ϑ), then α ≤ k(β).

Corollary 1.8. If α < ϑ(εΩ+1) and α ∈ P , then there exists a unique β <
εΩ+1 such that α = ϑ(β). More specifically, β = 0 or

β =NF Ωβ1γ1 + · · ·+ Ωβnγn < εΩ+1,

where β > β1 > · · · > βn and 0 < γi < Ω and k(β) < α.

Proof. If α < ϑ(εΩ+1), then α < ϑ(Ωn[1]) for a certain n. Moreover,
k(Ωn[1]) = 1, hence if α > 1, then α ∈ Im(ϑ). Furthermore, 1 is in Im(ϑ),
because 1 = ϑ(0).
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This does not yield that every ordinal in P ∩Ω is reached by ϑ: for example
there exists no ξ < εΩ+1 such that ϑ(ξ) = ϑ(εΩ+1) ∈ P ∩ Ω.

The interested reader can find this definition of the ϑ-function in [10, 11].
Sometimes, we denote our definition of ϑ by ϑP to indicate very clearly that
ϑα is defined as a least additively closed ordinal number. In [66], the authors
approached ϑ slightly different: Rathjen and Weiermann used the closure sets
C(α, β) and they assumed that this set was closed under ω-exponentiation.
In [10] or paragraph 4 of [11], it is proved that this is the same as defining
ϑα as min{ζ ∈ E : kα < ζ and ∀β < α (kβ < ζ → ϑβ < ζ)}. Denote this
definition of ϑ by ϑE. Rathjen’s and Weiermann’s approach looks dissimilar
with our definition, but actually it is not: both ϑ-functions coincide for
ordinals bigger than Ω · ω. Note that Rathjen and Weiermann also used a
different kα, but this does not make a difference.

Lemma 1.9. Let ϑP be our definition of ϑ and ϑE be the version of Rathjen
and Weiermann. Then ϑP (Ω + α) = ϑE(α) for every α < εΩ+1.

Proof. By induction on α.

For our purpose, it does not matter if we use ϑP or ϑE because most of the
time we work with ordinals bigger than Ω2. We will use the version over
P as in Definition 1.4 for notational ease. We need the following additional
lemmas. Both of them can be proved by direct calculations.

Lemma 1.10. Suppose α and β are ordinals beneath εΩ+1. Then

k(α⊕ β) ≤ k(α)⊕ k(β),

k(α⊗ β) ≤ max{k(α)⊕ k(β), k(α)⊗ k(β)⊗ ω},
k(ωα) ≤ ωk(α).

Furthermore, k(α), k(β) ≤ k(α⊕ β) and k(α) ≤ k(α⊗ β) if β > 0.

Lemma 1.11. Suppose αn, . . . , α0 are countable ordinal numbers with αi < γ
for an epsilon number γ. Then k(o((Ωnαn + · · ·+ Ωα1 + α0)∗)) < γ.

Up to now, we have defined ϑ as a function on ordinals and we will use it
look this in Chapters 2, 3 and 4. However, if one wants to formalize the
proofs in these chapters in a formal theory (like we will do in Chapter 6),
we need a real ordinal notation system, i.e. a formal set of terms with an
order relation on it, but the details become then quite messy. We introduce
OT (ϑ), which is still a set of ordinals, but it indicates very clearly how to
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deal with the considered ordinals as terms using 0, Ωx · y + z, x+ y and ϑx,
where x, y and z are placeholders. We will use OT (ϑ) in Chapter 6.

Definition 1.12. Define inductively a set OT (ϑ) of ordinals and a natural
number Gϑα for α ∈ OT (ϑ) as follows:

1. 0 ∈ OT (ϑ) and Gϑ(0) := 0,

2. if α = Ωα1β1 + · · · + Ωαnβn with n ≥ 1, α1 > · · · > αn and Ω >
β1, . . . , βn > 0, then

(a) if (n > 1 or α1 > 0) and α1, . . . , αn, β1, . . . , βn ∈ OT (ϑ), then α ∈
OT (ϑ) and Gϑα := max{Gϑ(α1), . . . , Gϑ(αn), Gϑ(β1), . . . , Gϑ(βn)}+
1,

(b) if n = 1, α1 = 0 and α = δ1 + · · · + δm > δ1 ≥ · · · ≥ δm > 0 with
m ≥ 2 and δ1, . . . , δm ∈ OT (ϑ) ∩ P , then α ∈ OT (ϑ) and
Gϑα := max{Gϑ(δ1), . . . , Gϑ(δm)}+ 1,

3. if α = ϑβ and β ∈ OT (ϑ), then α ∈ OT (ϑ) and Gϑα := Gϑβ + 1.

Because ϑβ is always additively closed and ϑ is injective, the function Gϑ is
well-defined. Furthermore, we note that Ω ∈ OT (ϑ) because Ω = Ω1 · 1 and
1 = ϑ(0). The previous definition needs maybe a bit more explanation. If α
is uncountable, then α = Ωα1β1 + · · ·+Ωαnβn with n > 1 or α1 > 0, hence we
are always in case 2.(a). If α is countable, then we first split α in additively
closed ordinals δi using case 2.(b), meaning α = δ1 + · · ·+δm. Then we apply
case 3. on the terms δi. This is the reason why we make an, at first sight
strange, distinction in case 2. There is a straightforward translation of the
ordinals in OT (ϑ) to terms over the symbols 0, Ωx · y + z, x + y and ϑx,
where x, y and z are placeholders. For example, ϑ(ΩΩ · 2) is

ϑ(ΩΩ1·1+0 · (1 + 1) + 0),

where 1 is interpreted as ϑ0.

Lemma 1.13. If ξ ∈ OT (ϑ), then K(ξ) ⊆ OT (ϑ). Furthermore, Gϑ(k(ξ)) ≤
Gϑ(ξ) for all ξ in OT (ϑ).

Proof. We prove this by induction on Gϑ(ξ). If ξ = 0, then this trivially
holds. If ξ = ϑ(ξ′), then K(ξ) = {ξ}, hence this also trivially holds. Assume
ξ = Ωξ1β1 + · · ·+ Ωξnβn with n ≥ 1, ξ1 > · · · > ξn and Ω > ξ1, . . . , ξn > 0. If
n = 1 and ξ1 = 0, then also K(ξ) = {ξ}, hence the assertion holds. Let now
n > 1 or ξ1 > 0. Then K(ξ) = {β1, . . . , βn}∪K(ξ1)∪· · ·∪K(ξn). The induc-
tion hypothesis yields K(ξ) ⊆ OT (ϑ). Furthermore, Gϑ(k(ξi)) ≤ Gϑ(ξi) <
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Gϑ(ξ). Therefore, the strict inequality Gϑ(k(ξ)) = Gϑ(maxi{k(ξi), βi}) <
Gϑ(ξ) holds.

Each ordinal α ∈ OT (ϑ) has a unique normal form using the symbols 0,Ω,+
and ϑ. The relation α < β can be expressed using the ordinals appearing in
their normal form (by Lemma 1.5), which have strictly smaller Gϑ-values by
the previous Lemma 1.13. Hence, the following lemmas hold.

Lemma 1.14. There exists a specific coding of (OT (ϑ), <OT (ϑ)) in the natu-
ral numbers such that (OT (ϑ) ∩ Ω, <OT (ϑ)) can be interpreted as a primitive
recursive ordinal notation system for the ordinals less than ϑ(εΩ+1). Further-
more, one can choose this coding in such a way that ∀ξ ∈ K(α)(ξ ≤N α).

Lemma 1.15. OT (ϑ) ∩ α = α for α ∈ OT (ϑ) ∩ Ω.

This is the ordinal notation system that we will use in Chapter 6 if we
work in the theory ACA0 augmented with a comprehension scheme (namely
lightface Π1

1-comprehension). In the theories RCA0 and RCA∗0 (augmented
with the same comprehension scheme), we use a different ordinal notation
system OT ′(ϑ). We postpone the definition of OT ′(ϑ) to Chapter 6.

Beyond Howard-Bachmann

We introduce the collapsing functions ϑi with i strictly less than a fixed n.
The collapsing functions describe ordinals bigger than the Howard-Bachmann
number ϑεΩ+1. In [92, 93], Wilken introduced ϑi with closure sets Cj

i (α, β).
Later, Weiermann and Wilken [91] showed the correspondence of these func-
tions with the simultaneously defined theta-functions ϑi. In this dissertation,
we introduce them, like the ϑ-function, directly as functions on ordinals with-
out referring to closure sets. Following [10] or paragraph 4 of [11], one can
prove that our functions coincide with the ones considered by Wilken after
a certain small ordinal.

Fix a natural number n ≥ 1. We define the collapsing functions ϑi for i < n.
Let Ω0 := 1 and if i > 0 let Ωi be the ith regular ordinal number strictly
above ω. So Ω1 is the first uncountable cardinal number, which previously
was denoted by Ω. Define Ωω as supi Ωi.

Definition 1.16. Let α < εΩn+1. Then α = 0 or α = Ωα1
n β1 + · · ·+Ωαm

n βm >
α1 > · · · > αm with 0 < β1, . . . , βm < Ωn. Define Kn−1α as

⋃
iKn−1αi ∪

{β1, . . . , βn}. Let kn−1α = max(Kn−1α).
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Definition 1.17. Let E be the set of epsilon numbers. For every α < εΩn+1

define ϑn−1α as

min{ζ ∈ E : Ωn−1 ≤ ζ and kn−1α < ζ and ∀β < α(kn−1β < ζ → ϑn−1β < ζ)}.

Definition 1.18. Pick j < n − 1 and assume ϑi : ϑi+1 . . . ϑn−1εΩn+1 →
[Ωi,Ωi+1[ and Ki are defined for every n > i > j. Define for every α <
ϑj+1 . . . ϑn−1εΩn+1, the functions Kj and ϑj as follows.

Kj0 = {0}
Kjα = Kjα1 ∪Kjα2 if α = α1 ⊕ α2 with α1, α2 6= 0
Kjα = Kjβ if α = ωβ > β
Kjα = {α} if α ∈ E ∩ Ωj+1

Kjα = Kj(Kj+1(β)) if α = ϑj+1β ≥ Ωj+1

and let ϑjα be

min{ζ ∈ E : Ωj ≤ ζ and kjα < ζ and ∀β < α(kjβ < ζ → ϑjβ < ζ)},

where kjα := max(Kjα).

Note that if n = 1, Definition 1.18 is useless and we only have the function
ϑ0. The collapsing function ϑ0 is the same as ϑE (see just above Lemma 1.9
for the definition of ϑE). That is why we sometimes denote our ϑi’s by ϑEi .
We could also define ϑiα as a least ordinal over P , i.e.

min{ζ ∈ P : Ωi ≤ ζ and kiα < ζ and ∀β < α(kiβ < ζ → ϑiβ < ζ)}.

We denote these collapsing functions as ϑPi (the version of Wilken [92,93] is
with P ). Like in the ϑ-case, ϑEi and ϑPi are the same after a certain point,
i.e. both definitions of ϑi coincide after Ωi+1 · ω.

Definition 1.19. If α is an ordinal number, then

−1 + α :=

α− 1 if 0 < α < ω,

α otherwise.

Lemma 1.20. Let ϑEi be as in Definitions 1.17 and 1.18. Assume ϑPi is the
same as ϑEi , but we define ϑi over P instead of over E. Then for every 0 <
i < n and for every 0 < α < ϑEi+1 . . . ϑ

E
n−1εΩn+1, we have ϑEi (0) = ϑPi (0) = Ωi

and
ϑEi (α) = ϑPi (Ωi+1 + (−1 + α)).

If i = 0, then for every α < ϑE1 . . . ϑ
E
n−1εΩn+1, we have

ϑE0 (α) = ϑP0 (Ω1 + α).
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Proof. By induction on α. Note that Ω0 = 1.

For our purpose, we could choose either ϑEi or ϑPi because we work with bigger
ordinals than Ωi+1 · ω. In Section 5.2, we use ϑEi as defined in Definitions
1.17 and 1.18. However, in Section 5.3, we use ϑPi because this makes the
proofs in that section easier.

Similarly as in the ϑ-case (see Corollary 1.8), one can prove that ϑi is sur-
jective on E in some sense. We need two more additional lemmas. First, fix
a natural number n ≥ 2 and assume that we have defined ϑ0, . . . , ϑn−1 and
K0, . . . , Kn−1.

Lemma 1.21. Suppose that α, β > 0, then for j < n− 1

Kj(α⊗ β) = Kj(α) ∪Kj(β).

Proof. By a straightforward calculation.

Lemma 1.22. For j < n − 1, if α < β < Ωj+1, then kj(α) ≤ kj(β) and
kj(α) ≤ α.

Proof. By induction on α⊕ β and respectively on α.

We denote the corresponding ordinal notation system by OT (ϑi). To reca-
pitulate, if we work below the Howard-Bachmann ordinal, we use ϑ = ϑP .
If we work beyond the Howard-Bachmann ordinal, we work with either ϑEi
(Section 5.2) or ϑPi (Section 5.3).

1.2.5 Ordinal notation systems without addition

In this subsection, we define several ordinal notation systems for ordinals
smaller than or equal to ε0. All of them do not use the addition operator. In
this dissertation, we investigate the last one in Chapter 7, i.e. the notation
system based on the collapsing functions ϑi.

The Veblen hierarchy

Assume that (T,<) is a notation system with otype(T ) ∈ ε0\{0}. Define the
representation system ϕT0 recursively as follows.

Definition 1.23. • 0 ∈ ϕT0,
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• if α ∈ ϕT0 and t ∈ T , then ϕtα ∈ ϕT0.

Define on ϕT0 the following total order

Definition 1.24. For α, β ∈ ϕT0, α < β is valid if

• α = 0 and β 6= 0,

• α = ϕt1α
′, β = ϕt2β

′ and one of the following cases holds:

1. t1 < t2 and α′ < β,

2. t1 = t2 and α′ < β′,

3. t1 > t2 and α ≤ β′.

Recall Definition 1.19.

Theorem 1.25. Assume otype(T ) = α ∈ ε0\{0}. Then (ϕT0, <) is a nota-
tion system for the ordinal ωω

−1+α
.

Proof. For a proof, we refer to theorem 16 in [48].

Using the πi-collapsing functions

We use an ordinal notation system that employs the πi-collapsing func-
tions. These functions are based on Buchholz’s ψi-functions (see [9, 14]),
but now addition is avoided. They are investigated by Schütte and Simpson
in [72] to prove an independence result concerning sequences with the gap-
embeddability relation. We state some basic facts that the reader can find in
[9] and [72]. Recall Ω0 = 1 and if i > 0, Ωi is the ith regular ordinal number
strictly above ω. Also remember Ωω = supn Ωn.

Define the sets Bm
i (α) and Bi(α) and the ordinal numbers πiα inductively

as follows (see [72]).

Definition 1.26. Take an ordinal number α and i < ω. Assume that we
have defined Bj(β) and πjβ for every β < α and every j < ω. Define Bm

i (α)
and Bi(α) as the least set of ordinals such that

• if γ = 0 or γ < Ωi, then γ ∈ Bm
i (α),

• if i ≤ j, β < α, β ∈ Bj(β) and β ∈ Bm
i (α), then πjβ ∈ Bm+1

i (α),

• define Bi(α) as
⋃
m<ω B

m
i (α).
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Define πiα as min{η : η /∈ Bi(α)}.

Lemma 1.27. 1. If i ≤ j and α ≤ β, then Bi(α) ⊆ Bj(β) and πiα ≤ πjβ,

2. Ωi ≤ πiα < Ωi+1,

3. πi0 = Ωi,

4. α ∈ Bi(α) and α < β yield πiα < πiβ,

5. α ∈ Bi(α), β ∈ Bi(β) and πiα = πiβ yield α = β.

Proof. See lemmas 1.1,1.2 and 1.4 in [72].

Definition 1.28. For ordinals α ∈ B0(Ωω), define Gi(πjα) as∅ if j < i,

Giα ∪ {α} otherwise.

Define Gi(0) as ∅.

This is well-defined because one can prove πjα ∈ B0(Ωω) yields α ∈ B0(Ωω).

Lemma 1.29. If α ∈ B0(Ωω), then Gi(α) < β iff α ∈ Bi(β).

Proof. We prove this by induction on the length of construction of α. If
α = 0 or α = πjδ with j < i, then this is trivial. Assume α = πjδ with j ≥ i.
α = πjδ ∈ B0(Ωω) yields δ ∈ Bj(δ). Now, Gi(α) < β is valid iff Gi(δ) < β
and δ < β. By the induction hypothesis, this is equivalent with δ ∈ Bi(β)
and δ < β, which is equivalent with α = πjδ ∈ Bi(β) because δ ∈ Bj(δ).

Now we define the ordinal notation systems π(ω) and π(n), but first, we
define a set of terms π(ω)′ and π(n)′.

Definition 1.30. • 0 ∈ π(ω)′ and 0 ∈ π(n)′,

• if α ∈ π(ω)′, then Djα ∈ π(ω)′,

• if α ∈ π(n)′ and j < n, then Djα ∈ π(n)′.

Definition 1.31. Let α, β ∈ π(ω)′ or α, β ∈ π(n)′. Then define α < β if

1. α = 0 and β 6= 0,

2. α = Djα
′, β = Dkβ

′ and i < j or i = j and α′ < β′.
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Lemma 1.32. < is a linear order on π(ω)′ and π(n)′.

Proof. Similar as Lemma 2.1 in [9].

Definition 1.33. For α ∈ π(ω)′, π(n)′, define Gi(α) as follows.

1. Gi(0) = ∅,

2. Gi(Djα
′) :=

Gi(α
′) ∪ {α′} if i ≤ j,

∅ if i > j.

Now, we are ready to define the ordinal notation systems π(ω) ⊆ π(ω)′ and
π(n) ⊆ π(n)′.

Definition 1.34. π(ω) and π(n) are the least sets such that

1. 0 ∈ π(ω), 0 ∈ π(n),

2. if α ∈ π(ω) and Gi(α) < α, then Diα ∈ π(ω),

3. if α ∈ π(n), i < n and Gi(α) < α, then Diα ∈ π(n).

Apparently, the Djα’s correspond to the ordinal functions πjα:

Definition 1.35. For α ∈ π(ω) and π(n), define

1. o(0) := 0,

2. o(Djα
′) := πj(o(α

′)).

Lemma 1.36. For α, β ∈ π(ω) or π(n), we have:

1. o(α) ∈ B0(Ωω),

2. Gi(o(α)) = {o(x) : x ∈ Gi(α)},

3. α < β → o(α) < o(β).

Proof. A similar proof is lemma 2.2 in [9].

Lemma 1.37. 1. {o(x) : x ∈ π(ω)} = B0(Ωω),

2. {o(x) : x ∈ π(ω) and x < D10} = π0Ωω,

3. {o(x) : x ∈ π(n) and x < D10} = π0Ωn if n > 0.

Proof. A similar proof is lemma 2.3 in [9].
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Define π(ω) ∩ D10 as π0(ω) and π(n) ∩ D10 as π0(n). It is important to
notice that that we work with two different contexts: one context is at the
level of ordinals, i.e. if we use the πi’s. The other context at the syntactical
level, i.e. if we use the Di’s (because it is an ordinal notation system). The
previous results actually indicate that Di and πi play the same role and for
notational convenience, we will identify these two notations: from now on,
we write πi instead of Di. The context will make clear what we mean. If we
use Ωi in the ordinal context, it is interpreted as usual, i.e. as the ith regular
ordinal number strictly above ω for i > 0. In the other context, at the level
of ordinal notation systems, we define Ωi as Di0 (which is now also denoted
by πi0). We could also have defined π(ω) in the following equivalent way.

Definition 1.38. Define π(ω) as the least set of ordinals such that

1. 0 ∈ π(ω),

2. If α ∈ π(ω) and α ∈ Bi(α), then πiα ∈ π(ω).

Define π(n) in the same manner, but with the restriction that i < n.

In [72] (lemma 2.11), the following theorem is shown. Therefore, one can
interpret π0(n) as a notation system for ωn[1] if n > 0 and π0(ω) as a system
for ε0.

Theorem 1.39. 1. π0Ωn = ωn[1] if n > 0,

2. π0Ωω = ε0.

Using the ϑi-collapsing functions

In this subsection, we give ordinal representation systems that are based on
the ϑi-functions (see section 1.2.4). We introduce them without the addition-
operator.

Definition 1.40. Define T and the function S simultaneously as follows.
T is the least set such that 0 ∈ T , where S(0) := −1, and if α ∈ T with
S(α) ≤ i + 1, then ϑiα ∈ T and S(ϑiα) := i. We call the number of
occurrences of symbols ϑj in α ∈ T the length of α and denote this by lh(α).
Furthermore, let Ωi := ϑi0.

So in this context Ωi is not equal to the ith uncountable regular cardinal, but
it can be interpreted as it, like in the Di-case. S(α) represents the index i of
the first occurring ϑi in α if α 6= 0.
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Definition 1.41. Let n < ω. Define Tn as the set of elements α in T such
that for all ϑj which occur in α, we have j < n. Let T [m] be the set of
elements α in T such that S(α) ≤ m. Define Tn[m] accordingly.

For example T1 = T1[0] = {0, ϑ00, ϑ0ϑ00, . . . }. For every element α in T , we
define its coefficients. The definition is based on the usual definition of the
coefficients in a notation system with addition.

Definition 1.42. Let α ∈ T . If α = 0, then ki(0) := 0. Assume α = ϑj(β).
Let ki(α) then be α if j ≤ i,

ki(β) if j > i.

Using this definition, we introduce a well-ordering on T (and its substruc-
tures). This ordering is based on the usual ordering between the ϑi-functions
defined with addition.

Definition 1.43. 1. If α 6= 0, then 0 < α,

2. if i < j, then ϑiα < ϑjβ,

3. if α < β and kiα < ϑiβ, then ϑiα < ϑiβ,

4. if α > β and ϑiα ≤ kiβ, then ϑiα < ϑiβ.

Notation 1.44. If α, γ ∈ T and γ < Ω1, let α[γ] be the element of T where
the last zero in α is replaced by γ.

The following lemma gives some useful properties of this ordinal notation
system.

Lemma 1.45. For all α, β and γ in T and for all i < ω,

1. ki(α) ≤ α,

2. if α = ϑj1 . . . ϑjnt with j1, . . . , jn ≥ i and (t = 0 or t = ϑkt
′ with k ≤ i),

then t < ϑi(α),

3. ki(α) < ϑiα,

4. ki(α)[γ] = ki(α[γ]) for γ < Ω1,

5. if γ < Ω1, then γ ≤ β[γ] and there is only equality if β = 0,

6. if α < β and γ < Ω1, then α[γ] < β[γ].

Proof. 1. The first assertion is easy to see.
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2. By induction on lh(α) and sub-induction on lh(t). If α = 0, then the
claim is trivial. Assume from now on α > 0. If t = 0 or t = ϑkt

′ with
k < i, then this is trivial. Assume t = ϑit

′. Then t = ϑiϑl1 . . . ϑlmki(t
′)

with l1, . . . , lm > i. The sub-induction hypothesis, lh(ki(t
′)) < lh(t)

and α = ϑj1 . . . ϑjnϑiϑl1 . . . ϑlmki(t
′) yield ki(t

′) < ϑiα. If t′ < α, then
t = ϑit

′ < ϑiα. Assume t′ > α. Note that equality is impossible
because t′ is a strict subterm of α. We claim that t = ϑit

′ ≤ ki(α),
hence we are done. We know ki(α) = ϑjp . . . ϑjnϑit

′ for a certain p with
jp = i or ki(α) = ϑit

′. In the latter case, the claim is trivial. In the
former case, the main induction hypothesis on ϑjp+1 . . . ϑjnϑit

′ yields
t < ϑiϑjp+1 . . . ϑjnϑit

′ = ki(α).

3. This follows easily from the second assertion because
α = ϑj1 . . . ϑjnki(α) with j1, . . . , jn > i.

4. Follows easily by induction on lh(α).

5. By induction on lh(γ) and sub-induction on lh(β). If γ = 0, the state-
ment is trivial to see. From now on, let γ = ϑ0γ

′. If β = 0 or β = ϑiβ
′

with i > 0, the statement also easily follows. Assume β = ϑ0β
′. We

see β[γ] = ϑ0(β′[γ]). Suppose γ′ < β′[γ]. Assume γ′ = ϑj1 . . . ϑjkk0(γ′)
with j1, . . . , jk > 0 and define β as β[ϑ0ϑj1 . . . ϑjk0]. The main induc-
tion hypothesis yields k0(γ′) ≤ β[k0(γ′)] = β[γ] = ϑ0(β′[γ]). Note that
equality is not possible because k0(γ′) is a strict subterm of β[k0(γ′)],
hence γ = ϑ0γ

′ < ϑ0(β′[γ]) = β[γ]. Assume γ′ > β′[γ]. The sub-

induction hypothesis yields γ ≤ k0(β′)[γ]
γ<Ω1= k0(β′[γ]). Hence, γ ≤

k0(β′[γ]) < ϑ0(β′[γ]) = β[γ].

6. By induction on lh(α)+lh(β). If α = 0 and β 6= 0, then the previous as-
sertion yields α[γ] = γ < β[γ]. Assume α = ϑiα

′ < ϑjβ
′ = β. If i < j,

then also α[γ] < β[γ]. Suppose i = j. Then either α′ < β′ and ki(α
′) <

ϑjβ
′, or α ≤ kj(β

′). In the former case, the induction hypothesis

yields α′[γ] < β′[γ] and ki(α
′[γ])

γ<Ω1= ki(α
′)[γ] < (ϑjβ

′)[γ] = ϑj(β
′[γ]).

Hence, α[γ] = (ϑiα
′)[γ] = ϑi(α

′[γ]) < ϑj(β
′[γ]) = (ϑjβ

′)[γ] = β[γ]. In

the latter case, the induction hypothesis yields α[γ] ≤ kj(β
′)[γ]

γ<Ω1=
kj(β

′[γ]) < ϑj(β
′[γ]) = (ϑjβ

′)[γ] = β[γ].
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1.2.6 Theories and reverse mathematics

One of the most fundamental notions in proof theory is the proof-theoretic
ordinal of a logical system T . Roughly speaking, the sub-discipline ordinal
analysis assigns ordinals in a given representation system to formal theories
of logic [1, 59, 63]. Following Gentzen in [32], we nowadays define the proof-
theoretic ordinal of a formal theory T to be the supremum of the order
types of primitive recursive well-orders on the natural numbers whose well-
foundedness can be derived from the axioms of T . This ordinal is denoted
by |T | and is also called the Π1

1-ordinal of the theory (see e.g. [63]).

The most standard first order theory is the one named after Giuseppe Peano:
Peano Arithmetic, denoted by PA. The theory PA consists of the axioms
needed for 0 and for the functions of summation and multiplication between
the natural numbers. Furthermore, the theory PA contains an induction
scheme over the natural numbers:

[F (0) ∧ ∀n(F (n)→ F (n+ 1))]→ ∀nF (n),

where F is an arbitrary formula in the language of arithmetic. If we restrict
the number of allowed unbounded quantifiers in F , let us say bounded by n,
we obtain the theories called IΣn. The union of these theories is of course the
original theory PA. The proof-theoretic ordinal of IΣn is equal to ωn+1[1].
The ordinal of PA is the supremum of these ordinals, namely ε0.

Reverse mathematics

Reverse mathematics is a program in the foundations of mathematics in-
troduced by Friedman [26], which aims to classify the theorems of ordinary
mathematics by their proof-theoretic strengths. Theorem ϕ is considered to
be stronger than theorem ψ if ϕ requires stronger axioms to prove than ψ
does. Or, equivalently, if ϕ implies ψ but not conversely over some fixed
weak base theory.

A remarkable phenomenon is that there are only five theories (called the ‘Big
Five’: RCA0, WKL0, ACA0, ATR0 and Π1

1-CA0) such that almost all ordinary
theorems ϕ are equivalent with one of these five over RCA0. The name ‘reverse
mathematics’ comes from the fact that one not only looks at the question if
T ` ϕ, but also that one searches for the minimal axioms needed to prove ϕ,
i.e. that also RCA0 + ϕ ` T holds. The literature of reverse mathematics is
too vast to oversee, but we do mention the study of ordinals [40, 42, 77] and
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the study of well-partial-orders [17, 30, 52, 54], especially Kruskal’s theorem
[66]. We refer to [77] for a more detailed and comprehensive overview about
reverse mathematics.

Before we can introduce these big five systems of reverse mathematics, we
need to know over what language we define everything. Without stepping
into much details (for more details see [77]), the language of second order
arithmetic L2 consists of two distinct sorts of variables. The first one (denoted
by small letters like x, y) intends to range over the natural numbers and the
second one (denoted by capital letters likeX, Y ) over all subsets of the natural
numbers. The axioms of second order arithmetic consist of the basic axioms,
stating that N is a discretely ordered commutative semi-ring with a unit.
More precisely, the basic axioms are the sentences

∀m(m+ 1 6= 0)

∀m∀n(m+ 1 = n+ 1→ m = n)

∀m(m+ 0 = m)

∀m∀n(m+ (n+ 1) = (m+ n) + 1)

∀m(m · 0 = 0)

∀m∀n(m · (n+ 1) = m · n+m)

∀m¬(m < 0)

∀m∀n(m < n+ 1↔ m < n ∨m = n)

Furthermore, second order arithmetic contains the induction axiom

∀X[(0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X))→ ∀n(n ∈ X)]

and the comprehension scheme

∃X∀n(n ∈ X ↔ ϕ(n)),

where we take the universal closure of the last formula. ϕ is an arbitrary
formula in the language of second order arithmetic.

The axioms of RCA0 (Recursive Comprehension Axiom) consist of the basic
axioms, the Σ0

1-induction scheme and the ∆0
1-comprehension scheme. More

precisely, it contains the universal closures of all formulas of the form

[ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1))]→ ∀nϕ(n),

where ϕ is Σ0
1, and the universal closures of all formulas of the form

∀n(ϕ(n)↔ ψ(n))→ ∃X∀n(n ∈ X ↔ ϕ(n)),
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where ϕ is Σ0
1, ψ is Π0

1, and X is not free in ϕ. Despite that RCA0 is being
a weak system, several interesting and familiar theorems are provable in
RCA0. For example RCA0 proves that Nm is a well-partial-order, where Nm

is defined with the cartesian product (see Sections 1.2.7 and 1.2.8 for the
notions of well-partial-orders and cartesian products). For more examples
of provable statements in RCA0, see e.g. [77]. It can be proved that the
proof-theoretical ordinal of RCA0 is the ordinal ωω (see e.g. [77]).

As mentioned before, reverse mathematics deals with equivalences of formu-
las with theories over a weak base theory and quite often, we use RCA0 as
that base theory. RCA0 can be seen as a foundation of what a normal com-
puter can handle: is deals with recursive sets. Sometimes, people weaken
the base theory (e.g. by restricting the induction scheme) and investigate
if the equivalences still hold. An example of such a weaker base theory is
RCA∗0. The language of RCA∗0 is that of RCA0 but it is augmented by a binary
operation symbol exp that denotes the exponential function. This language
is denoted by L2(exp). The axioms of RCA∗0 consist of the basic axioms, the
exponentiation axioms, the ∆0

1-comprehension scheme and the Σ0
0-induction

scheme. The groundwork for this has been laid in [78].

The theory WKL0 is RCA0 augmented with the principle WKL (Weak König’s
Lemma) stating that every infinite subtree of 2∗ has an infinite path. WKL0

has the same proof-theoretic ordinal as RCA0, namely ωω (see e.g. [77]).

The axioms of ACA0 (Arithmetic Comprehension Axiom) are those of RCA0

augmented with the arithmetical comprehension scheme, which consists of
the universal closures of all formulas of the form

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is an arithmetical formula (meaning no set-quantifiers) in which
X is not free. Many familiar theorems are equivalent to ACA0 over RCA0

(see e.g. [77]). An example in the context of this dissertation is Higman’s
lemma (see Lemma 1.63). The ordinal of the theory ACA0 is the first epsilon
number, namely ε0 (see e.g. [71, 79]). One can prove that over RCA0, ACA0

is equivalent with

For every set X, the nth Turing jump of X exists,

where n is fixed from the outside [77]. Define ACA′0 as the theory ACA0

augmented with the axiom

∀n(for every set X, the nth Turing jump of X exists),

The proof-theoretic ordinal of ACA′0 is εω, the ωth epsilon number.
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The theory ATR0 (Arithmetical Transfinite Recursion) is equal to ACA0 to-
gether with the assertion that arithmetic comprehension can be iterated along
any countable well-ordering. We do not formalize ATR0 because we do not
need it in this dissertation. ATR0 is strong enough to develop a good theory
of countable ordinals. For example, Friedman showed that ATR0 is equivalent
over RCA0 to the assertion about the comparability of well-ordering, i.e. it
states that for every two well-order X and Y , either X is (isomorphic to) an
initial segment of Y , or Y is (isomorphic to) an initial segment of X (see e.g.
[27]). The proof-theoretic ordinal of ATR0 is Γ0, the limit of predicativity
(see e.g. [29]).

The axioms of Π1
1-CA0 (Π1

1-Comprehension Axiom) are those of ACA0 aug-
mented by the Π1

1-comprehension scheme, i.e. all universal closures of the
formulas of the form

∃X∀n(n ∈ X ↔ ϕ(n)),

where ϕ is now a Π1
1-formula in which X is not free. The ordinal of Π1

1-CA0

is supn ϑ0 . . . ϑn−1Ωn (see e.g. [13, 14,71,79]).

1.2.7 Well-partial-orderings

In [47], well-partial-orderings are claimed to be among the most frequently
rediscovered objects. In logic, well-partial-orders are used for studying ordi-
nal notation systems and independence results. Furthermore, they are used
in computer science to prove the termination of rewrite systems [87] and to
calculate running times. Additionally, they have applications in transitions
systems [7]. In algebra, more specifically computer algebra, these structures
are used for investigations on Gröbner bases [6], Braid groups [16] and com-
mutative algebra [4]. In this section we recall some basic facts from the
theory of well-partial-orderings.

Definition 1.46. A well-partial-ordering, well-partial-order or wpo
is a partial order (X,≤X) such that for every infinite sequence (xi)

+∞
i=1 of

elements of X, there exist two indices i and j such that i < j and xi ≤X xj.
We denote the wpo (X,≤X) by X if the ordering is clear from the context.

Definition 1.47. A sequence (xi)i<α of elements of a partial order X (with
α ≤ ω) is bad if for all i < j < α, xi 6≤X xj holds. If a sequence is not bad
we call it good.
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Definition 1.48. For a partial order X, let Bad(X) be the tree of finite
bad sequences ordered by inclusion: s ≤ t iff s v t (i.e. lh(s) ≤ lh(t) and
∀i(i < lh(s)→ si = ti)). This implies that the empty sequence is the root (=
the smallest element) of the tree Bad(X).

In the literature one frequently encounters the similar notion of a well-quasi -
ordering (which is the same as a well-partial-ordering, but it lacks anti-
symmetry). This notion does not differ a lot from a wpo because every wpo is
a well-quasi-order and after an obvious factorization, every well-quasi-order
is a wpo.

There are other equivalent definitions of well-partial-orderings, however they
are all not computably equivalent. For an overview of the equivalent defini-
tions in a reverse mathematical setting, we refer the reader to [17,30].

Lemma 1.49. Let X be a partial order. Then the following are equivalent

1. X is a well-partial-order (i.e. it does not contain infinite bad sequences),

2. The tree Bad(X) is well-founded (i.e. it does not contain an infinite
path through the tree),

3. X is well-founded and does not admit infinite anti-chains (which is a
set of two-by-two incomparable elements).

4. Every extension of the partial order X to a linear ordering on X is a
well-ordering.

5. Every extension of the partial order X to a partial ordering on X is
well-founded.

6. Every infinite sequence of elements of X contains a weakly increasing
subsequence.

7. X has the finite basis property (i.e. for every S ⊆ X, there exists a
finite F ⊆ S such that ∀x ∈ S∃y ∈ F (y ≤X x)).

In a groundbreaking paper, de Jongh and Parikh [21] have been able to
isolate a mathematical invariant of well-partial-orderings which is crucial in
determining the proof-theoretic strength of well-partial-orderings.

Definition 1.50. The maximal order type of the wpo (X,≤X) is equal
to

sup{α: ≤X⊆�, � is a well-ordering on X and otype(X,�) = α}.
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We denote this ordinal by o(X,≤X) or by o(X) if the ordering is clear from
the context.

The following theorem by de Jongh and Parikh [21] shows that this supremum
is actually a maximum.

Theorem 1.51 (de Jongh and Parikh [21]). Assume that (X,≤X) is a wpo.
Then there exists a well-ordering � on X which is an extension of ≤X such
that otype(X,�) = o(X,≤X).

Definition 1.52. A maximal linear extension of a wpo X is a well-
ordering � on X that satisfies Theorem 1.51.

The maximal order type is given by a set-theoretic definition. In case of
concretely given well-partial-orderings, it is in quite a few times possible to
calculate these ordinals more explicitly. To do so, it turns out to be useful
to approximate well-partial-orderings by suitable subsets, the so-called ‘left-
sets’ of elements.

Definition 1.53. Let (X,≤X) be a wpo and x ∈ X. Define the left-set L(x)
as the set {y ∈ X : x 6≤X y} and l(x) := o(L(x),≤X�L(x)).

The role of these sets becomes clear by the following structural theorem.

Theorem 1.54 (de Jongh and Parikh [21]). Assume that X is a partial
order. If L(x) is a wpo for every x ∈ X, then X is a wpo. (The converse is
trivially true.) In this case, o(X) = sup{l(x) + 1 : x ∈ X}.

Therefore, the maximal order type of a wpo X is equal to the height of the
root of the tree of bad sequences Bad(X), and so in nice cases, the maximal
order type can be calculated in a recursive way. To obtain bounds on maximal
order types, it turns out to be useful to consider mappings which preserve
well-partial-orderedness. We call these mappings quasi-embeddings.

Definition 1.55. Let X and Y be two partial orders. A map e : X → Y is
called a quasi-embedding if for all x, x′ ∈ X with e(x) ≤Y e(x′), we have
x ≤X x′.

This definition looks artificial at first sight but it turns out to be the appro-
priate notion to work with, as is indicated by the next lemma.

Lemma 1.56. If X and Y are partial orders and e : X → Y is a quasi-
embedding and Y is a wpo, then X is a wpo and o(X) ≤ o(Y ).

A different method to obtain bounds uses reifications.
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Definition 1.57. A reification from a partial order X to a linear order
α is a mapping f : Bad(X) → α + 1 such that f(sa(u)) < f(s) for all
s, sa(u) ∈ Bad(X).

Lemma 1.58. A partial order X is a wpo if and only if there exists a reifi-
cation f from Bad(X) to α+ 1, where α is an ordinal number. Furthermore,
in this case o(X) ≤ α.

Proof. If there exists a reification f : Bad(X) → α + 1 with α an ordinal
number, then Bad(X) is well-founded and hence X is a wpo. Furthermore,
the height of the root of the tree Bad(X) is bounded above by α, hence
o(X) ≤ α.

The other direction follows from defining f(x0 . . . xn) as o({y ∈ X : x0 6≤X
y ∧ · · · ∧ xn 6≤X y}) for (x0, . . . , xn) ∈ Bad(X).

1.2.8 Examples of and constructors on well-partial-or-
derings

In this subsection, we discuss important wpo’s and constructors on wpo’s.
From one or two fixed well-partial-orders, one can construct a dozen of other
wpo’s. We will not yet mention the orders with the gap-embeddability re-
lation in this subsection because they are so important in this dissertation
that we will discuss them in a separate section (see Section 1.2.9).

Definition 1.59. Let X0 and X1 be two wpo’s. Define the disjoint sum
X0 +X1 as the set {(x, 0) : x ∈ X0} ∪ {(y, 1) : y ∈ X1} with the ordering:

(x, i) ≤ (y, j)⇐⇒ i = j and x ≤Xi y.

The underlying set without the ordering is called the disjoint union. For an
arbitrary element (x, i) in X0 + X1, we omit the second coordinate i if it is
clear from the context to which set the element x belongs to.

Define the cartesian product X0 ×X1 as the set {(x, y) : x ∈ X0, y ∈ X1}
with the ordering:

(x, y) ≤ (x′, y′)⇐⇒ x ≤X0 x
′ and y ≤X1 y

′.

Recall that if we talk about the disjoint union of X0 and X1, we only speak
about the set {(x, 0) : x ∈ X0} ∪ {(y, 1) : y ∈ X1}.
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Definition 1.60. Let X∗ be the set of finite sequences over X ordered by

(x1, . . . , xn) ≤∗X (y1, . . . , ym)

⇐⇒ (∃1 ≤ i1 < · · · < in ≤ m)(∀j ∈ {1, . . . , n})(xj ≤X yij).

If the underlying ordering on X is clear from the context, we write ≤∗ instead
of ≤∗X . The order ≤∗ is called the Higman order on X∗. Sometimes, we
even write X∗ if we mean the partial order (X∗,≤∗). The context will indicate
what we mean.

Higman’s original paper [38] studied the partial order (X∗,≤∗X). He showed
that it has the finite basis property, hence that it is a wpo, whenever X is
a wpo. This partial order is a very important example in well-partial-order
theory and is extensively studied in other subjects, e.g. in [25, 37, 74]. De
Jongh, Parikh and Schmidt provided precise bounds for the maximal order
types of these well-partial-orderings.

Theorem 1.61 (Higman [38], de Jongh and Parikh [21], Schmidt [69]). If
X0, X1 and X are wpo’s, then X0 + X1, X0 × X1 and X∗ are still wpo’s,
and

o(X0 +X1) = o(X0)⊕ o(X1),

o(X0 ×X1) = o(X0)⊗ o(X1),

and

o(X∗) =


ωω

o(X)−1
if o(X) is finite,

ωω
o(X)+1

if o(X) = ε+ n, with ε an epsilon number and n < ω,

ωω
o(X)

otherwise.

Furthermore, there are known results concerning the reverse mathematical
strength of Higman’s lemma. First, we define ωX following [53].

Definition 1.62. Let X be a linear order. Define ωX as the subset of X∗

such that (x0, . . . , xn−1) ∈ ωX if x0 ≥X · · · ≥X xn−1. Define the ordering
on ωX as the lexicographic one: (x0, . . . , xn−1) ≤ωX (y0, . . . , ym−1) if either
n ≤ m and xi = yi for all i ≤ n, or there exists a j < min{n,m} such that
xj <X yj and xi = yi for all i < j.

The idea behind the previous definition is the Cantor normal form. Every
ordinal α > 0 is equal to

α =CNF ω
α0 + · · ·+ ωαn−1 ,

with α0 ≥ · · · ≥ αn−1 ≥ 0.
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Lemma 1.63. Over RCA0, the following are equivalent

1. ACA0,

2. ∀X(X is a well-order → ωX is a well-order),

3. Higman’s lemma, i.e. ∀X(X is a wpo → X∗ is a wpo),

4. ∀X(X is a well-quasi-order → X∗ is a well-quasi-order).

Proof. A proof of the equivalence of (1.) and (2.) goes back to Gentzen (e.g.
see [59, 71]). In [33] and [40], one can find a proof of the fact that ACA0 is
equivalent over RCA0 with ∀X(X is a well-order→ 2X is a well-order), where
2X is the sub-ordering of ωX of strictly decreasing sequences over X. One
can prove that this last statement is equivalent with (2.).

One can also prove that the statement ∀X(X is a well-order → 2X is a
well-order) is equivalent with Higman’s lemma. For a detailed version see
[19].

It is trivial to show that (3.) and (4.) are equivalent.

We now consider two different embeddings on multisets. The first one is
called the term ordering by Aschenbrenner and Pong [4]. The second one is
named the multiset ordering in the term rewriting community. We define the
set of multisets Multi(X) as the set X∗ together with the straightforward
equivalence relation induced by permutability. Most of the time, we denote
an element of Multi(X) by an element of X∗ and not as an equivalence class.
If a property P is valid for the multiset m, we mean that it is valid for every
m′ equivalent with m. In the next definitions, if m ≤ m′, then m ≤ m′ for
every m equivalent with m and every m′ equivalent with m′. So this actually
means [m] ≤ [m′], where [·] is the corresponding equivalence class.

Definition 1.64. Define the partial order M�(X) as (Multi(X),≤�X), where

m ≤�X m′ ⇐⇒ (∃f : m ↪→ m′)(∀x ∈ m)[x ≤X f(x)].

The symbol ↪→ means that f is an injective function. We also denote ≤�X by
≤� if the underlying ordering on X is clear from the context. M�(X) is the
term ordering.

Definition 1.65. Define the partial order M(X) as (Multi(X), <X<X),
where

m <X<X m′ ⇐⇒ m = m′ or (∀x ∈ m\(m∩m′))(∃y ∈ m′\(m∩m′))(x ≤X y),
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where \ and ∩ refer to multiset operations. We sometimes denote <X<X

by << if the underlying ordering on X is clear from the context. M(X) is
called the multiset ordering

These two multiset-constructors on well-partial-orderings produce again wpo’s
(since there is a quasi-embedding to Higman’s X∗) and their maximal order
types in terms of o(X) are known.

Theorem 1.66. Let (X,≤X) be a wpo. Then M(X) is also a wpo and
o(M(X)) = ωo(X).

Proof. In [87], Andreas Weiermann proved that M(X) is a wpo (under the
assumption that X is well-partial-ordered) and o(M(X)) ≤ ωo(X). A proof
of the lower bound can be found in our joint article (Theorem 4 in [82]).

For describing the maximal order type of M�(X), we need some additional
notations.

Definition 1.67. Let α be an ordinal. Define α′ by

α′ :=

®
α + 1 if α = ε+ n, with ε an epsilon number and n < ω,
α otherwise.

Notation 1.68. Let α =NF ωα1 + · · · + ωαn be an ordinal. We use the
notation α̂ for the ordinal ωα

′
1 + · · ·+ωα

′
n. Note that ÷α⊕ β = α̂⊕ β̂ and that

α < β implies α̂ < β̂. Also 0̂ := 0.

Theorem 1.69. Let (X,≤X) be a well-partial-ordering. Then M�(X) is also

a wpo and o(M�(X)) = ω
‘o(X).

Proof. The original proof of Theorem 1.69 can be found in [90]. However,
that proof contains a small error for some exceptional cases. The author,
Weiermann, already sketched a correction. In our joint article, the interested
reader can find a completely corrected proof (Theorem 5 in [82]).

Kruskal’s tree theorem states that the set of finite trees over a well-quasi-
ordered set of labels is itself well-quasi-ordered (under homeomorphic em-
bedding). The theorem was conjectured by Vázsonyi in 1937 and proved
later in 1960 by Kruskal [46]. Independently, a proof of the same theorem
was announced by Tarkowski [80]. In 1963, Nash-Williams gave a different,
but short and beautiful proof in [55] based on minimal bad sequences. The
minimal bad sequence argument makes the proofs more appealing and it is a



36 Section 1.2. Preliminaries

method that possesses a lot of strength. More precisely, Marcone [51] showed
that the general version of that argument has the strength of Π1

1-CA0.

Definition 1.70. A rooted tree is a partial order (T,≤) such that it has one
minimal element (called the root) and for all t ∈ T , the set {s ∈ T : s ≤ t} is
linearly ordered. The elements of T are called the nodes or vertices of T and
most of the time, we write T instead of (T,≤). The successors of a vertex t
of T are the elements s such that t < s. The immediate successors are the
successors s such that there is no other successor s′ such that t < s′ < s.
The predecessor of t, when t is not the root, is defined as the unique element
s < t where t is an immediate successor of s. A leaf of a tree is a node with
no successors. If s ∈ T , define Ts as the subtree {t : t ≥ s}. If s is an
immediate successor of the root of T , then Ts is called an immediate subtree
of T . A path through a rooted tree T from a to b (T 3 a < b ∈ T ), is a
function f : {0, . . . , k} → T with k ≤ ω such that f(0) = a and f(i + 1) is
an immediate successor of f(i) if f(i) 6= b such that b ∈ Tf(i+1). If f(i) = b,
we do not define f(i + 1). A path through a rooted tree T starting from a
(a ∈ T ), is a function f : {0, . . . , k} → T with k ≤ ω such that f(0) = a and
f(i + 1) is an immediate successor of f(i) if f(i) is not a leaf. If f(i) is a
leaf, we do not define f(i + 1). A tree is well-founded if there is no infinite
path through the tree, i.e. if f : {0, . . . , k} → T is a path, then k < ω.
A labeled rooted tree with labels in X is a rooted tree T together with a
labeling function l from T to X. Most of the time, we do not mention this
labeling function explicitly. A structured rooted tree is a rooted tree T
together with a relation which, for each vertex t of T , well-orders the set of
t’s immediate successors. An unstructured rooted tree is just a normal rooted
tree.

Notation 1.71. Let T be the set of the finite rooted trees and T≤m the set of
rooted trees such that every node in the trees has at most m many immediate
successors. Let T(X) be the set of finite rooted trees with labels in X. Define
T≤m(X) in a similar way.

Let T(X0, . . . , Xn) be the set of finite rooted trees with labels in the disjoint
union X0 + · · ·+Xn such that every node t in a tree T ∈ T(X0, . . . , Xn) with
exactly i immediate successors has a label in Xi. This yields T(X0, . . . , Xn) ⊆
T≤n(X0 + · · ·+Xn).

Let T
Ç
X0 . . . Xn

α0 . . . αn

å
with 0 < α0 < · · · < αn ≤ ω and n ≥ 0 be the set of

finite rooted trees with labels in X0 + · · · + Xn such that for every node t in
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a tree T ∈ T
Ç
X0 . . . Xn

α0 . . . αn

å
the following holds: if the label of t is in the

set Xi, then t has strictly less than αi immediate successors.

If we talk about structured trees, we will add a superscript ‘s’, e.g.
Ts(X0, . . . , Xn).

Notation 1.72. Let Tn denote the set T({0, . . . , n−1}) of finite rooted trees
with labels in {0, . . . , n− 1}. Accordingly, define T≤mn in a similar way.

Note that T ∼= T({0}) = T1.

Definition 1.73. Let T1 and T2 be two rooted trees. Then T1 is (homeo-
morphically) embeddable into T2 (we write this as T1 ≤ T2) if there is an
injective function h from T1 to T2 such that

1. h preserves the ordering: s <T1 t iff h(s) <T2 h(t) for all s, t ∈ T1,
2. h preserves infima: for any t ∈ T1 and distinct immediate successors

s1 and s2 of t, the paths from h(t) to h(s1) and h(t) to h(s2) do not
have any vertices in common, except for h(t) itself.

We call the function h the (homeomorphic) embedding. This embedding
relation yields a partial order on T and T≤m.

Assume that we add labels to our trees: suppose X is a partial order and let
T1, T2 be both in T(X). Assume that li is the labeling function from Ti to
X. Then T1 ≤ T2 if there is a function h that satisfies the above conditions
such that ∀t ∈ T1(l1(t) ≤X l2(h(t))). One can also define this natural em-

bedding relation on T(X0, . . . , Xn) and T
Ç
X0 . . . Xn

α0 . . . αn

å
in a similar way,

by looking at the labeling functions from the trees to X0 + · · · + Xn, where
X0, . . . , Xn are partial orders.

If we consider structured trees, then h also needs to fulfill one extra property:
it has to preserve the horizontal relation, i.e. if t ∈ T1 and s1 and s2 are
immediate successors of t with s1 ≺ s2, where ≺ is the well-order on t’s
immediate successors, then u1 ≺′ u2 where

• ui is the immediate successor of h(t) on the path from h(t) to h(si),
• ≺′ is the well-order on h(t)’s immediate successors.

Most of the time in this dissertation, we work with finite trees.

Remark 1.74. Assume that we work with a finite rooted tree. Often, we do
not use this tree as a partial order, but we interpret this tree as a term where
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one can see its immediate subtrees. The term · represents the tree consist-
ing of one node. The term ·(t1, . . . , tn) represents the tree with immediate
subtrees T1, . . . , Tn, where Ti is the tree that is represented by the term ti. If
we work with unstructured trees, the terms ·(t1, t2, . . . , tn) and ·(t2, t1, . . . , tn)
represent the same tree. Therefore, we see T as this set of terms together with
a specific, but obvious, equivalence relation and if we work with an unstruc-
tured tree, we mean that we work with a term up to this equivalence relation.
If we work with structured trees, the terms ·(t1, t2, . . . , tn) and ·(t2, t1, . . . , tn)
represent different trees, unless t1 = t2. Therefore, we define Ts as this set of
terms where the equivalence relation is the identity. If the root has a label
x, then we denote this by ·x and ·x(t1, . . . , tn). Hence, one can also see T(X),
Ts(X), etc. as sets of terms with an equivalence relation (that is the identity
in the case of structured trees).

This interpretation yields the following lemma.

Lemma 1.75. Let T and T ′ be two finite rooted trees. Then T ≤ T ′ iff either
T is embeddable in an immediate subtree of T ′ or there exists an injective
function f from the set of immediate subtrees of T to the set of immediate
subtrees of T ′, such that for every immediate subtree S from T , S ≤ f(S)
holds.

With regard to this interpretation, it is useful to talk about the height of a
tree T .

Definition 1.76. Let T be a rooted well-founded tree. For every s ∈ T ,
define ht(s) := sup{ht(t) + 1 : s < t}. Define the height of a tree T as
ht(root(T )) and denote it by ht(T ).

Now we have enough equipment to state Kruskal’s theorem.

Theorem 1.77 (Kruskal [46]). If X is a wpo, then (T(X),≤) is also a wpo.

Proof. A beautiful non-constructive proof of this theorem, based on the min-
imal bad sequence argument, can be found in [55]. On the other hand,
Kruskal’s original proof in his thesis is constructive.

Note that Higman’s lemma mentioned in Lemmas 1.61 and 1.63, follows from
the previous theorem since a sequence can be seen as a linear tree (i.e. every
node has zero or one immediate successor(s)). In some sense, a generalization
from trees to arbitrary graphs is given by the Robertson-Seymour theorem,
also known as the graph minor theorem [28, 67], although the restriction of
this order relation (which is the minor relation) is not the same as Kruskal’s



Chapter 1. Introduction 39

usual relation on trees. Before Robertson and Seymour proved it, it was
known as Wagner’s conjecture [85].

In her Habilitationsschrift, Diana Schmidt considered the tree-classes Ts(X),

Ts(X0, . . . , Xn) and Ts
Ç
X0 . . . Xn

α0 . . . αn

å
and calculated their maximal order

types.

Definition 1.78. If α is an ordinal number, then

α :=


α− 1 if α < ω,

α + 1 if α = ϕ2β + n with n a natural number,

α otherwise.

Recall Definition 1.19.

Theorem 1.79 (Diana Schmidt [69]). If X,X0, . . . , Xn are wpo’s and 0 ≤
α0 < · · · < αn ≤ ω, then Ts(X), Ts(X0, . . . , Xn) and

Ts
Ç

X0 . . . Xn

1 + α0 . . . 1 + αn

å
are also wpo’s and if X,X0, . . . , Xn are count-

able, then

o(Ts(X0, . . . , Xn)) ≤ ϑ(Ωn · o(Xn) + · · ·+ Ω · o(X1)+

(−1 + o(X0))),

o(Ts(X, ∅, {0})) = εo(X),

o

Ç
Ts
Ç

X0 . . . Xn

1 + α0 . . . 1 + αn

åå
≤ ϑ(Ωαn · o(Xn) + · · ·+ Ωα0 · o(X0)),

where the first inequality is an equality if

Ωn · o(Xn) + · · ·+ Ω · o(X1) + (−1 + o(X0)) ≥ Ω3.

Her results yield o(Ts(X)) ≤ ϑ(Ωω · o(X)) and one can prove easily that this
is an equality. We note that she does not mention if ϑ(Ωαn · o(Xn) + · · · +

Ωα0 · o(X0)) is a lower bound for o

Ç
Ts
Ç

X0 . . . Xn

1 + α0 . . . 1 + αn

åå
.

Diana Schmidt did not restrict herself to only countable wpo’s. Her results
are also valid for arbitrary well-partial-orderings because she used a differ-
ent ordinal notation system than the ϑ-function, namely the one based on
Schütte’s Klammer symbols. Note that the right-hand sides of the inequali-
ties in Theorem 1.79 can be undefined if the Xi’s are not necessarily countable
wpo’s.
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In Chapter 2, we prove that the unstructured versions of some mentioned
tree-classes have the same maximal order types as the structured versions.

In this context, it is also worth to mention that Kruskal’s theorem is not
provable in predicative analysis.

Theorem 1.80 (Friedman [76]). ATR0 6` ‘T is a wpo’.

The previous theorem is shown by giving a primitive recursive mapping o
from T to Γ0 (the ordinal of ATR0) that is order-preserving and surjective. In
[66] Rathjen and Weiermann investigated the reverse mathematical strength
of Kruskal’s theorem without labels.

1.2.9 Well-partial-orders with gap-condition

In 1982, Harvey Friedman introduced a well-partial-ordering, where the or-
dering is called the gap-embeddability relation or in short gap-ordering, on
the set of finite rooted trees with labels in {0, . . . , n − 1}. This was later
published by Simpson in [76]. This wpo is very important because it led to
the first natural example of a statement not provable in the strongest theory
of the Big Five in reverse mathematics, Π1

1-CA0.

Definition 1.81 (Friedman [76]). On the set Tn, define the following orde-
ring, known as the gap-embeddability relation. Let T1, T2 ∈ Tn and assume
that li is the labeling function of Ti. Then T1 ≤wgap T2 if there exists a home-
omorphic embedding h from T1 to T2 such that

1. ∀t ∈ T1, we have l1(t) = l2(f(t)).

2. ∀t ∈ T1 and for all immediate successors t′ ∈ T1 of t, we have that if
t ∈ T2 and f(t) < t < f(t′), then l2(t) ≥ l2(f(t′)) = l1(t′).

This ordering on Tn is called the weak gap-embeddability relation. The
partial ordering (Tn,≤wgap) is also denoted by Twgapn . The strong gap-embed-
dability relation fulfills the extra condition

3. for all t′ < f(root(T1)), we have
l2(t′) ≥ l2(f(root(T1))) = l1(root(T1)).

to the definition of ≤wgap. The latter ordering on Tn is denoted by ≤sgap We
also write Tsgapn for the partial order (Tn,≤sgap). If we restrict ourselves to
structured rooted trees, then we denote this by Ts,wgapn and Ts,sgapn .



Chapter 1. Introduction 41

If we do not mention the word ‘gap’ in sub- or superscript, we mean that
we work with the normal homeomorphic embeddability relation without the
gap-condition. If we write ≤gap, we mean that the theorem is valid for both
≤sgap and ≤wgap.

Theorem 1.82 (Friedman [76]). For all n, (Tn,≤gap) is a wpo and Π1
1-CA0 6`

∀n < ω ‘(Tn,≤gap) is a wpo’.

The previous theorem is proved by showing that ACA0 proves for all n the
following:

(Tn,≤wgap) is a wpo → ψ0(Ωn) is a well-order.

The proof shows that the maximal order type of (Tn,≤gap) is bounded from
below by this ordinal. Theorem 1.82 was used in [28] to prove that the graph
minor theorem is not provable in Π1

1-CA0.

The linearized version has been studied extensively by Schütte and Simpson
[72].

Definition 1.83 (Schütte-Simpson [72]). Define S as the set N∗ and Sn as
{0, . . . , n−1}∗. We say that s = s0 . . . sk−1 ≤wgap s′0 . . . s′l−1 = s′ if there exists
a strictly increasing function f : {0, . . . , k − 1} → {0, . . . , l − 1} such that

1. for all 0 ≤ i ≤ k − 1, we have si = s′f(i),

2. for all 0 ≤ i < k− 1 and all j between f(i) and f(i+ 1), the inequality
s′j ≥ s′f(i+1) = si+1 holds.

This ordering on Sn is called the weak gap-embeddability relation. The
partial ordering (Sn,≤wgap) is also denoted by Swgapn . The strong gap-embed-
dability relation fulfills the extra condition

3. for all j < f(0), we have s′j ≥ s′f(0) = s0.

to the definition of ≤wgap. The latter ordering on Sn is denoted by ≤sgap We
also write Ssgapn for the partial order (Sn,≤sgap).

Theorem 1.84 (Schütte-Simpson [72], Friedman [76]). For all n, (Sn,≤gap)
is a wpo.

Theorem 1.85 (Schütte-Simpson [72]).
ACA0 6` ∀n < ω ‘(Sn,≤gap) is a wpo’.

Theorem 1.86 (Schütte-Simpson [72]).
For all n, ACA0 ` ‘(Sn,≤gap) is a wpo’.
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We postpone the further discussion on the linearized version to Chapter 7.

1.2.10 Tree-constructors and Weiermann’s conjecture

The main goal of this dissertation is to capture the maximal order types
of structures with the gap-embeddability relation, especially for Friedman’s
trees. In order to address this problem, we introduce special tree-classes
T (W ) (originally in [86]), where W is a function symbol for a constructor
on wpo’s. Intuitively, W can be seen as a function from the class of partial
orders to itself, such that if we restrict ourselves to wpo’s, the image un-
der W is still a wpo. And if we restrain ourselves to the countable world,
we maintain to stay in this world. However, instead of working with W as
a function, we adapt an approach from universal algebra to define W as a
function symbol. This idea resembles the use of primitive recursive function
symbols in studying primitive recursive functions [18]. This subsection will
introduce rigorously the notions that we need to work with T (W ). The no-
tions are defined in this way to completely delete any hand-waving. However,
in latter chapters we will sometimes use a slightly different notation for our
convenience.

Definition 1.87. Assume that Y1, . . . , Yk are fixed partial orderings. Define
W(Y1, . . . , Yk) as the following set of function symbols and define | · | as a
measure of the complexity of the symbols.

• For any i = 1, . . . , k, let CYi ∈ W(Y1, . . . , Yk) and |CYi| = 0,

• Id ∈ W(Y1, . . . , Yk) and |Id| = 0,

• If W,V,W0, . . . ,Wn ∈ W(Y1, . . . , Yk), then

– W � V is in W(Y1, . . . , Yk) and
|W � V | = max{|W |, |V |}+ 1 (where � ∈ {+,×}),

– M�(W ), M(W ) and W ∗ are in W(Y1, . . . , Yk) and
|M�(W )| = |M(W )| = |W ∗| = |W |+ 1,

– T(W ), Ts(W ), T≤m(W ) and Ts,≤m(W ) are in W(Y1, . . . , Yk) and
|T(s),(≤m)(W )| = |W |+ 1,

– T(W0, . . . ,Wn) and Ts(W0, . . . ,Wn) are in W(Y1, . . . , Yk) and
|T(s)(W0, . . . ,Wn)| = max{|W0|, . . . , |Wn|}+ 1.

– If 0 < α1 < · · · < αn ≤ ω, then T
Ç
W1 . . . Wn

α1 . . . αn

å
and
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Ts
Ç
W1 . . . Wn

α1 . . . αn

å
are in W(Y1, . . . , Yk) and∣∣∣∣∣T(s)

Ç
W1 . . . Wn

α1 . . . αn

å∣∣∣∣∣ = max{|W1|, . . . , |Wn|}+ 1.

The elements ofW(Y1, . . . , Yk) are syntactical symbols such that we can work
with it as a formal object. Every element of W(Y1, . . . , Yk) corresponds to
a function from the class of partial orders to the class of partial orders. For
obtaining this correspondence, we give a natural interpretation function I.

Definition 1.88. For any W ∈ W(Y1, . . . , Yk), we define I(W ) as a function
from the class of partial orders to the class of partial orders inductively as
follows. Let X be a partial order. Then I(W )(X) is

• Yi if W = CYi,

• X if W = Id.

Furthermore,

• I(W � V )(X) := I(W )(X)� I(V )(X), where � ∈ {+,×},

• I(M�(W ))(X) := M�(I(W )(X)), I(M(W ))(X) := M(I(W )(X)) and
I(W ∗)(X) := (I(W )(X))∗,

• I(T(W ))(X) := T(I(W )(X)) and I(Ts(W ))(X) := Ts(I(W )(X)),

• I(T≤m(W ))(X) := T≤m(I(W )(X)) and
I(Ts,≤m(W ))(X) := Ts,≤m(I(W )(X)),

• I(T(W0, . . . ,Wn))(X) := T(I(W0)(X), . . . , I(Wn)(X)) and
I(Ts(W0, . . . ,Wn))(X) := Ts(I(W0)(X), . . . , I(Wn)(X)),

• I
Ç

T
Ç
W1 . . . Wn

α1 . . . αn

åå
(X) := T

Ç
I(W1)(X) . . . I(Wn)(X)

α1 . . . αn

å
and

I

Ç
Ts
Ç
W1 . . . Wn

α1 . . . αn

åå
(X) := Ts

Ç
I(W1)(X) . . . I(Wn)(X)

α1 . . . αn

å
.

Note that if W ∈ W(Y1, . . . , Yk) and if Y1, . . . , Yk, X are wpo’s, then I(W )(X)
is also a wpo. Additionally, if Y1, . . . , Yk, X are countable, then I(W )(X) is
also countable. Now, we establish the notion of elements of W . A crucial
fact is that every element of I(W )(X) can be described using a term in
finitely many elements of X. For example, if W = (·∗ × CY1), then the
element ((x1, . . . , xn), y1) ∈ I(W )(X) = (X∗ × Y1) can be described by a
concrete term using the elements x1, . . . , xn ∈ X. Therefore, an arbitrary
element of I(W )(X) can be represented as w(x1, . . . , xn), with a term w and
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xi ∈ X. By abstracting elements away, an element of W can be represented
as w(·, . . . , ·). E.g. for our element, this is equal to ((·, . . . , ·), y1). This
element of the mapping W maps elements of the partial ordering X to an
element of the partial ordering I(W )(X). This informal idea is mentioned in
[86]. We now formally define this notion.

Definition 1.89. Assume W ∈ W(Y1, . . . , Yk). We inductively define a set
of terms TW and we call the elements of TW the elements of W . Additionally,
we define the length |w| for every term w ∈ TW .

• If W = CYi, then TW := Yi which is considered as a set of constants,
and define |y| = 0, for all y ∈ TW .

• If W = Id, let TW = V ar = {xi : i < ω}, a set of variables, and define
|xi| = 0, for all xi ∈ TW .

• If W = V1 + V2, then TW = {(v, i) : v ∈ TVi , i = 1, 2}, and define
|(v, i)| := |v|+ 1.

• If W = V1×V2, then TW = {(v1, v2) : vi ∈ TVi}, and define |(v1, v2)| :=
max{|v1|, |v2|}+ 1.

• If W = M�(V ), then TW = {[v1, . . . , vn] : vi ∈ TV and n < ω}, and
define |[v1, . . . , vn]| := max{|v1|, . . . , |vn|}+ 1.

• If W = M(V ), then TW = {[v1, . . . , vn] : vi ∈ TV and n < ω}, and
define |[v1, . . . , vn]| := max{|v1|, . . . , |vn|}+ 1.

• If W = V ∗, then TW = {(v1, . . . , vn) : vi ∈ TV and n < ω}, and define
|(v1, . . . , vn)| := max{|v1|, . . . , |vn|}+ 1.

• If W = T(V ), then TW = {tree(v1, . . . , vn) : vi ∈ TV and tree(v1, . . . , vn)
is an arbitrary finite rooted tree with labels v1, . . . , vn}. More specifi-
cally, TW :=

⋃
i<ω

T iW , where we define T iW as the least sets such that

(using Remark 1.74 for interpreting trees as terms)

– ·v ∈ T iW for all v ∈ TV and let | ·v | be |v|+ 1,

– If T1, . . . , Tn ∈ T iW , then ·v(T1, . . . , Tn) ∈ T i+1
W for all v ∈ TV and

let | ·v (T1, . . . , Tn)| be max{|v|, |T1|, . . . , |Tn|}+ 1.

• Similarly for W = Ts(V ),T≤m(V ),Ts,≤m(V ),T(V0, . . . , Vn),

Ts(V0, . . . , Vn), T
Ç
V1 . . . Vn
α1 . . . αn

å
and Ts

Ç
V1 . . . Vn
α1 . . . αn

å
.
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Remark 1.90. 1. The elements of TW are terms over the language yi, xi,
a+ b, a× b, [a, . . . , b], (a, . . . , b), ·a and ·a(b, . . . , c), where yi ∈ Yi, xi is
a variable and a, b and c are place holders.

2. An element of TV×V can be interpreted wrongly as an element of TV ∗ .
This can be solved by using two kinds of brackets to make the difference
between (v, v) in TV×V and TV ∗ clear. This is however not needed
because the context will make clear what we mean. Hence, we did not
do this for notational convenience.

3. Similarly, elements of TM�(V ) and TM(V ) are defined in the same way,
which is actually not allowed. Again, this can be solved by using two
kinds of brackets to see the difference between the two. This is however
not needed because the context will make clear what we mean. Hence,
we did not do this for notational convenience.

4. If W = M�(V ), M(V ), T(V ), T≤m(V ), T(V0, . . . , Vn) or

T
Ç
W1 . . . Wn

α1 . . . αn

å
, we know that elements of I(W )(X) are defined

up to an equivalence relation. Similarly as in that setting, we define TW
also up to a specific equivalence relation. E.g., if W = M(V ), we see
the elements [v1, v2, . . . , vn] and [v2, v1, . . . , vn] as two different terms
that are equivalent. If we prove a property of the first term, we also
mean that it is valid for the second one.

TW is later needed to define the partial order T (W ). We can inductively
define the set of variables and the set of constants occurring in w ∈ TW .

Definition 1.91. If w ∈ TW , define V ar(w) as the set of variables occurring
in w. If V ar(w) = {xi1 , . . . , xik}, we often write w as w(xi1 , . . . , xik).

Definition 1.92. If w ∈ TW , define Con(w) as the set of elements y ∈
TCYi = Yi occurring in w.

Lemma 1.93. Assume W ∈ W(Y0, . . . , Yk). If w(x1, . . . , xn) ∈ TW , then
w(xi1 , . . . , xin) is also in TW . w(xi1 , . . . , xin) means that you substitute xij
in xj for every j.

Proof. This can be proved by a straightforward induction on |w|. A similar
proof can be found in Lemma 1.94.

The following lemmas show that I(W )(X) is actually TW if we replace the
variables of the terms in TW by elements of X.
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Lemma 1.94. Assume that W ∈ W(Y1, . . . , Yk) and X is an arbitrary
partial order. If s is an element of I(W )(X), then there exists a term
w(x1, . . . , xn) ∈ TW , where x1, . . . , xn are distinct variables, and elements
x1, . . . , xn of X such that s = w(x1, . . . , xn), where w(x1, . . . , xn) means that
every occurrence of xi in w is replaced by xi.

Proof. We prove this by main induction on |W |. If W = CYi , then this is
trivial. If W = Id, then I(W )(X) = X, hence s = x ∈ X. Define the term
w as x1, hence w = w(x1) and let x1 be x.

Assume W = M�(V ) and assume s ∈ I(W )(X) = M�(I(V )(X)). So
s = [s1, . . . , sn], with si = I(V )(X). The induction hypothesis yields si =
wi(xi1, . . . , x

i
mi

) for all i with wi(x
i
1, . . . , x

i
mi

) ∈ TV and xi1, . . . , x
i
mi
∈ X.

By Lemma 1.93, one can assume that all variables xij are distinct. De-
fine w = w(x1

1, . . . , x
n
mn) as the term [w1, . . . , wn]. Then s = w(x1

1, . . . , x
n
mn)

trivially holds.

Assume W = T(V ). Then s ∈ T(I(V )(X)) is a tree with labels in I(V )(X).
We prove by sub-induction on ht(s) that the lemma holds. If ht(s) = 0,
then s = ·s′ , with s′ ∈ I(V )(X). The main induction hypothesis yields the
existence of a term w′(x1, . . . , xn) ∈ TV and elements x1, . . . , xn in X such
that s′ = w′(x1, . . . , xn). Define w as ·w′(x1,...,xn). Then s = w(x1, . . . , xn).

If ht(s) > 0, then s = ·s′(s1, . . . , sn), with s′ ∈ I(V )(X) and si ∈ I(W )(X).
The main induction hypothesis yields again the existence of a term w′(x1, . . . ,
xk) ∈ TV and elements x1, . . . , xk in X such that s′ = w′(x1, . . . , xk). The sub-
induction hypothesis yields the existence of wi(x

i
1, . . . , x

i
mi

) ∈ TW and ele-
ments xi1, . . . , x

i
mi

in X such that si = wi(xi1, . . . , x
i
mi

). Define w = w(x1, . . . ,
xk, x

1
1, . . . , x

n
mn) as ·w′(w1, . . . , wn). Then s = w(x1, . . . , xk, x1

1, . . . , x
n
mn).

Note that the exact equality s = w(x1, . . . , xn) is valid because we use the
notation of a tree in Remark 1.74.

The other cases can be treated in a similar way.

Definition 1.95. Let X be an arbitrary partial order. Following Defini-
tion 1.91, define for w(x1, . . . , xn) in the partial order I(W )(X), the leaf-set
Leaves(w(x1, . . . , xn)) as the set {x1, . . . , xn}.

Lemma 1.96. Assume W ∈ W(Y1, . . . , Yk) and X is an arbitrary partial
order. If w(x1, . . . , xn) ∈ TW and x1, . . . , xn ∈ X, then w(x1, . . . , xn) ∈
I(W )(X).

Proof. This can be proved in a similar way by induction on |w|.



Chapter 1. Introduction 47

The previous lemmas indicate that TW is equal to the partial order I(W )(X)
as a set when X is the partial order (V ar,=). However, using the extra in-
formation of the ordering on I(W )(X), one can also define a natural ordering
relation on TW .

Definition 1.97. For term w,w′ ∈ TW , define w ≤ w′ if w ≤I(W )(X) w
′ if X

is the partial order (V ar,=).

In practice, we only need TW as a set. Before we go on, we give an example.

Example 1.98. Let W = Id∗ and X be an arbitrary partial order. Then
I(W )(X) = X∗ and TW = {(v1, . . . , vn) : vi ∈ TId} = {(x1, . . . , xn) :
xi ∈ V ar}. Hence, if s ∈ I(W )(X) = X∗, then s = (x1, . . . , xn) and
w = (x1, . . . , xn) ∈ TW like in Lemma 1.94.

A very crucial lemma in this dissertation is the so-called Lifting Lemma. The
proof is rather easy and straightforward, but somewhat technical. It is used
to prove that if we know

w(q(y1), . . . , q(yn)) ≤I(W )(Z) v(q(y′1), . . . , q(y′m)),

with q a quasi-embedding from Y to Z, then one can delete this q, i.e.

w(y1, . . . , yn) ≤I(W )(Y ) v(y′1, . . . , y
′
m).

Hence, in some sense the Lifting Lemma says that one can lift the ordering
on X to the ordering on I(W )(X).

Lemma 1.99 (Lifting Lemma). Assume W ∈ W(Y1, . . . , Yk) and w(y1, . . . ,
yn), v(y′1, . . . , y

′
m) ∈ TW . If q is a quasi-embedding from partial ordering Y

to partial ordering Z, then for every y1, . . . , yn, y′1, . . . , y
′
m ∈ Y , we have if

w(q(y1), . . . , q(yn)) ≤I(W )(Z) v(q(y′1), . . . , q(y′m)), then w(y1, . . . , yn) ≤I(W )(Y )

v(y′1, . . . , y
′
m).

Proof. This can be proved by main induction on |W |. If |W | = 0, then
W = Id or W = CYi for a certain i. If W = CYi , then the lemma trivially
holds. If W = Id, then w = w(y1) = y1 and v = v(y′1) = y′1, where y1, y

′
1 are

variables and w(q(y1)) ≤I(W )(Z) v(q(y′1)) yields q(y1) ≤ q(y′1), hence y1 ≤ y′1.
So, w(y1) ≤I(W )(Y ) v(y′1).

Assume |W | > 0. For example, let W = W1 × W2. Let w1(y1, . . . , yn1),
v1(yn1+1, . . . , yn1+n2) be elements of TW1 and w2(y′1, . . . , y

′
m1

), v2(y′m1+1, . . . ,
y′m1+m2

) in TW2 . Assume q is a quasi-embedding from Y to Z. Pick y1, . . . , yn1 ,
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yn1+1, . . . , yn1+n2 and y′1, . . . , y
′
m1
, y′m1+1, . . . , y

′
m1+m2

arbitrarily from Y and
assume

(w1(q(y1), . . . , q(yn1)), w2(q(y′1), . . . , q(y′m1
)))

≤I(W )(Z)(v1(q(yn1+1), . . . , q(yn1+n2)), v2(q(y′m1+1), . . . , q(y′m1+m2
))).

This inequality yields

w1(q(y1), . . . , q(yn1)) ≤I(W1)(Z) v1(q(yn1+1), . . . , q(yn1+n2))

and
w2(q(y′1), . . . , q(y′m1

)) ≤I(W2)(Z) v2(q(y′m1+1), . . . , q(y′m1+m2
)).

By the induction hypothesis, we obtain

w1(y1, . . . , yn1) ≤I(W1)(Y ) v1(yn1+1, . . . , yn1+n2),

w2(y′1, . . . , y
′
m1

) ≤I(W2)(Y ) v2(y′m1+1, . . . , y
′
m1+m2

),

and therefore,

(w1(y1, . . . , yn1), w2(y′1, . . . , y
′
m1

))

≤I(W )(Y )(v1(yn1+1, . . . , yn1+n2), v2(y′m1+1, . . . , y
′
m1+m2

)).

Another example is W = T(V ). The other cases can be treated in a similar
way. Assume that the Lifting Lemma is valid for V . Take w(y1, . . . , yn),
v(y′1, . . . , y

′
m) in TW = I(W )(V ar) = T(I(V )(V ar)). Hence, w, respectively

v, is a tree T1, respectively T2, with labels in I(V )(V ar). Let q be a quasi-
embedding from Y to Z and assume y1, . . . , yn, y′1, . . . , y

′
m ∈ Y .

We prove the lemma by sub-induction on the height of T2. If ht(T2) = 0,
then

w(q(y1), . . . , q(yn)) ≤I(W )(Z) v(q(y′1), . . . , q(y′m))

yields ht(T1) = 0. So assume w = ·w′(y1,...,yn) and v = ·v′(y′1,...,y′m), with
w′(y1, . . . , yn), v′(y′1, . . . , y

′
m) ∈ I(V )(V ar) = TV . From

w(q(y1), . . . , q(yn)) ≤I(W )(Z) v(q(y′1), . . . , q(y′m)),

we obtain w′(q(y1), . . . , q(yn)) ≤I(V )(Z) v
′(q(y′1), . . . , q(y′m)), hence the main

induction hypothesis implies

w′(y1, . . . , yn) ≤I(V )(Y ) v
′(y′1, . . . , y

′
m),

so
w(y1, . . . , yn) ≤I(W )(Y ) v(y′1, . . . , y

′
m).
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Assume ht(T2) > 0. Then

v = ·v′(y′i1 ,...,y′ik′ )(T
1
2 (y′11 , . . . , y

′1
m1

), . . . , T l
′

2 (y′l
′

1 , . . . , y
′l′
ml′

)),

with v′(y′i1 , . . . , y
′
ik′

) ∈ I(V )(V ar) = TV and T i2 ∈ TW .

We know w(q(y1), . . . , q(yn)) ≤I(W )(Z) v(q(y′1), . . . , q(y′m)). If

w(q(y1), . . . , q(yn)) ≤I(W )(Z) T
i
2(y′i1 , . . . , y

′i
mi

)

for a certain i, the lemma follows in a straightforward way from the sub-
induction hypothesis.

If w(q(y1), . . . , q(yn)) 6≤I(W )(Z) T
i
2(y′i1 , . . . , y

′i
mi

) for every i, then

w = ·w′(yj1 ,...,yjk )(T
1
1 (y1

1, . . . , y
1
n1

), . . . , T l1(yl1, . . . , y
l
nl

)),

with w′(yj1 , . . . , yjk) ∈ I(V )(V ar) = TV and T i1 ∈ TW . In this case,

w(q(y1), . . . , q(yn)) ≤I(W )(Z) v(q(y′1), . . . , q(y′m))

implies
w′(q(yj1), . . . , q(yjk)) ≤I(V )(Z) v

′(q(y′i1), . . . , q(y′ik′ ))

and the existence of l distinct elements p1, . . . , pl in {1, . . . , l′} such that

T j1 (q(yj1), . . . , q(yjnj)) ≤I(W )(Z) T
pj
2 (q(y′pj1 ), . . . , q(y′pjmpj ))

for every j. The main and sub-induction hypothesis yield

w′(yj1 , . . . , yjk) ≤I(V )(Y ) v
′(y′i1 , . . . , y

′
ik′

)

and
T j1 (yj1, . . . , y

j
nj

) ≤I(W )(Y ) T
pj
2 (y′pj1 , . . . , y′pjmpj )

for every j, hence w(y1, . . . , yn) ≤I(W )(Y ) v(y′1, . . . , y
′
m).

Before we give the definition of T (W ), we list some crucial but straightfor-
ward properties of W ∈ W(Y1, . . . , Yk).

Lemma 1.100. 1. If Y and Z are two partial orders such that Y ⊆ Z
and ≤Y⊆≤Z, then I(W )(Y ) ⊆ I(W )(Z) and ≤I(W )(Y )⊆≤I(W )(Z).

2. If X is a partial order and w(x1, . . . , xn) ≤I(W )(X) w
′(x′1, . . . , x

′
m), then

for every i ∈ {1, . . . , n}, there exists a j ∈ {1, . . . ,m} such that xi ≤X
x′j.
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Proof. The assertions are both straightforward and can be proved by induc-
tion on |W |. To make things clear, we prove the second assertion for some
cases.

If |W | = 0, then W = Id or W = CYi for a certain i. If W = CYi , then
the lemma trivially holds because then n = 0. Assume W = Id. Then
w(x1) = x1 and w′(x′1) = x′1, hence the assertion is trivial.

Assume |W | > 0. For example, let W = W1 ×W2. Assume

(w1(x1, . . . , xn1), w2(xn1+1, . . . , xn1+n2))

≤I(W )(X)(w
′
1(x′1, . . . , x

′
m1

), w′2(x′m1+1, . . . , x
′
m1+m2

)).

This inequality yields

w1(x1, . . . , xn1) ≤I(W1)(X) w
′
1(x′1, . . . , x

′
m1

)

w2(xn1+1, . . . , xn1+n2) ≤I(W2)(X) w
′
2(x′m1+1, . . . , x

′
m1+m2

).

Pick an arbitrary xi, for example xn1 . The induction hypothesis on W1 yields
the existence of an index j ∈ {1, . . . ,m1} ⊆ {1, . . . ,m1 + m2} such that
xi ≤X x′j. Hence, the assertion follows. All the other cases can be treated
in a similar way. If W = T(V ), we also need an induction argument on the
height of the trees.

Now, we are ready to define T (W ) and its ordering relation for the function
symbols W in W(Y1, . . . , Yk). From now on, we assume that Y1, . . . , Yk are
fixed wpo’s. First, we give a formal definition T (W ). We present an informal
description after Lemma 1.107. T (W ) is a formal set of terms over the lan-
guage ◦, [, ] and TW , where the variables in the elements of TW are occupied
by previously defined terms.

Definition 1.101. We define T i(W ) as follows

1. T 0(W ) := {◦}

2. Assume that T i(W ) is defined. Then

(a) ◦ ∈ T i+1(W ),

(b) if s ∈ I(W )(T i(W )), hence s = w(t1, . . . , tn) with w ∈ TW and
t1, . . . , tn ∈ T i(W ), then ◦[w(t1, . . . , tn)] ∈ T i+1(W ).

Define ≤i⊆ T i(W )× T i(W ) as follows

1. ◦ ≤0 ◦,
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2. Assume that ≤i is defined. Then

(a) ◦ ≤i+1 t for all t ∈ T i+1(W ),

(b) if s ≤i tj, then s ≤i+1 ◦[w(t1, . . . , tn)],

(c) if w(t1, . . . , tn) ≤I(W )(T i(W )) w
′(t′1, . . . , t

′
m), then

◦[w(t1, . . . , tn)] ≤i+1 ◦[w′(t′1, . . . , t′m)].

Notation 1.102. Often, we write ◦w(t1, . . . , tn) instead of ◦[w(t1, . . . , tn)]
because w(t1, . . . , tn) has most of the time already enough brackets.

Lemma 1.103. For every i, T i(W ) ⊆ T i+1(W ) and ≤i⊆≤i+1.

Proof. T i(W ) ⊆ T i+1(W ) follows from a straightforward induction on i. Ad-
ditionally, ≤i⊆≤i+1 also follows from a straightforward induction. In the cru-
cial case, one actually needs that w(t1, . . . , tn) ≤I(W )(T i−1(W )) w

′(t′1, . . . , t
′
m)

implies w(t1, . . . , tn) ≤I(W )(T i(W )) w
′(t′1, . . . , t

′
m) if i > 0 knowing that≤i−1⊆≤i.

But this follows from Lemma 1.100.

Definition 1.104. Define (T (W ),≤T (W )) as T (W ) =
⋃
i

T i(W ) and ≤T (W )=⋃
i

≤i. We write ≤ instead of ≤T (W ) if the ordering is clear from the context.

Definition 1.105. If t ∈ T (W ), define C(t) as the least i such that t ∈
T i(W ). C stands for ‘Complexity’.

If t = ◦[w(t1, . . . , tn)], then C(ti) < C(t).

Lemma 1.106. if t, t′, t′′ are in T (W ), then t ≤ t′ and t′ ≤ t′′ yield t ≤ t′′.

Proof. We prove this by induction on C(t) + C(t′) + C(t′′). If t, t′ or t′′ are
◦, this is trivial. So assume t = ◦[w(t1, . . . , tn)], t′ = ◦[w′(t′1, . . . , t′m)] and
t′′ = ◦[w′′(t′′1, . . . , t′′k)]. Assume t ≤i t′ and t′ ≤j t′′. Then t′ ≤j−1 t′′l for a
certain l or w′(t′1, . . . , t

′
m) ≤I(W )(T j−1(W )) w

′′(t′′1, . . . , t
′′
k).

The induction hypothesis in the former case implies t ≤ t′′l . Hence, t ≤ t′′.

Assume that w′(t′1, . . . , t
′
m) ≤I(W )(T j−1(W )) w

′′(t′′1, . . . , t
′′
k). t ≤i t′ yields either

t ≤i−1 t′p for a certain p or w(t1, . . . , tn) ≤I(W )(T i−1(W )) w
′(t′1, . . . , t

′
m).

Assume t ≤i−1 t′p for a certain p. Then

w′(t′1, . . . , t
′
m) ≤I(W )(T j−1(W )) w

′′(t′′1, . . . , t
′′
k)
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and Lemma 1.100 yield t′p ≤ t′′q for a certain q. Hence, t ≤ t′′q , so t ≤
t′′. Now assume w(t1, . . . , tn) ≤I(W )(T i−1(W )) w

′(t′1, . . . , t
′
m). Together with

w′(t′1, . . . , t
′
m) ≤I(W )(T j−1(W )) w

′′(t′′1, . . . , t
′′
k), we obtain

w(t1, . . . , tn) ≤I(W )(T max{i,j}−1(W )) w
′′(t′′1, . . . , t

′′
k).

So t ≤ t′′.

Lemma 1.107. (T (W ),≤T (W )) is a partial ordering.

Proof. Lemma 1.103 proves that (T (W ),≤T (W )) is well-defined and Lemma
1.106 shows that (T (W ),≤T (W )) is transitive.

Reflexivity: by induction on C(t). If C(t) = 0, then trivially t ≤ t. Assume
t = ◦[w(t1, . . . , tn)]. The induction hypothesis yields ti ≤ ti for all i. Hence,
w(t1, . . . , tn) ≤I(W )(T (W )) w(t1, . . . , tn), so

◦[w(t1, . . . , tn)] ≤I(W )(T (W )) ◦[w(t1, . . . , tn)].

Anti-symmetry: by induction on C(t) + C(t′), we prove t ≤ t′ and t′ ≤
t imply t = t′. If t or t′ are ◦, this is trivial. Assume not. Then t =
◦[w(t1, . . . , tn)] and t′ = ◦[w′(t′1, . . . , t′m)]. If t ≤ t′j for a certain j, then t′ ≤ t′j,
a contradiction. (One can prove that this is a contradiction by induction on
t′.) Similarly, t′ ≤ tj for a certain j yields also a contradiction. So we can
assume t 6≤ t′j and t′ 6≤ tj for every j. Therefore, w(t1, . . . , tn) ≤ w′(t′1, . . . , t

′
m)

and w(t1, . . . , tn) ≥ w′(t′1, . . . , t
′
m). w(t1, . . . , tn), w′(t′1, . . . , t

′
m) are elements

of I(W )(T C(t)+C(t′)−1(W )). By the induction hypothesis, ≤T (W ) restricted
to T C(t)+C(t′)−1(W ) is a partial order, hence I(W )(T C(t)+C(t′)−1(W )) is also
a partial order. So w(t1, . . . , tn) = w′(t′1, . . . , t

′
m) and t = t′.

Remark 1.108. For notational convenience, we sometimes use the following
rule: write · instead of Id. For example, T (M�(Id× Id)) can also be written
as T (M�(· × ·)). Additionally, we identify W and I(W ), meaning that we
sometimes write W instead of I(W ). The context will make clear what we
mean. We sometimes define W by saying what W (X) (actually I(W )(X))
is, e.g. if W = Id∗, we denote this by W (X) = X∗.

The definition of T (W ) is rather technical and hence an informal description
is needed to clarify the notions. As mentioned in the beginning of the sub-
section, T (W ) is introduced by Weiermann in [86] to investigate structures
with the gap-embeddability relation. For every W , the partial order T (W )
can be seen as such a structure.
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Elements of T (W ) can be interpreted as trees. An element of T (W ) is
of the form ◦[w(t1, . . . , tn)], where t1, . . . , tn are also in T (W ). Here, ◦ is
interpreted as the root of the tree and t1, . . . , tn are interpreted as subtrees,
not necessarily immediate subtrees. How the subtrees t1, . . . , tn and the root
◦ are connected with each other is determined by the term w ∈ TW .

In the tree-class Ts, a tree T consists of a root and immediate subtrees
T1, . . . , Tn. The subtrees are connected as a finite sequence: for two struc-
tured trees T and T ′ with immediate subtrees T1, . . . , Tn and T ′1, . . . , T

′
m, T

is embeddable into T ′ if T is embeddable into T ′j for a certain j or

(T1, . . . , Tn) ≤∗ (T ′1, . . . , T
′
m).

Here, one really sees that the subtrees should be connected by using finite
sequences. The next lemma formally proves this.

Theorem 1.109. If W (X) = X∗\{()}, then T (W ) ∼= Ts.

Proof. Elements of W (X) are the finite sequences of length strictly bigger
than 0. Intuitively, T (W ) ∼= Ts follows from the interpretation of a structured
tree as a root together with a finite sequence of immediate subtrees. We give
a precise order-isomorphism f between T (W ) and Ts. Define f(◦) as the tree
consisting of one node. Define f(◦[(t1, . . . , tn)]) with n ≥ 1 as the structured
tree that has a root and immediate subtrees f(t1), . . . , f(tn). Trivially, f is
surjective. Therefore, one can interpret the symbol ◦ in ◦[(t1, . . . , tn)] as the
root of a tree.

Now we prove that t ≤ t′ ⇔ f(t) ≤ f(t′) for all t, t′ ∈ T (W ) by induction
on the complexity of t and t′. If t or t′ are ◦, this is trivial. Hence, we can
assume that t = ◦(t1, . . . , tn) and t′ = ◦(t′1, . . . , t′m).

If t ≤ t′, then t ≤ t′j for a certain j or (t1, . . . , tn) ≤∗ (t′1, . . . , t
′
m). The

induction hypothesis yields in the former case f(t) ≤ f(t′j), hence f(t) ≤
f(t′). In the latter case, the induction hypothesis yields (f(t1), . . . , f(tn)) ≤∗
(f(t′1), . . . , f(t′m)). Hence, the structured tree with immediate subtrees f(t1),
. . . , f(tn) is embeddable in the structured with immediate subtrees f(t′1), . . . ,
f(t′m). So f(t) ≤ f(t′).

Now, assume f(t) ≤ f(t′). This yields either that f(t) is embeddable in an
immediate subtree of f(t′), say f(t′j), or

(f(t1), . . . , f(tn)) ≤∗ (f(t′1), . . . , f(t′m)).

Again, one can easily conclude in both cases that t ≤ t′ using the induction
hypothesis.
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Note that T ((·)∗) 6= Ts because T ((·)∗) has two trees with no immediate
subtrees, namely ◦ and ◦[()].

In a similar way, unstructured trees are trees T consisting of a root and
immediate subtrees T1, . . . , Tn that are ordered using finite multisets. Hence,

T (M�(·)\{[]}) ∼= T.

The partial order T (M�(·× ·)) is studied in Chapter 3. In order to have even
a better understanding of T (W ), we give the tree-structure corresponding to
this partial order. First of all, T (M�(· × ·)) can be seen as a couple (T,≤T )
such that T and ≤T are chosen in the least possible way satisfying

• ◦ ∈ T ,

• if t1, . . . , t2n ∈ T , then ◦
î
[(t1, t2), . . . , (t2n−1, t2n)]

ó
∈ T ,

which we denote by ◦[(t1, t2), . . . , (t2n−1, t2n)] as mentioned in Notation
1.102,

and

• ◦ ≤T t for every t ∈ T ,

• if s ≤T tj for a certain j ∈ {1, . . . , 2n},
then s ≤T ◦[(t1, t2), . . . , (t2n−1, t2n)],

• if [(t1, t2), . . . , (t2n−1, t2n)] ≤M�(T×T ) [(t′1, t
′
2), . . . , (t′2m−1, t

′
2m)],

then ◦[(t1, t2), . . . , (t2n−1, t2n)] ≤T ◦[(t′1, t′2), . . . , (t′2m−1, t
′
2m)].

Let T̂ be the tree-structure corresponding to this partial order. We now fully
describe the partial order T̂. First of all, it has a tree with one node (which
corresponds to the element ◦ ∈ T ). Additionally, T̂ has another tree with
one node (which corresponds to the element ◦[] ∈ T ) which is bigger than the
previous one (corresponding with the ≤T -relation). To avoid the problem of
having two trees with one node, we could have used M�(· × ·)\{[]} instead
of M�(· × ·) in the beginning.

All the other trees S in T̂ have a root and an even number of immediate
subtrees S1, . . . , S2n, where these subtrees are glued together in pairs: S1

is always sticked together with S2, S3 with S4, and so on. We denote S
by ◦[(S1, S2), . . . , (S2n−1, S2n)], where ◦ denotes the root. One can see now
the correspondence with (T,≤T ). We note that the pairs are ordered, e.g.,
◦[(S1, S2), (S3, S4)] is a different tree than ◦[(S2, S1), (S3, S4)]. Furthermore,
the collection of pairs are unordered, e.g., ◦[(S1, S2), (S3, S4)] is the same
tree as ◦[(S3, S4), (S1, S2)]. The embeddability relation on T̂ maintains these
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subdivisions in pairs: if T and T ′ are trees in T̂ with immediate subtrees
T1, . . . , T2n and T ′1, . . . , T

′
2m, then T is embeddable in T ′ if T is embeddable

in an immediate subtree T ′j or

• there exists an odd index i1 such that the pair T1, T2 is mapped into
T ′i1 , T

′
i1+1. Furthermore, T1 is mapped into T ′i1 and T2 into T ′i1+1 accord-

ing to the ≤T̂-relation,

• and there exists an odd index i2 6= i1 such that the pair T3, T4 is mapped
into T ′i2 , T

′
i2+1. Furthermore, T3 is mapped into T ′i2 and T4 into T ′i2+1

according to the ≤T̂-relation,

• . . .

This actually means that

[(T1, T2), . . . , (T2n−1, T2n)] ≤
M�(T̂×T̂)

[(T ′1, T
′
2), . . . , (T ′2m−1, T

′
2m)],

which corresponds to the definition of ≤T . These examples clearly indicate
how one can interpret the element of T (W ) as (special) trees.

We already mentioned that all the partial orders T (W ) are structures with
a certain gap-embeddability relation. In order to clarify this fact, let us first
investigate the partial order Twgap2 . Assume t, t′ ∈ Twgap2 and t ≤wgap t′. A path
of nodes with label 1 in t has to be mapped into a path of nodes with label
1 in t′. It is not allowed that there is a node with label 0 between two nodes
that are in the image of that path. More informally, call a block of adjacent
nodes with label 1 a 1-block. Then, a 1-block in t has to be mapped into
only one 1-block in t′: it cannot be spread out over two or more 1-blocks.
So the gap-embeddability relation of Twgap2 implies that the 1’s are sticked
together and cannot be separated by a homeomorphic embedding.

The order relation ≤T (W ) implies the same property: we can see the term
w ∈ TW in t = ◦[w(t1, . . . , tn)] ∈ T (W ) as a 1-block because it cannot be
separated by ≤T (W ). (If W is a tree-class like T(·), the notion of 1-blocks
in t ∈ T (W ) does even make more sense). ≤T (W ) yields that 1-blocks of
t ∈ T (W ) has to be mapped into only one 1-block. It is not allowed that it
is mapped into two or more 1-blocks. More specifically, if

w(t1, . . . , tn) ≤I(W )(T (W )) w
′(t′1, . . . , t

′
m),

then for every replacement of t1, . . . , tn, t
′
1, . . . , t

′
m by elements s1, . . . , sn, s

′
1,

. . . , s′m in T (W ) that behave in a similar way as t1, . . . , tn, t
′
1, . . . , t

′
m among

each other, i.e. ti ≤T (W ) tj ⇔ si ≤T (W ) sj, etc., we also have that

w(s1, . . . , sn) ≤I(W )(T (W )) w
′(s′1, . . . , s

′
m).
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So the term w is only mapped into w′ and not on the terms in t′1, . . . , t
′
m.

We state some specific examples of W ’s such that T (W ) is a known partial
order with a gap-embeddability relation.

• If W (·) = B(·) := T(·, ∅, {0}), i.e. W (X) is equal to the set of bi-
nary trees with leaf-labels in X, then T (W ) is a subset of Twgap2 . For
more information on this example, see Notation 4.1, Definition 4.2 and
Lemma 4.3.

• IfW = M�(Tleaf (·))\{[]}, then T (W ) is T′wgap2 [0]. For more information
on Tleaf (·) and this example, we refer to Definitions 5.1, 5.3 and Lemma
5.16.

Notation 1.110. If t = ◦[w(t1, . . . , tn)] ∈ T (W ), then ×t denotes the ele-
ment w(t1, . . . , tn) ∈ I(W )(T (W )). Informally, this is the same as deleting
the root of the tree corresponding to t. Note that w(x1, . . . , xn) is an element
of TW .

We are ready to state Weiermann’s conjecture [86]. Informally, the conjecture
of Weiermann states that T (W ) is a wpo and describes (an upper bound for)
the maximal order type of it. It even characterizes a maximal linear extension
of ≤T (W ) on T (W ) using the collapsing function ϑ. So it can be used in order
to address the problem of determining the maximal order type of Friedman’s
famous wpo of trees with gap-condition. In [86], the conjecture is stated for
every W that has the following properties.

1. If X is a countable wpo, then W (X) is also a countable wpo.

2. Elements of W (X) can be described as generalized terms in which the
variables are replaced by constants for the elements of X.

3. The ordering between elements of W (X) is induced effectively by the
ordering from X.

4. We have an explicit knowledge on o(W (X)) if X is a wpo such that
o(W (X)) = o(W (o(X))) and such that this equality can be proved
using an effective reification like in [66].

We cannot formally define properties 3. and 4. because of the informal no-
tion effective. Informally, 3. means that the ordering on W (X) can easily
be described using the ordering on X and 4. means that the calculation of
the maximal order type of W (X) is in some sense well-understood. Every
basic construction, i.e. every W ∈ W(Y1, . . . , Yk), has these informal prop-
erties. That is one reason why we restrict ourselves to only these W ’s in



Chapter 1. Introduction 57

W(Y1, . . . , Yk) in the following conjecture. Another reason would be that we
can use an easier induction argument (we can use an induction argument on
|W |).

Conjecture 1.111 (Weiermann [86]). If Y1, . . . , Yk are countable wpo’s,
then for every W ∈ W(Y1, . . . , Yk), the partial order T (W ) is a wpo and if
o(W (Ω)) ≤ εΩ+1, then its maximal order type is bounded above by ϑ(o(W (Ω))).
Furthermore, this upper bound is also a lower bound if o(W (Ω)) ≥ Ω3.

We note that Ω is a wpo, hence W (Ω) is also a wpo and o(W (Ω)) is the
maximal order type of this well-partial-order. The conjecture says that in
almost all cases, o(T (W )) is equal to ϑ(o(W (Ω))). Moreover, using the
conjecture we can in some sense read off a maximal linear extension of T (W ):
in most cases one can embed the partial order T (W ) into ϑ(o(W (Ω))), i.e.
there exists a function f from T (W ) to this ordinal that is order-preserving.
This yields that (a subset of) ϑ(o(W (Ω))) can be seen as a natural linear
extension of T (W ). Using the conjecture, one directly obtains that this is
a maximal linear extension (if the subset of ϑ(o(W (Ω))) has the same order
type as ϑ(o(W (Ω)))). Correspondingly, the fact that ϑ(o(W (Ω))) is a lower
bound for the maximal order type of T (W ) is quite often proved by defining a
quasi-embedding from ϑ(o(W (Ω))) into T (W ). Hence, one can really embed
this ordinal in the tree-class T (W ).

Let us explain this with an example. As we have mentioned before (see
Theorem 1.109), if W (X) = X∗\{()}, then T (W ) ∼= Ts, hence o(T (W )) =
o(Ts). Weiermann’s conjecture is true for this specific case: Diana Schmidt’s
results (see Theorem 1.79) yield o(Ts) = ϑ(Ωω) and for W (X) = X∗\{()},
o(W (Ω)) = o(Ω∗) = ωω

Ω+1
= Ωω. Here, we used the fact that o(X∗\{()}) =

−1 + o(X∗).

There exists a natural embedding f from T (W ) into ϑ(o(W (Ω))) for this W :
let f(◦) be 0 and define f(◦[(t1, . . . , tn)]) as

ϑ(Ωn−1 · (f(t1) + 1) + · · ·+ Ω0 · (f(tn) + 1)).

One can prove that f is order-preserving and that the order type of the image
of f is equal to ϑ(o(W (Ω))). Hence, (a subset of) ϑ(o(W (Ω))) corresponds
to a linear extension of T (W ). Weiermann’s conjecture even implies that
this is a maximal linear extension.

In this dissertation, we prove that Weiermann’s conjecture is true for some
specific examples: for W equal to M�(· × ·), (· × ·)∗ and T(·, ∅, {0}) (also
denoted by B(·)). Of course, we will prove Weiermann’s conjecture for other
W ’s as well because we need them to prove the conjecture for the above
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mentioned cases. In order to generalize the conjecture about the maximal
order type of T (W ) to other tree-classes, e.g. if W = T(·), one has to change
its formulation so that it also fits nicely if o(W (Ω)) ≥ εΩ+1. Then one has
to use the collapsing functions (ϑi)i<ω (which was already indicated in [86]).
We refer the reader to Chapter 5 for more information, however the original
conjecture already indicates what one should expect for these kind of tree-
classes. In Chapter 5 we prove that ϑ0(ϑ1(Ωω

2 )ω) is equal to o(T (W )) if
W = M�(Tleaf (·))∗\{[]} (see Chapter 5 for the definition of Tleaf (·)). Using
Theorem 5.16, this actually implies an exact characterization of Twgap2 .

If Xn, . . . ,X0 are countable wpo’s, then the conjecture for W (X) = Xn×Xn+
· · ·+X×X1 +X′0 corresponds to Diana Schmidt’s result on o(Ts(X0, . . . ,Xn))
(see Theorem 1.79). Here, X′0 is defined as X0 minus a minimal element of
X0 (such an element exists because X0 is well-founded). Note that o(X′0) =
−1 + o(X0).

Another specific case for which the conjecture is true is the next theorem.
This example is needed to make a solid induction basis later on.

Theorem 1.112. Assume Y1, . . . , Yk are countable wpo’s. If Id does not ap-
pear in W ∈ W(Y1, . . . , Yk), then T (W ) is a wpo and o(T (W )) < ϑ(o(W (Ω))).

Proof. We prove that there exists an order-isomorphism f between T (W )
and X := {0} ∪ I(W )(∅), where the ordering on X is that on I(W )(∅) and
every element of I(W )(∅) is strictly above 0. Note that I(W )(∅) = I(W )(X)
for every partial order X.

Define f(◦) as 0 in X. Take t = ◦[w(t1, . . . , tn)] ∈ T (W ). Then we know
that w(t1, . . . , tn) ∈ I(W )(T (W )) = I(W )(∅), hence n = 0 and we denote
w(t1, . . . , tn) by w. Define f(w) as w ∈ X. One can prove in a straightforward
way that f is an order-isomorphism.

We know that I(W )(∅) is a wpo, hence X is also a wpo, so T (W ) is a
wpo. Furthermore, o(T (W )) = o(X) ≤ o(I(W )(∅)) + 1 = o(I(W )(Ω)) +
1. Because I(W )(Ω) is a countable wpo, o(I(W )(Ω)) = k(o(I(W )(Ω))) <
ϑ(o(I(W )(Ω))). So, o(T (W )) < ϑ(o(I(W )(Ω))) = ϑ(o(W (Ω))).

It should also be noted that all the (partial) proofs of the conjecture are of
a constructive nature: they can be translated into a constructive proof using
reifications (for more information see [66] and [73]). This would allow us to
do an extraction of the computational content of the proofs.
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1.3 Overview and summary of the disserta-

tion and possible applications

This first chapter introduces the preliminaries. Chapters 2, 3, 4 and 5 are
all dedicated to Diana Schmidt’s research program mentioned in Section
1.1.1 and to Weiermann’s conjecture: they all prove that for specific W ’s,
Weiermann’s conjecture is true.

Chapter 2 explores the unstructured trees. In her Habilitationsschrift [69],
Diana Schmidt investigated the maximal order types of structured tree-
classes. However, she did not discuss the unstructured version. We show
that the ordinals of the unstructured tree-classes are equal to the ordinals of
the corresponding structured tree-classes.

Chapter 3 improves the results of Weiermann in [89] by replacing τ in
T (M�(τ × ·)) by previously defined terms. We show that this gives rise
to a representation of the big Veblen number. Moreover, we investigate what
happens if we replace the unordered multisets by ordered finite sequences.
Apparently, this yields a notation system for a much bigger ordinal, namely
ϑΩΩΩ

.

In Chapter 4 we give a sub-ordering of one of Friedman’s famous well-partial-
orders with the Howard-Bachmann ordinal as maximal order type. More
specifically, we show that o(T (B(·))) = o(T (Bs(·))) = ϑ(εΩ+1), where B(·) is
defined as T(·, ∅, {0}) and Bs(·) is defined as Ts(·, ∅, {0})

Chapter 5 is about the maximal order type of Twgap2 . The overall conclusion
reached in Chapter 5 is that Twgap2 represents the ordinal ϑ0(ϑ1(Ωω

2 )ω). It
is possible to read Chapter 5 immediately without reading Chapters 2, 3
and 4. However, the underlying idea behind Chapter 5 is built up in these
intermediate chapters.

Chapter 6 explores independence results arising from the structures T (W ).
Friedman’s well-partial-orders yield an independence result for Π1

1-CA0: in
[76] it is proved that the supremum over n of the maximal order type of Twgapn

is equal to the proof-theoretic ordinal of Π1
1-CA0. We believe that applying

the Π1
1-comprehension scheme n many times yields the provability of the well-

partial-orderedness of Twgapn . But if we only allow n − 1 applications of the
Π1

1-comprehension scheme, then the well-partial-orderedness of Twgapn is un-
provable. Chapter 6 investigates light-face Π1

1-comprehension, i.e. restricting
Π1

1-comprehension to one application. We show some results from the joint
article with Michael Rathjen and Andreas Weiermann [81] about the proof-
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theoretical ordinals of RCA0 + (Π1
1(Π0

3)-CA0)− and RCA∗0 + (Π1
1(Π0

3)-CA0)−.
Furthermore, we prove the following theorems.

Theorem 1.113.

1. ACA0 + (Π1
1-CA0)− 6` ‘T (B(·)) is a well-partial-order’,

2. For every natural n, ACA0 + (Π1
1-CA0)− ` ‘T (·

n︷ ︸︸ ︷
∗ · · · ∗) is a well-partial-

order’.

Theorem 1.114.

1. RCA0 + (Π1
1(Π0

3)-CA0)− 6` ‘T (·∗) is a well-partial-order’,
2. For every natural n, RCA0 + CAC + (Π1

1(Π0
3)-CA0)− ` ‘T (·n) is a well-

partial-order’.

Chapter 7 explores whether the general conjecture of the correspondence
between a maximal linear extension of Twgapn and the ϑi collapsing functions
is still valid in the sequential version. We show that the correspondence is
true if n = 1 or n = 2, but from the moment that n > 2, it is surprisingly
not anymore the case. More specifically, we show that

ϑ0 . . . ϑnΩn+1 = ωn+2,

if n ≥ 1, where ϑi are the usual collapsing functions, but now defined with-
out the addition-operator. Furthermore, in Section 7.4, we show that a
statement, proposed by Keita Yokoyama, about the sequences with the gap-
embeddability relation has reverse mathematical strength equal to ACA′0.
The appendix contains a Dutch summary.

We note that the ordinal representations of the tree-classes Twgapn for n > 2
are not discussed in this dissertation. We believe that only small progress
will be needed to obtain the expected results. In Chapter 5 we indicate how
this could possibly be achieved.

In this context, we want to make a comment on possible applications of the
results obtained in this dissertation. First of all, it can lead to an exact
classification of Friedman’s wpo’s Twgapn and Tsgapn . This can in turn imply
independence results for theories lying between ATR0 and Π1

1-CA0. Secondly,
following [73], the proof of the correctness of Weiermann’s conjecture for spe-
cific W ’s can lead to a constructive well-partial-orderedness proof of T (W )
by reifications (for more information see also [66]). This can imply a con-
structive proof of the well-partial-orderedness of Friedman’s Twgapn and Tsgapn

and maybe of the related graph minor theorem (see [28] for more information
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on the last theorem). To mention one more possible application, it can be
used in term rewriting systems: wpo’s are used in computer science to prove
that certain term rewriting systems terminates and to obtain bounds on the
length of termination. These bounds can be described using the notion of
the maximal order type of the used well-partial-order.
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Chapter 2

Unstructured trees

2.1 Introduction

Diana Schmidt’s results [69] (see Theorem 1.79) give a characterization of
well-partial-orders on the set of finite structured rooted trees. However, an
order-theoretic characterization of the unstructured trees has never been es-
tablished. In this chapter, we are going to solve this problem.

Trivially, the identity is a quasi-embedding from the unstructured trees to
the structured ones. More specifically, this quasi-embedding maps the un-
structured tree [t] to t (using Remark 1.74), where [t] is an equivalence class
on the set of unstructured trees. This function actually picks one fixed repre-
sentative from an equivalence class. Therefore, we have the following obvious
results (see Notation 1.79 for the definition of the tree-classes).

1. o(T(X)) ≤ o(Ts(X)),

2. o(T≤m(X)) ≤ o(Ts,≤m(X)),

3. o(T(X0, . . . , Xn)) ≤ o(Ts(X0, . . . , Xn)),

4. o

Ç
T
Ç

X0 . . . Xn

1 + α0 . . . 1 + αn

åå
≤ o

Ç
Ts
Ç

X0 . . . Xn

1 + α0 . . . 1 + αn

åå
.

One might conjecture that these inequalities are all equalities, however one
cannot find complete proofs of these facts in the literature. Harvey Fried-
man and Andreas Weiermann worked on binary unstructured trees with one
or two labels, i.e. the partial orders T({0}, ∅, {0}) and T({0, 1}, ∅, {0, 1}).
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They proved that the maximal order type in this case is the same as for the
structured versions, i.e. ε0 and Γ0 respectively (unpublished preprint). They
can also generalize their techniques to obtain a full classification of all binary
trees, meaning they can calculate the maximal order type of T(X0, X1, X2)
where Xi are arbitrary wpo’s. In later chapters, we only need the following
statement.

Theorem 2.1. o(T(X, ∅, {0})) = o(Ts(X, ∅, {0})) = εo(X).

In this chapter, a proof about the equality of the maximal order types of
some not-yet studied structured and unstructured versions is given. More
specifically, we will show that

1. o(T≤n) = o(Ts,≤n) = ϑ(Ωn) if n ≥ 3,

2. o(T) = o(Ts) = ϑ(Ωω).

These results are a contribution to Weiermann’s conjecture: similarly as
the proof of Theorem 1.109, the reader can show T ∼= T (W ) if W (X) =
M�(X)\{[]}. Hence, our results would yield that the conjecture is true for
this specific W .

Notation 2.2. By Multin(X) we denote the subset of Multi(X) where every
multiset has length n.

Definition 2.3. Let α be an ordinal. Define < on Multi(α) as follows.

[]<[m1, . . . ,mp]

if p ≥ 1. And

[n1, . . . , nl]<[m1, . . . ,mp],

with n1 ≤ · · · ≤ nl and m1 ≤ · · · ≤ mp iff

n1 < m1 or (n1 = m1 and [n2, . . . , nl]<[m2, . . . ,mp]).

We write m≤n if m<n or m = n.

Lemma 2.4. The ordering ≤ is a linear extension of ≤� on Multi(α).

Proof. Straightforward.
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Lemma 2.5. Suppose that αi, βi < Ω. Then

Ωn−1αn−1 + · · ·+ Ω0α0 ≤ Ωn−1βn−1 + · · ·+ Ω0β0

⇐⇒ [αn−1, αn−1 ⊕ αn−2, . . . , αn−1 ⊕ · · · ⊕ α0]

≤ [βn−1, βn−1 ⊕ βn−2, . . . , βn−1 ⊕ · · · ⊕ β0]

⇐⇒ Ωn−1αn−1 + Ωn−2(αn−1 ⊕ αn−2) + · · ·+ Ω0(αn−1 ⊕ · · · ⊕ α0)

≤ Ωn−1βn−1 + Ωn−2(βn−1 ⊕ βn−2) + · · ·+ Ω0(βn−1 ⊕ · · · ⊕ β0).

Proof. Straightforward.

2.2 Lower bound

As indicated in the previous section and using the results of Diana Schmidt
in Theorem 1.79, we have the following results

o(T≤n) ≤ o(Ts,≤n) = ϑ(Ωn),

o(T) ≤ o(Ts) = ϑ(Ωω).

Therefore, if we can prove that ϑ(Ωn) is a lower bound for o(T≤n), we obtain
the desired results:

o(T≤n) = o(Ts,≤n) = ϑ(Ωn),

o(T) = o(Ts) = ϑ(Ωω).

Actually, we will show that ϑ(Ωn) is a lower bound for the maximal order

type of T=n, where we define T=n as T({0},
n−2︷ ︸︸ ︷
∅, . . . , ∅, {0}), the set of trees

where every node is either a leaf or has exactly n many successors. One can
interpret T=n in a natural way as a subset of the partial order T≤n, hence
this would yield

ϑ(Ωn) ≤ o(T=n) ≤ o(T≤n).

Theorem 2.6. ϑ(Ωn) ≤ o(T=n) for n ≥ 3.

Proof. We do not write the labels in a tree from T=n = T({0}, ∅, . . . , ∅, {0})
for notational convenience. We construct a quasi-embedding f from ϑ(Ωn)
to T=n. Define f(0) as the tree with one single node. Assume that β =
β1 ⊕ β2 > β1, β2 > 0 and β1 ∈ P . Define f(β) as
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where δi = βn−1 ⊕ · · · ⊕ βi. We now prove that f is a quasi-embedding.
Suppose that f(α) ≤ f(β). We prove by induction on α and β that α ≤ β.
If α and/or β is equal to zero, then this is trivial. Assume α, β > 0.

i) α = α1 ⊕ α2 and β = β1 ⊕ β2

If the root of f(α) is embedded in f(β1) or f(β2), then the claim follows from
the induction hypothesis. If the root of f(α) is not mapped into f(β1) and
f(β2), then it should be mapped on the root of f(β) due to embeddability
constraints. From this, we obtain α1 ≤ β1 and α2 ≤ β2 or α1 ≤ β2 and
α2 ≤ β1. Hence α ≤ β.

ii) α = α1 ⊕ α2 and β = ϑ(Ωn−1βn−1 ⊕ · · · ⊕ β0)
f(α) ≤ f(β) yields f(α1), f(α2) < f(β). Hence the induction hypothesis
yields α1, α2 < β, so α < β because β ∈ P .

iii) α = ϑ(Ωn−1αn−1 ⊕ · · · ⊕ α0) and β = β1 ⊕ β2

Define γi as αn−1 ⊕ · · · ⊕ αi. If the root of f(α) is embedded in f(β1) or
f(β2), then the claim follows from the induction hypothesis. If the root of
f(α) is not mapped into f(β1) and f(β2), then it should be mapped on the
root of f(β). But this is impossible because f(α) has strictly more than
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two immediate subtrees of height bigger than zero and f(β) has only two
immediate subtrees of height bigger than zero.

iv) α = ϑ(Ωn−1αn−1 ⊕ · · · ⊕ α0) and β = ϑ(Ωn−1βn−1 ⊕ · · · ⊕ β0)
Define γi as αn−1 ⊕ · · · ⊕ αi and δi as βn−1 ⊕ · · · ⊕ βi. If the root of f(α) is
embedded in f(δi) for a certain i, then the claim follows from the induction
hypothesis. If the root of f(α) is not mapped into f(δi) for all i, then it
should be mapped on the root of f(β). From this, it follows that

[f(γn−1), . . . , f(γ0)] ≤� [f(δn−1), . . . , f(δ0)].

By the induction hypothesis, we obtain

[γn−1, . . . , γ0] ≤� [δn−1, . . . , δ0]. (2.1)

By Lemma 2.4, we see that

[γn−1, . . . , γ0]≤[δn−1, . . . , δ0].

Hence, by Lemma 2.5, we obtain

Ωn−1αn−1 ⊕ · · · ⊕ α0 ≤ Ωn−1βn−1 ⊕ · · · ⊕ β0

Also, by inequality (2.1), we obtain that αi ≤ γi ≤ δji < ϑ(Ωn−1βn−1 ⊕ · · · ⊕
β0) = β for all i because β is additively closed. Hence,

α = ϑ(Ωn−1αn−1 ⊕ · · · ⊕ α0) ≤ ϑ(Ωn−1βn−1 ⊕ · · · ⊕ β0) = β.

We can conclude that f is a quasi-embedding.

Theorem 2.7. If n ≥ 3, then o(T=n) = o(T≤n) = ϑ(Ωn) and o(T) = ϑ(Ωω).

Proof. This follows from the discussion just above Theorem 2.6.

We believe that

ϑ(Ωn · o(Xn) + · · ·+ Ω · o(X1) + (−1 + o(X0))) ≤ o(T(X0, . . . , Xn))

and

ϑ(Ωαn · o(Xn) + · · ·+ Ωα0 · o(X0)) ≤ o

Ç
T
Ç

X0 . . . Xn

1 + α0 . . . 1 + αn

åå
can be proved in a similar way for n ≥ 3.
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Chapter 3

Capturing the big Veblen
number

3.1 Introduction

In 1908, Veblen [84] introduced techniques of iteration and diagonalization
to provide fast growing functions. His work led to the well-known Veblen
hierarchy ϕαβ, where ϕα is the enumeration function of all common fixed
points of ϕδ with δ < α and ϕ0β := ωβ. This hierarchy can be used for a
representation system for the limit of predicativity Γ0 (see Section 1.2.3). In
his paper Veblen also extended the binary Veblen function ϕ to finitely and
transfinitely many argument. More specifically, he considered ϕ(α0, . . . , αβ),
where only finitely many arguments are non-zero. This led to a notation
system for the big Veblen number E(1) (in Veblen’s notation). Schütte and
others later denoted this ordinal by E(0), where Schütte [70] developed his
ordinal notation system for this ordinal by using his Klammer-symbolsÇ

α0 . . . αn
β0 . . . βn

å
.

In this dissertation, we use the ϑ-function (see Section 1.2.4) to denote this
ordinal by ϑΩΩ.

As mentioned in the introductory Section 1.1, a way to study ordinal notation
systems has been devised by Diana Schmidt in 1979 (see [69]). She showed
that studying bounds on closure ordinals can best be achieved by determining



70 Section 3.2. Finite multisets of pairs

maximal order types of wpo’s which reflect monotonicity properties of the
functions in question. If one takes an ordinal notation system T and restricts
the ordering between the terms to those cases which are justified by the
monotonicity and increasingness condition, one gets a well-partial-order and
the maximal linear extension provides quite often an upper bound for the
order type of the original set T. Apparently, in several examples of natural
well-orderings the order type coincides with the maximal order type of the
underlying well-partial-order.

As said in Subsection 1.1.1, this research has been taken up by Andreas
Weiermann in [89]. He investigated an order-theoretic characterization in
terms of well-partial-orders of the Schütte-Veblen hierarchy based on Klam-
mer-symbols. He proved that the maximal order type of a wpo (in our
notation the partial order T (M�(τ × ·))) is bounded by ϑ(Ωτ ), where τ is a
fixed countable ordinal. Unfortunately, these results are not fully satisfying
since they refer to an underlying structure of ordinals (τ) and not to terms
of the corresponding ordinal notation system. Therefore, the representation
of ϑΩτ using T (M�(τ × ·)) provides an ordinal notation system which can
only be developed if we have an a priori effective term description for the
segment τ (which is in general not allowed for an ordinal notation system).
In this chapter, we continue this investigation and improve these results by
replacing τ by previously defined terms, i.e. we do not need an a priori given
segment of ordinals to describe such large ordinals. This produces an order-
theoretic characterization of the big Veblen number ϑΩΩ. More specifically,
we show that the maximal order type of T (M�(· × ·)) is equal to ϑΩΩ. This
will be dealt with in Section 3.2. In the follow-up section (Section 3.3),
we investigate what would happen if we replace the multisets by (ordered)
sequences. Somewhat surprisingly, this wpo creates a much bigger ordinal,
namely ϑ(ΩΩΩ

). The results in this chapter are also available in the article
[82].

3.2 Finite multisets of pairs

Before we start, we fix some definitions and notations.

Definition 3.1. Let α be an ordinal. Define ᾰ by

ᾰ :=

®
α + 1 if α < ω,
α otherwise.
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Notation 3.2. Let α =CNF ωα1 + · · · + ωαn be an ordinal. We use the
notation α̃ for the ordinal ωᾰ1 + · · ·+ ωᾰn.

Some easy consequences (recall Definition 1.67 and Notation 1.68).

Lemma 3.3. 1. α̃ is always a limit ordinal,

2. α < β implies α̃ < β̃,

3. ωΩ̂α = Ωα̃ for every countable ordinal α.

Notation 3.4. Let γ be an ordinal number. Define γ1 as γ and γn+1 as
γn ⊗ γ.

The following theorem is needed for Theorem 3.6.

Theorem 3.5. Assume W ∈ W(. . . ,Xk,l, . . . ,Yk,l, . . . ) with Xk,l and Yk,l
countable wpo’s (k ∈ {0, . . . , K} and l ∈ {0, . . . , L}). Let W (X) be

K∑
k=0

L∑
l=0

M�(X × Xk,l)×X l × Yk,l,

where X l denotes the product X × · · · ×X with l X’s. Then T (W ) is a wpo
and o(T (W )) ≤ ϑ(o(W (Ω))).

Proof. We prove the theorem by main induction on the ordinal o(W (Ω)).
Without loss of generality, we can assume that Yk,l are nonempty wpo’s,
otherwise we can delete the corresponding term. If o(W (Ω)) < Ω, then
L = 0 and Xk,l = ∅ for every k and l. Hence W (X) ∼= ∑K

k=0 Yk,0 =: Y for
every X. So T (W ) ∼= T (Y). Theorem 1.112 then yields T (W ) is a wpo and
o(T (W )) ≤ ϑ(o(W (Ω))).

If o(W (Ω)) ≥ Ω, in other words X really occurs in W (X), then ϑ(o(W (Ω)))
is an epsilon number. We want to prove that L(t) is a wpo and l(t) <
ϑ(o(W (Ω))) for every t in T (W ). We do this by induction on the complexity
C(t) of t. The theorem then follows from Theorem 1.54. If t = ◦, then L(t)
is the empty wpo and l(t) = 0 < ϑ(o(W (Ω))). Assume that

t = ◦([(t11, x1), . . . , (t1n, xn)], (t21, . . . , t
2
b), y)

with L(tij) wpo’s and l(tij) < ϑ(o(W (Ω))), xi ∈ Xa,b and y ∈ Ya,b. We show
that L(t) is a wpo and l(t) < ϑ(o(W (Ω))). We note that if Xa,b = ∅, then
n = 0.
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Suppose that s = ◦([(s1
1, x1), . . . , (s1

m, xm)], (s2
1, . . . , s

2
b
), y), with xi ∈ Xa,b and

y ∈ Ya,b. t ≤T (W ) s is valid iff t ≤T (W ) s
j
i for a certain i and j or a = a, b = b,

y ≤ y, and

(t21, . . . , t
2
b) ≤ (s2

1, . . . , s
2
b
),

[(t11, x1), . . . , (t1n, xn)] ≤� [(s1
1, x1), . . . , (s1

m, xm)].

Therefore, s ∈ L(t) iff sji ∈ L(t) for every i and j and one of the following
holds

1. a 6= a,

2. a = a, b 6= b,

3. a = a, b = b, y 6≤ y,

4. a = a, b = b, y ≤ y, (t21, . . . , t
2
b) 6≤ (s2

1, . . . , s
2
b
),

5. a = a, b = b, y ≤ y, (t21, . . . , t
2
b) ≤ (s2

1, . . . , s
2
b
),

[(t11, x1), . . . , (t1n, xn)] 6≤� [(s1
1, x1), . . . , (s1

m, xm)].

We assume that if we talk about multisets, we have a fixed representation
(note that a multiset is formally defined as an equivalence class). If (4.)
holds, there must be a minimal index l(s) such that

t21 ≤ s2
1, . . . , t

2
l(s)−1 ≤ s2

l(s)−1, t
2
l(s) 6≤ s2

l(s).

If (5.) holds, we must be in one of the following groups

1. (t11, x1) 6≤ (s1
i , xi) for every i,

2. there exists i1 such that (t11, x1) ≤ (s1
i1
, xi1) and (t12, x2) 6≤ (s1

i , xi) for
every i 6= i1 (choose i1 minimal),

3. there exist distinct indices i1 and i2 such that (t11, x1) ≤ (s1
i1
, xi1),

(t12, x2) ≤ (s1
i2
, xi2) and (t13, x3) 6≤ (s1

i , xi) for every i 6= i1, i2 (choose
i1, i2 minimal with respect to the lexicographic ordering on the couples
(i1, i2) for which this holds),

. . .

n. there exist distinct indices i1, . . . , in−1 such that (t11, x1) ≤ (s1
i1
, xi1),

(t12, x2) ≤ (s1
i2
, xi2), . . . , (t1n−1, xn−1) ≤ (s1

in−1
, xin−1) and (t1n, xn) 6≤

(s1
i , xi) for every i 6= i1, . . . , in−1 (choose i1, . . . , in−1 minimal with re-

spect to the lexicographic ordering on the (n−1)-tuples (i1, i2, . . . , in−1)
for which this holds).
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It is easy to see that (t1i , xi) 6≤ (s1
j , xj) is equivalent with the formula s1

j ∈
L(t1i ) ∨ (t1i ≤ s1

j ∧ xj ∈ LXa,b(xi)). Define W ′(X) as

K∑
k=0,k 6=a

L∑
l=0

M�(X × Xk,l)×X l × Yk,l

+
L∑

l=0,l 6=b
M�(X × Xa,l)×X l × Ya,l

+ M�(X × Xa,b)×Xb × LYa,b(y)

+
b∑
l=1

M�(X × Xa,b)×Xb−1 × LT (W )(t
2
l )× Ya,b

+
n∑
k=1

(X × Xa,b)
k−1 ×M�(LT (W )(t

1
k)× Xa,b)×M�(X × LXa,b(xk))×Xb × Ya,b

W ′ is an element of W(Xk,l,Yk,l, LYa,b(y), LXa,b(xk), L(tij)). Note that all
Xk,l,Yk,l, LYa,b(y), LXa,b(xk), L(tij) are countable wpo’s by assumption.

The five terms separated by + correspond to the five groups (1. - 5.) in
which s can lie in. The index l in the fourth line corresponds to l(s). The
index k in the fifth line corresponds to which case (1. - n.) we are at that
moment.
So recall that if s ∈ L(t), then sji ∈ L(t) for every i and j and ×t 6≤W (T (W ))

×s, where we characterized ×t 6≤W (T (W )) ×s by the five cases 1. - 5., hence
it is characterized by W ′. Therefore, ×s (with s ∈ L(t)) can be interpreted
as an element w′(s1, . . . , sr) of W ′(L(t)) with every sk equal to a certain
sji ∈ L(t) and w′(x1, . . . , xr) ∈ W ′. Let w′(s1, . . . , sr) be this interpre-
tation of ×s and w′′(s′1, . . . , s

′
r′) the interpretation of ×s′ for an arbitrary

s′ ∈ L(t). It can be proved in a straightforward way that the inequal-
ity w′(s1, . . . , sr) ≤W ′(T (W )) w

′′(s′1, . . . s
′
r′) implies ×s ≤W (T (W )) ×s′, hence

s ≤T (W ) s
′. Because a similar argument (completely written out) can be

found in the proof of Theorem 3.6, we skip the detailed verification of this
fact.

There exists a quasi-embedding f from L(t) in T (W ′): define f(◦) as ◦.
Assume

s = ◦([(s1
1, x1), . . . , (s1

m, xm)], (s2
1, . . . , s

2
b
), y) ∈ L(t)

and suppose that f(sji ) is already defined. Let w′(s1, . . . , sr) be the interpre-
tation of ×s in W ′(L(t)). Then {s1, . . . , sr} ⊆ {s1

1, . . . , s
1
m, s

2
1, . . . , s

2
b
} and

define f(s) as the element ◦[w′(f(s1), . . . , f(sr))] in T (W ′).
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We show that f is a quasi-embedding. We prove, by induction on the sum
of the complexities of s and s′, that f(s) ≤T (W ′) f(s′) implies s ≤T (W ) s

′. If
either s or s′ is equal to ◦, this is trivial. Suppose f(s) ≤T (W ′) f(s′) with
f(s) = ◦[w′(f(s1), . . . , f(sr))] and f(s′) = ◦[w′′(f(s′1), . . . , f(s′r′))]. Then
f(s) ≤T (W ′) f(s′i) for a certain i or

w′(f(s1), . . . , f(sr)) ≤W ′(T (W ′)) w
′′(f(s′1), . . . , f(s′r′)).

In the former case, we obtain by the induction hypothesis, that s ≤T (W )

s′i ≤T (W ) s′. In the latter case, f is a quasi-embedding of the set S =
{s1

1, . . . , s
2
b
} ∪ {s′11 , . . . , s′2b′} ⊆ T (W ) into f(S) ⊆ T (W ′) by the induction

hypothesis. Therefore, by the Lifting Lemma

w′(s1, . . . , sr) ≤W ′(T (W )) w
′′(s′1, . . . s

′
r′).

Hence, s ≤T (W ) s
′.

Because of Lemma 1.56, we obtain o(L(t)) ≤ o(T (W ′)). If we can prove the
inequalities o(W ′(Ω)) < o(W (Ω)) and k(o(W ′(Ω))) < ϑ(o(W (Ω))), the main
induction hypothesis yields that

o(L(t)) ≤ o(T (W ′))

≤ ϑ(o(W ′(Ω)))

< ϑ(o(W (Ω))),

and that L(t) is a wpo by Lemma 1.56. Hence, we are done.

a) o(W ′(Ω)) < o(W (Ω)).
For notational convenience, we write sometimes Y instead of o(Y) for wpo’s
Y. o(W ′(Ω)) < o(W (Ω)) is equivalent with (using Theorem 1.61 and 1.69)

ω
÷Ω⊗Xa,b ⊗ Ωb ⊗ lYa,b(y)

⊕
b⊕
l=1

ω
÷Ω⊗Xa,b ⊗ Ωb−1 ⊗ lT (W )(t

2
l )⊗ Ya,b

⊕
n⊕
k=1

(Ω⊗ Xa,b)
k−1 ⊗ ω ¤�lT (W )(t

1
k
)⊗Xa,b ⊗ ω⁄�Ω⊗lXa,b (xk) ⊗ Ωb ⊗ Ya,b

< ω
÷Ω⊗Xa,b ⊗ Ωb ⊗ Ya,b.

It is easy to see that there exists a finite N such that for every k ∈ {0, . . . , K},

(Ω⊗ Xa,b)
k−1 ⊗ ω ¤�lT (W )(t

1
k
)⊗Xa,b ⊗ Ωb ⊗ Ya,b < ΩN .
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Note that all occurring wpo’s are countable. Furthermore,

ω
⁄�Ω⊗lXa,b (xk) = Ω

·�lXa,b (xk),

ω
÷Ω⊗Xa,b = ΩX̃a,b ,

using Notations 1.68 and 3.2. Because fiXa,b is a limit ordinal and „�lXa,b(xk) <fiXa,b, we obtain

(Ω⊗ Xa,b)
k−1 ⊗ ω ¤�lT (W )(t

1
k
)⊗Xa,b ⊗ ω⁄�Ω⊗lXa,b (xk) ⊗ Ωb ⊗ Ya,b

< Ω
·�lXa,b (xk)+N

< ΩX̃a,b

= ω
÷Ω⊗Xa,b .

The last ordinal number is additively closed, hence

n⊕
k=1

(Ω⊗ Xa,b)
k−1 ⊗ ω ¤�lT (W )(t

1
k
)⊗Xa,b ⊗ ω⁄�Ω⊗lXa,b (xk) ⊗ Ωb ⊗ Ya,b < ω

÷Ω⊗Xa,b .

Similarly,(
b⊕
l=1

ω
÷Ω⊗Xa,b ⊗ Ωb−1 ⊗ lT (W )(t

2
l )⊗ Ya,b

)
⊕ ω÷Ω⊗Xa,b ≤ ω

÷Ω⊗Xa,b ⊗ Ωb,

because ω÷Ω⊗Xa,b ⊗ Ωb is additively closed, and from which we can concludeÅ
ω
÷Ω⊗Xa,b ⊗ Ωb ⊗ lYa,b(y)

ã
⊕
(

b⊕
l=1

ω
÷Ω⊗Xa,b ⊗ Ωb−1 ⊗ lT (W )(t

2
l )⊗ Ya,b

)

⊕
(

n⊕
k=1

(Ω⊗ Xa,b)
k−1 ⊗ ω ¤�lT (W )(t

1
k
)⊗Xa,b ⊗ ω⁄�Ω⊗lXa,b (xk) ⊗ Ωb ⊗ Ya,b

)

<
Å
ω
÷Ω⊗Xa,b ⊗ Ωb ⊗ lYa,b(y)

ã
⊕
(

b⊕
l=1

ω
÷Ω⊗Xa,b ⊗ Ωb−1 ⊗ lT (W )(t

2
l )⊗ Ya,b

)

⊕ ω÷Ω⊗Xa,b

≤
Å
ω
÷Ω⊗Xa,b ⊗ Ωb ⊗ lYa,b(y)

ã
⊕
Å
ω
÷Ω⊗Xa,b ⊗ Ωb

ã
≤ ω

÷Ω⊗Xa,b ⊗ Ωb ⊗ Ya,b.

This strict inequality also holds in the exceptional cases b = 0 and n = 0.
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b) k(o(W ′(Ω))) < ϑ(o(W (Ω))).

o(W (Ω)) =
K⊕
k=0

L⊕
l=0

ω
÷Ω⊗Xk,l ⊗ Ωl ⊗ Yk,l =

K⊕
k=0

L⊕
l=0

ΩX̃k,l⊕l ⊗ Yk,l,

from which we obtain

Yk,l,fiXk,l ⊕ l ≤ k(o(W (Ω))) < ϑ(o(W (Ω))). (3.1)

Furthermore, Xk,l ≤fiXk,l. Now, o(W ′(Ω)) is equal to

K⊕
k=0,k 6=a

L⊕
l=0

ΩX̃k,l⊕l ⊗ Yk,l

⊕
L⊕

l=0,l 6=b
ΩX̃a,l⊕l ⊗ Ya,l

⊕ ΩX̃a,b⊕b ⊗ lYa,b(y)

⊕
b⊕
l=1

ΩX̃a,b⊕(b−1) ⊗ lT (W )(t
2
l )⊗ Ya,b

⊕
n⊕
k=1

Ω(k−1)⊕ ·�lXa,b (xk)⊕b ⊗ Xk−1
a,b ⊗ ω

¤�lT (W )(t
1
k
)⊗Xa,b ⊗ Ya,b.

Hence, k(o(W ′(Ω))) < ϑ(o(W (Ω))) by Lemma 1.10, inequality (3.1), ’o(X) ≤
o(X) ⊗ ω, flo(X) ≤ o(X) ⊗ ω, lT (W )(t

i
j) < ϑ(o(W (Ω))) and the fact that

ϑ(o(W (Ω))) is an epsilon number.

Theorem 3.6. T (M�(· × ·)) is a wpo and o(T (M�(· × ·))) ≤ ϑ(ΩΩ).

Proof. To prove the inequality o(T (M�(·×·))) ≤ ϑ(ΩΩ) and the well-partial-
orderedness of T (M�(· × ·)), we show that L(t) is a wpo and l(t) < ϑ(ΩΩ)
for every t in T (M�(· × ·)) by induction on the complexity C(t) of t. The
theorem then follows from Theorem 1.54. If t = ◦, then L(t) is the empty
wpo and l(t) = 0 < ϑ(ΩΩ). Assume t = ◦[(s1, t1) . . . , (sn, tn)] with L(ti),
L(si) wpo’s and l(ti), l(si) < ϑ(ΩΩ).

Take an arbitrary v = ◦[(u1, v1), . . . , (um, vm)] in T (M�(· × ·)). Then t ≤ v
iff

t ≤ ui or t ≤ vi for a certain i

or (∃f : {1, . . . , n} ↪→ {1, . . . ,m})(∀i ∈ {1, . . . , n})((si, ti) ≤ (uf(i), vf(i))).
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Hence v = ◦[(u1, v1), . . . , (um, vm)] is an element of L(t) iff ui, vi ∈ L(t) for
every i and

(∀f : {1, . . . , n} ↪→ {1, . . . ,m})(∃i ∈ {1, . . . , n})((si, ti) 6≤ (uf(i), vf(i))).

Therefore, if v 6= ◦ and v ∈ L(t), then ui, vi ∈ L(t) for every i and one of the
following conditions is satisfied:

1. (s1, t1) 6≤ (ui, vi) for every i,

2. there exists i1 such that (s1, t1) ≤ (ui1 , vi1) and (s2, t2) 6≤ (ui, vi) for
every i 6= i1 (i1 minimal chosen),

3. there exist distinct indices i1 and i2 such that (s1, t1) ≤ (ui1 , vi1);
(s2, t2) ≤ (ui2 , vi2) and (s3, t3) 6≤ (ui, vi) for every i 6= i1, i2 (choose
i1, i2 minimal with respect to the lexicographic ordering on the couples
(i1, i2) for which this holds),

. . .

n. there exist distinct indices i1, . . . , in−1 such that (s1, t1) ≤ (ui1 , vi1);
(s2, t2) ≤ (ui2 , vi2); . . . (sn−1, tn−1) ≤ (uin−1 , vin−1) and (sn, tn) 6≤ (ui, vi)
for every i 6= i1, . . . , in−1 (pick the indices i1, . . . , in−1 minimal with re-
spect to the lexicographic ordering on the (n−1)-tuples (i1, i2, . . . , in−1)
for which this holds).

Also note that ◦ ∈ L(t). Define

W ′(X) :=
n∑
k=1

(X ×X)k−1 ×M� ((L(sk)×X) + (X × L(tk))) ,

which we identify with
n∑
k=1

(X ×X)k−1×M� ((L(sk) + L(tk))×X). k repre-

sents which case (1.-n.) holds.

W ′ is an element of W(L(s1) + L(t1), . . . , L(sn) + L(tn)). By assumption,
L(si) + L(ti) are wpo’s, hence Theorem 3.6 yields that T (W ′) is a wpo and
o(T (W ′)) ≤ ϑ(o(W ′(Ω))).

Define the map f : L(t) → T (W ′) recursively as follows. First, let f(◦) be
◦. Secondly, suppose that v = ◦[(u1, v1), . . . , (um, vm)] ∈ L(t) and that f(ui),
f(vi) are already defined. Assume that v lies in group k (hence we have
indices i1, . . . , ik−1) and take {j1, . . . , jl} as the subset of

{1, . . . ,m}\{i1, . . . , ik−1}
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such that ujp ∈ L(sk) for every p. Define {r1, . . . , rt} as

{1, . . . ,m}\{i1, . . . , ik−1, j1, . . . , jl}.

Note that vrp ∈ L(tk) for every p. Let f(v) be the following element of
T (W ′):

◦
(

(f(ui1), f(vi1)), . . . , (f(uik−1
), f(vik−1

)),

[(uj1 , f(vj1)), . . . , (ujl , f(vjl)), (f(ur1), vr1) . . . , (f(urt), vrt)]
)
. (3.2)

If f is a quasi-embedding, then Lemma 1.56 yields that L(t) is a wpo and

o(L(t)) ≤ o(T (W ′)) ≤ ϑ(o(W ′(Ω))) = ϑ

(
n⊕
k=1

Ω2k−2ω
¤�Ω⊗(l(sk)⊕l(tk))

)
.

Seeing that

l(sk)⊕ l(tk) < ϑ(ΩΩ),

it can be shown in a similar way as in the proof of Theorem 3.5 that

ϑ

(
n⊕
k=1

Ω2k−2ω
¤�Ω⊗(l(sk)⊕l(tk))

)
< ϑ(ΩΩ),

hence o(L(t)) < ϑ(ΩΩ).

We still have to prove that f is a quasi-embedding. We show that f(v) ≤
f(v′) implies v ≤ v′ by induction on the complexity of v′. If f(v) ≤ f(◦) = ◦,
then v = ◦ ≤ v′. Assume v′ = ◦[(u′1, v′1), . . . , (u′m′ , v

′
m′)] ∈ L(t) with f(v′)

defined as

◦
Å

(f(u′i′1), f(v′i′1)), . . . , (f(u′i′
k′−1

), f(v′i′
k′−1

)),

[(u′j′1 , f(v′j′1)), . . . , (u′j′
l′
, f(v′j′

l′
)), (f(u′r′1), v′r′1) . . . , (f(u′r′

t′
), v′r′

t′
)]
)

and suppose f(v) ≤ f(v′). We show that v ≤ v′ holds. If v = ◦, this is trivial.
Assume v 6= ◦ and say that f(v) is defined as in (3.2). Because f(v) ≤ f(v′),
we obtain f(v) ≤ f(u′p) or f(v) ≤ f(v′p) for a certain p or k = k′ and

(f(ui1), f(vi1)) ≤ (f(u′i′1), f(v′i′1)),

. . .

(f(uik−1
), f(vik−1

)) ≤ (f(u′i′
k′−1

), f(v′i′
k′−1

)),
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and

[(uj1 , f(vj1)), . . . , (ujl , f(vjl)), (f(ur1), vr1) . . . , (f(urt), vrt)]

≤� [(u′j′1 , f(v′j′1)), . . . , (u′j′
l′
, f(v′j′

l′
)), (f(u′r′1), v′r′1) . . . , (f(u′r′

t′
), v′r′

t′
)].

In the two former cases, we obtain by the induction hypothesis that v ≤ u′p
or v ≤ v′p, hence v ≤ v′. In the latter case, the induction hypothesis yields
(uip , vip) ≤ (u′i′p , v

′
i′p

) for every p = 1, . . . , k − 1. Furthermore, there exists

an injective function g : {j1, . . . , jl, r1, . . . , rt} → {j′1, . . . , j′l′ , r′1, . . . , r′t′} such
that g(jp) = j′l for a certain l and g(rp) = r′l for a certain l with

(ujp , f(vjp)) ≤ (u′g(jp), f(v′g(jp)))

and

(f(urp), vrp) ≤ (f(u′g(rp)), v
′
g(rp))

for every p. This is because (ujp , f(vjp)) is only comparable with a certain
element (u′j′

l
, f(v′j′

l
)) and never with an element (f(u′r′

l
), v′r′

l
), since it follows

the order on W ′(T (W ′)). And (f(urp), vrp) is only comparable with a certain
(f(u′r′

l
), v′r′

l
) and never with a (u′j′

l
, f(v′j′

l
)). Using the induction hypothesis,

we obtain

(ujp , vjp) ≤ (u′g(jp), v
′
g(jp))

and

(urp , vrp) ≤ (u′g(rp), v
′
g(rp)).

Therefore

[(uj1 , vj1), . . . , (ujl , vjl), (ur1 , vr1) . . . , (urt , vrt)]

≤� [(u′j′1 , v
′
j′1

), . . . , (u′j′
l′
, v′j′

l′
), (u′r′1 , v

′
r′1

) . . . , (u′r′
t′
, v′r′

t′
)].

Together with (uip , vip) ≤ (u′i′p , v
′
i′p

) for every p = 1, . . . , k = k′, we can
conclude that

[(u1, v1), . . . , (um, vm)] ≤� [(u′1, v
′
1), . . . , (u′m′ , v

′
m′)],

hence v ≤ v′.

The previous proof allows a constructive well-partial-orderedness proof by
reifications (for more information see [66] and [73]). Now, we show that
ϑ(ΩΩ) is also a lower bound, but first we prove an additional lemma.
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Lemma 3.7. Suppose 1 < α < ϑ(ΩΩ) and α ∈ P , the set of additive closed
ordinal numbers. Then there exists unique 0 < βi < Ω and αi < Ω such that
α = ϑ(Ωα1β1 + · · ·+ Ωαnβn), α1 > · · · > αn.

Proof. Using Corollary 1.8, we obtain a unique ξ < εΩ+1 such that α = ϑ(ξ).
Denote ξ by Ωα1β1 + · · · + Ωαnβn with 0 < βi < Ω and α1 > · · · > αn. We
only have to show that α1 < Ω. If α1 ≥ Ω, then Ωα1β1 + · · ·+ Ωαnβn ≥ ΩΩ.
So, α < ϑ(ΩΩ) can only hold if α ≤ k(ΩΩ). But k(ΩΩ) = 1 < α, hence α1

has to be smaller than Ω.

Theorem 3.8. o(T (M�(· × ·))) ≥ ϑ(ΩΩ).

Proof. Define

g : ϑ(ΩΩ)→ T (M�(· × ·)),
0 7→ ◦,
1 7→ ◦[(◦, ◦)],

α =CNF ω
α1 + · · ·+ ωαn , n ≥ 2 7→ ◦[(g(α1), ◦), . . . , (g(αn), ◦)],

α = ωβ = ϑ(Ωα1β1 + · · ·+ Ωαnβn) > 1 7→ ◦[(g(α1), g(β1)), . . . , (g(αn), g(βn))].

In this definition we assume that βi > 0 as in Lemma 3.7. Obviously we see
that β = 0 iff g(β) = ◦ and β = 1 iff g(β) = ◦[(◦, ◦)]. If we prove that g is
a quasi-embedding, we can conclude the theorem by Lemma 1.56. We show
that g(α) ≤ g(α′) implies α ≤ α′ by induction on α⊕α′. The cases α and/or
α′ equal to 0 or 1 are trivial, so we may assume that α, α′ > 1.

a) α′ =CNF ω
α′1 + · · ·+ ωα

′
m, m ≥ 2.

i) α =CNF ω
α1 + · · ·+ ωαn, n ≥ 2.

If

g(α) = ◦[(g(α1), ◦), . . . , (g(αn), ◦)] ≤ ◦[(g(α′1), ◦), . . . , (g(α′m), ◦)] = g(α′).

then g(α) ≤ g(α′i) for a certain i or

[(g(α1), ◦), . . . , (g(αn), ◦)] ≤� [(g(α′1), ◦), . . . , (g(α′m), ◦)]. (3.3)

In the former case, we obtain from the induction hypothesis that α ≤ α′i < α′.
In the latter case, there exists an injective function f from {1, . . . , n} to
{1, . . . ,m} such that (g(αi), ◦) ≤ (g(α′f(i)), ◦) for every i. Hence g(αi) ≤



Chapter 3. Capturing the big Veblen number 81

g(α′f(i)), so the induction hypothesis yields αi ≤ α′f(i) for every i. Because
α1 ≥ · · · ≥ αn and α′1 ≥ · · · ≥ α′m, this implies α ≤ α′.

ii) 1 < α = ωβ = ϑ(Ωα1β1 + · · ·+ Ωαnβn).
βi > 0, hence g(βi) 6= ◦. Assume g(α) ≤ g(α′). Then either g(α) ≤ g(α′i) for
a certain i or [(g(α1), g(β1)), . . . , (g(αn), g(βn))] ≤� [(g(α′1), ◦), . . . , (g(α′m), ◦)].
In the former case, we obtain from the induction hypothesis that α ≤ α′i < α′.
The latter case is impossible because g(βi) 6≤ ◦.

b) 1 < α′ = ωβ
′
= ϑ(Ωα′1β′1 + · · ·+ Ωα′mβ′m).

We know that g(β′i) 6= ◦.

i) α =CNF ω
α1 + · · ·+ ωαn, n ≥ 2.

Suppose g(α) ≤ g(α′). Then either g(α) ≤ g(α′i) for a certain i, or g(α) ≤
g(β′i) for a certain i, or

[(g(α1), ◦), . . . , (g(αn), ◦)] ≤� [(g(α′1), g(β′1)), . . . , (g(α′m), g(β′m))].

In the two former cases, we obtain by the induction hypothesis that α ≤ α′i
or α ≤ β′i. In both cases, α ≤ k(Ωα′1β′1 + · · · + Ωα′mβ′m) < ϑ(Ωα′1β′1 + · · · +
Ωα′mβ′m) = α′. If

[(g(α1), ◦), . . . , (g(αn), ◦)] ≤� [(g(α′1), g(β′1)), . . . , (g(α′m), g(β′m))] (3.4)

holds, then for every i there exists a j such that g(αi) ≤ g(α′j). By the
induction hypothesis, we obtain αi ≤ α′j < α′. If α′1 > 0, then α′ is an
epsilon number, so α < α′. Suppose α′ = ϑ(Ω0β1) with β1 > 0. Then
g(α′) = ◦[(◦, g(β′1))] and inequality 3.4 yield a contradiction because n ≥ 2.

ii) 1 < α = ωβ = ϑ(Ωα1β1 + · · ·+ Ωαnβn).
If

g(α) = ◦[(g(α1), g(β1)), . . . , (g(αn), g(βn))]

≤ g(α′) = ◦[(g(α′1), g(β′1)), . . . , (g(α′m), g(β′m))],

then either g(α) ≤ g(α′i) or g(α) ≤ g(β′i) for a certain i or

[(g(α1), g(β1)), . . . , (g(αn), g(βn))]

≤� [(g(α′1), g(β′1)), . . . , (g(α′m), g(β′m))]. (3.5)

In the former cases, α ≤ α′i < α′ or α ≤ β′i < α′ by the induction hypothesis.
In the latter case, there exists an injective function f from {1, . . . , n} to
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{1, . . . ,m} such that (g(αi), g(βi)) ≤ (g(α′f(i)), g(β′f(i))) for every i. This
yields (αi, βi) ≤ (α′f(i), β

′
f(i)). Hence,

k (Ωα1β1 + · · ·+ Ωαnβn)

= max{α1, . . . , αn, β1, . . . , βn}
≤ max{α′1, . . . , α′m, β′1, . . . , β′m}
= k

Ä
Ωα′1β′1 + · · ·+ Ωα′mβ′m

ä
< ϑ

Ä
Ωα′1β′1 + · · ·+ Ωα′mβ′m

ä
.

So if we can prove

Ωα1β1 + · · ·+ Ωαnβn ≤ Ωα′1β′1 + · · ·+ Ωα′mβ′m,

we can finish the proof.

If f(i) = i for every i = 1, . . . , n, then αi ≤ α′i and βi ≤ β′i for all i. This
yields

Ωα1β1 + · · ·+ Ωαnβn ≤ Ωα′1β′1 + · · ·+ Ωα′mβ′m.

If f(i) is not equal to i for every i, then choose the least i such that f(i) 6= i.
Hence, αj ≤ α′j and βj ≤ β′j for all j < i, so

Ωα1β1 + · · ·+ Ωαi−1βi−1 ≤ Ωα′1β′1 + · · ·+ Ωα′i−1β′i−1.

Additionally f(i) 6= i yields f(i) > i, so αi ≤ α′f(i) < α′i. Hence, Ωαiβi+ · · ·+
Ωαnβn < Ωα′i . Therefore,

Ωα1β1 + · · ·+ Ωαnβn

< Ωα′1β′1 + · · ·+ Ωα′i−1β′i−1 + Ωα′i

≤ Ωα′1β′1 + · · ·+ Ωα′mβ′m.

Corollary 3.9. o(T (M�(· × ·))) = ϑ(ΩΩ).

Proof. Follows from Theorems 3.6 and 3.8.

In [82], we also investigated the partial order T (M(·× ·)). It turned out that
this is also a wpo with the same maximal order type ϑ(ΩΩ).
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3.3 Finite sequences of pairs

In this section, we show that using finite sequences instead of finite multisets
implies a wpo that has a maximal order type bigger the the big Veblen
number. The following theorem is needed for proving Theorem 3.11.

Theorem 3.10. Let Yij, Zi
j and Zi be countable wpo’s and ni and mi be

natural numbers. Assume W ∈ W(. . . ,Yij, . . . ,Z
i
j, . . . ,Zi, . . . ). If

W (X) =
N∑
i=0

ÄÄ
Yi1 ×X + Zi

1

ä∗ × · · · × ÄYini ×X + Zi
ni

ä∗ ×Xmi × Zi

ä
,

then T (W ) is a wpo and o(T (W )) ≤ ϑ(o(W (Ω))).

Proof. We prove the theorem by main induction on the ordinal o(W (Ω)).
Without loss of generality, we may assume that Yij and Zi are non-empty
wpo’s (unless W (X) ∼= ∅), otherwise we can rewrite or delete the corre-
sponding term. If o(W (Ω)) < Ω, then W (X) does not contain X (or W does
not contain ·) and it is equal to a countable wpo Z: in this case, ni = mi = 0
for all i. Therefore, W (X) ∼= ∑N

i=0 Zi, which we call Z. Hence T (W ) ∼= T (Z),
so Theorem 1.112 then yields T (W ) is a wpo and o(T (W )) ≤ ϑ(o(W (Ω))).

If o(W (Ω)) ≥ Ω, in other words X really occurs in W (X), then ϑ(o(W (Ω)))
is an epsilon number. We want to prove that L(t) is a wpo and l(t) <
ϑ(o(W (Ω))) for every t in T (W ), by induction on the complexity of t. If
t = ◦, then L(t) is the empty wpo and l(t) = 0 < ϑ(o(W (Ω))). Assume

t = ◦((t1, . . . , tnk), (t1, . . . , tmk), z)

with tj = ((tj)1, . . . , (tj)pj) and either (tj)i = zji or (tj)i = (yji , t
j
i ) with L(ti),

L(tji ) wpo’s and l(ti), l(t
j
i ) < ϑ(o(W (Ω))), yji ∈ Ykj , z

j
i ∈ Zk

j and z ∈ Zk.
Suppose s is an arbitrary element of T (W ), different from ◦. Then

s = ◦((s1, . . . , snl), (s1, . . . , sml), z
′),

sj = ((sj)1, . . . , (sj)qj), (3.6)

(sj)i = z′ji or (y′ji , s
j
i )

with z′ ∈ Zl, y
′j
i ∈ Ylj and z′ji ∈ Zl

j. s ∈ L(t) is valid iff si ∈ L(t), sji ∈ L(t)
and one of the following holds:

1. k 6= l,
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2. k = l, z′ ∈ LZk(z),

3. k = l, z ≤Zk z
′, (t1, . . . , tmk) 6≤ (s1, . . . , smk),

4. k = l, z ≤Zk z
′, (t1, . . . , tmk) ≤ (s1, . . . , smk), (t1, . . . , tnk) 6≤ (s1, . . . , snk).

If (3.) holds, there must be a minimal index l(s) such that

t1 ≤ s1, . . . , tl(s)−1 ≤ sl(s)−1, tl(s) 6≤ sl(s).

If (4.) holds, there must be a minimal index k(s) such that

t1 ≤ s1, . . . , tk(s)−1 ≤ sk(s)−1, tk(s) 6≤ sk(s).

In this case

tk(s) = ((tk(s))1, . . . , (tk(s))pk(s)
) 6≤ ((sk(s))1, . . . , (sk(s))qk(s)

) = sk(s)

is valid iff one of the following cases holds

1. (tk(s))1 6≤ (sk(s))j for every j,

2. there exists an index j1 such that (tk(s))1 6≤ (sk(s))j for every j < j1,
(tk(s))1 ≤ (sk(s))j1 and (tk(s))2 6≤ (sk(s))j for every j > j1,

. . .

pk(s). there exist pk(s) − 1 indices j1 < · · · < jpk(s)−1 such that (tk(s))1 6≤
(sk(s))j for every j < j1, (tk(s))1 ≤ (sk(s))j1 , (tk(s))2 6≤ (sk(s))j for every
j2 > j > j1, . . . , (tk(s))pk(s)−1 ≤ (sk(s))jpk(s)−1 and (tk(s))pk(s)

6≤ (sk(s))j
for every j > jpk(s)−1.

If (tj)i = zji , define Lji as Ykj × X + LZkj
(zji ). If (tj)i = (yji , t

j
i ), define Lji as

(LYkj
(yji )×X) + (Ykj × L(tji )) + Zk

j . Define W ′(X) as follows

N∑
i=0,i 6=k

ÄÄ
Yi1 ×X + Zi

1

ä∗ × · · · × ÄYini ×X + Zi
ni

ä∗ ×Xmi × Zi

ä
+
ÄÄ

Yk1 ×X + Zk
1

ä∗ × · · · × ÄYknk ×X + Zk
nk

ä∗ ×Xmk × LZk(z)
ä

+
mk∑
i=1

ÄÄ
Yk1 ×X + Zk

1

ä∗ × · · · × ÄYknk ×X + Zk
nk

ä∗ ×Xmk−1 × L(ti)× Zk

ä
+

nk∑
j=1

pj∑
i=1

îÄ
Yk1 ×X + Zk

1

ä∗ × · · · × ÄYkj−1 ×X + Zk
j−1

ä∗
× (Ykj ×X + Zk

j )
i−1 × (Lj1)∗ × · · · × (Lji )

∗

×
Ä
Ykj+1 ×X + Zk

j+1

ä∗ × · · · × ÄYknk ×X + Zk
nk

ä∗ ×Xmk × Zk

ó
.
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The four cases separated by a + represents the four groups in which s can lie
in. The index i in the third term represents l(s). The index j, respectively i,
in the fourth term represents k(s), respectively case 1. - pk(s). We can inter-
pret ×s with s ∈ L(t) as an element of W ′(L(t)) like in the proof of Theorems
3.5 and 3.6. With this in mind, we can define a map f : L(t) → T (W ′) as
follows. First define f(◦) as ◦. Then, assuming s as in (3.6) and assuming
that f(si) and f(sji ) are already defined, let f(s) be ◦[w(f(s′1), . . . , f(s′r))],
where w(s′1, . . . , s

′
r) is the interpretation of ×s as an element of W ′(L(t)) and

{s′1, . . . , s′r} ⊆ {s1, . . . , sml , s
1
1, . . . , s

nl
qnl
}.

It can be proved in a similar way as in Theorem 3.6 that f is a quasi-
embedding.

By Lemma 1.56 we obtain

o(L(t)) ≤ o(T (W ′)).

If o(W ′(Ω)) < o(W (Ω)), we obtain that T (W ′) is a wpo (hence L(t) is a
wpo) and o(T (W ′)) ≤ ϑ(o(W ′(Ω))) by the main induction hypothesis. If
additionally the inequality k(o(W ′(Ω))) < ϑ(o(W (Ω))) holds, then

o(L(t)) ≤ o(T (W ′)) ≤ ϑ(o(W ′(Ω))) < ϑ(o(W (Ω))).

So the only two remaining things we have to prove are the inequalities
o(W ′(Ω)) < o(W (Ω)) and k(o(W ′(Ω))) < ϑ(o(W (Ω))).

a) o(W ′(Ω)) < o(W (Ω)).
For notational convenience, we write sometimes Y, respectively Z∗, instead
of o(Y), respectively o(Z∗), for wpo’s Y and Z. It is easy to see that Ykj ⊗Ω⊕
lZkj (z

j
i ) < Ykj ⊗ Ω ⊕ Zk

j and (lYkj (y
j
i ) ⊗ Ω) ⊕ (Ykj ⊗ l(t

j
i )) ⊕ Zk

j < Ykj ⊗ Ω ⊕ Zk
j

and Ωmk ⊗ Zk < Ωω ≤
Ä
Ykj ⊗ Ω⊕ Zk

j

ä∗
, henceÄ

Ykj ⊗ Ω⊕ Zk
j

äi−1 ⊗ o((Lj1)∗)⊗ · · · ⊗ o((Lji )∗)⊗ Ωmk ⊗ Zk <
Ä
Ykj ⊗ Ω⊕ Zk

j

ä∗
,

because
Ä
Ykj ⊗ Ω⊕ Zk

j

ä∗
is multiplicatively closed. We obtain

nk⊕
j=1

pj⊕
i=1

[ Ä
Yk1 ⊗ Ω⊕ Zk

1

ä∗ ⊗ · · · ⊗ ÄYkj−1 ⊗ Ω⊕ Zk
j−1

ä∗ ⊗ ÄYkj ⊗ Ω⊕ Zk
j

äi−1

⊗ o((Lj1)∗)⊗ · · · ⊗ o((Lji )∗)⊗
Ä
Ykj+1 ⊗ Ω⊕ Zk

j+1

ä∗ ⊗ · · · ⊗ ÄYknk ⊗ Ω⊕ Zk
nk

ä∗
⊗ Ωmk ⊗ Zk

]
<
Ä
Yk1 ⊗ Ω⊕ Zk

1

ä∗ ⊗ · · · ⊗ ÄYknk ⊗ Ω⊕ Zk
nk

ä∗
,
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henceÄÄ
Yk1 ⊗ Ω⊕ Zk

1

ä∗ ⊗ · · · ⊗ ÄYknk ⊗ Ω⊕ Zk
nk

ä∗ ⊗ Ωmk ⊗ LZk(z)
ä

⊕
mk⊕
i=1

ÄÄ
Yk1 ⊗ Ω⊕ Zk

1

ä∗ ⊗ · · · ⊗ ÄYknk ⊗ Ω⊕ Zk
nk

ä∗ ⊗ Ωmk−1 ⊗ L(ti)⊗ Zk

ä
⊕

nk⊕
j=1

pj⊕
i=1

îÄ
Yk1 ⊗ Ω⊕ Zk

1

ä∗ ⊗ · · · ⊗ ÄYkj−1 ⊗ Ω⊕ Zk
j−1

ä∗
⊗
Ä
Ykj ⊗ Ω⊕ Zk

j

äi−1 ⊗ o((Lj1)∗)⊗ · · · ⊗ o((Lji )∗)
⊗
Ä
Ykj+1 ⊗ Ω⊕ Zk

j+1

ä∗ ⊗ · · · ⊗ ÄYknk ⊗ Ω⊕ Zk
nk

ä∗ ⊗ Ωmk ⊗ Zk

ó
<
ÄÄ

Yk1 ⊗ Ω⊕ Zk
1

ä∗ ⊗ · · · ⊗ ÄYknk ⊗ Ω⊕ Zk
nk

ä∗ ⊗ Ωmk ⊗ LZk(z)
ä

⊕
ÄÄ

Yk1 ⊗ Ω⊕ Zk
1

ä∗ ⊗ · · · ⊗ ÄYknk ⊗ Ω⊕ Zk
nk

ä∗ ⊗ Ωmk
ä

≤
Ä
Yk1 ⊗ Ω⊕ Zk

1

ä∗ ⊗ · · · ⊗ ÄYknk ⊗ Ω⊕ Zk
nk

ä∗ ⊗ Ωmk ⊗ Zk.

This inequality yields o(W ′(Ω)) < o(W (Ω)).

b) k(o(W ′(Ω))) < ϑ(o(W (Ω))).
This can be proved similarly as in Theorem 3.5.

Theorem 3.11. T ((· × ·)∗) is a wpo and o(T ((· × ·)∗)) ≤ ϑ(ΩΩΩ
).

Proof. We show that L(t) is a wpo and l(t) < ϑ(ΩΩΩ
) hold for every t in

T ((·×·)∗) by induction on the complexity of t. The theorem then follows from
Theorem 1.54. If t = ◦, then L(t) is the empty wpo and l(t) = 0 < ϑ(ΩΩΩ

).
Assume t = ◦((t11, t12), . . . , (tk1, t

k
2)) with L(tji ) wpo’s and l(tji ) < ϑ(ΩΩΩ

) and
suppose that s = ◦((s1

1, s
1
2), . . . , (sl1, s

l
2)). Then t ≤ s iff t ≤ sji for certain i

and j or

((t11, t
1
2), . . . , (tk1, t

k
2))≤((s1

1, s
1
2), . . . , (sl1, s

l
2)).

Hence, s ∈ L(t) yields sji ∈ L(t) for every i and j and one of the following
holds

1. (t11, t
1
2) 6≤ (si1, s

i
2) for every i,

2. there exists an index l1 such that (t11, t
1
2) 6≤ (si1, s

i
2) for every i < l1,

(t11, t
1
2) ≤ (sl11 , s

l1
2 ) and (t21, t

2
2) 6≤ (si1, s

i
2) for every l1 < i,

. . .

k. there exist indices l1 < · · · < lk−1 such that (t11, t
1
2) 6≤ (si1, s

i
2) for every

i < l1, (t11, t
1
2) ≤ (sl11 , s

l1
2 ), (t21, t

2
2) 6≤ (si1, s

i
2) for every l1 < i < l2,
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(t21, t
2
2) ≤ (sl21 , s

l2
2 ), . . . , (tk−1

1 , tk−1
2 ) ≤ (s

lk−1

1 , s
lk−1

2 ) and (tk1, t
k
2) 6≤ (si1, s

i
2)

for every lk−1 < i.

Also (ti1, t
i
2) 6≤ (sj1, s

j
2) is valid if one of the following is satisfied:

a. sj1 ∈ L(ti1),

b. ti1 ≤ sj1 and sj2 ∈ L(ti2).

Let W ′(X) be

k∑
j=1

Ñ
j−1∏
p=1

Ä
Yp ×X2

äé
× Yj

with Yq for q = 1, . . . , k defined as

((L(tq1)×X) + (X × L(tq2)))∗ .

Define the mapping f : L(t) → T (W ′) recursively as follows. First let f(◦)
be ◦. Assume s = ◦((s1

1, s
1
2), . . . , (sl1, s

l
2)) ∈ L(t) and f(sij) is already defined

for every i and j. We only consider that 2. and always b. hold. We use the
same indices as there. The other cases can be treated in a similar way. Define
f(s) then as

◦
Ä
((s1

1, f(s1
2)), . . . , (sl1−1

1 , f(sl1−1
2 ))), (f(sl11 ), f(sl12 )),

((sl1+1
1 , f(sl1+1

2 )), . . . , (sl1, f(sl2)))
ä
.

One can prove that f is a quasi-embedding in the same manner as Theorem
3.6. By Lemma 1.56 and Theorem 3.10 we obtain that L(t) is a wpo and

l(t) ≤ o(T (W ′)) ≤ ϑ(o(W ′(Ω))).

The only remaining thing that needs a proof is ϑ(o(W ′(Ω))) < ϑ(ΩΩΩ
). By

the induction hypothesis it is known that l(tji ) < ϑ(ΩΩΩ
) < Ω, hence (l(tj1)⊗

Ω)⊕ (Ω⊗ l(tj2)) + 1 < Ω2. We obtainÄ
(l(tj1)⊗ Ω)⊕ (Ω⊗ l(tj2))

ä∗
< ωω

Ω2

= ΩΩΩ

,

hence o(W ′(Ω)) < ΩΩΩ
. Furthermore, o(W ′(Ω)) is equal to

k⊕
j=1

ÄÄ
(l(t11)⊗ Ω)⊕ (Ω⊗ l(t12))

ä∗ ⊗ Ω2 ⊗ . . .

⊗Ω2 ⊗
Ä
(l(tj1)⊗ Ω)⊕ (Ω⊗ l(tj2))

ä∗)
=

k⊕
j=1

(
Ω2(j−1) ⊗

Ä
Ω⊗ (l(t11)⊕ l(t12))

ä∗ ⊗ · · · ⊗ ÄΩ⊗ (l(tj1)⊕ l(tj2))
ä∗)

.
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Because l(tji ) < ϑ(ΩΩΩ
) and ϑ(ΩΩΩ

) is an epsilon number, we have l(tj1) ⊕
l(tj2) < ϑ(ΩΩΩ

). Using Lemma 1.11, we see that k
Ä
(Ω⊗ (l(tj1)⊕ l(tj2)))∗

ä
is

strictly smaller than ϑ(ΩΩΩ
). Furthermore, from Lemma 1.10 it follows that

the coefficients of o(W ′(Ω)) are strictly smaller than ϑ(ΩΩΩ
).

Again, the previous proof allows a constructive well-partial-orderedness proof
by reifications (for more information see [66] and [73]). Now, we show that
ϑ(ΩΩΩ

) is also a lower bound for the maximal order type of the wpo T ((·×·)∗).

Theorem 3.12. If W (X) = (X ×X)∗, then o(T (W )) ≥ ϑ(ΩΩΩ
).

Proof. We define a quasi-embedding g from ϑ(ΩΩΩ
) to T ((· × ·)∗) in the fol-

lowing recursive way: let g(0) be ◦. If α =CNF ω
α1 + · · · + ωαn with n ≥ 2,

define g(α) as ◦ ((g(α1), ◦), . . . , (g(αn), ◦)).

For every ordinal δ < ΩΩΩ
= ωω

Ω2

with δ ≥ ω, there exists unique ordinals

k < ω, δ < Ω2, δ0, . . . , δk < ωω
δ

with δk > 0 such that

δ = ωω
δ·kδk + · · ·+ ωω

δ·1δ1 + δ0. (3.7)

Note that k > 0 because otherwise δ < ωω
0

= ω. From δ < Ω2, we obtain
two unique countable ordinals δ1 and δ2 such that δ = Ωδ1 + δ2. Now, define

f(δ) ∈ W (Ω) = (Ω × Ω)∗ for every δ < ωω
Ω2

recursively as follows. If
δ = n < ω, let f(δ) be ((0, 0), . . . , (0, 0)), where (0, 0) occurs n+ 1 times. If
δ ≥ ω, write δ as in (3.7) and let f(δ) be

f(δk)
_((1 + δ1, 1 + δ2))_f(δk−1) . . . ((1 + δ1, 1 + δ2))_f(δ0),

where _ represents the concatenation of the strings. Note that the length
of the finite sequence f(δ) with δ > 0 is strictly bigger than 1. Before we
give the definition of g(α) = g(ϑ(β)), we first want to prove that the largest
countable ordinal occurring in f(δ) ∈ (Ω×Ω)∗, call it Max(f(δ)), is less than

or equal to k(δ) +ω. Furthermore, we want to prove k(δ) < ωω
Max(f(δ))+1

. We
prove both inequalities by induction on δ. If δ < ω, they are trivial. Assume
δ ≥ ω. Then, as in (3.7),

δ = ωω
Ωδ1+δ2 ·kδk + · · ·+ ωω

Ωδ1+δ2 ·1δ1 + δ0

= ΩΩ−1+δ1 ·ωδ2 ·kδk + · · ·+ ΩΩ−1+δ1 ·ωδ2 ·1δ1 + δ0.
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From the induction hypothesis, we can conclude that

Max(f(δ)) ≤ max
¶
1 + δ1, 1 + δ2, k(δ0) + ω, . . . , k(δk) + ω

©
and k(δi) < ωω

Max(f(δi))+1
for all i. Using the second part of Lemma 1.10,

we see that k(δ0), . . . , k(δk) ≤ k(δ) and k(ΩΩ−1+δ1 ·ωδ2 ·k) ≤ k(δ). The latter
implies that

k(Ω−1+δ1 · ωδ2 · k) = max{−1 + δ1, ω
δ2 · k} ≤ k(δ).

Hence, 1+δ1 ≤ k(δ)+ω and 1+δ2 ≤ k(δ)+ω. We conclude that Max(f(δ)) ≤
k(δ) + ω. Using the first part of Lemma 1.10, we obtain

k(δ)

≤ k(ΩΩ−1+δ1 ·ωδ2 ·kδk)⊕ · · · ⊕ k(ΩΩ−1+δ1 ·ωδ2 ·1δ1)⊕ k(δ0)

≤ max{k(ΩΩ−1+δ1 ·ωδ2 ·k)⊕ k(δk), k(ΩΩ−1+δ1 ·ωδ2 ·k)⊗ k(δk)⊗ ω}
⊕ . . .

⊕max{k(ΩΩ−1+δ1 ·ωδ2 ·1)⊕ k(δ1), k(ΩΩ−1+δ1 ·ωδ2 ·1)⊗ k(δ1)⊗ ω}
⊕ k(δ0)

≤ max{k(−1 + δ1)⊕ k(δk), k(ωδ2 · k)⊕ k(δk),

k(−1 + δ1)⊗ k(δk)⊗ ω, k(ωδ2 · k)⊗ k(δk)⊗ ω}
⊕ . . .

⊕max{k(−1 + δ1)⊕ k(δ1), k(ωδ2 · 1)⊕ k(δ1),

k(−1 + δ1)⊗ k(δ1)⊗ ω, k(ωδ2 · 1)⊗ k(δ1)⊗ ω}
⊕ k(δ0).

Because k(δi) < ωω
Max(f(δi))+1 ≤ ωω

Max(f(δ))+1
and k(1 + δ1) = 1 + δ1 ≤

Max(f(δ)) < ωω
Max(f(δ))+1

and k(ωδ2 · i) = ωδ2 · i ≤ ωMax(f(δ)) · i < ωω
Max(f(δ))+1

and ωω
Max(f(δ))+1

is an additive and multiplicative closed ordinal number, we
can conclude that k(δ) < ωω

Max(f(δ))+1
.

We still want to prove one more thing, before we give the definition of
g(α) = g(ϑ(β)): if δ < ωω

Ωζ+η
for certain countable ordinals ζ and η, then

for all pairs (δi1, δ
i
2) occurring in f(δ) we have (δi1, δ

i
2) <lex (1 + ζ, 1 + η),

where <lex is the lexicographical ordering between pairs. We prove this by
induction on δ. If δ < ω, then this is trivial. Assume that ω ≤ δ < ωω

Ωζ+η
.
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Write δ as in (3.7). Then δ0, . . . , δk < ωω
Ωζ+η

, hence for all pairs (δi1, δ
i
2) oc-

curring in f(δ0), . . . , f(δk), we have (δi1, δ
i
2) <lex (1 + ζ, 1 + η). Furthermore,

from δ < ωω
Ωζ+η

we obtain the strict inequality (δ1, δ2) <lex (ζ, η). Hence,
(1 + δ1, 1 + δ2) <lex (1 + ζ, 1 + η). Therefore, for all pairs (δi1, δ

i
2) occurring

in f(δ) we have (δi1, δ
i
2) <lex (1 + ζ, 1 + η).

Now we are ready to define g(α) for α = ϑ(β) with β < ΩΩΩ
= ωω

Ω2

. If
β < Ω, define g(α) as ◦((g(β), g(β))). Hence g(1) = ◦((◦, ◦)). Assume β ≥ Ω
and suppose f(β) = ((β1

1 , β
1
2), . . . , (βn1 , β

n
2 )) ∈ W (Ω). Then define g(α) as

◦
Ä
(g(β1

1), g(β1
2)), . . . , (g(βn1 ), g(βn2 ))

ä
.

g(α) is well-defined because for every i and j, βij ≤Max(f(β)) ≤ k(β)+ω <
ϑ(β) = α.
Obviously, it follows from the definition of g that α = 0 iff g(α) = ◦ and
α = n < ω iff g(α) = ◦((◦, ◦), . . . , (◦, ◦)), where (◦, ◦) occurs n times.

The last part of this theorem consists of proving that g is a quasi-embedding:
from Lemma 1.56 we can then conclude this theorem. We show that g(α) ≤
g(α′) implies α ≤ α′ for all α, α′ < ϑ(ΩΩΩ

) by induction on α⊕α′. If α or α′

is equal to 0, this is trivial. So we may assume that α, α′ > 0.

a) α′ =CNF ω
α′1 + · · ·+ ωα

′
m, m ≥ 2.

i) α =CNF ω
α1 + · · ·+ ωαn, n ≥ 2.

If

g(α) = ◦ ((g(α1), ◦), . . . , (g(αn), ◦)) ≤ ◦ ((g(α′1), ◦), . . . , (g(α′m), ◦)) = g(α′).

then g(α) ≤ g(α′i) for a certain i or

((g(α1), ◦), . . . , (g(αn), ◦)) ≤∗ ((g(α′1), ◦), . . . , (g(α′m), ◦)) .

In the former case, we obtain from the induction hypothesis that α ≤ α′i < α′.
In the latter case, there exist indices 1 ≤ i1 < · · · < in ≤ m such that
g(αj) ≤ g(α′ij). By the induction hypothesis, we obtain that αj ≤ α′ij for
every j. Hence α ≤ α′.

ii) α = ϑ(β).
If β = 0, then α = 1 ≤ α′. Assume that 0 < β < Ω, then g(α) =
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◦ ((g(β), g(β))). Hence, g(α) ≤ g(α′) = ◦ ((g(α′1), ◦), . . . , (g(α′m), ◦)) im-
plies g(α) ≤ g(α′i) for a certain i because g(β) 6≤ ◦. The induction hy-
pothesis implies α ≤ α′i < α′. Now suppose that β ≥ Ω and f(β) =
((β1

1 , β
1
2), . . . , (βn1 , β

n
2 )). Looking at the definition of f(β) for β ≥ Ω > ω,

one can see that at least one βi2 is strictly bigger than 0, so g(α) ≤ g(α′)
implies g(α) ≤ g(α′i) for a certain i. Therefore, α ≤ α′i < α′ like before.

b) α′ = ϑ(β′).
If β′ < Ω, then g(α) ≤ g(α′) = ◦ ((g(β′), g(β′))) implies g(α) ≤ g(β′) or that
α = ϑ(β) with β < Ω and g(β) ≤ g(β′). The other cases are simply not pos-
sible because in these cases, the length of the corresponding finite sequence of
g(α) is always strictly bigger than 1. We can conclude that α ≤ α′. Assume
from now on that β′ ≥ Ω and f(β′) = ((β′11 , β

′1
2 ), . . . , (β′m1 , β′m2 )).

i) α =CNF ω
α1 + · · ·+ ωαn, n ≥ 2.

Suppose g(α) ≤ g(α′). Then either g(α) ≤ g(β′ij ) for certain i and j or

((g(α1), ◦), . . . , (g(αn), ◦))
≤∗ ((g(β′11 ), g(β′12 )), . . . , (g(β′m1 ), g(β′m2 ))).

The induction hypothesis and the fact that every ordinal in f(β′) is less than
or equal to k(β′) + ω < α′ implies in the first case α ≤ β′ij < α′, what we
want, and in the latter case

((α1, ◦), . . . , (αn, ◦))
≤∗ ((β′11 , β

′1
2 ), . . . , (β′m1 , β′m2 )).

Hence, for every i there exists an index j such that αi ≤ β′j1 ≤ k(β′)+ω < α′.
We know that α′ is an epsilon number because β′ ≥ Ω. So, α < α′.

ii) α = ϑ(β).
If β < Ω, then

g(α) = ◦ ((g(β), g(β)))

≤ g(α′) = ◦
Ä
(g(β′11 ), g(β′12 )), . . . , (g(β′m1 ), g(β′m2 ))

ä
implies either g(α) ≤ g(β′ij ) for certain i and j or

((g(β), g(β))) ≤∗
Ä
(g(β′11 ), g(β′12 )), . . . , (g(β′m1 ), g(β′m2 ))

ä
.
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The induction hypothesis in the former case implies α ≤ β′ij < α′ and in the
latter case, it implies β ≤ β′rs < α′ = ϑ(β′) for certain r and s. Hence, in the
latter case α = ϑ(β) ≤ ϑ(β′) = α′ because β < Ω ≤ β′ and k(β) = β < ϑ(β′).

Assume now that β ≥ Ω and f(β) = ((β1
1 , β

1
2), . . . , (βn1 , β

n
2 )). g(α) ≤ g(α′)

then either implies g(α) ≤ g(β′ij ) for certain i and j orÄ
(g(β1

1), g(β1
2)), . . . , (g(βn1 ), g(βn2 ))

ä
≤∗
Ä
(g(β′11 ), g(β′12 )), . . . , (g(β′m1 ), g(β′m2 ))

ä
.

In the former case, the induction hypothesis implies α ≤ β′ij < α′. In the
latter case, it implies

f(β) =
Ä
(β1

1 , β
1
2), . . . , (βn1 , β

n
2 )
ä
≤∗
Ä
(β′11 , β

′1
2 ), . . . , (β′m1 , β′m2 )

ä
= f(β′). (3.8)

Therefore, for every i and j, there exist r and s such that βij ≤ β′rs <

ϑ(β′) = α′. Hence k(β) ≤ ωω
Max(f(β))+1

= ωω
(Maxi,jβ

i
j)+1

< α′ because α′ is
an epsilon number. If we now could prove that f(δ) ≤ f(δ′) implies δ ≤ δ′

for all δ, δ′ < ωω
Ω2

, we are done because (3.8) then implies β ≤ β′. Hence,
α = ϑ(β) ≤ ϑ(β′) = α′.

So assume that f(δ) ≤∗Ω×Ω f(δ′). We prove by induction on δ⊕δ′ that δ ≤ δ′.
Assume that δ′ < ω. Then f(δ) ≤∗ f(δ′) = ((0, 0), . . . , (0, 0)), where (0, 0)
occurs δ′ + 1 many times. Hence f(δ) is also of the form ((0, 0), . . . , (0, 0)),
so δ < ω and δ ≤ δ′. Assume that δ′ ≥ ω. If δ < ω, then δ ≤ δ′ trivially
holds. Assume that δ ≥ ω. Like in (3.7), there exist unique ordinals k, l < ω,

δ1, δ2, δ′1, δ
′
2 < Ω, δ0, . . . , δk < ωω

Ωδ1+δ2 with δk > 0, δ′0, . . . , δ
′
l < ωω

Ωδ′
1
+δ′

2 with
δ′l > 0 such that

δ = ωω
Ωδ1+δ2 ·kδk + · · ·+ ωω

Ωδ1+δ2 ·1δ1 + δ0 (3.9)

δ′ = ωω
Ωδ′

1
+δ′

2 ·lδ′l + · · ·+ ωω
Ωδ′

1
+δ′

2 ·1δ′1 + δ′0. (3.10)

f(δ) ≤ f(δ′) then implies

f(δk)
_((1 + δ1, 1 + δ2))_f(δk−1) . . . ((1 + δ1, 1 + δ2))_f(δ0)

≤∗Ω×Ω f(δ′l)
_((1 + δ′1, 1 + δ′2))_f(δ′l−1) . . . ((1 + δ′1, 1 + δ′2))_f(δ′0). (3.11)

Because δ′i < ωω
Ωδ′

1
+δ′

2 , all pairs occurring in f(δ′i) are lexicographically
strictly smaller than (1+δ′1, 1+δ′2). So if a certain (1+δ1, 1+δ2) occurring in
f(δ) would not be mapped onto (1+δ′1, 1+δ′2) according to inequality (3.11),
then (1 + δ1, 1 + δ2) is lexicographically smaller than a pair in f(δ′i) for a cer-
tain i, hence (1 + δ1, 1 + δ2) <lex (1 + δ′1, 1 + δ′2). Therefore, δ < δ′. Assume
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now that every (1+δ1, 1+δ2) occurring in f(δ) is mapped onto a (1+δ′1, 1+δ′2)
in f(δ′) according to inequality (3.11). Hence (1+δ1, 1+δ2) ≤ (1+δ′1, 1+δ′2),
so (1 + δ1, 1 + δ2) ≤lex (1 + δ′1, 1 + δ′2). If (1 + δ1, 1 + δ2) <lex (1 + δ′1, 1 + δ′2),
then δ < δ′. Assume (1+δ1, 1+δ2) = (1+δ′1, 1+δ′2). If k < l, then δ < δ′, so
assume from now on that k = l. Then, inequality (3.11) implies f(δi) ≤ f(δ′i)
for all i = 1, . . . , k. From the induction hypothesis, this implies δi ≤ δ′i. We
can conclude that δ ≤ δ′. This finishes the proof.

Corollary 3.13. o(T ((· × ·)∗)) = ϑ(ΩΩΩ
).

Proof. This follows from Theorems 3.11 and 3.12.
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Chapter 4

Using one uncountability: the
Howard-Bachmann number

4.1 Introduction

The famous Howard-Bachmann ordinal ϑ(εΩ+1) belongs to the most well-
established arsenal of proof-theoretic ordinals of natural theories for devel-
oping significant parts of (impredicative) mathematics. Following Chapter
3, we give here an order-theoretic characterization of ϑ(εΩ+1) in terms of
well-partial-orders. In [88], Andreas Weiermann showed that the Howard-
Bachmann number can be characterized as a closure ordinal of so-called
essentially monotonic increasing functions, but it is unknown if such a char-
acterization was possible in terms of wpo’s. Friedman’s famous wpo’s Twgapn

and Tsgapn [76] have ordinals that are much bigger than ϑ(εΩ+1). Therefore,
it seems plausible to single out a natural sub-ordering of this wpo’s which
exactly matches with the Howard-Bachmann ordinal.

Weiermann’s conjecture 1.111 indicates that for W (X) = T(X, ∅, {0}), de-
noted in this chapter by W (X) = B(X), the partial order T (W ) is a wpo
with maximal order type ϑ(εΩ+1). This is in fact true and is shown in Corol-
lary 4.9. The ordering on T (W ) is some kind of gap-ordering, hence for this
W , T (W ) could be interpreted as a natural sub-ordering of Twgapn . We show
in Lemma 4.3 that this is indeed the case.

This chapter is based on the joint article with Michael Rathjen and An-
dreas Weiermann [81]. However, in that article we considered only the wpo
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T (Bs(·)). Now, we also investigate the unstructured version, i.e. T (B(·))
because this corresponds better to a subset of the unstructured trees T2.

Notation 4.1. Define B(X) as the tree-class T(X, ∅, {0}), i.e. all binary
trees where only the leaves have labels in X. Using a later definition (see
Definition 5.3), we could also denote this by Tleaf,=2(X) or Tleaf,=2

1 (X). Let
Bs(X) be the structured version of this tree-class.

Recall o(B(X)) = o(Bs(X)) = εo(X) (see Theorem 2.1). We show that T (B(·))
is a wpo with maximal order type equal to the Howard-Bachmann ordinal
ϑ(εΩ+1). This wpo can be seen as an explicit subset of Friedman’s wpo with
gap-condition with the same ordering.

Definition 4.2. Define the partial ordering T2 as the subset of (T2,≤wgap)
which consists of all finite rooted trees such that nodes with label 0 have zero
or one immediate successor and nodes with label 1 have exactly two immediate
successors. Furthermore, for every tree in T2, the root-label is 0.

Lemma 4.3. The partial-ordering T (B(·)) is order-isomorphic to the partial
ordering T2.

Proof. Define g : T (B(·))→ T2 as follows. Let g(◦) be the tree which consists
of one node with label 0. Take t = ◦[B(t1, . . . , tn)] with B(t1, . . . , tn) a binary
tree with leaf-labels in the set {t1, . . . , tn} and assume that g(t1), . . . , g(tn)
are already defined. Set g(t) then as the tree consisting of a root with label
0, that root connected with an edge to the root of B(t1, . . . , tn). Give all
the internal nodes of B label 1 and plug for every i, g(ti) in those leaves of
B(t1, . . . , tn) which have the label ti. For example, if t = ◦[B(◦, ◦[B(◦, ◦)])],
with B(a, b) equal to

t
t t
�
�
�

T
T
T

a b

Then g(t) is
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t
t

t t
�
�
�

T
T
T

t
t t
�
�
�

T
T
T

0 0

0 0

0

1

1

It is easy to see that g is surjective. If we can prove

t ≤T (B(·)) t
′ ⇔ g(t) ≤T2

g(t′),

then we are done. We prove this by induction on the sum of complexities of
t and t′. If t = ◦ or t′ = ◦, then this is trivial. Assume that both t and t′ are
different from ◦. Let t = ◦[B(t1, . . . , tn)] and t′ = ◦[B′(t′1, . . . , t′m)].

Assume g(t) ≤T2
g(t′). We know that the root of g(t), which has label 0, is

mapped on a node with label 0. If it is not mapped onto the root of g(t′),
then it is mapped onto a node with label 0 in g(t′i) for a certain i. Hence
g(t) ≤T2

g(t′i), so t ≤T (B(·)) t
′
i ≤T (B(·)) t

′. Now assume that the root of g(t) is
mapped onto the root of g(t′). If we can prove

B(g(t1), . . . , g(tn)) ≤B(T2) B
′(g(t′1), . . . , g(t′m)),

then we can finish the proof because the main induction hypothesis yields
that g is a quasi-embedding from the set {t1, . . . , tn, t′1, . . . , t′m} to T2. So the
Lifting Lemma implies

B(t1, . . . , tn) ≤B(T (B(·))) B
′(t′1, . . . , t

′
m).

Hence, t ≤T (B(·)) t
′.

If ht(B) = 0, then B(g(t1), . . . , g(tn)) is a single node with label g(ti) for a
certain i. Then g(t) is the tree with one immediate subtree g(ti) and root-
label 0. g(t) ≤T2

g(t′) yields g(ti) ≤T2
g(t′j) for a certain j because the first

nodes of g(t′) with label 0 above the root are the roots of g(t′j). This yields

B(g(t1), . . . , g(tn)) ≤B(T2) B
′(g(t′1), . . . , g(t′m)).

Assume ht(B) > 0. g(t) ≤T2
g(t′) yields that every internal node a of B must

be mapped on an internal node of B′ because otherwise the internal node a
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of B is mapped into a g(ti) for a certain i, but then the root-label 0 of g(ti)
gives a contradiction with the gap-embeddability relation. Furthermore, the
leaves of B must be mapped onto the leaves of B′. We can conclude that

B(g(t1), . . . , g(tn)) ≤B(T2) B
′(g(t′1), . . . , g(t′m)).

One can make this reasoning more rigorously by doing an induction argument
on ht(B) + ht(B′).

If t ≤T (B(·)) t
′, then either t ≤T (B(·)) t

′
i for a certain i or B(t1, . . . , tn) ≤B(T (B(·)))

B′(t′1, . . . , t
′
m). In both cases, the induction hypothesis yields g(t) ≤T2

g(t′)
in a similar way as the other direction.

From the previous lemma, one can actually already conclude that T (B(·)) is
a wpo. Therefore, one can think that the well-partial-orderedness proof of
T (B(·)) in Theorem 4.7 is superfluous. However, this well-partial-orderedness
proof does not need an extra argument: it follows from the calculation of the
upper bound for the maximal order type of T (B(·)). Therefore, we do not
really waste efforts by stating it in Theorem 4.7. Also, it allows a constructive
well-partial-orderedness proof by reifications.

4.2 Approaching Howard-Bachmann

The main goal of this chapter is to show that T (B(·)) is a wpo with maximal
order type ϑ(εΩ+1). This separate section is needed to approximate this wpo
from below. The results in this section are generalizations of Theorems 3.10
and 3.11 in Section 3.3. The proofs follow the same procedure as there,
however they are more involved. We will not give the proofs of the theorems
in this section. The interested reader can find them in [81].

Theorem 4.4. Suppose Yi,j,k and Zi are countable wpo’s for all indices and
W ∈ W(. . . ,Yi,j,k, . . . ,Zi, . . . ). Let W (X) be

N∑
i=0

ÑÑ
ki,1∑
j=0

Yi,j,1 ×Xj

é∗
× · · · ×

Ñ
ki,ni∑
j=0

Yi,j,ni ×Xj

é∗
×Xmi × Zi

é
.

Then T (W ) is a wpo and o(T (W )) ≤ ϑ(o(W (Ω))).

Proof. This is a generalization of Theorems 3.10 and 3.11. For a detailed
proof, see [81].
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Theorem 4.5. If W (X) = X∗∗, then T (W ) is a wpo and o(T (W )) ≤
ϑ(o(W (Ω))) = ϑ

(
ΩΩΩω

)
.

Proof. This is a generalization of Theorems 3.10 and 3.11. For a detailed
proof, see [81].

Theorem 4.6. Suppose that W ∈ W(Y0, . . . ,Yk) consists only of Id, +, ×, ∗

and countable wpo’s Yi. Then T (W ) is a wpo and o(T (W )) ≤ ϑ(o(W (Ω))).

Proof. This is a generalization of Theorems 4.4 and 4.5.

4.3 Obtaining Howard-Bachmann

The previous section yields

o(T (·
n︷ ︸︸ ︷

∗ · · · ∗)) ≤ ϑ(Ω2n−1[ω]).

W = ·
n︷ ︸︸ ︷

∗ · · · ∗ is defined by applying the Higman-operator ∗ n many times. As
indicated in the conjecture of Weiermann (see Conjecture 1.111), we believe
that one can prove that ϑ(Ω2n−1[ω]) is also a lower bound. Therefore, the

tree-structures T (·
n︷ ︸︸ ︷

∗ · · · ∗) give rise to representations of countable ordinals
strictly below the Howard-Bachmann ordinal and the limit of these structures
give a representation system for this famous ordinal. But what do we mean
by the limit of these structures? In some sense, the set of binary trees
is the limit of an iteration of the ∗-operator. Hence, one can expect that
o(T (B(·))) = supn<ω ϑ(Ω2n−1[ω]) = ϑ(εΩ+1). In this section, we prove that
this is indeed the case. This result yields that the Howard-Bachmann ordinal
can be represented as a tree-structure using binary trees, or more specifically,
as the wpo (T2,≤wgap). We also prove that T (Bs(·)) represents the same
ordinal. As usual, there exists a natural quasi-embedding from T (B(·)) to
T (Bs(·)), hence we have to show that o(T (Bs(·))) ≤ ϑ(εΩ+1) and ϑ(εΩ+1) ≤
o(T (B(·))).

Theorem 4.7. T (Bs(·)) is a wpo and o(T (Bs(·))) ≤ ϑ(εΩ+1).

Proof. We prove that L(t) is a wpo and l(t) < ϑ(εΩ+1) for every t in T (Bs(·))
by induction on the complexity of t. The theorem then follows from Theorem
1.54. If t = ◦, then L(t) is the empty wpo and l(t) = 0 < ϑ(εΩ+1).
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Let B(t1, . . . , tn) be an element of Bs(T (Bs(·))). If we write B(t1, . . . , tn), we
mean that the leaf-labels are elements of {t1, . . . , tn}. If it is clear from the
context, we sometimes write B instead of B(t1, . . . , tn). If B(t1, . . . , tn) is a
tree of height zero with leaf-label ti, define WB(X) as the partial ordering
Bs(LT (Bs(·))(ti)). Note that Id does not occur in WB. If B(t1, . . . , tn) is a tree
with immediate subtrees B1 and B2, define WB(X) = WB(t1,...,tn)(X) as

(WB1(X) +WB2(X))∗ ×X.

We prove by induction on the height of the tree B that there exists a mapping
gB from LB, which is defined as

{D(d1, . . . , dk) ∈ Bs(T (Bs(·))) : B(t1, . . . , tn) 6≤Bs(T (Bs(·))) D(d1, . . . , dk)},

to the partial ordering WB(T (Bs(·))) such that gB is a quasi-embedding and
if gB(D) = w(d′1, . . . , d

′
m), with w a term in TWB

and d′1, . . . , d
′
m ∈ T (Bs(·)),

then {d′1, . . . , d′m} ⊆ {d1, . . . , dk}, where D = D(d1, . . . , dk).

i) height(B) = 0.
Let B(t1, . . . , tn) be a tree with one node and leaf-label ti. Then D(d1, . . . , dk)
is in LB iff dj ∈ L(ti) for every j. Define then the element gB(D(d1, . . . , dk))
as D(d1, . . . , dk) ∈ Bs(LT (Bs(·))(ti)) = WB(T (Bs(·))). If we write gB(D) as
w(d′1, . . . , d

′
m), then m = 0, hence one can show easily that the desired prop-

erties of gB are valid.

ii) height(B) > 0.
Let B(t1, . . . , tn) be a binary tree with immediate subtrees B1 and B2. By
the induction hypothesis, there exist functions gB1 and gB2 with the de-
sired properties. Now, pick an arbitrary D(d1, . . . , dk) ∈ Bs(T (Bs(·))). Then
B(t1, . . . , tn) 6≤Bs(T (Bs(·))) D(d1, . . . , dk) is valid iff one of the following holds

1. D(d1, . . . , dk) is a binary tree of height 0 with label di,

2. D(d1, . . . , dk) is a tree of height strictly larger than 0 with immediate
subtrees D1 and D2, B(t1, . . . , tn) 6≤Bs(T (Bs(·))) Di for i = 1, 2 and one
of the following occurs

(a) B1 6≤Bs(T (Bs(·))) D1,

(b) B1 ≤Bs(T (Bs(·))) D1 and B2 6≤Bs(T (Bs(·))) D2.

Because B(t1, . . . , tn) 6≤Bs(T (Bs(·))) Di for i = 1, 2, we can also use the above
case-study for the trees D1 and D2. This leads us to the following definition.
Choose an arbitrary D(d1, . . . , dk) ∈ LB. Define E0 and F0 as D(d1, . . . , dk).
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Assume that we have Ei and Fi for a certain i as elements of Bs(T (Bs(·))). If
Fi is a tree of height strictly larger than 0, we want to define Ei+1 and Fi+1.
Suppose that F 1

i and F 2
i are the immediate subtrees of Fi. Then define Ei+1

as®
F 1
i in case that 2.(a) holds if we look to the condition B 6≤Bs(T (Bs(·))) Fi
F 2
i in case that 2.(b) holds if we look to the condition B 6≤Bs(T (Bs(·))) Fi.

(4.1)

Let xi+1 be the number j such that Ei+1 = F j
i and let Fi+1 be F

3−xi+1

i ,
the other immediate subtree of Fi. From this definition, we obtain a finite
sequence E0, E1, . . . , Ep, Fp with E0 = D and Fp a tree of height 0. Therefore,
Fp consists of only one node with a label, let us say, s. Note that s is also a
leaf-label of the tree D. Define now gB(D) as follows using the fact that we
have gB1 and gB2 :

gB(D) := ((gBx1
(E1), . . . , gBxp (Ep)), s).

Note that Bxi 6≤ Ei, which means that Ei ∈ LBxi . So gBxi (Ei) is well-defined,
hence gB(D) ∈ WB(T (Bs(·))). Does g satisfy the desired properties?

First, we already noted that s is a leaf-label of D(d1, . . . , dk). Secondly, if
gBxi (Ei) is equal to wi(s

i
1, . . . , s

i
ni

), then by the induction hypothesis and the
fact that Ei is a subtree of D, we obtain {si1, . . . , sini} ⊆ {d1, . . . , dk}. Hence,
if gB(D) = w(d′1, . . . , d

′
m) ∈ WB(T (Bs(·))), then {d′1, . . . , d′m} ⊆ {d1, . . . , dk}.

Now we want to prove that g is a quasi-embedding. Let E0, E1, . . . , Eq, Fq
and y1, . . . , yq be the finite sequences forthcoming from definition (4.1), the
definitions of xi+1 and Fi+1, but now starting with D(d1, . . . , dl) ∈ LB. De-
note the label of the tree Fq of height zero by s. Then

gB(D) = ((gBy1 (E1), . . . , gByq (Eq)), s).

Assume furthermore that

gB(D) = ((gBx1
(E1), . . . , gBxp (Ep)), s)

≤WB(T (Bs(·))) gB(D) = ((gBy1 (E1), . . . , gByq (Eq)), s). (4.2)

We show that inequality D(d1, . . . , dk) ≤Bs(T (Bs(·))) D(d1, . . . , dl) holds by
induction on q.

From (4.2), we obtain s ≤T (Bs(·)) s. Furthermore, there exist indices 1 ≤
i1 < · · · < ip ≤ q such that gBxj (Ej) ≤ gByij

(Eij). Because the left
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hand side of this inequality is in WBxj
(T (Bs(·))) and the right hand side in

WByij
(T (Bs(·))), we obtain xj = yij for every j. Furthermore, Ej ≤Bs(T (Bs(·)))

Eij for every j because gBxj is a quasi-embedding.
If q = 0, then also p = 0. Therefore, D is a tree of height zero with leaf-label
s and D is a tree of the same height with leaf-label s. Hence D ≤Bs(T (Bs(·))) D.
Now let q > 0. By construction,

gB(F1) = ((gBx2
(E2), . . . , gBxp (Ep)), s),

gB(Fi1) = ((gByi1+1
(Ei1+1), . . . , gByq (Eq)), s).

Because gB(D) ≤WB(T (Bs(·))) gB(D) and gBx1
(E1) is mapped onto gByi1

(Ei1),

we obtain gB(F1) ≤WB(T (Bs(·))) gB(Fi1). Hence, by the sub-induction hy-
pothesis on q, we have the inequality F1 ≤Bs(T (Bs(·))) Fi1 . We also know that
E1 ≤Bs(T (Bs(·))) Ei1 and x1 = yi1 . If x1 = 1, then E1 is the left-immediate sub-
tree of F0 = D and Ei1 is the left-immediate subtree of Fi1−1. Furthermore,
F1 is the right-immediate subtree of F0 = D and Fi1 is the right-immediate
subtree of Fi1−1. We conclude that D = F0 ≤Bs(T (Bs(·))) Fi1−1 ≤Bs(T (Bs(·)))
F0 = D. The same argument holds for x1 = 2. Therefore, gB is a quasi-
embedding.

Assume t = ◦[B(t1, . . . , tn)] ∈ T (Bs(·)) with B(t1, . . . , tn) a binary tree in
the partial ordering Bs(T (Bs(·))) and assume that L(ti) are wpo’s and l(ti) <
ϑ(εΩ+1). We want to prove that L(t) is a wpo and l(t) < ϑ(εΩ+1).
First of all, we define a quasi-embedding f from L(t) into T (WB). First note
that d = ◦[D(d1, . . . , dk)] ∈ L(t) iff di ∈ L(t) and D(d1, . . . , dk) ∈ LB. Define
f(◦) as ◦. Suppose d = ◦[D(d1, . . . , dk)] ∈ L(t) and that f(d1), . . . , f(dk) are
already defined. If gB(D) = w(d′1, . . . , d

′
m) ∈ WB(T (Bs(·))) with {d′1, . . . , d′m}

⊆ {d1, . . . , dk}, define f(d) as ◦[w(f(d′1), . . . , f(d′m))] ∈ T (WB). Now we
want to prove that f is a quasi-embedding.

Assume f(d) ≤T (WB) f(d). We prove that this implies d ≤T (Bs(·)) d by induc-
tion on the sum of the complexities of d and d. If d or d is equal to ◦, then this
is trivial. Assume gB(D(d1, . . . , dk)) = w(d′1, . . . , d

′
m), gB(D(d1, . . . , dl)) =

w(d′1, . . . , d
′
p) with {d′1, . . . , d′m} ⊆ {d1, . . . , dk} and {d′1, . . . , d′p} ⊆ {d1, . . . , dl}

and

f(d) = f(◦[D(d1, . . . , dk)]) = ◦[w(f(d′1), . . . , f(d′m))]

≤T (WB)f(d) = f(◦[D(d1, . . . , dl)]) = ◦[w(f(d′1), . . . , f(d′p))].

This implies either f(d) ≤T (WB) f(d′i) for some i or

w(f(d′1), . . . , f(d′m)) ≤WB(T (WB)) w(f(d′1), . . . , f(d′p)).
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In the former case, the induction hypothesis yields d ≤T (Bs(·)) d
′
i ≤T (Bs(·)) d.

In the latter case, we observe that the induction hypothesis implies that f
is a quasi-embedding from {d1, . . . , dk, d1, . . . , dl} to T (WB). Therefore, the
Lifting Lemma brings the inequality

gB(D) = w(d′1, . . . , d
′
m) ≤WB(T (Bs(·))) w(d′1, . . . , d

′
p) = gB(D).

Hence we have D(d1, . . . , dk) ≤Bs(T (Bs(·))) D(d1, . . . , dl) and d ≤T (Bs(·)) d. We
conclude that f is a quasi-embedding.

By Lemma 1.56 and Theorem 4.6 we obtain that L(t) is a wpo and

l(t) ≤ o(T (WB)) ≤ ϑ(WB(Ω)).

So if ϑ(WB(Ω)) < ϑ(εΩ+1), the proof is finished. Let m ≥ 1 be the least nat-
ural number such that for every i, l(ti) < ϑ(Ωm[1]). We prove simultaneously
by induction on the height of the tree B that

WB(Ω) < Ωm+1+3·ht(B)[1],

k(WB(Ω)) < ϑ(Ωm+1+3·ht(B)[1]),

Note that we write WB(Ω) instead of o(WB(Ω)) for notational convenience.
These strict inequalities yield ϑ(WB(Ω)) < ϑ(εΩ+1).

If the height of the tree B is zero, we defined WB(X) as Bs(LT (Bs(·))(ti)).
Hence

k(WB(Ω)) = k(o(Bs(L(ti)))) = o(Bs(L(ti))) ≤ εl(ti)+1

< εϑ(Ωm[1])+1 = ϑ(Ω + ϑ(Ωm[1])) ≤ ϑ(Ωm+1+3·ht(B)[1])

and
WB(Ω) ≤ εl(ti)+1 < Ω < Ωm+1+3·ht(B)[1].

Assume that the height of B is strictly larger than zero such that B1 and B2

are immediate subtrees of B. Because of the induction hypothesis, we know
that there exist natural numbers k and l such that

WB1(Ω) < Ωk[1],

k(WB1(Ω)) < ϑ(Ωk[1]),

WB2(Ω) < Ωl[1],

k(WB2(Ω)) < ϑ(Ωl[1]).
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We prove that WB(Ω) < Ωmax{k,l}+3[1] and k(WB(Ω)) < ϑ(Ωmax{k,l}+3[1]).
We defined WB(X) as (WB1(X) +WB2(X))∗ ×X, hence

WB(Ω) < ωω
Ωk[1]⊕Ωl[1]⊕1 ⊗ Ω = ωω

Ωk[1]·ωΩl[1]·ω ⊗ Ω

≤ ωΩk+1[1]·Ωl+1[1]·ω ⊗ Ω = (ωΩk+1[1])Ωl+1[1]·ω ⊗ Ω

= (Ωk+2[1])Ωl+1[1]·ω ⊗ Ω = (ΩΩk+1[1])Ωl+1[1]·ω ⊗ Ω

= ΩΩk+1[1]·Ωl+1[1]·ω ⊗ Ω < Ωmax{k,l}+3[1]

Furthermore, by Lemma 1.10

k(WB(Ω))

= k
Å
ωω

WB1
(Ω)⊕WB2

(Ω)(±1)

⊗ Ω
ã

≤ max{k(ωω
WB1

(Ω)⊕WB2
(Ω)(±1)

)⊕ k(Ω), k(ωω
WB1

(Ω)⊕WB2
(Ω)(±1)

)⊗ k(Ω)⊗ ω}

≤ max{ωω
k(WB1

(Ω))⊕k(WB2
(Ω))⊕1

+ 1, ωω
k(WB1

(Ω))⊕k(WB2
(Ω))⊕1

· ω}

≤ max{ωωϑ(Ωk[1])⊕ϑ(Ωl[1])⊕1

+ 1, ωω
ϑ(Ωk[1])⊕ϑ(Ωl[1])⊕1 · ω}

< ϑ(Ωmax{k,l}+1[1])

< ϑ(Ωmax{k,l}+3[1]).

As mentioned before, there exists a quasi-embedding from T (B(·)) to T (Bs(·)).
Hence, the previous theorem also yields that T (B(·)) is a wpo with o(T (B(·)))
≤ o(T (Bs(·))) ≤ ϑ(εΩ+1). Now we prove that ϑ(εΩ+1) ≤ o(T (B(·))). If you
look closer at the proof of the next theorem, one can see how every ordinal
below ϑ(εΩ+1) can be represented as an element of T (B(·)). Note that this
proof can be carried out in ACA0 if we have a predefined primitive recursive
ordinal notation system for ϑ(εΩ+1). One cannot find the next theorem in
our joint article [81] because now we consider the wpo T (B(·)) instead of
T (Bs(·)).

Theorem 4.8. o(T (B(·))) ≥ ϑ(εΩ+1).

Proof. Define

g : ϑ(εΩ+1)→ T (B(·))

in the following recursive way. Let g(0) be ◦. Pick an arbitrary α < ϑ(εΩ+1)
and assume that g(β) is already defined for every β < α. If α =CNF ωα1 +
· · ·+ ωαn with n ≥ 2, define g(α) as ◦[B] with B the following unstructured
binary tree:
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g(αn) ◦

Because n ≥ 2, the height of this tree is at least three. If α < ϑ(εΩ+1) and
α ∈ P , we can write α as ϑ(β) as in Corollary 1.8. Because every element of
K(β) is strictly smaller than α, we can assume that g(γ) is defined for every
γ ∈ K(β). Define g(α) as ◦[f(β)], where we define the binary tree f(β) in
the following recursive way.

Let f(0) be the binary tree with one node and leaf-label ◦:

t
◦

Now, let β = Ωβ1γ1 + · · ·+ Ωβnγn > β1 > · · · > βn ≥ 0. Then define f(β) as

t
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\
\
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Note that all labels in the tree f(β) are elements of g(K(β) ∪ {0}). Addi-
tionally, every element of g(K(β) ∪ {0}) is a label in the tree f(β).
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Is g a quasi-embedding? We show by induction on α′ that g(α) ≤ g(α′)
implies α ≤ α′. If α or α′ is equal to zero, then this is trivial, hence we may
assume that both α and α′ are different from zero. There are now four cases
left:

a) g(ωα1 + · · ·+ ωαn) ≤ g(ωα
′
1 + · · ·+ ωα

′
m).

Then either g(α) ≤ g(α′i) or (g(α1), . . . , g(αm)) ≤∗ (g(α′1), . . . , g(α′m)). In
both cases the induction hypothesis yields ωα1 + · · ·+ωαn ≤ ωα

′
1 + · · ·+ωα

′
m .

b) g(ϑ(β)) ≤ g(ωα
′
1 + · · ·+ ωα

′
m).

If β = 0, then it is trivial. Assume β 6= 0. Then g(ϑ(β)) ≤ g(ωα
′
1 + · · ·+ωα

′
m)

is only possible if g(ϑ(β)) ≤ g(α′i) for a certain i. The induction hypothesis
yields ϑ(β) ≤ ωα

′
1 + · · ·+ ωα

′
m .

c) g(ωα
′
1 + · · ·+ ωα

′
m) ≤ g(ϑ(β)).

It is impossible that β = 0 because m ≥ 2. If 0 < β < Ω, then g(ϑ(β)) is
equal to

t���Z
Z

Z
tt g(β)

t t
�
�

\
\

◦◦t t
�
�

\
\◦

So g(ωα
′
1 + · · ·+ωα

′
m) ≤ g(ϑ(β)) can only occur if g(ωα

′
1 + · · ·+ωα

′
m) ≤ g(β)

because the height of g(ωα
′
1 + · · · + ωα

′
m) is at least three. The induction

hypothesis yields ωα
′
1 + · · ·+ ωα

′
m ≤ β < ϑ(β).

In the case that β ≥ Ω, we have that g(ωα
′
1 + · · ·+ωα

′
m) ≤ g(γ) for a certain

γ ∈ K(β)∪{0} or for every α′i, there exists a γi ∈ K(β)∪{0} such that g(α′i) ≤
g(γi). In the former case, we obtain that ωα

′
1 + · · ·+ωα

′
m ≤ γ ≤ k(β) < ϑ(β).

In the latter case, we obtain that α′i ≤ γi ≤ k(β) < ϑ(β). Because ϑ(β) is an
epsilon number (β ≥ Ω), we get that ωα

′
1 + · · ·+ ωα

′
m < ϑ(β).

d) g(ϑ(β)) ≤ g(ϑ(β′))
If β′ = 0, then β must also be zero, hence ϑ(β) ≤ ϑ(β′). Now assume
that β′ > 0. g(ϑ(β)) ≤ g(ϑ(β′)) is possible if g(ϑ(β)) ≤ g(γ′) for a cer-
tain γ′ ∈ K(β′) ∪ {0} or if f(β) ≤ f(β′). In the former case, we obtain
by the induction hypothesis that ϑ(β) ≤ γ′ ≤ k(β′) < ϑ(β′). If the latter
case occurs, then for every γ ∈ K(β), there exists a γ′ ∈ K(β′) ∪ {0} such
that g(γ) ≤ g(γ′). Hence, k(β) ≤ k(β′) < ϑ(β′). For ending the proof of
ϑ(β) ≤ ϑ(β′), we need to show that β ≤ β′.
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We prove by induction on δ′ that f(δ) ≤ f(δ′) implies δ ≤ δ′ for every δ
with K(δ) ⊆ K(β) and every δ′ with K(δ′) ⊆ K(β′). If this is true, we can
conclude that β ≤ β′.
If δ′ = 0 or δ = 0, then this is trivial. Hence we may assume that both δ and
δ′ are different from zero. Assume δ′ =NF Ωδ′1γ′1 + · · · + Ωδ′mγ′m > 0. Then
f(δ′) is equal to
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Let δ =NF Ωδ1γ1 + · · ·+ Ωδnγn and assume f(δ) is
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1. The root of f(δ) is mapped into the left-drawn immediate subtree of
f(δ′).

(a) m = 1: Then immediately f(δ1) < f(δ′1). Hence, by the induction
hypothesis δ1 < δ′1, so δ < δ.
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(b) m > 1: Then f(δ1) ≤ f(δ′m). Hence, by the induction hypothesis
δ1 ≤ δ′m < δ′1. So δ < δ′.

2. The root of f(δ) is mapped into the right-drawn immediate subtree of
f(δ′).

(a) m = 1: Similarly as before.

(b) m > 1: Then f(δ) ≤ f(δ′) yields f(δ) ≤ f(Ωδ′1γ′1+· · ·+Ωδ′m−1γ′m−1),

hence the induction hypothesis yields δ ≤ Ωδ′1γ′1+· · ·+Ωδ′m−1γ′m−1 <
δ′.

3. The root of f(δ) is mapped on the root of f(δ′).

(a) m = 1: f(δ1) is mapped into f(δ′1) or onto the single node with
label g(γ′1) or ◦.

If we are in the latter case, then δ1 = 0, hence δ1 ≤ δ′1. If δ′1 > 0,
then δ < δ′. If δ′1 = 0, then n = 1 and f(δ) ≤ f(δ′) yield
g(γ1) ≤ g(γ′1). Hence, γ1 ≤ γ′1, so δ ≤ δ′.

So we can assume that we are in the former case, meaning that
f(δ1) is mapped into f(δ′1). Hence δ1 ≤ δ′1 by the main induction
hypothesis. If δ1 < δ′1, then δ < δ′ and we are done. Assume δ1 =
δ′1. But then n = 1 again, so f(δ) ≤ f(δ′) yields g(γ1) ≤ g(γ′1).
So γ1 ≤ γ′1, hence δ ≤ δ′.

(b) m > 1: If the right-drawn immediate subtree of f(δ) is mapped
into the left-drawn immediate subtree of f(δ′), then the tree f(δ1)
is mapped into f(δ′m) or on the tree consisting of a single node
with label g(γ′m). In both cases, we obtain δ1 ≤ δ′m (in the latter
case, we even have δ1 = 0). Hence δ1 ≤ δ′m < δ′1, so δ < δ′.

So we can assume that the right-drawn, resp. left-drawn, imme-
diate subtree of f(δ) is mapped into the right-drawn, resp. left-
drawn, immediate subtree of f(δ′). If n = 1, then again δ1 ≤ δ′m
for the same reasons. So δ < δ′. From now on, assume n > 1.
f(δ) ≤ f(δ′) yields

f(Ωδ1γ1 + · · ·+ Ωδn−1γn−1) ≤ f(Ωδ′1γ′1 + · · ·+ Ωδ′m−1γ′m−1),

so Ωδ1γ1 + · · ·+Ωδn−1γn−1 ≤ Ωδ′1γ′1 + · · ·+Ωδ′m−1γ′m−1 by the induc-
tion hypothesis. If the root of the left-drawn immediate subtree of
f(δ) is mapped into f(δ′m), then δn < δm, so δ < δ′. If the root of
the left-drawn immediate subtree of f(δ) is mapped onto node b,
then f(δn) is mapped into f(δ′m) or onto a single node with label
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g(γ′m). In both cases, δn ≤ δ′m (in the last case is δn even zero).
If δn < δ′m, then δ < δ′. Assume δn = δ′m. Then g(γn) ≤ g(γ′m),
Hence γn ≤ γ′m, so δ ≤ δ′.

Corollary 4.9. o(T (B(·))) = o(T (Bs(·))) = o(T2) = ϑ(εΩ+1).

Proof. Follows from Lemma 4.3 and Theorems 4.7 and 4.8 and the fact that
there exists a natural quasi-embedding from T (B(·)) to T (Bs(·)).
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Chapter 5

Capturing the gap-trees with
two labels

5.1 Introduction

In 1982, Harvey Friedman proved that Kruskal’s theorem is not provable in
predicative analysis. Additionally, he constructed a new ordering, the gap-
embeddability relation, on Tn to create a statement stronger than Π1

1-CA0

[76]. Since then, the exact proof-theoretical strengths of Twgapn and Tsgapn are
unknown. In this chapter, we answer this problem partially by showing that
o(Twgap2 ) = ϑ0(ϑ1(Ωω

2 )ω) and o(Tsgap2 ) = ϑ0(Ωω
1 + ϑ0(ϑ1(Ωω

2 )ω)). Furthermore,
we indicate how one can generalize the procedure to arbitrary n.

We use the ordinal collapsing functions ϑ0, . . . , ϑn−1 defined in Definitions
1.17 and 1.18, where the number n is the same n as in Twgapn . So in Sections
5.2 and 5.3, where we study Twgap2 , this n is equal to 2. Note that we defined
ϑiα as epsilon numbers. Note kn−1α = α if α < Ωn, but kiβ is not necessarily
equal to β for i < n− 1 and β < Ωi+1.

Definition 5.1. Define Tn[m] as the set of trees T in Tn such that the root
has a label smaller than or equal to m. Define T′n, respectively T′n[m], as
the subset of Tn, respectively Tn[m], such that all the leaves have label 0.
Denote respectively (Tn[m],≤wgap) and (Tn[m],≤sgap) by respectively Twgapn [m]
and Tsgapn [m]. Similarly for T′n and T′n[m].

Trivially, Twgapn [0] = Tsgapn [0].
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Lemma 5.2. 1. o(Twgapn ) = o(Twgapn [0]),

2. o(Twgapn ) = o(T′wgapn ) = o(T′wgapn [0]),

3. o(Tsgapn ) = o(T′sgapn ).

Proof. It is easy to see that o(Twgapn [0]) ≤ o(Twgapn ) because Tn[0] ⊆ Tn.
Now, define a mapping e from Twgapn to Twgapn [0] as follows: e(T ) is the tree
consisting of a root with label 0 and exactly one immediate subtree, namely
T . Trivially, e is a quasi-embedding, hence o(Twgapn ) ≤ o(Twgapn [0]). This
finishes the proof of the first assertion. The second equality of the second
assertion can be proved in a similar way.

Now, we prove o(Twgapn ) = o(T′wgapn ). The third assertion can be proved in a
similar way. Trivially, T′wgapn ⊆ Twgapn , hence o(T′wgapn ) ≤ o(Twgapn ). Define a
mapping g from Twgapn to T′wgapn in the following straightforward way: g(T )
is the tree where we add one extra node with label 0 to every leaf of T . This
means that the leaves of T are not leaves anymore in g(T ). One can prove
easily that g is a quasi-embedding.

Following [76], we introduce Tleafn (X).

Definition 5.3. Define Tleafn (X) as the set of trees where the internal nodes
have labels in {0, . . . , n − 1} and the leaf nodes have labels in X. Define
Tleafn [m](X) in a similar way. Let Tleaf (X) be the set of trees where the
internal nodes do not have labels and the leaf nodes have labels in X.

Tleafn (X) and Tleafn [m](X) are subsets of the partial order

T
Ç
X {0, . . . , n− 1}
1 ω

å
,

hence we can talk about the (natural) homeomorphic embedding on them.
If we write Tleafn (X) or Tleafn [m](X), we often mean the partial order instead
of only looking at it as a set of trees. The context will make clear what we
mean. On Tleaf (X), there exists also a natural homeomorphic embedding
between the elements, if we interpret Tleaf (X) as Tleaf1 (X). Similarly, we
often write Tleaf (X) if we talk about it as a partial order.

As we have mentioned, Tleafn (X) can be interpreted as a subset of

T
Ç
X {0, . . . , n− 1}
1 ω

å
.
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Therefore, o(Tleafn (X)) ≤ ϑ(Ωω · n+ o(X)) if X is a countable wpo, where ϑ
is the collapsing function from Definition 1.4. This not necessarily a lower
bound as we will prove here.

Lemma 5.4. If X is a countable wpo, then o(Tleafn (X)) ≤ ϑ(Ωω · n+ (−1 +
o(X))).

Proof. Of course, we assume that n ≥ 1 and o(X) ≥ 1.

We prove this by induction on o(X). The left-sets L(t) for t ∈ Tleafn (X)
will be very crucial: we prove that l(t) < ϑ(Ωω · n + (−1 + o(X))) for every
t ∈ Tleafn (X) by induction on the height of t. A similar idea can be found in
[69]. If t is a tree consisting of one node with label x, then there is a quasi-
embedding from L(t) to Tleafn (LX(x)). If lX(x) = 0, then l(t) = 0, hence
l(t) < ϑ(Ωω · n + o(X)). Assume 0 < lX(x) < o(X). Then −1 + lX(x) <
−1 + o(X), hence l(t) ≤ o(Tleafn (LX(x))) ≤ ϑ(Ωω · n + (−1 + lX(x))) <
ϑ(Ωω · n+ (−1 + o(X))).

Assume t is a tree with immediate subtrees t1, . . . , tm and label i and suppose
that l(ti) < ϑ(Ωω · n + (−1 + o(X))) for every i. We show that there exists
a quasi-embedding f from L(t) to

T
Ç
X {0, . . . , n− 1} × L {0, . . . , i− 1}
1 m ω

å
,

where

L = {0}+
m∑
l=1

M�(L(tl)).

{0} just stands for the wpo consisting of one element. How does one define
f? If s ∈ L(t) is a tree of height zero, define f(s) as s. If s ∈ L(t) is a tree
with root-label j and immediate subtrees s1, . . . , sk, then s1, . . . , sk ∈ L(t)
and one of the following conditions are satisfied

(a) j < i, or

(b) j ≥ i and [t1, . . . , tm] 6≤� [s1, . . . , sk].

If [t1, . . . , tm] 6≤� [s1, . . . , sk], then we have one of the next properties.

1. k < m, or

2. k ≥ m and si ∈ L(t1) for all i, or

3. k ≥ m and there is an index i1 such that t1 ≤ si1 and for all i 6= i1, we
have si ∈ L(t2), or
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. . .

m+1. k ≥ m and there are distinct indices i1, . . . , im−1 such that tj ≤ sij for
every j and for all i 6= i1, . . . , im−1, we have si ∈ L(tm).

So assume s ∈ L(t) is a tree with root-label j and immediate subtrees
s1, . . . , sk. If we are in case (a), define f(s) as the tree with root-label j
and immediate subtrees f(s1), . . . , f(sk). If we are in case (b), then we have
the following sub-cases.

1. If 1. holds, define f(s) as the tree with root-label (j, 0) ∈ {0, . . . , n −
1} × {0} and immediate subtrees f(s1), . . . , f(sk).

2. If 2. holds, define f(s) as the single node with root-label (j, [s1, . . . , sk]).

3. If 3. holds, define f(s) as the tree with immediate subtree f(si1) and
root-label (j, [s1, . . . , si1−1, si1+1, . . . , sk]).

. . .

m+1. If m+1. holds, define f(s) as the tree with immediate subtrees f(si1),
. . . , f(sim−1) and root-label (j,multi), where multi is the multiset con-
sisting of the si such that i 6= i1, . . . , im−1.

One can prove that f is a quasi-embedding in a straightforward way (one
can find similar proofs in previous chapters). Therefore

l(t) ≤ o

Ç
T
Ç
X {0, . . . , n− 1} × L {0, . . . , i− 1}
1 m ω

åå
≤ ϑ

Ä
Ωω · i+ Ωm−1 · (o(L)⊗ n) + o(X)

ä
< ϑ(Ωω · n+ (−1 + o(X))).

In the previous inequalities we used Theorem 1.79, i < n, o(L) < ϑ(Ωω ·
n + (−1 + o(X))) (because l(ti) < ϑ(Ωω · n + (−1 + o(X)))) and o(X) <
ϑ(Ωω · n+ (−1 + o(X))).

Definition 5.5. On the set Tleafn (X) define the weak gap-embeddability re-
lation T1 ≤wgap T2 if there exists a homeomorphic embedding h from T1 to T2

such that

1. For all leaves t of T1, f(t) is a leaf of T2 and l1(t) ≤X l2(f(t)).

2. For all internal nodes t of T1, we have that f(t) is an internal node of
T2 and l1(t) = l2(f(t)).
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3. ∀t ∈ T1 and for all immediate successors t′ ∈ T1 of t such that t and
t′ are internal nodes, we have that if t ∈ T2 and f(t) < t < f(t′), then
l2(t) ≥ l2(f(t′)) = l1(t′).

In this context, li is the labeling function of Ti. The strong gap-embeddability
relation ( ≤sgap ) fulfills the extra condition

4. For all t′ < f(root(T1)), we have
l2(t′) ≥ l2(f(root(T1))) = l1(root(T1)).

to the definition of ≤wgap. We write Twgapn (X), respectively Tsgapn (X), for the
partial order (Tleafn (X),≤wgap), respectively (Tleafn (X),≤sgap). Note that the
notation Twgapn (X) cannot be misunderstood about which nodes have labels
in X because Twgapn (X) indicates two label sets, namely {0, . . . , n − 1} and
X. If we restrict ourselves to structured rooted trees, then we denote this by
Ts,wgapn (X) and Ts,sgapn (X). Similarly for Tleafn [m](X).

Following paragraph 4 in [76], we have the next lemma.

Lemma 5.6. Tsgapn+1
∼= Tsgapn (Twgapn+1 ).

Corollary 5.7. Tsgapn+1 [m] ∼= Tsgapn [m− 1](Twgapn+1 ).

So if we can show that o(Twgap2 ) = ϑ0(ϑ1(Ωω
2 )ω), then we can also prove (see

Corollary 5.19)
o(Tsgap2 ) = ϑ0(Ωω

1 + ϑ0(ϑ1(Ωω
2 )ω)),

by using Tsgap1 (X) ∼= Tleaf1 (X).

We will obtain the maximal order type of Twgap2 by calculating the maximal
order type of T (W ) for W = M�(Tleaf (·))\{[]}: Lemma 5.16 indicates that
for this symbol W , the partial order T (W ) is equal to T′wgap2 [0], and Lemma
5.2 yields that the maximal order type of this wpo is also equal to the maximal
order type of Twgap2 .

Weiermann’s conjecture 1.111 only indicates the maximal order type of T (W )
if o(W (Ω)) ≤ εΩ+1. If o(W (Ω)) > εΩ+1, one has to rephrase the conjecture
using the collapsing functions (ϑi)i<ω.

Conjecture 5.8. If Y1, . . . , Yk are countable wpo’s, then for every W ∈
W(Y1, . . . , Yk), the partial order T (W ) is a wpo and its maximal order type
is bounded above by ϑ0(f(W )).

f(W ) is not the same as o(W (Ω1)), but has some little differences. See
Definition 5.10. We also want to note that not for every W , the upper bound
ϑ0(f(W )) of o(T (W)) will be optimal (e.g., W = CYi).
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Before we go on, we modify the definition of W(Y1, . . . , Yk) a bit for a
smoother proof. We use an auxiliary set of symbols W ′(Y1, . . . , Yk).

Definition 5.9. Assume that Y1, . . . , Yk are fixed partial orderings. Define
W(Y1, . . . , Yk) and W ′(Y1, . . . , Yk) as the following set of function symbols.

• For any i = 1, . . . , k, let CYi ∈ W(Y1, . . . , Yk),

• Id ∈ W(Y1, . . . , Yk),

• Tleaf (Id) ∈ W(Y1, . . . , Yk),

• If Wi,j ∈ W ′(Y1, . . . , Yk) for all i and j and (if n = 0, then m0 > 0),
then

∑n
i=0

∏mi
j=0 Wi,j ∈ W(Y1, . . . , Yk)

• If W,W1, . . . ,Wn ∈ W(Y1, . . . , Yk), then

– M�(W ) and M�(W )\{[]} are inW(Y1, . . . , Yk) andW ′(Y1, . . . , Yk),

– If 0 ≤ α1 < · · · < αn ≤ ω, then T
Ç

W1 . . . Wn

1 + α1 . . . 1 + αn

å
is in

W(Y1, . . . , Yk) and W ′(Y1, . . . , Yk).

Define the complexity |W | for symbols W ∈ W(Y1, . . . , Yk) as usual, using
|∑n

i=0

∏mi
j=0Wi,j| := maxi,j(|Wi,j|) + 1 and |Tleaf (Id)| := 0. I(Tleaf (Id))(X)

is defined as Tleaf (I(Id)(X)) = Tleaf (X) and let I(
∑n
i=0

∏mi
j=0Wi,j)(X) be∑n

i=0

∏mi
j=0 I(Wi,j)(X). We can also redefine the other definitions and reprove

the statements in Section 1.2.10 in a straightforward way. Especially, we will
need the Lifting Lemma.

The auxiliary set W ′(Y1, . . . , Yk) is defined for obtaining symbols∑n
i=0

∏m
j=0Wi,j,

where Wi,j is not of the same form. This construction of + and × does
not yield a completely new set W(Y1, . . . , Yk) because (A+B)× (C +D) ∼=
(A×C)+(A×D)+(B×C)+(B×D) and (A×B)+(A×C) ∼= A×(B+C). We
assign an ordinal f(W ) to every symbol inW(Y1, . . . , Yk) andW ′(Y1, . . . , Yk).

Definition 5.10. Let Y1, . . . , Yk be wpo’s, then

• f(CYi) := o(Yi) + 2,

• f(Id) := Ω1,

• f(Tleaf (Id)) := ϑ1(Ωω
2 ).

• f(
∑n
i=0

∏m
j=0Wi,j) =

⊕n
i=0

⊗m
j=0 f(Wi,j),
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• f(M�(W )) := ωω
f(W )+1

,

• f(M�(W )\{[]}) := ωω
f(W )+1

,

• f
Ç

T
Ç

W1 . . . Wn

1 + α1 . . . 1 + αn

åå
= ϑ1(Ωαn

2 f(Wn) + · · ·+ Ωα1
2 f(W1)).

Lemma 5.11. K0(f(
∑n
i=0

∏mi
j=0 Wi,j)) =

⋃
i,jK0(f(Wi,j)).

Proof. By Lemma 1.21.

For every W ∈ W(Y0, . . . , Yk), we define its sub-symbols.

Definition 5.12. • sub(CYi) := {CYi},

• sub(Id) := {Id},

• sub(Tleaf (Id)) := {Tleaf (Id), Id},

• sub(∑n
i=0

∏m
j=0 Wi,j) :=

⋃
i,j{Wi,j} ∪ {

∑n
i=0

∏m
j=0Wi,j},

• sub(M�(W )) := {M�(W )} ∪ sub(W ),

• sub(M�(W )\{[]}) := {M�(W )\{[]}} ∪ sub(W ),

• sub
Ç

T
Ç

W1 . . . Wn

1 + α1 . . . 1 + αn

åå
=

®
T
Ç

W1 . . . Wn

1 + α1 . . . 1 + αn

å´
∪⋃

i sub(Wi).

Note that W ∈ sub(W ).

Lemma 5.13. For all W,W ′ ∈ W(Y1, . . . , Yk),

1. 1 < f(W ) < Ω2,

2. If W ′ ∈ sub(W )\{W}, then f(W ′) < f(W ) and k0(f(W ′)) ≤ k0(f(W )).

Proof. The first assertion is trivial. We prove the second one by induction
on |W |. If |W | = 0, then the assertion is trivial. Assume |W | > 0. If
W =

∑n
i=0

∏m
j=0Wi,j, then f(W ) = ⊕ni=0 ⊗mj=0 f(Wi,j). Because f(Wi,j) >

1, it is easy to see that f(Wi,j) < f(W ). The lemma then easily follows.
Furthermore, k0(f(W )) = maxi,j k0(f(Wi,j))

If W = M�(V ) or M�(V )\{[]}, then f(W ) = ωω
f(V )+1

and the lemma also in
this case easily follows.
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If W = T
Ç
W1 . . . Wn

1 + α1 . . . 1 + αn

å
, then f(W ) = ϑ1(Ωαn

2 f(Wn) + · · · +

Ωα1
2 f(W1)), so

f(Wi) = k1(f(Wi)) < ϑ1(Ωαn
2 f(Wn) + · · ·+ Ωα1

2 f(W1)) = f(W )

and

K0(f(Wi)) ⊆ K0(K1(Ωαn
2 f(Wn) + · · ·+ Ωα1

2 f(W1)))

= K0(ϑ1(Ωαn
2 f(Wn) + · · ·+ Ωα1

2 f(W1)))

= K0(f(W )).

5.2 Upper bound for o(Twgap2 )

The next lemma is one of the most crucial lemmas in this dissertation. The
techniques are based on Diana Schmidt’s proofs of the maximal order types
of the tree-classes (see [69]). Recall that ϑ0α and ϑ1α are epsilon numbers
and k1β = β if β < Ω2.

Lemma 5.14. For all symbols W,W ′ in W(Y1, . . . , Yk), where Yi are count-
able wpo’s, and for all s ∈ W ′(T (W )). If

• W ′ ∈ sub(W ),

• s = w′(t1, . . . , tn) with w′ ∈ TW ′ and ti ∈ T (W ),

• for all i, L(ti) are wpo’s and l(ti) < ϑ0(f(W )),

then there exists a symbol Ws ∈ W(∅, {0}, Yi, LYi(y), L(tj),Tleaf (L(tj)))
1 and

there exists a quasi-embedding es from {u ∈ W ′(T (W )) : s 6≤ u} to Ws(T (W ))
with the properties

a. Leaves(es(u)) ⊆ Leaves(u) for all u ∈ {u ∈ W ′(T (W )) : s 6≤ u},

b. f(Ws) < f(W ′),

c. k0(f(Ws)) < ϑ0(f(W )).

Proof. We prove this lemma by induction on |W ′| (see Definition 1.87) and
subsidiary induction on |w′| (see Definition 1.89).

1where i runs over 1, . . . , k; j over 1, . . . , n and y over all symbols in Yi such that
y ∈ Con(w′) (see Definition 1.92).
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1. If W ′ = CYi , then s = y ∈ Yi and n = 0. Define Ws as CLYi (y) ∈
W(∅, {0}, Yi, LYi(y), L(tj),Tleaf (L(tj))) and es as the identity. Property
a. is trivial. Property b. follows from o(LYi(y)) < o(Yi) and property c.
from

k0(f(Ws)) = k0(o(LYi(y)))
Lemma 1.22
≤ k0(o(Yi))

= k0(f(W ′))
Lemma 5.13
≤ k0(f(W ))

< ϑ0(f(W )).

2. If W ′ = Id, then s = t1 with t1 ∈ T (W ), L(t1) a wpo and l(t1) <
ϑ0(f(W )). Define Ws as CL(t1) and es as the natural quasi-embedding
from {u ∈ W ′(T (W )) : t1 6≤ u} to Ws(T (W )) = Ws = L(t1). es is
in some sense the identity, but the elements of the domain and the
range are from a different context: in the domain, the elements lie
in W ′(T (W )) = T (W ), whereas the elements of the range are seen
as constants in CLT (W )(t1). Leaves(es(u)) = ∅, hence property a. triv-
ially holds. Property b. follows easily. Property c. is valid because

k0(f(Ws)) = k0(o(L(t1)))
Lemma 1.22
≤ o(L(t1)) < ϑ0(f(W )).

3. If W ′ = Tleaf (Id), then s ∈ W ′(T (W )) is a tree with leaf-labels in
T (W ). We prove the lemma by induction on the height of s.

Case a.
If the height is zero, s is the tree that consists of a single node with
label t1 ∈ T (W ). By assumption, L(t1) is a wpo and l(t1) < ϑ0(f(W )).
Define Ws as CY with Y = Tleaf (L(t1)) and es as the natural em-
bedding from {u ∈ Tleaf (T (W )) : s 6≤ u} to Tleaf (L(t1)). Again,
like in case 2., es is the identity, but the elements of the domain and
the range of es are from a different context/set. Property a. trivially
holds. Property b. follows from f(Ws) = o(Tleaf (L(t1))) + 2 = ϑ0(Ωω

1 +

l(t1)) + 2 < Ω1 ≤ f(W ′) and property c. from k0(f(Ws))
Lemma 1.22
≤

f(Ws) = ϑ0(Ωω
1 + l(t1)) + 2 < ϑ0(f(W )), where the last inequality

is valid because k0(Ωω
1 + l(t1)) = k0(l(t1)) ≤ l(t1) < ϑ0(f(W )) and

Ωω
1 + l(t1) < Ωω+1

1 ≤ ϑ1(Ωω
2 ) = f(W ′)

Lemma 5.13
≤ f(W ).

Case b.
If the height of s is strictly larger than zero, then s has immedi-
ate subtrees s1, . . . , sm with m ≥ 1. The sub-induction hypothesis
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yields symbols Wsi and quasi-embeddings esi for every i such that
Leaves(esi(u)) ⊆ Leaves(u) and the inequalities f(Wsi) < f(W ′) and
k0(f(Wsi)) < ϑ0(f(W )) hold for all i.

Now, if v is an arbitrary element of A := {u ∈ W ′(T (W )) : s 6≤W ′(T (W ))

u}, then one of the following conditions is satisfied,

1. v is a tree consisting of a single node with label in T (W ).

2. v is a tree with immediate subtrees v1, . . . , vk with 1 ≤ k < m and
vi ∈ A.

3. v is a tree with immediate subtrees v1, . . . , vk with k ≥ m and
v1, . . . , vk ∈ {u ∈ W ′(T (W )) : s1 6≤W ′(T (W )) u}

4. v is a tree with immediate subtrees v1, . . . , vk with k ≥ m and
there exists a j1 such that vj1 ∈ {u ∈ W ′(T (W )) : s1 ≤W ′(T (W ))

u}, vj1 ∈ A and v1, . . . , vj1−1, vj1+1, . . . , vk ∈ {u ∈ W ′(T (W )) :
s2 6≤W ′(T (W )) u},

. . .

m+2. v is a tree with immediate subtrees v1, . . . , vk with k ≥ m and
there exist distinct j1, . . . , jm−1 such that vjl ∈ {u ∈ W ′(T (W )) :
sl ≤W ′(T (W )) u} and vjl ∈ A for every l and for l 6= j1, . . . , jm−1,
we have vl ∈ {v ∈ W ′(T (W )) : sm 6≤W ′(T (W )) v}.

If m > 1, define Ws as

T
Ç
X {0}+M�(Ws1) + · · ·+M�(Wsm)
1 m

å
and if m = 1, define Ws as

T
Ç
X +M�(Ws1) + · · ·+M�(Wsm)

m

å
.

Let es : A→ Ws(T (W )) be the natural resulting map, namely:

1. If case 1. holds, define es(v) as v.

2. If case 2. holds, then m > 1 and define es(v) as the tree with
root-label 0 and immediate subtrees es(v1), . . . , es(vk).

3. If case 3. holds, then k ≥ m and define es(v) as the tree consisting
of one node with root-label [es1(v1), . . . , es1(vk)].
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4. If case 4. holds, then k ≥ m and define es(v) as the tree with root-
label [es2(v1), . . . , es2(vj1−1), es2(vj1+1), . . . , es2(vk)] and immediate
subtree es(vj1).

. . .

m+2. If case m+ 2 holds, then k ≥ m and define es(v) as the tree with
root-label equal to the multiset consisting of the elements esm(vl)
with l 6= j1, . . . jm−1 and immediate subtrees es(vj1), . . . , es(vjm−1).

That es(v) ≤ es(v
′) implies v ≤ v′ can be proved in a straightforward

way using induction on ht(v) + ht(v′): if v and v′ are in two different
cases, then this can be proved by an easy induction argument. For
example, if for v case 4. and for v′ case 5. holds, then the root-labels of
es(v) and es(v

′) are incomparable, hence es(v) ≤ es(v
′) yields es(v) ≤

es(v
′
j′1

) or es(v) ≤ es(v
′
j′2

). The induction hypothesis yields v ≤ v′j′
l
≤

v′. If for both v and v′ the same case holds, then one also needs the
properties of esi . For example, assume that for v and v′ case 4. is valid.
Then es(v) ≤ es(v

′) yields es(v) ≤ es(v
′
j′1

) or

[es2(v1), . . . , es2(vj1−1), es2(vj1+1), . . . , es2(vk)]

≤�[es2(v′1), . . . , es2(v′j′1−1), es2(v′j′1+1), . . . , es2(v′k′)]

and es(vj1) ≤ es(v
′
j′1

). The former case easily yields v ≤ v′j′1
≤ v′. In the

latter case, the induction hypothesis yields vj1 ≤ v′j′1
and the properties

of es2 implies

[v1, . . . , vj1−1, vj1+1, . . . , vk] ≤� [v′1, . . . , v
′
j′1−1, v

′
j′1+1, . . . , v

′
k′ ].

This yields v ≤ v′.

Property a. can be proved by induction on the height of the tree. One
has to consider every case separately. For example in case 4.,

Leaves(es(v)) =
⋃
i 6=j1

Leaves(es2(vi)) ∪ Leaves(es(vj1))

⊆
⋃
i 6=j1

Leaves(vi) ∪ Leaves(vj1)

=
⋃
i

Leaves(vi) = Leaves(v).

If m > 1, then f(Ws) = ϑ1(Ωm−1
2 f(W1) + f(W2)) with

W1 = {0}+M�(Ws1) + · · ·+M�(Wsm)
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and W2 = X. Hence f(Ws) < f(W ′) = ϑ1(Ωω
2 ) follows from

Ωm−1
2 f(W1) + f(W2) < Ωω

2

and k1(Ωm−1
2 f(W1) + f(W2)) = max{f(W1), f(W2)} < f(W ′) using

f(Wsi) < f(W ′). So property b. is also valid. Property b. for the case
m = 1 can be proved in a similar way.

k0(f(Ws)) = max{k0(f(W1)), k0(f(W2))} < ϑ0(f(W )) using k0(f(Wsi))
< ϑ0(f(W )), which yields property c.

4. If W ′ =
∑n
i=0

∏mi
j=0 W

′
i,j, then s = (s0, . . . , smi) with sj ∈ W ′

i,j(T (W ))
for a certain i and 0 ≤ j ≤ mi. Without lose of generality, we can
assume that i = 0. Because |W ′

0,j| < |W ′|, there exist symbols Wsj

with f(Wsj) < f(W ′
0,j) and k0(f(Wsj)) < θ0(f(W )) and corresponding

mappings esj . Define Ws as

n∑
i=1

mi∏
j=0

W ′
i,j +

m∑
j=0

Ñ
Wsj ×

m0∏
k=0,k 6=j

W ′
0,k

é
.

Pick u ∈ {u ∈ W ′(T (W )) : s 6≤ u}. Then there exists an index i′ such
that u ∈ ∏mi′

j=0 W
′
i′,j. If i′ 6= 0, define es(u) as u ∈ Ws(T (W )). If i′ = 0,

then u = (u0, . . . , um0) and there exists a least index j′ such that sj′ 6≤
uj′ . Define then es(u) as (esj′ (uj′), (u0, . . . , uj′−1, uj′+1, . . . , um0)) ∈
Ws(T (W )). It is trivial to see that es is a quasi-embedding using the
fact that the esj are quasi-embeddings. If i′ 6= 0, then Leaves(es(u)) =
Leaves(u) and if i′ = 0, then

Leaves(es(u)) ⊆Leaves(u) ∪ Leaves(esj′ (uj′))
⊆Leaves(u) ∪ Leaves(uj′)
=Leaves(u).

So property a. is valid. Property b. holds if

f

Ñ
m∑
j=0

Ñ
Wsj ×

m0∏
k=0,k 6=j

W ′
0,k

éé
< f

Ñ
m0∏
j=0

W ′
0,j

é
f(W ′

0,j) is always an additive closed ordinal number by construction of

W ′, hence f
Ä∏m0

j=0W
′
0,j

ä
is this as well. Therefore, the strict inequality

is valid if f(Wsj) < f(W ′
0,j) for all j, but we know that this is true.

Property c. follows from Lemma 5.11, k0(f(Wsj)) < ϑ0(f(W )) and the
fact that k0(f(W ′)) < ϑ0(f(W )) using Lemma 5.13.
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5. If W ′ = M�(V ), then s = [s1, . . . , sn] with si ∈ V (T (W )). Because
|V | < |W ′|, we obtain symbols Wsi ∈ W(Yi, LYi(y), L(tj)) and quasi-
embeddings esi that satisfy properties a., b. and c. We prove the lemma
by sub-induction on n.

(a) If n = 0, then s is equal to []. The set {u ∈ W ′(T (W )) : s 6≤ u}
is then empty. Define Ws as C∅ and es as the trivial mapping.
Properties a., b. and c. easily follow.

(b) Let n > 0. s is equal to [s1, . . . , sn] and si ∈ V (T (W )) for ev-
ery i. Take an element u = [u1, . . . , um] ∈ {u ∈ W ′(T (W )) :
s 6≤ u}. Then sn 6≤V (T (W )) uj for all j or there exists a least
index j0 such that sn ≤V (T (W )) uj0 and [s1, . . . , sn−1] 6≤W ′(T (W ))

[u1, . . . , uj0−1, uj0+1, . . . , um]. The sub-induction hypothesis yields
a symbol W[s1,...,sn−1] and a quasi-embedding e[s1,...,sn−1] that satis-
fies properties a., b. and c. Define Ws as

M�(Wsn) + V ×W[s1,...,sn−1].

By an obvious translation, this can be seen as a symbol in W(∅,
{0}, Yi, LYi(y), L(tj),Tleaf (L(tj))).

Take an element u = [u1, . . . , um] in {u ∈ W ′(T (W )) : s 6≤ u}.
If sn 6≤V (T (W )) uj for all j, define es(u) as [esn(u1), . . . , esn(un)].
If there exists a least index j0 such that sn ≤V (T (W )) uj0 and
[s1, . . . , sn−1] 6≤W ′(T (W )) [u1, . . . , uj0−1, uj0+1, . . . , um], define es(u)
as

(uj0 , e[s1,...,sn−1]([u1, . . . , uj0−1, uj0+1, . . . , um])).

Obviously, es is a quasi-embedding if esn and e[s1,...,sn−1] are quasi-
embeddings.

Now, we check property a. for es. If sn 6≤V (T (W )) uj for all
j, then Leaves(es(u)) =

⋃
i Leaves(esn(ui)) ⊆

⋃
i Leaves(ui) =

Leaves(u). If not sn 6≤V (T (W )) uj for all j, then Leaves(es(u)) =
Leaves(uj0)∪Leaves(e[s1,...,sn−1]([u1, . . . , uj0−1, uj0+1, . . . , um])) ⊆
Leaves(uj0)∪Leaves([u1, . . . , uj0−1, uj0+1, . . . , um]) = Leaves(u).
Property b. follows if

f
Ä
M�(Wsn) + V ×W[s1,...,sn−1]

ä
< f(W ′).

We know f(W[s1,...,sn−1]) < f(W ′), f(Wsn) < f(V ) and f(W ′) =

ωω
f(V )+1

. The strict inequality follows because f(W ′) is multiplica-
tively closed. Property c. is valid because K0(f(M�(Wsn))) =
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K0(f(Wsn)), K0(f(V )) ⊆ K0(f(W ′)), k0(f(Wsn)) < ϑ0(f(W )),
k0(f(W ′)) < ϑ0(f(W )) (using Lemma 5.13) and k0(f(W[s1,...,sn−1]))
< ϑ0(f(W )).

6. One can prove the lemma for W ′ = M�(V )\{[]} in a similar way.

7. Let W ′ = T
Ç

W1 . . . Wn

1 + α1 . . . 1 + αn

å
with 0 ≤ α1 < · · · < αn ≤

ω. This case is similar as W ′ = Tleaf (Id). W ′ ∈ Sub(W ) yields
k0(f(W ′)) ≤ k0(f(W )) < ϑ0(f(W )), hence k0(f(Wi)) < ϑ0(f(W )) for
all i. Assume s ∈ W ′(T (W )). Then s is a tree and we prove the lemma
by sub-induction on the height of s, i.e. in some sense by sub-induction
on |w′|.

Case a.
s is a tree with height zero and root-label s′ with s′ ∈ Wi(T (W ))
for a certain i. Because |Wi| < |W ′|, we obtain a symbol Ws′ ∈
W(∅, {0}, Yi, LYi(y), L(tj),Tleaf (L(tj))) and a quasi-embedding es′ that
satisfy properties a., b. and c. Let u be an arbitrary element {u ∈
W ′(T (W )) : s 6≤W ′(T (W )) u}. Then, u can be interpreted as an element
of

(Ws) (T (W ))

with Ws equal to

T
Ç

W1 . . . Wi−1 Ws′ Wi+1 . . . Wn

1 + α1 . . . 1 + αi−1 1 + αi 1 + αi+1 . . . 1 + αn

å
.

Define es as follows. Take v ∈ {u ∈ W ′(T (W )) : s 6≤ u} and as-
sume that v has root-label v′ ∈ Wj(T (W )) and immediate subtrees
v1, . . . , vk ∈ {u ∈ W ′(T (W )) : s 6≤ u} with k < 1 + αj for a certain j.
If j 6= i, define es(v) as the tree with root-label v′ and immediate sub-
trees es(v1), . . . , es(vk). If j = i, define es(v) as the tree with root-label
es′(v

′) and immediate subtrees es(v1), . . . , es(vk).

es is a quasi-embedding and Leaves(es(u)) ⊆ Leaves(u) are straight-
forward verifications.

k0(f(Ws)) = max{k0(f(W1)), . . . , k0(f(Wi−1)),
k0(f(Wi+1)), . . . , k0(f(Wn)), k0(f(Ws′))},

so property c. follows because k0(f(Ws′)) < ϑ0(f(W )). From f(Ws′) <
f(Wi) one can easily prove f(Ws) < f(W ′).

Case b.
s is a tree with immediate subtrees s1, . . . , sm and root-label s′ ∈
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Wi(T (W )). Hence 1 ≤ m < 1 + αi, so αi ≥ 1. By the main induc-
tion and sub-induction hypothesis, there exist symbols Ws′ and Wsi in
W(∅, {0}, Yi, LYi(y), L(tj),Tleaf (L(tj))) and quasi-embeddings es′ , esi
for every i such that Leaves(es′(u)) ⊆ Leaves(u), Leaves(esi(u)) ⊆
Leaves(u), f(Ws′) < f(Wi), f(Wsi) < f(W ′), k0(f(Ws′)) < ϑ0(f(W ))
and k0(f(Wsi)) < ϑ0(f(W )) for all i.

Now, if v is an arbitrary element of A := {u ∈ W ′(T (W )) : s 6≤W ′(T (W ))

u}, then one of the following conditions is satisfied.

1. v is a tree with root-label a in W1, . . . ,Wi−1,Wi+1, . . . ,Wn−1 or
Wn and immediate subtrees v1, . . . , vk ∈ A (possibly k = 0),

2. v is a tree with root-label a in {u ∈ Wi(T (W )) : s′ 6≤Wi(T (W )) u}
and immediate subtrees v1, . . . , vk ∈ A (possibly k = 0),

3. v is a tree with root-label a in {u ∈ Wi(T (W )) : s′ ≤Wi(T (W )) u}
and immediate subtrees v1, . . . , vk ∈ A and k < m (possibly k =
0),

4. v is a tree with root-label a in {u ∈ Wi(T (W )) : s′ ≤Wi(T (W )) u}
and immediate subtrees v1, . . . , vk ∈ A with k ≥ m. Furthermore,
v1, . . . , vk ∈ {u ∈ W ′(T (W )) : s1 6≤W ′(T (W )) u},

5. v is a tree with root-label a in {u ∈ Wi(T (W )) : s′ ≤Wi(T (W )) u}
and immediate subtrees v1, . . . , vk ∈ A with k ≥ m. Furthermore,
there exists an index j1 such that v1, . . . , vj1−1, vj1+1, . . . , vk ∈
{u ∈ W ′(T (W )) : s2 6≤W ′(T (W )) u} and vj1 ∈ {u ∈ W ′(T (W )) :
s1 ≤W ′(T (W )) u},

. . .

m+3. v is a tree with root-label a in {u ∈ Wi(T (W )) : s′ ≤Wi(T (W )) u}
and immediate subtrees v1, . . . , vk ∈ A with k ≥ m. Furthermore,
there exist distinct j1, . . . , jm−1 such that for l 6= j1, . . . , jm−1,
we have vl ∈ {u ∈ W ′(T (W )) : sm 6≤W ′(T (W )) u} and for l′ =
1, . . . ,m− 1, we have vjl′ ∈ {u ∈ W

′(T (W )) : sl′ ≤W ′(T (W )) u}.

Note that the case ‘v is a tree consisting of one single node’ (i.e. k = 0)
is allocated among cases 1., 2. and 3. If m = 1 + αj, define Ws as

T
Ç

W1 . . . L . . . Ws′ . . . Wn

1 + α1 . . . m . . . 1 + αi . . . 1 + αn

å
with

L = Wj +Wi +Wi × (M�(Ws1) +M�(Ws2) + · · ·+M�(Wsm))



126 Section 5.2. Upper bound for o(Twgap2 )

and if m 6= 1 + αj for every j, define Ws as

T
Ç

W1 . . . L′ . . . Ws′ . . . Wn

1 + α1 . . . m . . . 1 + αi . . . 1 + αn

å
with

L′ = Wi +Wi × (M�(Ws1) +M�(Ws2) + · · ·+M�(Wsm)) .

Let es : A→ Ws(T (W )) be the natural resulting map, namely:

1. If case 1. holds, define es(v) as the tree with the same root-label
as v and with immediate subtrees es(v1), . . . , es(vk).

2. If case 2. holds, define es(v) as the tree with root-label es′(a) and
immediate subtrees es(v1), . . . , es(vk).

3. If case 3. holds, define es(v) as the tree with the same root-label
as v and with immediate subtrees es(v1), . . . , es(vk).

4. If case 4. holds, define es(v) as the tree consisting of a single node
with label (a, [es1(v1), . . . , es1(vk)]).

5. If case 5. holds, define es(v) as the tree with root-label

(a, [es2(v1), . . . , es2(vj1−1), es2(vj1+1), . . . , es2(vk)])

and immediate subtree es(vj1).

. . .

m+3. If case m+ 3. holds, define es(v) as the tree with root-label (a,m)
and with immediate subtrees es(vj1), . . . , es(vjm), where m is the
multiset consisting of the elements esm(vl) with l 6= j1, . . . , jm−1.

es(v) ≤ es(v
′) implies v ≤ v′ can be proved in a straightforward way

using induction on ht(v) + ht(v′): if v and v′ are in two different cases,
then this follows easily from the induction hypothesis. For example, if v
is in case 5. and v′ in case 3., then the root-labels of es(v) and es(v

′) are
incomparable, hence es(v) ≤ es(v

′) yields es(v) ≤ es(v
′
i) for a certain i.

The induction hypothesis implies v ≤ v′i ≤ v′. If for both v and v′ the
same case holds, then one also needs the properties of es′ and esi . For
example, assume that v and v′ are in case 5. Then es(v) ≤ es(v

′) yields
either es(v) ≤ es(v

′
j′1

) or

(a, [es2(v1), . . . , es2(vj1−1), es2(vj1+1), . . . , es2(vk)])

≤(a′, [es2(v′1), . . . , es2(v′j′1−1), es2(v′j′1+1), . . . , es2(v′k′)])
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and es(vj1) ≤ es(v
′
j′1

). If es(v) ≤ es(v
′
j′1

), then the induction hypothesis

yields v ≤ v′j′1
≤ v′. In the other case, the induction hypothesis and the

properties of es2 imply

(a, [v1, . . . , vj1−1, vj1+1, . . . , vk])

≤(a′, [v′1, . . . , v
′
j′1−1, v

′
j′1+1, . . . , v

′
k′ ])

and vj1 ≤ v′j′1
, hence v ≤ v′.

To prove property a., one has to consider every case separately. For
example in case 5.,

Leaves(es(v)) =
⋃
i 6=j1

Leaves(es2(vi)) ∪ Leaves(es(vj1)) ∪ Leaves(a)

⊆
⋃
i 6=j1

Leaves(vi) ∪ Leaves(vj1) ∪ Leaves(a)

=Leaves(v).

f(Ws) < f(W ′) follows from f(Ws′) < f(Wi) and f(Ws′), f(L), f(L′) <
f(W ′). These inequalities follow from f(Wi), f(M�(Wsj)) < f(W ′),
where the last inequality is implied by f(Wsj) < f(W ′). Property c.
follows from

k0(f(Ws)) = max{k0(f(W1)), . . . , k0(f(Wn)), k0(f(Ws′)),

k0(f(Ws1)), . . . , k0(f(Wsm))}
< ϑ0(f(W )).

This finishes the proof of the lemma.

Theorem 5.15. Let W ∈ W(Y1, . . . , Yk) and Y1, . . . , Yk be countable wpo’s.
Then T (W ) is a wpo and

o(T (W )) ≤ θ0(f(W )).

Proof. We prove this by induction on θ0(f(W )). Pick an arbitrary W ∈
W(Y1, . . . , Yk) and t ∈ T (W ). We want to prove that LT (W )(t) is a wpo
and lT (W )(t) < θ0(f(W )) and we do this by subsidiary induction on the
complexity C(t). If t = ◦, then this is trivial. Suppose not, then t =
◦[w(t1, . . . , tn)], with s = w(t1, . . . , tn) ∈ W (T (W )). We know C(ti) < C(t),
hence the sub-induction hypothesis yields LT (W )(ti) are wpo’s and lT (W )(ti) <
θ0(f(W )) for every i.
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Lemma 5.14 yields the existence of a symbol

Ws ∈ W(∅, {0}, Yi, LYi(y), L(tj),T
leaf (L(tj)))

and a quasi-embedding es from {u ∈ W (T (W )) : s 6≤ u} to Ws(T (W )) with
the properties

a. Leaves(es(u)) ⊆ Leaves(u) for all u ∈ {u ∈ W (T (W )) : s 6≤ u},

b. f(Ws) < f(W ),

c. k0(f(Ws)) < ϑ0(f(W )).

Properties b. and c. yield ϑ0(f(Ws)) < ϑ0(f(W )), hence the main induc-
tion hypothesis yields that T (Ws) is a wpo and o(T (Ws)) ≤ ϑ0(f(Ws)) <
ϑ0(f(W )). If we can find a quasi-embedding e from LT (W )(t) to T (Ws), we
can finish the proof by Lemma 1.56.

We construct e by induction on the complexity. Define e(◦) as ◦. Take an ar-
bitrary element v = ◦[u(v1, . . . , vm)] in LT (W )(t) and assume that e(vi) are al-
ready defined. Then vi ∈ LT (W )(t) for every i and s = w(t1, . . . , tn) 6≤W (T (W ))

u(v1, . . . , vm). We know that es(u(v1, . . . , vn)) ∈ Ws(T (W )), hence using
Lemma 1.94, there exists a term u ∈ TWs and elements v1, . . . , vl in T (W )
such that es(u(v1, . . . , vm)) = u(v1, . . . , vl). Actually,

{v1, . . . , vl} = Leaves(es(u)) ⊆ Leaves(u) = {v1, . . . , vm},

hence we can assume that e(vi) are defined as elements of T (Ws) because
e(vi) are already defined. Define

e(v) := ◦[u(e(v1), . . . , e(vl))].

This is a well-defined element of T (Ws). We prove that e is a quasi-embedding
and show by induction on C(v) + C(v′) that e(v) ≤ e(v′) yields v ≤ v′.
If v or v′ are ◦, then this is trivial. Assume v = ◦[u(v1, . . . , vm)], v′ =
◦[u′(v′1, . . . , v′m′)], es(u(v1, . . . , vm)) = u(v1, . . . , vl) and es(u

′(v′1, . . . , v
′
m′)) =

u′(v′1, . . . , v′l′). Then

e(v) = ◦[u(e(v1), . . . , e(vl))] ≤ ◦[u′(e(v′1), . . . , e(v′l′))] = e(v′)

yields e(v) ≤ e(v′i) for a certain i or u(e(v1), . . . , e(vl)) ≤ u′(e(v′1), . . . , e(v′l′)).
The induction hypothesis in the former case yields v ≤ v′i = v′j for a certain
j, hence v ≤ v′. In the latter case, the induction hypothesis yields that e re-
stricted to {v1, . . . , vl, v′1, . . . , v′l′} is a quasi-embedding. The Lifting Lemma
1.99 then yields u(v1, . . . , vl) ≤ u′(v′1, . . . , v′l′), hence es(u(v1, . . . , vm)) ≤
es(u

′(v′1, . . . , v
′
m′)). Because es is a quasi-embedding, this implies u(v1, . . . , vm)

≤ u′(v′1, . . . , v
′
m′), so v ≤ v′.
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Lemma 5.16. If W = M�(Tleaf (·))\{[]}, then T (W ) ∼= T′wgap2 [0].

Proof. The proof is similar as the proofs of Theorem 1.109 and Lemma
4.3. We define an order-isomorphism g from T (W ) to T′wgap2 [0], where
W = M�(Tleaf (·))\{[]}. Assume t ∈ T (W ). If t = ◦, define g(t) as the
tree consisting of a single node with label 0. Let

t = ◦[T1(t11, . . . , t
1
m1

), . . . , Tn(tn1 , . . . , t
n
mn)],

where Ti(t
i
1, . . . , t

i
mi

) are trees in Tleaf (T (W )) such that the leaf-labels are
among {ti1, . . . , timi}. Assume that g(tij) are already defined. Define g(t) are
the tree with root-label 0 and immediate subtrees f(T1), . . . , f(Tn), where we
define a mapping f from Tleaf ({t11, . . . , tnmn}) to T′wgap2 [0] using g as follows:

1. If T is a tree in Tleaf ({t11, . . . , tnmn}) of height zero with leaf-label tij,
define f(T ) as g(tij).

2. If T is a tree in Tleaf ({t11, . . . , tnmn}) with immediate subtrees T1, . . . , Tk,
define f(T ) as the tree with immediate subtrees f(T1), . . . , f(Tk) and
root-label 1.

Claim 1: g is surjective.
Take an arbitrary T ∈ T′wgap2 [0]. If T is the tree consisting of one node
with label 0, then trivially T can be reached by g. Assume that the height
of T is strictly bigger than 0. T is a tree with root-label 0 and immediate
subtrees T1, . . . , Tn (n ≥ 1). Define T ∗i as the tree which results when we
convert each node t of Ti that has label 0 and that every node below t has
label 1, to a leaf node of T ∗i with label (Ti)t (see Definition 1.70). Delete all
the labels of the internal nodes (which are necessarily equal to 1) of T ∗i . So
T si = T ′i (T

i
1, . . . , T

i
mi

) ∈ Tleaf (T′wgap2 [0]), where T ij ∈ T′wgap2 [0]. The height of
T ij is strictly smaller than ht(T ), so by an induction argument we can assume
that there exist tij ∈ T (W ) such that g(tij) = T ij . Note that T ′i is officially a
term in TTleaf (·). Define t as

◦[T ′1(t11, . . . , t
1
m1

), . . . , T ′n(tn1 , . . . , t
n
mn)].

One can prove that g(t) = T .

Claim 2: g is order-isomorphic.
t ≤ t′ ⇒ g(t) ≤ g(t′) can be proved by an induction argument on C(t)+C(t′).
Additionally, the direction T = g(t) ≤ g(t′) = T ′ ⇒ t ≤ t′ can be obtained
by induction on ht(T ) + ht(T ′) and using the interpretations of T and T ′ as
in Claim 1. Both directions are like in Lemma 4.3.
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Corollary 5.17. o(Twgap2 ) ≤ ϑ0((ϑ1(Ωω
2 ))ω) = ϑ0(ϑ1(Ωω

2 )ω).

Proof. Lemmas 5.2 and 5.16 yield

o(Twgap2 ) = o(T′wgap2 [0]) = o(T (M�(Tleaf (Id))\{[]})).

Hence, Theorem 5.15 implies

o(Twgap2 ) ≤ϑ0(f(M�(Tleaf (Id))\{[]}))

=ϑ0(ωω
f(Tleaf (Id))+1

)

=ϑ0(ωω
ϑ1(Ωω2 )+1

)

=ϑ0(ϑ1(Ωω
2 )ω).

Like before, Theorem 5.15 allows a constructive well-partial-orderedness proof
of Twgap2 by reifications (for more information see [66] and [73]).

5.3 Lower bound for o(Twgap2 )

In this section, we prove that ϑ0(ϑ1(Ωω
2 )ω) is a lower bound for o(Twgap2 ).

However, it is easier if the collapsing functions ϑPi are used (mentioned in
Lemma 1.20) instead of ϑi = ϑEi . This does not make a difference because
Lemma 1.20 yields ϑ0(ϑ1(Ωω

2 )ω) = ϑP0 (ϑP1 (Ωω
2 )ω). For notational ease, we

write ϑi instead of ϑPi . Note that we use the same K1, k1, K0 and k0 as
before.

Theorem 5.18. o(Twgap2 ) ≥ ϑ0(ϑ1(Ωω
2 )ω).

Proof. We define a quasi-embedding g from ϑ0(ϑ1(Ωω
2 )ω) to Twgap2 [0] as fol-

lows. g(0) is the single node with label 0. If α = α1 ⊕ α2 > α1, α2 > 0 with
α1 ∈ P , define g(0) as the tree with immediate subtrees g(α1) and g(α2) and
root-label 0. If α ∈ P , then α = ϑ0β. α < ϑ0(ϑ1(Ωω

2 )ω) yields β < ϑ1(Ωω
2 )ω

and k0β < ϑ0(ϑ1(Ωω
2 )ω) or α ≤ k0(ϑ1(Ωω

2 )ω) = k0

Å
ωω

k1(Ωω2 )+1
ã

= 0. Hence

β = (ϑ1(Ωω
2 ))n · βn + · · ·+ ϑ1(Ωω

2 ) · β1 + β0,
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with n < ω, βi < ϑ1(Ωω
2 ) and βn > 0. If βi =NF ω

β1
i + · · ·+ ωβ

ni
i , then

k0β = k0 (ϑ1(Ωω
2 )nβn + · · ·+ ϑ1(Ωω

2 )β1 + β0)

= max
i
k0

Ä
ωϑ1(Ωω2 )·i · βi

ä
= max

i,j
k0

(
ωϑ1(Ωω2 )·i+βji

)
= max{k0(ϑ1(Ωω

2 )),max
i,j

k0(βji )}

= max
i
k0(βi).

Therefore, k0β < ϑ0(ϑ1(Ωω
2 )ω) is equivalent with k0βi < ϑ0(ϑ1(Ωω

2 )ω) for
every i. Before we define g(α), we introduce an intermediate function f .

For every β < ϑ1(Ωω
2 ) with k0(β) < ϑ0(ϑ1(Ωω

2 )ω) and the assumption that
g(δ) is already defined for every δ ≤ k0(β), we define a tree f(β) by recursion
on β.
If β = 0, define f(β) as the single node with label 1. If β = β1⊕β2 > β1, β2 >
0 with β1 ∈ P , define f(β) as the tree with immediate subtrees f(β1) and
f(β2) and root-label 1. Assume β = ωβ1 > β1. Define f(β) as the tree with
the three immediate subtrees f(β1), f(0) and f(0) and root-label 1. Assume
from now on that β ∈ E.2 If β < Ω1, define f(β) as g(β). Note that g(β) is
well-defined because β = k0β in this case. Assume β ≥ Ω1. Then β = ϑ1γ
with γ < Ωω

2 and k1(γ) < β < ϑ1(Ωω
2 ) or β ≤ k1(Ωω

2 ) = ω. Note that the
latter case is impossible. γ1 < Ωω

2 yields

γ = Ωm
2 · γm + · · ·+ Ω2 · γ1 + γ0,

with γm > 0, m < ω and γi < β < ϑ1(Ωω
2 ). Now, k0(γm ⊕ · · · ⊕ γi) =

maxi k0(γi) ≤ k0(β) < ϑ0(ϑ1(Ωω
2 )ω), so we can assume that f(γm ⊕ · · · ⊕ γi)

is already defined for every i. Define f(β) then as the tree
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A
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�
�

��
��

��

���
���

��t t t t t. . .�
�
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@f(ξm)
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@
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1 1 1

1

where ξi := γm ⊕ · · · ⊕ γi.
2We note that although we use the ϑi-functions defined over P , we define only for

β ∈ E and not for β ∈ P , f(β) as g(β). This is because of the specific definitions of k0
and k1.
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Now, we can define g(α): it is the tree
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A
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�

��
���

���
t t t t. . .�
�

@
@f(δn)

�
�

@
@f(δ0)

0 0

0

where δi := βn⊕· · ·⊕βi. Note that δi < ϑ1(Ωω
2 ), k0(δi) ≤ k0(β) < ϑ0β = α <

ϑ0(ϑ1(Ωω
2 )ω) and that we can assume that g(δ) is defined for every δ ≤ k0(δi),

hence g(α) is well-defined. Note that every g(α) is a tree with root-label zero.

Now we prove that g is a quasi-embedding: we prove by induction on α⊕α′
that g(α) ≤ g(α′) yields α ≤ α′. If α or α′ are 0, then this is trivial. So we
can assume that both α and α′ are strictly larger than zero. There are four
cases

1. α = α1 ⊕ α2 and α′ = α′1 ⊕ α′2. If the root of g(α) is mapped into
an immediate subtree of g(α′), then g(α) ≤ g(α′i), so α ≤ α′i < α′. If
the root of g(α) is mapped onto the root of g(α′) then [g(α1), g(α2)] ≤�
[g(α′1), g(α′2)]. The induction hypothesis yields α = α1⊕α2 ≤ α′1⊕α′2 =
α′.

2. α = ϑ0β and α′ = α′1 ⊕ α′2. If the root of g(α) is mapped into an
immediate subtree of g(α′), then g(α) ≤ g(α′i), so α ≤ α′i < α′. It is
impossible that the root of g(α) is mapped onto the root of g(α′).

3. α = α1 ⊕ α2 and α′ = ϑ0β
′. g(α) ≤ g(α′) yields g(αi) < g(α′), so

αi < α′. Hence α = α1 ⊕ α2 < α′.

4. α = ϑ0(ϑ1(Ωω
2 )nβn+ · · ·+ϑ1(Ωω

2 )β1 +β0) and α′ = ϑ0(ϑ1(Ωω
2 )kβ′k+ · · ·+

ϑ1(Ωω
2 )β′1 + β′0). Let δi = βn⊕ · · · ⊕ βi and δ′i := β′k ⊕ · · · ⊕ β′i. First we

prove two claims

1. If T is a subtree of f(β) (possibly T = f(β)) with root-label
0, then T = g(δ) for a certain δ ≤ k0(β).

This can be proved in a straightforward way from the construction of
f .

2. For every β and β′ with k0(β) < α and k0(β) < α′, we have
that f(β) ≤sgap f(β′) yields β ≤ β′.

We prove this claim by induction on β ⊕ β′. If β = 0, this is trivial.
If β′ = 0, then f(β) ≤sgap f(β′) is not possible unless β is also zero.
Assume β, β′ > 0. There are a few cases left.
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Case 1: β = β1 ⊕ β2.

(a) The case β′ = β′1 ⊕ β′2 can be treated in a similar way as we did
for the function g.

(b) If β′ = ωβ
′
1 or (β′ ∈ E and β′ ≥ Ω1), then f(β) ≤sgap f(β′) yields

f(βi) <
sgap f(β′), hence β = β1 ⊕ β2 < β′.

(c) If β′ ∈ E∩Ω1, then f(β) ≤sgap f(β′) = g(β′) is impossible because
g(β′) is a tree with root-label zero.

Case 2: β = ωβ1 .

(a) The case β′ = β′1 ⊕ β′2 yields f(β) ≤sgap f(β′i), hence β ≤ β′i < β′.

(b) If β′ = ωβ
′
1 , then f(β) ≤sgap f(β′) yields f(β1) ≤sgap f(β′1), hence

β ≤ β′.

(c) If β′ ∈ E and β′ ≥ Ω1, then f(β) ≤sgap f(β′) yields f(β1) <sgap

f(β′), hence β < β′.

(d) If β′ ∈ E∩Ω1, then f(β) ≤sgap f(β′) = g(β′) is impossible because
g(β′) is a tree with root-label zero.

Case 3: β ∈ E ∩ Ω1.
Then f(β) = g(β) is embeddable in a subtree T of f(β′) with root-label
0. Using the first claim, T is equal to g(δ′) for a δ′ ≤ k0(β′). Hence,
g(β) ≤ g(δ′). Note that β ⊕ δ′ ≤ k0(β) ⊕ k0(β′) < α ⊕ α′, hence the
induction hypothesis on g yields β ≤ δ′ ≤ k0(β′) ≤ β′.

Case 4: β = ϑ1γ. Then γ = Ωm
2 · γm + · · ·+ Ω2 · γ1 + γ0 with γi < β <

ϑ1(Ωω
2 ) and k0(γi) < ϑ0(ϑ1(Ωω

2 )ω). Let ξi = γm ⊕ · · · ⊕ γi.

(a) If β′ = β′1⊕β′2 or β′ = ωβ
′
1 , then f(β) ≤sgap f(β′) yields f(β) ≤sgap

f(β′i), hence β ≤ β′i < β′.

(b) If β′ ∈ E∩Ω1, then f(β) ≤sgap f(β′) = g(β′) is impossible because
g(β′) is a tree with root-label 0 and f(β) is a tree with root-label
1.

(c) If β′ ∈ ϑ1(γ′), then γ′ = Ωl
2 · γ′l + · · · + Ω2 · γ′1 + γ′0 with γ′i <

β′ < ϑ1(Ωω
2 ) and k0(γ′i) < ϑ0(ϑ1(Ωω

2 )ω). Let ξ′i = γ′l ⊕ · · · ⊕ γ′i.
f(β) ≤sgap f(β′) yields f(β) ≤sgap f(ξ′i) for a certain i or

[f(ξm), . . . , f(ξ0)](≤sgap)�[f(ξ′l), . . . , f(ξ′0)].

In the former case, β ≤ ξ′i < β′. Assume that we are in the latter
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case. The induction hypothesis then yields

[ξm, . . . , ξ0](≤sgap)�[ξ′l, . . . , ξ′0],

meaning

[γm, . . . , γm ⊕ · · · ⊕ γ0] ≤� [γ′l, . . . , γ
′
l ⊕ · · · ⊕ γ′0].

If m < l, then γ < γ′. So assume m = l. Similarly as in Theorem
2.6, this yields γ ≤ γ′. Furthermore, k1(γ) = maxi γi ≤ maxi ξi ≤
maxi ξ

′
i < ϑ1(γ′). We conclude that β ≤ β′.

This finishes the proof of the second claim.

So we were in the case

α = ϑ0(ϑ1(Ωω
2 )nβn + · · ·+ ϑ1(Ωω

2 )β1 + β0)

and
α′ = ϑ0(ϑ1(Ωω

2 )kβ′k + · · ·+ ϑ1(Ωω
2 )β′1 + β′0).

Let δi = βn⊕ · · · ⊕ βi and δ′i = β′k ⊕ · · · ⊕ β′i. g(α) ≤ g(α′) yields either
that g(α) is mapped into a subtree of f(δ′i) for a certain i or that the
root of g(α) is mapped onto the root of g(α′). If we are in the former
case, then the first claim yields g(α) ≤ g(δ′) with δ′ ≤ k0(δ′i). Hence,
α ≤ δ′ ≤ k0(δ′i) < α′. Assume that we are in the latter case. Then
g(α) ≤ g(α′) implies

[f(δn), . . . , f(δ0)](≤sgap)�[f(δ′k), . . . , f(δ′0)].

The second claim yields

[δn, . . . , δ0] ≤� [δ′k, . . . , δ
′
0].

Hence,

β = ϑ1(Ωω
2 )nβn + · · ·+ ϑ1(Ωω

2 )β1 + β0

≤ ϑ1(Ωω
2 )kβ′k + · · ·+ ϑ1(Ωω

2 )β′1 + β′0 = β′.

Furthermore,

k0(β) = max
i
k0(βi) = max

i
k0(δi)

≤max
i
k0(δ′i) = max

i
k0(β′i) = k0(β′)

<ϑ0β
′.

This yields α = ϑ0β ≤ ϑ0β
′ = α′.
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Corollary 5.19. 1. o(Twgap2 ) = ϑ0(ϑ1(Ωω
2 )ω),

2. o(Tsgap2 ) = ϑ0(Ωω
1 + ϑ0(ϑ1(Ωω

2 )ω)).

Proof. The first assertion follows from Corollary 5.17 and Theorem 5.18.

By Lemma 5.6, we know that o(Tsgap2 ) = o(Tleaf (Twgap2 )). Using Lemma 5.4,
we obtain o(Tsgap2 ) ≤ ϑ(Ωω + ϑ0(ϑ1(Ωω

2 )ω)). By comparing the ϑ and ϑ0

functions, we obtain o(Tsgap2 ) ≤ ϑ0(Ωω
1 + ϑ0(ϑ1(Ωω

2 )ω)).

We show that there exists a quasi-embedding from ϑ0(Ωω
1 + ϑ0(ϑ1(Ωω

2 )ω))
to Tleaf (ϑ0(ϑ1(Ωω

2 )ω)), from which o(Tsgap2 ) ≥ ϑ0(Ωω
1 + ϑ0(ϑ1(Ωω

2 )ω)) follows.
We abbreviate the ordinal ϑ0(ϑ1(Ωω

2 )ω) by α. We recall that we use the
ϑi-functions defined on P .

Define for every δ < ϑ0(Ωω
1 + α) an element f(δ) ∈ Tleaf (α) as follows.

If δ = 0, define f(δ) as the tree consisting of a single node with label 0.
If δ = δ1 ⊕ δ2 > δ1, δ2 > 0 with δ1 ∈ P , define f(δ) as the tree with the
two immediate subtrees f(δ1) and f(δ2). Assume δ ∈ P . If δ < α, define
f(δ) as the tree consisting of a single node with label δ. If δ = α, define
f(δ) as tree with three immediate subtrees f(0). Assume δ > α. Because
k0(α) ≤ α < δ < ϑ0(α), we know that δ ∈ Im(ϑ0) (like in Corollary 1.7).
Then δ = ϑ0(ξ) with either ξ = Ωn

1 · δn + · · · + Ω1 · δ1 + δ0 with K0(δi) < δ
and δn > 0, or ξ = Ωω

1 + δ′ with δ′ < α, or ξ > Ωω
1 + α. First, we prove that

the two last cases cannot occur.

If ξ = Ωω
1 + δ′ with δ′ < α, then ξ < Ωω

1 + α = Ωω
1 + ϑ0(ϑ1(Ωω

2 )ω) < ϑ1(Ωω
2 )ω.

Furthermore, k0(ξ) = k0(Ωω
1 + δ′) = k0(δ′) ≤ δ′ < α = ϑ0(ϑ1(Ωω

2 )ω), hence
δ = ϑ0(ξ) < α, a contradiction.

If ξ > Ωω
1 +α, then δ = ϑ0(ξ) < ϑ0(Ωω

1 +α) yields δ ≤ k0(Ωω
1 +α) = k0(α) ≤ α,

again a contradiction.

In the other case, we have δ = ϑ0(Ωn
1 · δn + · · ·+ Ω1 · δ1 + δ0) with K0(δi) < δ

and δn > 0.

Actually, we know that δi < δ for every i: if n > 0, then δ is an epsilon
number, so K0(δi) < δ yields δi < δ. If n = 0, then δ = ϑ0(δ0) is the least
element of P that is strictly bigger than k0(δ0). If δ0 ∈ E, then k0(δ0) = δ0,
hence δ0 < ϑ0(δ0) = δ. If δ0 /∈ E, then δ = ϑ0(δ0) ≥ ωδ0 > δ0. The first
inequality can be proved by induction on δ0 < Ω1.
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Therefore, we know that f(δn⊕· · ·⊕δi⊕1) is well-defined for every i. Define
f(δ) as the tree with n+3 immediate subtrees: f(δn⊕1), . . . , f(δn⊕· · ·⊕δ0⊕1)
and two times the tree f(0).

One can prove in a similar way as in other theorems of this dissertation that
f is a quasi-embedding.

We believe that we can also prove

ϑ(Ωω + (−1 + o(X))) ≤ o(Tleaf (X)),

for every countable wpo X.

We can redo these entire arguments in the previous two sections to prove that
for the structured version, the maximal order type of Ts,wgap2 is ϑ0(ϑ1(Ωω

2 )ω).
This is because T (W ) ∼= T′s,wgap2 [0] for W = (Ts,leaf (·))∗\{()}. We skip the
detailed version of these proofs as they are completely similar.

5.4 Maximal order type of Tgapn

In this section, we indicate how one should prove the maximal order type
of a characteristic subset of Twgapn and Tsgapn . We believe that the proof will
become highly technical and it is not our purpose here to be complete or
entirely correct. First of all, we define the mentioned subset of Tn.

Definition 5.20. Define Tn as the set of trees T in Tn such that for all nodes
t in T , if t has label m < n, then all its successors have label at most m+ 1.
Define Tn[m], T′n and T′n[m] in a similar way. We add a superscript wgap
or sgap if we work with the weak or strong gap-embeddability relation on the
corresponding set.

We conjecture the following

o(T
wgap
n ) = ϑ0(ϑ1(. . . (ϑn−1(Ωω

n)ω) . . . )ω).

Here, we use the (ϑi)i<m-functions from Definitions 1.17 and 1.18, where m
is equal to the number of labels in Tn. I.e., n is equal to m. Notice that
T2 = T2, hence the conjecture is true for n = 1 and n = 2. We could also
state conjectures about the maximal order types of Twgapn and Tsgapn , but then
the corresponding ordinals become more involved and less smooth. That is
why we restrict ourselves to the subsets Tn.
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In order to obtain the maximal order type of T
wgap
n , we calculate the maximal

order type of T′
wgap
n [0] like we did before for the n = 2 case. The main

key in order to obtain the last mentioned maximal order type is to redefine
W(Y0, . . . , Yk) and T (W ) for W ∈ W(Y0, . . . , Yk) and to reprove the main
lemma, which is Lemma 5.14.

Definition 5.21. Assume that Y1, . . . , Yk are fixed partial orderings. Define
W(Y1, . . . , Yk) and W ′(Y1, . . . , Yk) as the following set of function symbols.

• For 1 ≤ i ≤ k, let CYi ∈ W(Y1, . . . , Yk).

• For i < n, let Idi ∈ W(Y1, . . . , Yk).

• If Wi,j ∈ W ′(Y1, . . . , Yk) for all i and j,
then

∑n
i=0

∏mi
j=0Wi,j ∈ W(Y1, . . . , Yk).

• If W ∈ W(Y1, . . . , Yk), then M�(W ) and M�(W )\{[]} are in
W(Y1, . . . , Yk).

• If W ∈ W(Y1, . . . , Yk) and Idj ∈ Sub(W ) such that j > 0 is maximal
among all k’s for which Idk ∈ sub(W ), then Tj(W ) ∈ W(Y1, . . . , Yk).

Recall that it is not our purpose to be entirely correct and we know that the
previous definition needs some refinements. Here the symbol Tj(W ) (with
now j ≥ 0) has the following interpretation:

Definition 5.22. Define Tj(W ) as the least set such that

1. ◦ ∈ Tj(W ),

2. If s = w(t1, . . . , tn) ∈ W (Tj(W )) with t1, . . . , tn are plugged in the
variables that match with Idj, then ◦[w(t1, . . . , tn)] ∈ Tj(W ).

Define an ordering on Tj(W ) in a similar way as on T (W ).

This definition should yield that

T′wgap2 [0] ∼= T0(M�(X0 + T1(M�(X1 +X0))))

and that T
′wgap
n [0] is isomorphic

T0(M�(T1(M�(. . . (Tn−1(M�(Xn−1 + · · ·+X1 +X0)) . . . ) . . . X1 +X0))+X0)).

Using these definitions, it should then be possible to reprove Lemma 5.14.
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Chapter 6

Independence results

6.1 Introduction

This chapter explores independence and provability results concerning the
studied wpo’s T (W ). In general, if one has a natural well-partial-order X
and a natural theory T , then

T ` ‘X is a well-partial-order’ ⇐⇒ |T | > o(X),

where |T | is the proof-theoretical ordinal of the theory T .

A nice and smooth technique to prove the well-partial-orderedness of a par-
tial order X is the minimal bad sequence argument developed by Nash-
Williams [55]. The reverse mathematical strength of this method is investi-
gated by Marcone [51]. He showed that the general version of the minimal
bad sequence argument has the strength of Π1

1-CA0, which formalizes Π1
1-

comprehension.

We conjecture that allowing to apply the Π1
1-comprehension scheme up to

n times yields the well-partial-orderedness of Twgapn . But if we only allow to
apply the Π1

1-comprehension scheme at most n−1 times, then the well-partial-
orderedness of Twgapn becomes unprovable. In this conjecture, we assume that
we use a fixed base theory that is strong enough, e.g. ACA0.

To explain it intuitively, assume n = 2. Following Section 5.4, the well-
partial-orderedness of Twgap2 follows from the well-partial-orderedness of

T0(M�(X0 + T1(M�(X1 +X0)))).
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Or following Section 5.2, it also implied by the well-partial-orderedness of
T (M�(Tleaf (·))). The last partial orders consist of two nested Kruskal’s tree-
classes T(X). Kruskal’s theorem ‘T is a well-partial-order’ is provable, us-
ing the minimal bad sequence argument, if we apply the Π1

1-comprehension
scheme exactly once over the base theory ACA0 (see a similar result in
Theorem 6.30). If we are allowed to apply the Π1

1-comprehension scheme
exactly two times, we are allowed to use the minimal bad sequence argu-
ment two (nested) times. Hence, this yields that well-partial-orderedness of
T0(M�(X0 + T1(M�(X1 + X0)))): applying the Π1

1-comprehension scheme a
first time, reduces the two-times nested tree-class T0(M�(X0 + T1(M�(X1 +
X0)))) to a one-nested tree-class (meaning it is not nested anymore). The
second application is needed to prove the well-partial-orderedness of this
one-nested tree-class.

Before one should prove the above conjecture, one first has to obtain the
maximal order types of Twgapn (see Section 5.4). Therefore, we restrict our-
selves in this chapter to light-face Π1

1-comprehension, i.e. applying the Π1
1-

comprehension scheme exactly once. First, we prove bounds on the ordinals
of theories using light-face Π1

1-comprehension (Section 6.2). In the next sec-
tion 6.3, we investigate independence results and provability results. We
want to note that most of the results in Section 6.2, especially the results on
the upper bounds for the proof-theoretic ordinals, are due to Michael Rath-
jen, so we sometimes skip the proofs and refer to our joint article [81]. The
well-orderedness proof (Theorem 6.17) is due to Andreas Weiermann.

6.2 Impredicative theories

As we will see later, the theories RCA0 +(Π1
1–CA0)− and ACA0 +(Π1

1–CA0)−

will be used to obtain provability and unprovability results concerning the
wpo’s T (W ). For the unprovability part, we need (upper bounds on) the
proof-theoretic ordinals of both theories. It is known that the ordinal of
the theory ACA0 + (Π1

1–CA0)− is equal to the Howard-Bachmann ordinal
ϑ(εΩ+1) (see e.g. [13]), so we only have to concentrate on the theory RCA0 +
(Π1

1–CA0)−. As a side question, we were wondering what would happen with
the ordinal if we replace RCA0 by RCA∗0. We could not determine the exact
proof-theoretic ordinal of these theories, but we could do it for restricted
versions. Fortunately, these restricted theories are strong enough to obtain
the intended independence and provability results.
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Definition 6.1. Let n ≤ ω. A Π1
1(Π0

n)-formula is a formula of the form
∀XB(X), where B(X) is Π0

n. B can contain set and numerical parameters.
Note that a Π0

ω formula is the same as an arithmetical formula, hence a
Π1

1(Π0
ω) is a standard Π1

1-formula. A (Π1
1(Π0

n))−-formula is a formula of
the form ∀XB(X), where B(X) is Π0

n and ∀XB(X) contains no free set
parameters. It is allowed that B contains numerical parameters.

Definition 6.2. Let F-CA0 be the following well-known comprehension scheme

∃Z∀n(n ∈ Z ↔ A(n)),

where A(n) is a formula in the class F . If F = (Π1
1(Π0

n))−, we denote F-CA0

by (Π1
1(Π0

n)-CA0)−

We show the following results.

Theorem 6.3.

1. |RCA0 + (Π1
1(Π0

3)-CA0)−| = ϑ(Ωω),

2. |RCA∗0 + (Π1
1(Π0

3)-CA0)−| ≥ ϕω0 = ϑ(Ω · ω).

In order to prove these results, we use the bar-induction theories Π1
n-BI0.

Definition 6.4.

Prog(≺, F ) := ∀x(∀y(y ≺ x→ F (y))→ F (x)),

T I(≺, F ) := Prog(≺, F )→ ∀xF (x),

WF (≺) := ∀XTI(≺, X),

where the formula Prog(≺, F ) stands for progressiveness, TI(≺, F ) for trans-
finite induction and WF (≺) for well-foundedness. F (x) is an arbitrary
L2(exp)-formula if we work in RCA∗0 or an arbitrary L2-formula if we work
in RCA0 or ACA0. For an element α ∈ OT (ϑ), the formula WF (α) stands
for ‘<OT (ϑ) restricted to {β ∈ OT (ϑ) : β < α} is well-founded’. We also de-
note this by WF (<� α). One can define a similar definition for the notation
system OT ′(ϑ) defined in Definition 6.7.

Definition 6.5. The theory Π1
n-BI0 is defined as ACA0 augmented with the

Π1
n bar induction scheme:

WF (≺)→ TI(≺, F ),

where ≺ is a well-ordering that is Π0
1-definable and F is a Π1

n-formula.
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The exact proof-theoretical strength of the theories Π1
n-BI0 are already es-

tablished.

Theorem 6.6.

1. If n ≥ 2, the proof-theoretic ordinal of the theory Π1
n-BI0 is ϑ(Ωn−1[ω]),

2. The proof-theoretic ordinal of the theory Π1
1-BI0 is ϕω0.

Proof. The first assertion is proved in [66].

Π1
1-BI0 is equivalent with Σ1

1-DC0 over ACA0: see Theorem VIII.5.12 in [77].
Note that they use a different notation for bar induction, namely TI. The
theory Σ1

1-DC0 has ϕω0 as proof-theoretic ordinal (see e.g. [15]).

6.2.1 Lower bounds

In Section 1.2.4, we defined a primitive recursive ordinal notation system
OT (ϑ) to represent the ordinal ϑ(εΩ+1). More specifically, the set OT (ϑ)∩Ω
represents the Howard-Bachmann ordinal. Therefore, this ordinal notation
system could also be used to represent to small Veblen number ϑΩω, the
expected proof-theoretic ordinal of RCA0 +(Π1

1(Π0
3)-CA0)−. More specifically,

we could use OT (ϑ) ∩ ϑ(Ωω) to represent the ordinal ϑ(Ωω). We slightly
redefine OT (ϑ) and call it OT ′(ϑ), although this is not a huge difference.
We define this new ordinal notation system because it will make some proofs
easier. Similarly as for OT (ϑ), we have make two distinctions in case 2.

Definition 6.7. Define inductively a set OT ′(ϑ) of ordinals and a natural
number G′ϑα for α ∈ OT ′(ϑ) as follows:

1. 0 ∈ OT ′(ϑ) and G′ϑ(0) := 0,

2. if α = Ωnβn + · · ·+ Ω0β0, with Ω > βn > 0 and Ω > β0, . . . , βn−1, then

(a) if n > 0 and β0, . . . , βn ∈ OT ′(ϑ), then α ∈ OT ′(ϑ) and
G′ϑα := max{G′ϑ(β0), . . . , G′ϑ(βn)}+ 1,

(b) if n = 0 and α =NF δ1 + · · · + δm with m ≥ 2 and δ1, . . . , δm ∈
OT ′(ϑ), then α ∈ OT ′(ϑ) and G′ϑα := max{G′ϑ(δ1), . . . , G′ϑ(δm)}+
1,

3. if α = ϑβ and β ∈ OT ′(ϑ), then α ∈ OT ′(ϑ) and G′ϑα := G′ϑβ + 1.

Similar as for OT (ϑ), the function G′ϑ is well-defined.
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Lemma 6.8. If ξ ∈ OT ′(ϑ), then K(ξ) ⊆ OT ′(ϑ). Furthermore, G′ϑ(k(ξ)) ≤
G′ϑ(ξ) for all ξ in OT ′(ϑ).

Proof. If ξ = 0, then this trivially holds. If ξ = ϑ(ξ′), then K(ξ) = {ξ}, hence
this also trivially holds. Assume ξ = Ωnξn + · · · + Ω0ξ0 with Ω > ξn > 0
and Ω > ξ1, . . . , ξn−1. If n = 0, then also K(ξ) = {ξ}, hence the proof
is valid. Let now n > 0. Then K(ξ) ⊆ {n, . . . , 0, ξ0, . . . , ξn}. We know
ξ0, . . . , ξn ∈ OT ′(ϑ). Additionally, it is trivial to show {n, . . . , 0} ⊆ OT ′(ϑ).
Hence, K(ξ) ⊆ OT ′(ϑ). It is also trivial to show that G′ϑ(m) ≤ 2 for all
natural numbers m. Therefore, G′ϑ(n) ≤ G′ϑ(ξ) because G′ϑ(ξn) ≥ 1. Also,
G′ϑ(ξi) < G′ϑ(ξ). Hence G′ϑ(k(ξ)) = G′ϑ(maxi{n, ξi}) < G′ϑ(ξ).

Lemma 6.9. There exists a specific coding of (OT ′(ϑ), <OT ′(ϑ)) in the natural
numbers such that (OT ′(ϑ) ∩ Ω, <OT ′(ϑ)) can be interpreted as a primitive
recursive ordinal notation system for ordinals less than ϑ(Ωω). Furthermore,
one can choose this coding in such a way that ∀ξ ∈ K(α)(ξ ≤N α).

If we mention ACA0 in the beginning of a theorem, we assume that we work in
the systemOT (ϑ). Accordingly, if we mention RCA0 or RCA∗0 in the beginning
of a theorem, we assume that we work in the system OT ′(ϑ). Similar ideas
in this subsection are used in [66].

Definition 6.10. 1. Acc := {α < Ω : WF (<� α)},

2. M := {α : K(α) ⊆ Acc},

3. α <Ω β ⇔ α, β ∈M ∧ α < β.

The next lemma shows that Acc, M and <Ω can be expressed by a (Π1
1(Π0

3))−-
formula.

Lemma 6.11. Acc, M and <Ω are expressible by a (Π1
1(Π0

3))−-formula.

Proof. The proof is the same for the ordinal notation systems OT (ϑ) and
OT ′(ϑ).

WF (α) = ∀X (∀x(∀y(y ≺ x→ y ∈ X)→ x ∈ X)→ ∀x(x ∈ X)) ,

where ≺ is <� α. It is easy to see that the prenex normal form of the formula
WF (α) is (Π1

1(Π0
3))−, hence Acc can be expressed by such a formula. M can

be represented by the formula ∀ξ ≤N α(ξ ∈ K(α) → ξ ∈ Acc). Because
ξ ∈ K(α) is elementary recursive, both M and <Ω are also expressible by a
(Π1

1(Π0
3))−-formula.
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Lemma 6.12. (RCA∗0) α, β ∈ Acc =⇒ α + β ∈ Acc.

Proof. Straightforward.

Definition 6.13. Let ProgΩ(X) be the formula

(∀α ∈M) [(∀β <Ω α)(β ∈ X)→ α ∈ X] .

Let AccΩ be the set {α ∈M : ϑ(α) ∈ Acc}.

Lemma 6.14. (RCA∗0) ProgΩ(AccΩ).

Proof. We work in OT ′(ϑ). Assume α ∈ M and (∀β <Ω α)(ϑ(β) ∈ Acc).
We want to proof that ϑ(α) ∈ Acc. We show that (∀ξ < ϑ(α))(ξ ∈ Acc) by
induction on G′ϑξ, from which the lemma follows. If ξ = 0, then this trivially
holds. So assume ξ > 0.

a) Assume ξ /∈ P
Because ξ < Ω, we have ξ =NF ξ1 + · · · + ξn > ξ1 ≥ · · · ≥ ξn (n ≥ 2). The
induction hypothesis yields ξi ∈ Acc. Hence from Lemma 6.12, we obtain
ξ ∈ Acc.

b) Assume ξ = ϑ(ξ′)
From ϑ(ξ′) < ϑ(α), we obtain either ξ′ < α and k(ξ′) < ϑ(α) or ϑ(ξ′) ≤ k(α).
In the former case, G′ϑ(k(ξ′)) ≤ G′ϑ(ξ′) < G′ϑ(ξ) and the induction hypothesis
implies k(ξ′) ∈ Acc, hence K(ξ′) ⊆ Acc. So ξ′ ∈ M , from which it follows
ξ′ <Ω α, hence ϑ(ξ′) ∈ Acc. In the latter case, we know that k(α) ∈ Acc
because α ∈M . Therefore, ϑ(ξ′) ∈ Acc.

Lemma 6.15. Let A(a) be a (Π1
1(Π0

3))−-formula. Define Ak as

∀α[(∀β <Ω α)A(β)→ (∀β <Ω α + Ωk)A(β)].

Then RCA0 + (Π1
1(Π0

3)-CA0)− proves ProgΩ({ξ : A(ξ)})→ Ak.

Proof. We prove the assertion by outer induction on k. First note that
{a : A(a)} can be expressed by a set in RCA0 + (Π1

1(Π0
3)-CA0)−. Assume

that ProgΩ({ξ : A(ξ)}) and pick an arbitrary α such that (∀β <Ω α)A(β).
If α /∈ M , the assertion trivially follows. Assume α ∈ M . If k = 0, the
proof follows easily from ProgΩ({ξ : A(ξ)}). Assume k = l + 1 and suppose
(∀β <Ω α)A(β). We want to prove that (∀β <Ω α + Ωl+1)A(β). Take an
arbitrary β <Ω α + Ωl+1. RCA0 proves that there exists a ξ ∈ Acc such that
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β <Ω α+Ωlξ (by induction on the construction of β in OT ′(ϑ), one can show
that one can take ξ = k(β) + 1). Let B(ζ) be

(∀β <Ω α + Ωlζ)A(β).

B(ζ) is a Π0
1-formula in A by Lemma 6.11. It is known (Lemma 6 in [41]) that

RCA0 ` ∀X(WO(X)→ TIX(ψ)) for all Π0
1-formulas ψ. Because ξ ∈ Acc, we

have that ξ + 1 is well-ordered, hence we know that TIξ+1(B) is true. This
means

∀x ≤ ξ[∀y ≤ ξ(y < x→ B(y))→ B(x)]→ ∀x ≤ ξB(x).

The theorem follows from B(ξ), hence we only have to prove the progressive-
ness of B along ξ + 1.

Assume that x ≤ ξ. Then x ∈ Acc. If x = 0, then B(0) follows from
the assumption. Assume that x is a limit. If β <Ω α + Ωlx, then there
exists a y < x such that β <Ω α + Ωly. Because B(y) is valid, one obtains
A(β). Assume that x = x′ + 1 ∈ Acc. From x′ < x, one obtains (∀β <Ω

α+ Ωlx′)A(β). Because Al is valid, we get (∀β <Ω α+ Ωlx′+ Ωl)A(β), hence
(∀β <Ω α + Ωl(x′ + 1))A(β) = B(x).

Theorem 6.16. |RCA0 + (Π1
1(Π0

3)-CA0)−| ≥ ϑ(Ωω).

Proof. This follows from Lemmas 6.14, 6.15 and the fact that AccΩ is ex-
pressible by a (Π1

1(Π0
3))−-formula.

Lemma 6.17. Let A(a) be a (Π1
1(Π0

3))−-formula. Define Ak as

(∀β <Ω Ω · k)A(β).

Then RCA∗0 + (Π1
1(Π0

3)-CA0)− proves ProgΩ({ξ : A(ξ)})→ Ak.

Proof. We prove the assertion by outer induction on k. First note that A(a)
can be expressed by a set in RCA∗0 + (Π1

1(Π0
3)-CA0)−. It is easy to see that

the case k = 0 holds. Assume k = l + 1 and ProgΩ({ξ : A(ξ)}). Then we
know (∀β <Ω Ω · l)A(β). Pick an arbitrary β <Ω Ω · (l + 1). If β < Ω · l,
we obtain A(β). Hence assume that β ≥ Ω · l. There exists a ξ < Ω such
that β = Ω · l + ξ. Let B(ζ) be A(Ω · l + ζ). B(ζ) is a Π0

0-formula in A. We
prove by induction on ζ that (∀ζ ∈ Acc)B(ζ) is true. From this, the theorem
follows.
If ζ = 0, then B(ζ) is true because (∀β <Ω Ω · l)A(β) and ProgΩ({ξ : A(ξ)})
imply A(Ω · l). Assume ζ ∈ Acc is a limit and assume (∀ζ ′ <Ω ζ)B(ζ). From
ProgΩ({ξ : A(ξ)}), we obtain B(ζ). Let ζ = ζ ′+1 ∈ Acc. Then B(ζ) follows
from B(ζ ′) and ProgΩ({ξ : A(ξ)}).
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Theorem 6.18. |RCA∗0 + (Π1
1(Π0

3)-CA0)−| ≥ ϑ(Ω · ω) = ϕω0.

Proof. This follows from Lemmas 6.14, 6.17 and the fact that AccΩ is ex-
pressible by a (Π1

1(Π0
3))−-formula.

6.2.2 Upper bounds

In this subsection, we give an upper bound for the proof-theoretic ordinal of
RCA0 + (Π1

1(Π0
3)-CA0)−. For this purpose, we use the theory Π1

2-BI0 that has
the same proof-theoretic ordinal (see Theorem 6.6).

Theorem 6.22 needs a specific normal form of an arithmetical formula. This
will be developed in the next lemmas. It can be seen as an adaptation of the
normal form theorem V.1.4 in [77].

Lemma 6.19. For every arithmetical formula B(X) with all free set variables
indicated, there is a ∆0-formula R(x,X, f) such that

1. ACA0 ` B(X)→ ∃f∀xR(x,X, f)

2. If T is a theory with RCA0 ⊆ T and F(x, y) is an arbitrary formula
such that,

T ` ∀x∃!yF(x, y) ∧ ∀x∃z(lh(z) = x ∧ ∀i < xF(i, (z)i)),

then T ` ∀xR(x,X,F)→ B(X), where R(x,X,F) results from
R(x,X, f) by replacing subformulae of the form f(t) = s by F(t, s).

Proof. See [81].

By adapting the previous lemma, we get the following corollary.

Corollary 6.20. If in addition to the conditions of Lemma 6.19(2.), T also
satisfies

T ` ∀x∃!yG(x, y) ∧ ∀x∃z(lh(z) = x ∧ ∀i < xG(i, (z)i)),

then T ` ∀xR(x,G,F)→ B(G), where R(x,G,F) results from R(x,X,F) by
replacing t ∈ X by G(t, 0).

Lemma 6.21. Assume that the conditions for F and G from Lemma 6.19
and Corollary 6.20 are satisfied. Then there exists a ∆0

1-formula P such that

T ` ∀xR(x,G,F)↔ ∀xP (G[x],F [x]),
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where G[x] is the finite sequence s with length x such that ∀i < x(G(i, (s)i)).
Similarly for F [x].

Proof. See [81].

Theorem 6.22. Assume that B(X,n) is a Π0
3-formula, then

Π1
2-BI0 ` ∀n[∀A ∈ Rec((Π1

1)−)B(A(·), n)↔ (∀X ⊆ ω)B(X,n)],

where B(A(·), n) results from B(X,n) by replacing t ∈ X by A(t).

Proof. See [81].

Corollary 6.23. |RCA0 + (Π1
1(Π0

3)-CA0)−| = ϑ(Ωω).

Proof. See [81].

In a similar way, one can also show the following lemma.

Lemma 6.24. Assume that B(X,n) is a Π0
2-formula, then

Π1
1-BI0 ` ∀n[∀A ∈ Rec((Π1

1)−)B(A(·), n)↔ (∀X ⊆ ω)B(X,n)].

Therefore, |Π1
1-BI0| = ϕω0 (see Theorem 6.6) yields that the ordinal of

RCA∗0 + (Π1
1(Π0

2)-CA0)− is bounded above by ϕω0. Actually, one can prove
that the ordinal of the theory RCA∗0 + (Π1

1(Π0
2)-CA0)− is even much lower

(We want to thank Leszek Ko lodziejczyk, who reminded us on these facts).
Using WKL0 and the normal form theorem II.2.7 in [77], one can prove that
every (Π1

1(Π0
2))−-formula is equivalent with a (Π0

2)−-formula (and if the orig-
inal formula has extra parameters, then the equivalent one will also have
those parameters). The intuitive idea behind this is that WKL0 proves that
the projection of closed set is a closed set, meaning that ∃X∀x . . . can be
reduced to ∀z . . . (a closed set can be seen in some sense as a Π0

1-formula).
Furthermore, one can prove the following lemmas.

Lemma 6.25. Let F be (Π1
1(Π0

n))− or (Π0
n)−. Then the first order part of

the theory WKL0 + F-CA0 is the same as that of RCA0 + F-CA0.

Proof. Can be proved by little adaptations of paragraph IX.2 in [77].

Lemma 6.26. The first order part of RCA0 + (Π0
2)−- IND is IΣ3.

Proof. Can be proved by adaptations of paragraph IX.1 in [77].
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Hence, the proof-theoretic ordinal of RCA0 + (Π1
1(Π0

2)-CA0)− is equal to the

ordinal of the theory IΣ3, which is known to be ωω
ωω

. In a similar but more
technical way, one can prove that RCA∗0 + (Π1

1(Π0
2)-CA0)− is Π0

4-conservative
over IΣ2. Hence, the ordinal of RCA∗0 + (Π1

1(Π0
2)-CA0)− is ωω

ω
.

Some questions remain unsolved. We state them here as conjectures.

Conjecture 6.27.

1. |RCA∗0 + (Π1
1(Π0

3)-CA0)−| = ϕω0,

2. |RCA∗0 + (Π1
1-CA0)−| = ϕω0,

3. |RCA0 + (Π1
1-CA0)−| = ϑ(Ωω).

6.3 Independence results

6.3.1 Independence results for ACA0 + (Π1
1-CA0)

−

In this section, we state provability and unprovability statements concerning
the wpo’s T (W ).

Theorem 6.28. ACA0 ` ‘T (B(·)) is a wpo’ → WF (ϑ(εΩ+1)).

Proof. Theorem 4.8 can be carried out in ACA0 if we use the primitive re-
cursive ordinal notation system OT (ϑ) ∩ Ω for ϑ(εΩ+1).

Therefore, one obtains the following theorem.

Theorem 6.29. ACA0 + (Π1
1-CA0)− 6` ‘T (B(·)) is a wpo’.

Proof. Follows from Theorem 6.28 and the fact that the proof-theoretic or-
dinal of the theory ACA0 + (Π1

1-CA0)− is ϑ(εΩ+1) (see e.g. [13]).

The wpo T (B(·)) can be seen as the limit of T (·
n︷ ︸︸ ︷

∗ · · · ∗), where ·
n︷ ︸︸ ︷

∗ · · · ∗ is
defined by applying the Higman-operator ∗ n many times, because a binary
tree can be generated as an iteration of the ∗-operator. For example, one can
interpret an element of {a}∗∗ as a binary tree which goes only one time to
the left and every node has label a. So, it would be interesting if ACA0 +
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(Π1
1-CA0)− ` ‘T (·

n︷ ︸︸ ︷
∗ · · · ∗) is a wpo’ for every natural number n because this

theory does not prove the limit.

The maximal order type of T (·∗···∗) is strictly below the proof-theoretical
ordinal of ACA0 + (Π1

1-CA0)−. Therefore, one can really expect this prov-
ability assertion because ACA0 + (Π1

1-CA0)− proves the well-foundedness of
o(T (·∗···∗)). In Theorem 6.30, we prove that this is really the case and we
use a minimal bad sequence argument. We also want to note that we believe
that a constructive proof of the well-partial-orderedness of T (·∗···∗) can be
obtained from the proof of the upper bound for the maximal order type of
T (·∗···∗) by reifications (for more information see [66] and [73]).

Theorem 6.30. For all natural numbers n, the theory ACA0 + (Π1
1-CA0)−

can prove the well-partial-orderedness of T (·
n︷ ︸︸ ︷

∗ · · · ∗).

Proof. Fix a natural number n. We reason in ACA0 + (Π1
1-CA0)−. Code the

elements of T (·
n︷ ︸︸ ︷

∗ · · · ∗) as natural numbers such that ◦ has code 0 and the
code of ti is strictly smaller than the code of t = ◦[w(t1, . . . , ti, . . . , tn)]. This
coding can be done primitive recursively. The leaves of ◦[w(t1, . . . , ti, . . . , tn)]
are {t1, . . . , tn} and we assume that there is a primitive recursive relation
‘. . . is a leaf of . . . ’.

If σ is a code for a finite sequence, then this sequence is equal to

((σ)0, . . . , (σ)lh(σ)−1),

where lh(σ) is the length and (σ)i is the i-th element of the sequence.
An infinite sequence (σi)i<ω is decoded by a set {(i, σi) : i < ω} and
({(i, σi) : i < ω})i stands for the element σi. Note that one can recursively
construct the set {(σ0, . . . , σi) : i < ω} from the original set {(i, σi) : i < ω},
where the finite sequence (σ0, . . . , σi) is decoded by a natural number. Fur-
thermore, if one has the set {(σ0, . . . , σi) : i < ω}, one can reconstruct the
original set {(i, σi) : i < ω} from it in a recursive way.

Now, assume that T (·∗···∗) is not a well-partial-order. Then there exists an
infinite sequence (ti)i<ω in T (·∗···∗) such that ∀i, j(i < j → ti 6≤ tj). Define
χ(σ) as

σ is a finite sequence of elements of T (·∗···∗)
and ∃Z(Z is an infinite bad sequence in T (·∗···∗) ∧ ∀i < lh(σ)((σ)i = (Z)i)),
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and ψ(σ) as

σ is a finite sequence of elements of T (·∗···∗)
and ∀Y [(Y is an infinite bad sequence in T (·∗···∗))

→ ∀i < lh(σ) [∀k < i ((σ)k = (Y )k)→ (σ)i ≤ (Y )i]] ,

Note that (σ)i ≤ (Y )i is interpreted as the inequality relation between natural
numbers and not between elements of T (·∗···∗). Using (Π1

1-CA0)−, there exists
a set S such that σ ∈ S ↔ χ(σ) ∧ ψ(σ). Choose now two arbitrary elements
s, s′ in S. We want to prove that either s is an initial segment of s′ or s′

an initial segment of s. Assume that there is an index i < min{lh(s), lh(s′)}
such that (s)i < (s′)i and ∀k < i, (s)k = (s′)k. The case (s)i > (s′)i can
be handled in a similar way. Note that (s)i < (s′)i is seen as an inequality
between natural numbers and not between elements of T (·∗···∗). Because s
is in S, s can be extended to an infinite bad sequence Y in T (·∗···∗). This,
however, contradicts ψ(s′) because (Y )k = (s)k = (s′)k for all k < i, but
(Y )i = (s)i < (s′)i.

If s ∈ S, one can show by minimization in RCA0, that there is a z ∈ T (·∗···∗)
such that s_(z) ∈ S. Therefore, there exists an infinite sequence (si)i<ω in
T (·∗···∗) such that S = {(s0, . . . , si) : i < ω}.

Now, define subS as the set of all pairs (i, t) such that t is a leaf of si. Note
that subS is definable in RCA0 because

(i, t) ∈ subS ⇔ ∃σ(σ ∈ S and lh(σ) = i+ 1 and t is a leave of σi)

⇔ ∀σ((σ ∈ S and lh(σ) = i+ 1)→ t is a leave of σi).

On subS, we define the following ordering: (i, t) ≤ (j, t′) ⇔ t ≤T (·∗···∗) t
′.

With this ordering subS is a quasi-order. We want to prove that it is a
well-quasi-order.

Assume that this is not true. This implies the existence of an infinite bad
sequence ((ni, s

′
i))i<ω in subS. This implies s′i ≤ sni for all i. Construct now

an infinite subsequence H such that (ni)i<ω is strictly increasing and the first
element of H is (n0, s

′
0). So H = {(i, (nji , s′ji)) : i < ω} with j0 = 0. This

is possible in RCA0 because the number of leaves of an element of T (·∗···∗) is
finite.
Construct now recursively a set S ′ such that all elements that lie in S ′ have
the form (σ0, . . . , σi) such that if i < n0, the element σi is equal to si and
if i ≥ n0, then σi is equal to s′ji−n0

. The existence of S ′ is however in

contradiction with the definition of S. This is because ψ((s0, . . . , sn0)), s′j0 =
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s′0 < sn0 as a natural number and (σi)i<ω is an infinite bad sequence. Take
for example k < l < ω. If k < l < n0, then σk 6≤ σl follows from sk 6≤ sl. If
n0 ≤ k < l, then σk 6≤ σl follows from s′jk−n0

6≤ s′jl−n0
. Assume k < n0 ≤ l.

Then σk 6≤ σl follows from the fact that otherwise sk ≤ s′jl−n0
≤ snjl−n0

with

k < n0 = nj0 ≤ njl−n0
, a contradiction. So we conclude that subS is indeed

a well-quasi-order.

By Lemma 1.63, we obtain that (subS)∗···∗ is a well-quasi-ordering. Now,
look at the infinite sequence (si)i<ω in T (·∗···∗). Rewrite every element ×si
to an element of (subS)∗···∗ and call it si. For example, if

si = ◦
ÄÄ
s1

1, . . . , s
1
n1

ä
, . . . ,

Ä
sk1, . . . , s

k
nk

ää
,

then si is equal toÄÄ
(i, s1

1), . . . , (i, s1
n1

)
ä
, . . . ,

Ä
(i, sk1), . . . , (i, sknk)

ää
.

Because we know that (subS)∗···∗ is a well-quasi-order, there exist two indices
i < j such that si ≤(subS)∗···∗ sj. Therefore, si ≤T (·∗···∗) sj, a contradiction.

6.3.2 A general approach

Following the previous theorem (Theorem 6.30), we can state the following.

Theorem 6.31. If T is a theory such that

T ` ∀X(X is a wpo→ W (X) is a wpo),

then
RCA0 + T + (Π1

1(Π0
3)-CA0)− ` T (W ) is a wpo,

and even
RCA0 + T + (Π1

1(Π0
3)-CA0)− ` T (Wn) is a wpo,

where Wn(X) := W (W (. . . (W (X)) . . . )) with W applying n many times on
X.

Furthermore, assume W ′ is in some sense the limit of W , i.e. one can prove
∀X(X is a wpo → W ′(X) is a wpo) from finitely, but unbounded many
iterations of the statement ∀X(X is a wpo→ W (X) is a wpo), meaning one
can prove it from ∀n∀X(X is a wpo → Wn(X) is a wpo), but one cannot
prove ∀X(X is a wpo→ W ′(X) is a wpo) from ∀X(X is a wpo→ W (X) is
a wpo). Then in general we predict

RCA0 + T + (Π1
1(Π0

3)-CA0)− 6` T (W ′) is a wpo.
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6.3.3 Independence results for RCA0 + (Π1
1(Π

0
3)-CA0)

−

The proof-theoretic ordinal of RCA0 + (Π1
1(Π0

3)-CA0)− is the small Veblen
number ϑ(Ωω). Furthermore, one can easily show

RCA0 ` T (X∗) is a wpo → WF (ϑ(Ωω))

by giving a quasi-embedding from ϑ(Ωω) to T (X∗). This can be done is a
similar way as in Chapter 2. Therefore, the theory RCA0 + (Π1

1(Π0
3)-CA0)−

cannot prove the well-partial-orderedness of T (X∗). Note that the maximal
order type of T (X∗) is equal to ϑ(Ωω).

Again, like in the ACA0-case, one can search for provability results: W ′(X) =
X∗ can be seen as the limit ofW (X) = Xn. Therefore, it would be interesting
if RCA0+(Π1

1(Π0
3)-CA0)− ` ‘T (Xn) is a wpo’. However, the theory RCA0 does

not prove ∀X(‘X is a wpo’→ ‘Xn is a wpo’), but it is provable in RCA0+CAC
(see [17] for more information). CAC is the principle saying that every infinite
sequence in a partial order has a subsequence that is either a chain or an anti-
chain. This implies that RCA0 + CAC + (Π1

1(Π0
3)-CA0)− ` ‘T (Xn) is a wpo’.

We believe that we can get rid of CAC by using reifications like in [66].



Chapter 7

The linearized version

7.1 Introduction

We assume that the reader of this chapter is familiar with the preliminaries
in Section 1.2.5. This chapter is based on the joint article [65].

The previous chapters indicated that there is a close connection between
the tree-classes with Friedman’s gap-embeddability relation and the theta-
functions. More explicitly, one can define a maximal linear extension of
T (W ) using these collapsing functions in a straightforward way (see the
discussion after Conjecture 1.111). To recall the discussion, if W = X∗\{()}
(then T (W ) ∼= Ts), define a maximal linear extension ≺ on T (W ) as follows.
Assume T ∈ T (W ). If T = ◦, define f(T ) as zero and if T = ◦[(T1, . . . , Tn)],
then define f(T ) as ϑ(Ωn−1(f(T1) + 1) + · · · + Ω0(f(Tn) + 1)). Take two
trees T, T ′ ∈ T (W ). Let T ≺ T ′ iff f(T ) < f(T ′). This is a maximal linear
extension on T (W ). One can use the same kind of argument for the W
such that T (W ) ∼= T′wgap2 [0], to define straightforwardly a maximal linear
extension of this well-partial-order using the collapsing functions ϑ0 and ϑ1.

This chapter investigates whether this connection remains true for the se-
quential version. More explicitly, let Tn be the linearized version of the usual
ordinal notation system OT (ϑi), i.e. the ordinal notation system consisting
of the collapsing functions ϑi, but now defined without addition. For a for-
mal definition of Tn, see Definition1.41. Let S

wgap

n be the linearized version
of T

wgap

n (see Definitions 5.20 and 7.1), hence it is a subset of Sn with the
weak gap-embeddability relation (see Section 1.2.9). The reformulation of
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Weiermann’s conjecture in terms of sequences is:

Is the maximal order type of S
wgap

n [0] equal to the order type of Tn[0]?

Note that we restrict ourselves to the sequences, respectively to terms in Tn,
that start with 0, respectively ϑ0, like we did for the tree-case. Furthermore,
note that we use S

wgap
n instead of Swgapn because of the specific form of the

defined terms in Tn (see Definitions 1.40 and 1.41).

We also want to mention that Tn is the right counterpart of the ordinal
notation system OT (ϑi) that is needed for the linearized version: a sequence
over {0, . . . , n − 1} is (isomorphic to) a tree with labels in {0, . . . , n − 1}
where every node has at most one immediate successor. Hence, we do not
summation like in f(T ) = ϑ(Ωn−1(f(T1) + 1) + · · ·+ Ω0(f(Tn) + 1)) because
n = 1 (the successor operator +1 can be dealt with in a different way).

In contrast with the tree-case, the maximal order type of S
wgap
n [0] is known.

However, now the order type of the ordinal notation system Tn[0] is unknown.
So to address the above question, we have to calculate the order type of the
notation system Tn[0] and check whether it is equal to the maximal order
type of S

wgap

n [0]. This maximal order type is ω2n−1, as will be shown in
Lemma 7.10. Before we go on, let us formally define S

wgap
n .

Definition 7.1. Denote the subset of Sn of elements s0 . . . sk that fulfill the
extra condition s0 ≤ i by Sn[i]. Like in Definition 1.83, (Sn[i],≤wgap), respec-
tively (Sn[i],≤sgap), is denoted by Swgapn [i], respectively Ssgapn [i].

Let Sn be the subset of Sn which consists of all sequences s0 . . . sk−1 in Sn
such that for all i < k − 1, si − si+1 ≥ −1. This means that if si = j, then
si+1 is an element of {0, . . . , j+ 1}. For example 02 /∈ S3. Like in Definition
1.83, we denote the subset of Sn that has the extra condition s0 ≤ i by Sn[i].
We denote (Sn,≤wgap) by S

wgap

n , (Sn,≤sgap) by S
sgap

n , (Sn[i],≤wgap) by S
wgap

n [i]

and (Sn[i],≤sgap) by S
sgap

n [i].

This definition corresponds to Definition 5.20. On T and its substructures,
we define the following partial order �, which can be seen as a natural sub-
order of the ordering < on T . Tn together with this natural partial order is
actually equal to S

sgap

n .

Definition 7.2. 1. 0 � α,

2. if α� kiβ, then α� ϑiβ,

3. if α� β, then ϑiα� ϑiβ.
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Lemma 7.3. (Tn,�) ∼= (Sn,≤sgap).

Proof. Define e : Tn → Sn as follows. e(0) is the empty sequence ε. Let e(ϑiα)
be (i)_e(α). For example e(ϑ2ϑ10) is the finite sequence 21. It is trivial to see
that e is a bijection. So the only thing we still need to show is that for all α
and β in Tn, e(α) ≤sgap e(β) if and only if α�β. We show this by induction on
the sum of the lengths of α and β. If α or β are equal to 0, then this is trivial.
Assume α and β are different from 0. Hence, α = ϑiα

′ and β = ϑjβ
′. Assume

α� β. Then α� kjβ
′ or i = j and α′ � β′. In the latter case, the induction

hypothesis yields e(α′) ≤sgap e(β′), hence e(α) = (i)_e(α′) ≤sgap (i)_e(β′) =
e(β). In the former case, assume β′ = ϑl1 . . . ϑlkβ

′′, with l1, . . . , lk > j and
S(β′′) ≤ j such that kj(β

′) = β′′. The induction hypothesis yields e(α) ≤sgap
e(β′′). From the strong gap-embeddability relation we obtain i ≤ S(β′′) ≤
j, hence e(α) ≤sgap (jl1, . . . lk)

_e(β′′) because j, l1, . . . , lk ≥ i. The reverse
direction can be proved in a similar way.

The previous proof also yields (Tn[0],�) ∼= (Sn[0],≤sgap) = (Sn[0],≤wgap). We
prove that the linear order < on Tn is a linear extension of �. Let α � β if
α� β and α 6= β.

Lemma 7.4. If α� β, then α ≤ β.

Proof. We prove this by induction on the sum of the lengths of α and β
Assume α � β. If α = 0, then trivially α ≤ β. Assume α = ϑiα

′. α � β
yields β = ϑiβ

′ and either α� kiβ
′ or α′� β′. In the first case, the induction

hypothesis yields α ≤ kiβ
′ < ϑiβ

′ = β. Assume that α′ � β′. The induction
hypothesis yields α′ ≤ β′. if α′ = β′, we can finish the proof, so assume
α′ < β′. We want to prove that kiα

′ < β. Using the induction hypothesis, it
is sufficient to prove that kiα

′�β. This follows from α = ϑiϑj1 . . . ϑjlkiα
′�β

(with j1, . . . , jl > i) and Lemma 7.3.

So the linear ordering on Tn[0] is a linear extension of Sn[0] with the strong
(and weak) gap-embeddability relation and furthermore,

o(Tn[0],�) = o(S
sgap
n [0]) = o(S

wgap
n [0]) = o(S

wgap
n ).

We want to investigate whether this is a maximal linear extension. This
means that we want to prove, as mentioned before, whether the order type
of the notation system Tn[0] is equal to ω2n−1. Quite surprisingly, this is
not that case for every n. If n = 1 or n = 2, this is true. But if n > 2,
then it does not hold anymore. More explicitly, we show that the order type
of (Tn[0], <) is ωn+1 if n ≥ 2. This indicates that the general belief about
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the correspondence of the theta-functions and a maximal linear extension of
structures with the gap-embeddability relation is not true for the sequential
version. One really needs trees in order to make the belief true. We show
(Tn[0], <) = ωn+1 for n ≥ 2 in Section 7.3. In Section 7.4, we look to the
sequences with the gap-embeddability relation from a reverse mathematical
point of view.

7.2 Known results

In this subsection, we state the results of Schütte and Simpson [72] about
the maximal order types of Swgapn and Ssgapn . Sometimes, we abbreviate Swgapn

and Ssgapn by Swn and Ssn (now there is no misunderstanding of the meaning
of s: in this setting s never means structured).

Theorem 7.5 (Schütte-Simpson[72], Simpson/Friedman[76]). For every nat-
ural number n, (Sn,≤wgap) and (Sn,≤sgap) are wpo’s.

Theorem 7.6 (Schütte-Simpson[72]).
ACA0 6` ∀n < ω ‘(Sn,≤wgap) is a wpo’,
ACA0 6` ∀n < ω ‘(Sn,≤sgap) is a wpo’.

Theorem 7.7 (Schütte-Simpson[72]).
For all n, ACA0 ` ‘(Sn,≤wgap) is a wpo’,
For all n, ACA0 ` ‘(Sn,≤sgap) is a wpo’.

If one takes a closer look at the proofs of Schütte and Simpson [72], one
can also find results on the maximal order types of the sequences with the
gap-embeddability relation (see Lemma 5.5. in [72]). There is a small error
in that proof, although we believe that this is actually more like a typo. For
clarity reasons, the proof is given here.

Theorem 7.8 (Schütte-Simpson[72]).
Ssn+1

∼= Ssn × (Ssn)∗.

Proof. Assume n ≥ 0. We define an order-preserving bijection hn from Ssn+1

to Ssn × (Ssn)∗. Let hn(ε) be (ε, ()). Take an arbitrary element s ∈ Ssn+1\{ε}.
Then s = s+

0 0 . . . 0s+
k , with si ∈ Ssn for all i and s+

i is the result of replacing
every number j in si by j + 1. Define then hn(s) as (s0, (s1, . . . , sk)). Note
that for the sequence s = 0, k ≥ 1. In other words, k represents the number
of 0’s occurring in s. It is easy to see that hn is a bijection.



Chapter 7. The linearized version 157

We know prove that s < s′ yields hn(s) < hn(s′) by induction on lh(s)+lh(s′).
If s or s′ is ε, then this is trivial. So assume s = s+

0 0 . . . 0s+
k and s′ =

s′+0 0 . . . 0s′+l . If k = 0, then s < s′ yields l = 0 and s+
0 < s′+0 , or l > 0 and

s+
0 ≤ s′+0 . In both cases, hn(s) < hn(s′). Assume k, l > 0. s < s′ yields s+

0 ≤
s′+0 and s+

1 0 . . . 0s+
k ≤ s′+j 0 . . . 0s′+l for a certain j ≥ 1. From s+

1 0 . . . 0s+
k ≤

s′+j 0 . . . 0s′+l , one can prove as before (or by an additional induction argument

on k) that s+
1 ≤ s′+j and s+

2 0 . . . 0s+
k ≤ s′+j20 . . . 0s′+l for a certain j2 ≥ j + 1.

In the end, we have s+
0 ≤ s′+0 and (s+

1 , . . . , s
+
k ) ≤∗ (s′+1 , . . . , s

′+
l ). This yields

hn(s) < hn(s′). The reverse direction hn(s) < hn(s′)→ s < s′ can be proved
in a similar way.

Therefore, from the maximal order type of Ss1, which is ω, one can calculate
the maximal order types of all Ssn. Following the same template, one also
obtains the following lemma.

Lemma 7.9. 1. o(Ssn+1) = o(Ssn)⊗ o((Ssn)∗),
2. o(Swn+1) = o(Swn+1[0]) = o(Ssn+1[0]) = o((Ssn)∗).

Proof. The first equality follows from Theorem 7.8. The equality o(Ssn+1[0]) =
o((Ssn)∗) also follows from the same theorem. o(Swn+1[0]) = o(Ssn+1[0]) is triv-
ial as they refer to the same ordering. To prove o(Swn+1) = o(Swn+1[0]), note
that Swn+1[0] ⊆ Swn+1, hence o(Swn [0]) ≤ o(Swn ). Furthermore, the mapping e
which plots s0 . . . sk−1 to 0s0 . . . sk−1 is a quasi-embedding from Swn to Swn [0].
Hence, o(Swn ) ≤ o(Swn [0]).

For example, we have o(Sw2 ) = ωω
ω
. We are especially interested in sub-

structures of these wpo’s with maximal order types exactly equal to an exact

ω-tower ωω
··
·ω

(without any ‘+1’). Luckily, this corresponds to Sn.

Lemma 7.10. o(S
w
n+1) = o(S

w
n+1[0]) = o(S

sgap
n+1 [0]) = o((S

sgap
n [0])∗)

= o((S
w
n [0])∗) = o((S

w
n )∗).

Proof. Similar as in Theorem 7.8 and Lemma 7.9.

Corollary 7.11. For all n, o(S
w

n ) = ω2n−1.
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7.3 From an order-theoretical view

7.3.1 Maximal linear extension of gap-sequences with
one and two labels

It is trivial to show that the order type of (T1[0], <) is equal to ω, hence
(T1[0], <) corresponds to a maximal linear extension of S

sgap
1 [0]. So we can

concentrate on the case of T2[0]. We show that the order type of (T2[0], <)
is equal to ωω

ω
. This implies that the ordinal notation system (T2[0], <)

corresponds to a maximal linear extension of S
w

2 [0] and that the order type
of (T2[0], <) is equal to o(S

w

2 ). More specifically, we show that

sup
n1,...,nk

ϑ0ϑ
n1
1 . . . θ0ϑ

nk
1 (0) = ωω

ω

.

The supremum is equal to ϑ0ϑ1ϑ2(0). Knowing that Ωi is defined as ϑi(0),
we thus want to show that

ϑ0ϑ1Ω2 = ωω
ω

.

Theorem 7.12. ϑ0ϑ1Ω2 = ωω
ω
.

Proof. ϕω is the ordinal notation system defined without addition based on
Veblen’s hierarchy (see Subsection 1.2.5). We present a order-preserving
bijection from ϕω0 to ϑ0ϑ1Ω2. Lemma 1.25 then yields the assertion.

Define χ0 := 0 and χϕnα := ϑ0ϑ
n
1χα. Then χ is order preserving. Indeed,

let us show α < β → χα < χβ by induction on lh(α) + lh(β). If α = 0
and β 6= 0, then trivially χα < χβ. Let α = ϕnα

′ < β = ϕmβ
′. If α′ < β

and n < m then the induction hypothesis yields χα′ < ϑ0ϑ
m
1 χβ

′ and then
n < m yields χα = ϑ0ϑ

n
1χα

′ < ϑ0ϑ
m
1 χβ

′ = χβ. If n = m and α′ < β′ then
χα = ϑ0ϑ

n
1χα

′ < ϑ0ϑ
n
1χβ

′ = χβ. If α ≤ β′, then χα ≤ χβ′ < ϑ0ϑ
m
1 χβ

′.

It might be instructive, although it is in fact superfluous, to redo the argu-
ment for the standard representation for ωω

ω
. First, we need an additional

lemma.

Lemma 7.13. Let α, β and γ be elements of T .

1. α < β < Ω1 and li < n, ki > 0 for all i ≤ r yield
ϑk0

0 ϑ
l1
1 ϑ

k1
0 . . . ϑlr1 ϑ

kr
0 ϑ

n
1α < ϑ0ϑ

n
1β,
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2. α < β < Ω1 and lij < n, kij > 0 for all i, j yield

ϑk00
0 ϑl01

1 ϑk01
0 . . . ϑ

l0m0
1 ϑ

k0m0
0 ϑn1 . . . ϑ

kr0
0 ϑlr11 ϑkr10 . . . ϑ

lrmr
1 ϑ

krmr
0 ϑn1α <

ϑp00
0 ϑq01

1 ϑp01
0 . . . ϑ

q0s0
1 ϑ

p0s0
0 ϑn1 . . . ϑ

pr0
0 ϑqr11 ϑpr10 . . . ϑ

qrsr
1 ϑ

prsr
0 ϑn1β,

3. li < n and ki > 0 for all i ≤ r yield ϑk0
0 ϑ

l1
1 ϑ

k1
0 . . . ϑlr1 ϑ

kr
0 0 < ϑ0ϑ

n
1 0.

Proof. The first assertion follows by induction on r: If r = 0, then ϑk0
0 ϑ

n
1α <

ϑ0ϑ
n
1β follows by induction on k0. If r > 0, then the induction hypothesis

yields ξ = ϑk1
0 . . . ϑlr1 ϑ

kr
0 ϑ

n
1α < ϑ0ϑ

n
1β. We have ξ < ϑn−l11 β because k1 > 0,

and thus ϑl11 ξ < ϑn1β. We prove ϑk0
0 ϑ

l1
1 ξ < ϑ0ϑ

n
1β by induction on k0. First

note that we know k0(ϑl11 ξ) = ξ < ϑ0ϑ
n
1β, hence the induction base k0 = 1

easily follows. The induction step is straightforward.
The second statement follows from the first by induction on the number of
involved blocks.
The third assertion follows by induction on r.

Theorem 7.14. ωω
ω

= ϑ0ϑ1Ω2

Proof. Define χ : ωω
ω → ϑ0ϑ1Ω2 as follows. Take α < ωω

ω
. Let n be the

least number such that α < ωω
n
. Let m then be minimal such that

α = ωω
n−1·m · αm + · · ·+ ωω

n−1·0 · α0,

with αm 6= 0 and α0, . . . , αm < ωω
n−1

. Put χα as the element

ϑ0ϑ
n
1χ(α0) · · ·ϑ0ϑ

n
1χ(αm).

It is trivial to see that χ is surjective. We claim that α < β yields χ(α) <
χ(β). We prove the claim by induction on lh(α) + lh(β).

Let α = ωω
n−1·m ·α′+ α̃ and β = ωω

n′−1·m′ ·β′+ β̃ with α′, β′ > 0, α̃ < ωω
n−1·m

and β̃ < ωω
n′−1·m′ . If n < n′, then χ(β) contains a consecutive sequence

of ϑn
′

1 which has no counterpart in χ(α). Hence, χα < χβ follows from
a combination of the second and third assertion of the previous lemma. If
n = n′ and m < m′ then χ(β) contains at least one more consecutive sequence
of ϑn1 than the ones occurring in χ(α). Thus again χα < χβ using the
second and third assertion of the previous lemma. If n = n′ and m = m′

and α′ < β′ then the induction hypothesis yields χ(α′) < χ(β′). We know
χ(α) = χ(α̃)ϑ0ϑ

n
1χ(α′) and χ(β) = χ(β̃)ϑ0ϑ

n
1χ(β′). So, the second assertion

of the previous lemma yields the assertion. If n = n′ and m = m′ and
α′ = β′ then α̃ < β̃ and the induction hypothesis yield χ(α̃) < χ(β̃) and
χ(α) = χ(α̃)ϑ0ϑ

n
1χ(α′) and χ(β) = χ(β̃)ϑ0ϑ

n
1χ(β′). The assertion follows

from the sixth assertion of Lemma 1.45.
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7.3.2 The order type of (Tn[0], <) with n > 2

As mentioned in the introduction Section 7.1, we first believed that the
order type of T3[0] is equal to the maximal order type of S

wgap
3 , meaning

ωω
ωω
ω

= ϑ0ϑ1ϑ2Ω3. Surprisingly, calculations of the author showed that this
is actually wrong. These calculations were later turned into a formal proof by
Weiermann. We now show that ωn+2 = ϑ0ϑ1ϑ2 . . . ϑnΩn+1, where the latter
is the order type of (Tn+1[0], <). One can also find these proofs in the joint
article [65].

Lower bound

In this subsection, we prove ωn+2 ≤ ϑ0ϑ1ϑ2 . . . ϑnΩn+1, where n ≥ 1.

Definition 7.15. 1. If α ∈ T , define

diα :=

ϑiα if Sα ≤ i,

ϑidi+1α otherwise.

2. For ordinals in π(ω), define · as follows:

• 0 := 0,

• πiα := di+1α.

3. On T , define 0[β] := β and (ϑiα)[β] := ϑi(α[β]).

4. Let ψ be the function from ϕπ0(n)0 to T which is defined as follows:

• ψ0 := 0,

• ψϕπ0αβ := d0α[ψβ].

It is easy to see that the image of ψ lies in Tn+1[0]. We show that the function
ψ is order-preserving in order to obtain a lower bound for the order type of
Tn+1[0].

Lemma 7.16. Let α, β be elements of π(ω) and γ, δ elements of T .

1. α < β and γ, δ < Ω yield α[γ] < β[δ],

2. γ < δ < Ω yields α[γ] < α[δ],

3. Gkα < β and γ, δ < Ω yield kk+1α[γ] < dk+1β[δ],
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4. α < β, Gkα < β and γ, δ < Ω yield dk+1α[γ] < dk+1β[δ],

5. If ζ, η ∈ ϕπ0(n)0, then ζ < η yields ψζ < ψη.

Proof. We prove assertions 1.–4. simultaneously by induction on lh(α). If
α = 0, then 1. and 2. are trivial. Assertion 3. is also easy to see because
kk+1α[γ] = γ < Ω ≤ dk+1β[δ]. In assertion 4., dk+1α[γ] = ϑk+1γ. Now,
dk+1β[δ] = ϑk+1ζ for a certain ζ ≥ Ω. Therefore, γ < ζ and kk+1γ = γ <
dk+1β[δ], which yields dk+1α[γ] = ϑk+1γ < dk+1β[δ].

From now on, assume α = πiα
′.

Assertion 1.: α < β yields β = πjβ
′ with i ≤ j. If i < j, then the assertion

follows. Assume i = j. Then α′ < β′. We know that Gi(α
′) < α′ because

πiα
′ ∈ π(ω). Assertion 4. and α′ < β′ yield di+1α′[γ] < di+1β′[δ], which is

α[γ] < β[δ].

Assertion 2.: We know that Gi(α
′) < α′, hence Gl(α

′) < α′ for all l ≥ i.
Assertion 3. then yields kl+1α′[γ] < dl+1α′[δ] for all l ≥ i. If α′ = 0, then
assertion 2. easily follows from γ < δ. Assume α′ 6= 0.

If S(α′) ≤ i + 1, then α[γ] = di+1α′[γ] = ϑi+1α′[γ]. Therefore, assertion 2.
follows if α′[γ] < α′[δ] and ki+1α′[γ] < ϑi+1α′[δ] = di+1α′[δ]. We already
know that the second inequality is valid. The first inequality follows from
the main induction hypothesis.

Assume now S(α′) > i + 1. We claim that djα′[γ] < djα′[δ] for all j ∈
{i + 1, . . . , S(α′)}. Assertion 2. then follows from j = i + 1. We prove our
claim by induction on l = S(α′) − j ∈ {0, . . . , S(α′) − i − 1}. If l = 0,
then j = S(α′) > i + 1. Then the claim follows if kjα′[γ] < djα′[δ] and
α′[γ] < α′[δ]. The first inequality follows from assertion 3. and the fact
that Gj−1(α′) < α′. The second inequality follows from the main induction
hypothesis. Now, assume that the claim is true for l. We want to prove that
it is true for l + 1 = S(α′) − j. Hence, l = S(α′) − (j + 1). The induction
hypothesis yields dj+1α′[γ] < dj+1α′[δ]. We also see that j ≥ i+1, so j−1 ≥ i,
hence kjα′[γ] < djα′[δ]. Because S(α′) − j = l + 1 > 0, we have S(α′) > j.
Hence, djα′[γ] = ϑjdj+1α′[γ]. The claim follows if kjα′[γ] < djα′[δ] and
dj+1α′[γ] < dj+1α′[δ], but we already know that both inequalities are true.

Assertion 3.: If i < k, then kk+1α[γ] = α[γ] < dk+1β[δ] because S(α[γ]) =
i+ 1 < k + 1.
If i > k, then kk+1α[γ] = kk+1α′[γ]. Therefore, Gk(α) = Gk(α

′) ∪ {α′} < β
and the induction hypothesis yield the assertion.
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Assume that i = k. Then kk+1α[γ] = α[γ] = dk+1α′[γ] and Gk(α) = Gk(α
′)∪

{α′} < β. The induction hypothesis on assertion 4. yields dk+1α′[γ] <
dk+1β[δ], from which we can conclude the assertion.

Assertion 4.: α < β yields β = πjβ
′ with i ≤ j.

If i + 1 = S(α) ≤ k + 1, then dk+1α[γ] = ϑk+1α[γ]. There are two sub-
cases: either j + 1 = β[δ] ≤ k + 1 or not. In the former case, we obtain
dk+1β[δ] = ϑk+1β[δ]. Assertion 4. then follows from assertions 1. and 3. and
the induction hypothesis. In the latter case, we have dk+1β[δ] = ϑk+1dk+2β[δ].
Assertion 4. follows from α[γ] < dk+2β[δ] and assertion 3. The previous strict
inequality is valid because S(α[γ]) = i+ 1 ≤ k + 1 < k + 2.

From now on assume that i + 1 = S(α) > k + 1. Actually, we only assume
that S(α) ≥ k.

Gkα < β yields Glα < β for all l ≥ k. We claim that dj+1α[γ] < dj+1β[δ]
for all j ∈ {k, . . . , S(α)} and show this by induction on l = S(α) − j ∈
{0, . . . , S(α)− k}. The assertion then follows from taking l = S(α)− k.

If l = 0 or l = 1, then S(α) = k or equals k + 1, hence the claim follows
from the case S(α) ≤ k + 1. Assume that the claim is true for l ≥ 1. We
want to prove that this is also true for l + 1 = S(α) − j. The induction
hypothesis on l = S(α) − (j + 1) yields dj+2α[γ] < dj+2β[δ]. Now because
l ≥ 1, we have S(β) ≥ S(α) ≥ j + 2 > j + 1. So, dj+1α[γ] = ϑj+1dj+2α[γ]
and dj+1β[δ] = ϑj+1dj+2β[δ]. Then the claim is valid if dj+2α[γ] < dj+2β[δ]
and kj+1α[γ] < dj+1β[δ]. We already know the first strict inequality. The
second one follows from assertion 3. and j ≥ k.

Assertion 5.: We prove this by induction on lh(ζ) + lh(η). Assume ζ =
ϕπ0αγ < ϕπ0βδ = η. There are three cases.

Case 1: π0α < π0β and γ < η. The induction hypothesis yields ψ(γ) < ψ(η).
Furthermore, we know that α < β. If α = 0, then d0α[ψ(γ)] = ϑ0ψ(γ). We
want to check if this is strictly smaller than ψ(η) = d0β[ψ(δ)] = ϑ0d1β[ψ(δ)].
Trivially ψ(γ) < d1β[ψ(δ)]. Furthermore, k0(ψ(γ)) = ψ(γ) < ψ(η). Hence
ψ(ζ) = ϑ0ψ(γ) < ϑ0d1β[ψ(δ)] = ψ(η). Assume now 0 < α < β. We want to
prove that

d0α[ψ(γ)] = ϑ0d1α[ψ(γ)]

< d0β[ψ(δ)] = ϑ0d1β[ψ(δ)].

Assertion 4., α < β and G0(α) < α < β yield d1α[ψ(γ)] < d1β[ψ(δ)]. Addi-
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tionally,

k0d1α[ψ(γ)] = ψ(γ) < ψ(η) = ϑ0d1β[ψ(δ)],

hence d0α[ψ(γ)] < d0β[ψ(δ)].

Case 2: π0α = π0β and γ < δ. The induction hypothesis yields ψ(γ) < ψ(δ).
Assertion 2. on π0α then yields π0α[ψ(γ)] < π0α[ψ(δ)]. Hence, d1α[ψ(γ)] <
d1α[ψ(δ)] = d1β[ψ(δ)]. Additionally,

k0d1α[ψ(γ)] = ψ(γ) < ψ(δ) = k0(d1β[ψ(δ)]) ≤ ϑ0(d1β[ψ(δ)]),

hence d0α[ψ(γ)] < d0β[ψ(δ)].

Case 3.: π0α > π0β and ζ < δ. Then ψ(ζ) < ψ(δ) ≤ k0(d1β[ψ(δ)]) ≤
ϑ0(d1β[ψ(δ)]) = ψ(η).

Corollary 7.17. ωn+2 ≤ ϑ0ϑ1 . . . ϑnΩn+1

Proof. From Theorems 1.25 and 1.39, we know that the order type of ϕπ0(n)0
is ωn+2. Therefore, using assertion 5 in Lemma 7.16, we obtain ωn+2 ≤
otype(Tn+1[0]) = ϑ0 . . . ϑnΩn+1.

Upper bound

In this subsection, we prove ϑ0ϑ1ϑ2 . . . ϑnΩn+1 = otype(Tn+1[0]) ≤ ωn+2. For
this purpose, we introduce a new notation system T ′n with the same order
type as Tn.

Definition 7.18. Let n < ω. Define T ′n+1 as the least subset of Tn+1 such
that

• 0 ∈ T ′n+1,
• if α ∈ T ′n+1, Sα = i+ 1 and i < n, then ϑiα ∈ T ′n+1,
• if α ∈ T ′n+1, then ϑnα ∈ T ′n+1.

Note that for all α ∈ T ′n+1, we have Sα ≤ n. Let T ′0 be {0} and define T ′n[m]
accordingly as Tn[m].

Lemma 7.19. The order types of T ′n and Tn are equal.

Proof. Trivially, T ′n ⊆ Tn, hence otype(T ′n) ≤ otype(Tn). Now, we give an
order-preserving function ψ from Tn to T ′n. If n = 0, this function appears
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trivially. So assume n = m+ 1 > 0.

ψ : Tm+1 → T ′m+1,
0 7→ 0,
ϑiα 7→ ϑiϑi+1 . . . ϑmψ(α).

Let us first prove the following claim: for all i ≤ m, if ψ(ξ) < ψ(ζ) < Ωi+1 =
ϑi+10, then ψ(ϑiξ) < ψ(ϑiζ). We prove this claim by induction on m− i. i =
m, then ψ(ϑmξ) = ϑmψ(ξ) and ψ(ϑmζ) = ϑmψ(ζ). Hence, ψ(ϑmξ) < ψ(ϑmζ)
easily follows because km(ψ(ξ)) = ψ(ξ) < ψ(ζ) = km(ψ(ζ)) < ϑm(ψ(ζ)). Let
i < m. Then

ψ(ϑiξ) = ϑi . . . ϑmψ(ξ),

ψ(ϑiζ) = ϑi . . . ϑmψ(ζ).

Using the induction hypothesis, we obtain ψ(ϑi+1ξ) = ϑi+1 . . . ϑmψ(ξ) <
ψ(ϑi+1ζ) = ϑi+1 . . . ϑmψ(ζ). Furthermore, ki(ϑi+1 . . . ϑmψ(ξ)) = ki(ψ(ξ)) =
ψ(ξ) < ψ(ζ) = ki(ψ(ζ)) = ki(ϑi+1 . . . ϑmψ(ζ)) < ϑi(ϑi+1 . . . ϑmψ(ζ)). Hence,
ψ(ϑiξ) = ϑi . . . ϑmψ(ξ) < ψ(ϑiζ) = ϑi . . . ϑmψ(ζ). This finishes the proof of
the claim.

Now we prove by main induction on lh(α) + lh(β) that α < β yields ψ(α) <
ψ(β). If α = 0, then the claim trivially holds. Assume 0 < α < β.
Then α = ϑiα

′ and β = ϑjβ
′. If i < j, then ψ(α) < ψ(β) is also triv-

ial. Assume i = j ≤ m and let α′ = ϑj1 . . . ϑjkkiα
′ and β′ = ϑn1 . . . ϑnlkiβ

′

with j1, . . . , jk, n1, . . . , nl > i. α < β either yields α ≤ kiβ
′ or α′ < β′

and kiα
′ < β. In the former case, the induction hypothesis yields ψ(α) ≤

ψ(kiβ
′) = ki(ψ(ϑn1 . . . ϑnlkiβ

′)) = ki(ψ(β′)) = ki(ϑi+1 . . . ϑmψ(β′))
< ϑi(ϑi+1 . . . ϑmψ(β′)) = ψ(β).

Assume that we are in the latter case, meaning α′ < β′ and kiα
′ < β. The

induction hypothesis yields ψα′ < ψβ′ and ψ(kiα
′) < ψβ. Like before, we

attain ψ(kiα
′) = ki(ϑi+1 . . . ϑmψ(α′)) < ψβ = ϑi(ϑi+1 . . . ϑmψ(β′)). So if

we can prove ϑi+1 . . . ϑmψ(α′) < ϑi+1 . . . ϑmψ(β′), we are done. But this
follows from the claim: if i = j < m, then S(α′), S(β′) ≤ i + 1 ≤ m,
hence ψ(α′) < ψ(β′) < Ωi+2, so ϑi+1 . . . ϑmψ(α′) = ψ(ϑi+1α

′) < ψ(ϑi+1β
′) =

ϑi+1 . . . ϑmψ(β′). If i = j = m, then ϑi+1 . . . ϑmψ(α′) and ϑi+1 . . . ϑmψ(β′)
are actually ψ(α′) and ψ(β′) and we know that ψ(α′) < ψ(β′) holds.

The previous proof also yields that the order types of T ′n[m] and Tn[m] are
equal.
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The instructive part of the upper bound: ϑ0ϑ1ϑ2Ω3 ≤ ωω
ωω

In this subsection, we prove that ωω
ωω

is an upper bound for ϑ0ϑ1ϑ2Ω3 as an
instructive instance for the general case

ϑ0ϑ1ϑ2 . . . ϑnΩn+1 = otype(Tn+1[0]) ≤ ωn+2.

We will show this by proving that otype(T ′3[0]) ≤ ωω
ωω

. We start with two
simple lemmata, where we interpret Ωi as usual as the ith uncountable car-
dinal number for i > 0.

Lemma 7.20. If Ω2 · α + β < Ω2 · γ + δ and α, γ < ε0 and β, δ < Ω2 and if
β = ξ · β′ where β′ < Ω1 · ωγ + ωω

γ · δ and ξ < ωω
γ
, then Ω1 · ωα + ωω

α · β <
Ω1 · ωγ + ωω

γ · δ.

Proof. Note that it is possible that β, δ ≥ Ω1. If α = γ then β < δ and the
assertion is obvious. So assume α < γ. β′ < Ω1 ·ωγ +ωω

γ · δ yields β = ξβ′ <
ξ(Ω1 · ωγ + ωω

γ · δ) = Ω1 · ωγ + ωω
γ · δ since Ω1 and ωω

γ
are multiplicatively

closed. By the same argument ωω
α
β < ωω

α
(Ω1 ·ωγ+ωω

γ ·δ) = Ω1 ·ωγ+ωω
γ ·δ.

Finally, Ω1 · ωα + ωω
α · β < Ω1 · ωα + Ω1 · ωγ + ωω

γ · δ = Ω1 · ωγ + ωω
γ · δ.

Lemma 7.21. If Ω1 · α + β < Ω1 · γ + δ and α, γ < ε0 and β, δ < Ω1 and if
β < ωω

γ · δ, then ωω
α · β < ωω

γ · δ.

Proof. If α = γ, then β < δ and the assertion is obvious. So assume α < γ.
Then ωω

α · β < ωω
α
ωω

γ · δ = ωω
γ · δ.

The last two lemmas indicate how one might replace iteratively terms in ϑi
(starting with the highest level i) by terms in ω,+,Ωi in an order-preserving
way such that terms of level 0 are smaller than ε0.

Definition 7.22. Define E as the least set such that

• 0 ∈ E,
• if α ∈ E, then ωα ∈ E,
• if α, β ∈ E, then α + β ∈ E.

Define the subset P of E as the set of all elements of the form ωα for α ∈ E.
This actually means that P is the set of the additively closed ordinals strictly
below ε0.

A crucial role is played by the following function f .
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Definition 7.23. Let f(0) := 0 and f(ωα1 + α2) := ωα1 + f(α1) + f(α2).

This definition even works (by magic) also for non Cantor normal forms. So
if ωα1 + α2 = α2 we still have f(ωα1 + α2) = ωα1 + f(α1) + f(α2)[= f(α2)].
The function f is easily shown to be order-preserving. Moreover, one finds
ωα1 ≤ f(ωα1 + α2) < ωα1+1 if α2 < ωα1+1.

Fix a natural number n. We formally work with 4-tuples (α, β, γ, δ) ∈ E ×
T [n−1]×P ×E with α, δ ∈ E, γ ∈ P , β ∈ T [n−1] and δ < γ. Let T [−1] :=
{0}. We order these tuples lexicographically. Intuitively, we interpret such a
tuple as the ordinal

Ωn · α + γ · β + δ,

where Ωi is as usual the ith uncountable ordinal for i > 0, but now Ω0 is
interpreted as 0.

We note that the interpretation of (α, β, γ, δ) as an ordinal number is not
entirely correct: the lexicographic order on the tuples is not the same as the
induced order by the ordering on the class of ordinals On. But in almost all
applications, we know that γ = ωf(α). And if this true, we know that the
order induced by the ordering on On is the same as the defined lexicographic
one. Additionally, the encountered cases where γ 6= ωf(α), we know that if
we compare two tuples (α, β, γ, δ) and (α′, β′, γ′, δ′) such that α = α′, then
we already know that γ = γ′. Hence, the order induced by the ordering on
On between these terms is also the same as the lexicographic one.

β is either 0 or of the form ϑjβ
′ with j < n, hence we can interpret that

β < Ωn for n > 0. Assume that ζ ∈ P . Then we know that ζ · Ωn = Ωn.
Hence using all of these interpretations, ζ ·(α, β, γ, δ) is still a 4-tuple, namely
it is equal to (α, β, ζ · γ, ζ · δ). We can also define the sum between 4-tuples:
assume n > 0. If α′ > 0, then

(α, β, γ, δ) + (α′, β′, γ′, δ′) = Ωn · α + γ · β + δ + Ωn · α′ + γ′ · β′ + δ′

= Ωn · (α + α′) + γ′ · β′ + δ′

= (α + α′, β′, γ′, δ′)

If α′ = 0 and β′ = 0, then

(α, β, γ, δ) + (α′, β′, γ′, δ′) = Ωn · α + γ · β + δ + Ωn · α′ + γ′ · β′ + δ′

= Ωnα + γ · β + (δ + δ′)

= (α, β, γ, δ + δ′)
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We do not need the case α′ = 0 and β′ 6= 0. If n = 0, then

(α, β, γ, δ) + (α′, β′, γ′, δ′) = Ωn · α + γ · β + δ + Ωn · α′ + γ′ · β′ + δ′

= δ + δ′

= (0, 0, 0, δ + δ′)

From now on, we write

Ωn · α + γ · β + δ,

instead of the 4-tuple (α, β, γ, δ), although we know that the induced order
by the ordering on On is not entirely the same as the lexicographic one.

Definition 7.24. Define T alln as the set consisting of Ωn · α + ωf(α) · δ + γ,
where α, γ ∈ E with γ < ωf(α) and δ ∈ T [n− 1].

Note that after an obvious interpretation, T all0 = E and Tn ⊆ T [n−1] ⊆ T alln .

Lemma 7.25. Assume α′, β′ ∈ T [0]. If

α = ϑ1ϑ
n1
2 . . . ϑ1ϑ

np
2 α

′ < β = ϑ1ϑ
l1
2 . . . ϑ1ϑ

lq
2 β
′

with ni, li > 0, then

Ω1 · (ωn1 + · · ·+ ωnp) + ωω
n1+···+ωnp+np · α′ + ωω

n1+···+ωnp

+ ωω
n1+···+ωnp−1

+ · · ·+ ωω
n1

< Ω1 · (ωl1 + · · ·+ ωlq) + ωω
l1+···+ωlq+lq · β′ + ωω

l1+···+ωlq

+ ωω
l1+···+ωlq−1

+ · · ·+ ωω
l1 .

Proof. Note that f(ωn1 + · · · + ωnp) = ωn1 + · · · + ωnp + np and that ωn1 +
· · · + ωnp is not necessarily in Cantor normal form. We prove by induction
on lh(α)− lh(α′) + lh(β)− lh(β′) that the assumption yields

(ωn1 + · · ·+ ωnp , α′, ωn1 + · · ·+ ωnp−1 , . . . , ωn1)

<lex (ωl1 + · · ·+ ωlq , β′, ωl1 + · · ·+ ωlq−1 , . . . , ωl1).

From this inequality, the lemma follows.

If lh(α) = lh(α′), then p = 0. If q > 0, then this is trivial, so we can assume
that q is also 0. But then ωn1 + · · ·+ωnp = ωl1 + · · ·+ωlq = 0 and α′ = α <
β = β′. Now assume that p > 0. It is impossible that q = 0. α < β yields
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either ϑ1ϑ
n1
2 . . . ϑ1ϑ

np
2 α

′ < ϑ1ϑ
l2
2 . . . ϑ1ϑ

lq
2 β
′ or ϑn1

2 . . . ϑ1ϑ
np
2 α

′ < ϑl12 . . . ϑ1ϑ
lq
2 β
′

and ϑ1ϑ
n2
2 . . . ϑ1ϑ

np
2 α

′ < ϑ1ϑ
l1
2 . . . ϑ1ϑ

lq
2 β
′.

In the former case, the induction hypothesis yields

(ωn1 + · · ·+ ωnp , α′, ωn1 + · · ·+ ωnp−1 , . . . , ωn1)

<lex (ωl2 + · · ·+ ωlq , β′, ωl2 + · · ·+ ωlq−1 , . . . , ωl2).

If l2 ≤ l1, then trivially

(ωl2 + · · ·+ ωlq , β′, ωl2 + · · ·+ ωlq−1 , . . . , ωl2 , ωl1)

<lex (ωl1 + · · ·+ ωlq , β′, ωl1 + · · ·+ ωlq−1 , . . . , ωl1 + ωl2 , ωl1).

If l2 > l1, then

(ωl2 + · · ·+ ωlq , β′, ωl2 + · · ·+ ωlq−1 , . . . , ωl2)

= (ωl1 + ωl2 + · · ·+ ωlq , β′, ωl1 + ωl2 + · · ·+ ωlq−1 , . . . , ωl1 + ωl2)

<lex (ωl1 + · · ·+ ωlq , β′, ωl1 + · · ·+ ωlq−1 , . . . , ωl1 + ωl2 , ωl1).

Assume that we are in the latter case. ϑn1
2 . . . ϑ1ϑ

np
2 α

′ < ϑl12 . . . ϑ1ϑ
lq
2 β
′ yields

n1 < l1 or n1 = l1 and ϑ1ϑ
n2
2 . . . ϑ1ϑ

np
2 α

′ < ϑ1ϑ
l2
2 . . . ϑ1ϑ

lq
2 β
′.

Suppose n1 < l1. The induction hypothesis on

ϑ1ϑ
n2
2 . . . ϑ1ϑ

np
2 α

′ < ϑ1ϑ
l1
2 . . . ϑ1ϑ

lq
2 β
′

implies

(ωn2 + · · ·+ ωnp , α′, ωn2 + · · ·+ ωnp−1 , . . . , ωn2)

<lex (ωl1 + · · ·+ ωlq , β′, ωl1 + · · ·+ ωlq−1 , . . . , ωl1).

Let

s := (ωn2 + · · ·+ ωnp , α′, ωn2 + · · ·+ ωnp−1 , . . . , ωn2)

s′ := (ωl1 + · · ·+ ωlq , β′, ωl1 + · · ·+ ωlq−1 , . . . , ωl1).

Note that lh(s) = p and lh(s′) = q + 1. If lh(s) < lh(s′) and si = s′i for all
i < lh(s), then

(ωn1 + · · ·+ ωnp , α′, ωn1 + · · ·+ ωnp−1 , . . . , ωn1)

= (ωn2 + · · ·+ ωnp , α′, ωn2 + · · ·+ ωnp−1 , . . . , ωn2 , ωn1)

<lex (ωl1 + · · ·+ ωlq , β′, ωl1 + · · ·+ ωlq−1 , . . . , ωl1),
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where for the last inequality we need n1 < l1 if p = q. If there exists an index
j < min{lh(s), lh(s′)} such that sj < s′j and si = s′i for all i < j, then

(ωn1 + · · ·+ ωnp , α′, ωn1 + · · ·+ ωnp−1 , . . . , ωn1)

(ωn2 + · · ·+ ωnp , α′, ωn2 + · · ·+ ωnp−1 , . . . , ωn2 , ωn1)

<lex (ωl1 + · · ·+ ωlq , β′, ωl1 + · · ·+ ωlq−1 , . . . , ωl1).

Now assume n1 = l1. The induction hypothesis on ϑ1ϑ
n2
2 . . . ϑ1ϑ

np
2 α

′ <
ϑ1ϑ

l2
2 . . . ϑ1ϑ

lq
2 β
′ implies

(ωn2 + · · ·+ ωnp , α′, ωn2 + · · ·+ ωnp−1 , . . . , ωn2)

<lex (ωl2 + · · ·+ ωlq , β′, ωl2 + · · ·+ ωlq−1 , . . . , ωl2).

Let

s := (ωn2 + · · ·+ ωnp , α′, ωn2 + · · ·+ ωnp−1 , . . . , ωn2)

s′ := (ωl2 + · · ·+ ωlq , β′, ωl2 + · · ·+ ωlq−1 , . . . , ωl2).

Note that lh(s) = p and lh(s′) = q. If lh(s) < lh(s′) and si = s′i for all
i < lh(s), then one can easily prove

(ωn1 + ωn2 + · · ·+ ωnp , α′, ωn1 + · · ·+ ωnp−1 , . . . , ωn1 + ωn2)

<lex (ωl1 + ωl2 + · · ·+ ωlq , β′, ωl1 + · · ·+ ωlq−1 , . . . , ωl1 + ωl2),

hence

(ωn1 + ωn2 + · · ·+ ωnp , α′, ωn1 + · · ·+ ωnp−1 , . . . , ωn1 + ωn2 , ωn1)

<lex (ωl1 + ωl2 + · · ·+ ωlq , β′, ωl1 + · · ·+ ωlq−1 , . . . , ωl1 + ωl2)

<lex (ωl1 + ωl2 + · · ·+ ωlq , β′, ωl1 + · · ·+ ωlq−1 , . . . , ωl1 + ωl2 , ωl1).

If there exists an index j < min{lh(s), lh(s′)} such that sj < s′j and si = s′i
for all i < j, then also

(ωn1 + ωn2 + · · ·+ ωnp , α′, ωn1 + · · ·+ ωnp−1 , . . . , ωn1 + ωn2)

<lex (ωl1 + ωl2 + · · ·+ ωlq , β′, ωl1 + · · ·+ ωlq−1 , . . . , ωl1 + ωl2),

hence

(ωn1 + ωn2 + · · ·+ ωnp , α′, ωn1 + · · ·+ ωnp−1 , . . . , ωn1 + ωn2 , ωn1)

<lex (ωl1 + ωl2 + · · ·+ ωlq , β′, ωl1 + · · ·+ ωlq−1 , . . . , ωl1 + ωl2 , ωl1).
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Define τ0 as the mapping from T ′3[0] to T all0 = E as follows: let τ00 := 0. If
α = ϑ0ϑ1ϑ

n1
2 . . . ϑ1ϑ

np
2 α

′ with α′ ∈ T ′3[0] and n1, . . . , np, p > 0, define τ0α as

ωω
ωn1+···+ωnp ·(ωωn1+···+ωnp+np ·τ0α

′+ωω
n1+···+ωnp +ωω

n1+···+ωnp−1
+ · · ·+ωω

n1 ).

Lemma 7.26. Assume α, β ∈ T ′3[0]. If α < β, then τ0α < τ0β.

Proof. We prove this by induction on the length of α and β. If α = 0, then
this is trivial. So we can assume that 0 < α < β. Hence,

α = ϑ0ϑ1ϑ
n1
2 . . . ϑ1ϑ

np
2 α

′

and
β = ϑ0ϑ1ϑ

l1
2 . . . ϑ1ϑ

lq
2 β
′

with α′, β′ ∈ T ′3[0] and n1, . . . , np, l1, . . . , lq, p, q > 0.

We want to prove that

τ0α = ωω
ωn1+···+ωnp · (ωωn1+···+ωnp+np · τ0α

′ + ωω
n1+···+ωnp + · · ·+ ωω

n1 )

< τ0β = ωω
ωl1+···+ωlq · (ωωl1+···+ωlq+lq · τ0β

′ + ωω
l1+···+ωlq + · · ·+ ωω

l1 ).

α = ϑ0ϑ1ϑ
n1
2 . . . ϑ1ϑ

np
2 α

′ < β = ϑ0ϑ1ϑ
l1
2 . . . ϑ1ϑ

lq
2 β
′ yields two cases: either

α ≤ k0(ϑ1ϑ
l1
2 . . . ϑ1ϑ

lq
2 β
′) = β′ or ϑ1ϑ

n1
2 . . . ϑ1ϑ

np
2 α

′ < ϑ1ϑ
l1
2 . . . ϑ1ϑ

lq
2 β
′ and

α′ < β. In the former case, the induction hypothesis yields τ0α ≤ τ0β
′ < τ0β.

So assume the latter case. Then the induction hypothesis yields τ0α
′ < τ0β.

Using Lemma 7.25, we know that

Ω1 · (ωn1 + · · ·+ ωnp) + ωω
n1+···+ωnp+np · τ0α

′ + ωω
n1+···+ωnp

+ ωω
n1+···+ωnp−1

+ · · ·+ ωω
n1

< Ω1 · (ωl1 + · · ·+ ωlq) + ωω
l1+···+ωlq+lq · τ0β

′ + ωω
l1+···+ωlq

+ ωω
l1+···+ωlq−1

+ · · ·+ ωω
l1 .

If ωn1 + · · ·+ ωnp < ωl1 + · · ·+ ωlq , then

ωω
ωn1+···+ωnp · ωωn1+···+ωnp+np · τ0α

′ < ωω
ωn1+···+ωnp · ωωn1+···+ωnp+npτ0β = τ0β.

Therefore,

ωω
ωn1+···+ωnp · (ωωn1+···+ωnp+np · τ0α

′ + ωω
n1+···+ωnp + · · ·+ ωω

n1 )

< ωω
ωn1+···+ωnp · ωωn1+···+ωnp+np · τ0α

′

+ ωω
ωn1+···+ωnp · (ωωn1+···+ωnp + · · ·+ ωω

n1 )

< τ0β,
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because ωω
ωn1+···+ωnp · (ωωn1+···+ωnp + · · ·+ ωω

n1 ) < ωω
ωl1+···+ωlq

. We used the
standard observation that ξ < ρ+ ωµ and λ < µ imply ξ + ωλ < ρ+ ωµ.

Assume ωn1 + · · · + ωnp = ωl1 + · · · + ωlq and τ0α
′ < τ0β

′. Then τ0α <

ωω
ωn1+···+ωnp ·ωωn1+···+ωnp+np ·(τ0α

′+1) ≤ ωω
ωn1+···+ωnp ·ωωn1+···+ωnp+np ·τ0β

′ ≤
τ0β.

Assume ωn1 + · · · + ωnp = ωl1 + · · · + ωlq , τ0α
′ = τ0β

′ and ωω
n1+···+ωnp +

ωω
n1+···+ωnp−1

+ · · · + ωω
n1 < ωω

l1+···+ωlq + ωω
l1+···+ωlq−1

+ · · · + ωω
l1 . Then

trivially, τ0α < τ0β.

Proving the upper bound in general: ϑ0 . . . ϑnΩn+1 ≤ ωn+2

We show that otype(T ′n+1[0]) ≤ ωn+2. The previous section give us the idea of
how to deal with this question, however the order-preserving embeddings in
this subsection are slightly different than the ones proposed in the previous
Subsection 7.3.2 for technical reasons. Fix a natural number n strictly bigger
than 0.

Definition 7.27. τm are functions from T ′n+1[m] to T allm . We define τmα for
all m simultaneously by induction on the length of α. If m ≥ n + 1, then
T ′n+1[m] = T ′n+1 and define τmα = α = Ωm0 + ω0α + 0 for all α. Note that
α ∈ T ′n+1 ⊆ T [n] ⊆ T [m − 1]. Assume m ≤ n. Define τm0 as 0. Define

τmϑjα as ϑjα if j < m. Define τmϑmα as Ωmω
β +ωω

β
(ωf(β) · τmkmα+ η) + 1

if τm+1α = Ωm+1β + ωf(β)kmα + η.

First we prove that τm is well-defined.

Lemma 7.28. For all m > 0 and α ∈ T ′n+1[m], there exist uniquely de-
termined β and η with η < ωf(β) such that τmα = Ωmβ + ωf(β)km−1α + η.
Furthermore, η is either zero or a successor.

Proof. We prove the first claim by induction on lh(α) and n + 1 − m. If
m ≥ n + 1, then this is trivial by definition. Assume 0 < m ≤ n. From the
induction hypothesis, we know that there exist β, η, β1, η1 such that τm+1α =
Ωm+1β+ωf(β)kmα+η with η < ωf(β) and τmkmα = Ωmβ1+ωf(β1)km−1kmα+η1

with η1 < ωf(β1). We want to prove that there exist β′ and η′ such that
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τmϑmα = Ωmβ
′ + ωf(β′)km−1ϑmα + η′ with η′ < ωf(β′). Using the definition,

τmϑmα

= Ωmω
β + ωω

β

(ωf(β) · τmkmα + η) + 1

= Ωmω
β + ωω

β

(ωf(β) · (Ωmβ1 + ωf(β1)km−1kmα + η1) + η) + 1

= Ωm(ωβ + β1) + ωω
β

ωf(β)(ωf(β1)km−1kmα + η1) + ωω
β

η + 1

= Ωm(ωβ + β1) + ωω
β

ωf(β)ωf(β1)km−1kmα + ωω
β

ωf(β)η1 + ωω
β

η + 1

= Ωm(ωβ + β1) + ωf(ωβ+β1)km−1kmα + ωω
β

ωf(β)η1 + ωω
β

η + 1

= Ωm(ωβ + β1) + ωf(ωβ+β1)km−1ϑmα + ωω
β

ωf(β)η1 + ωω
β

η + 1.

Define β′ as ωβ + β1 > 0 and η′ as ωω
β
ωf(β)η1 + ωω

β
η + 1. Note that

ωω
β
ωf(β)η1 < ωω

β
ωf(β)ωf(β1) = ωf(β′), ωω

β
η < ωω

β+f(β) ≤ ωf(β′) and 1 <
ωf(β′), hence η′ < ωf(β′).

That η is either zero or a successor for all m and α follows by construction.

The argument in the proof of Lemma 7.28 is crucially based on the property
of f regarding non-normal forms. The lemma implies that τm is well-defined
for all m > 0 and it does not make sense for m = 0 because we did not define
k−1α. But, looking to the definition of τ0, it is easy to see that τ0 is also
well-defined.

Note that one can easily prove τ0α ∈ T all0 for all α ∈ T ′n+1[0]. Furthermore,
τ0α is also either zero or a successor ordinal. For all m and α, define (τmα)−

as τmα, if η is zero, and as τmα but with η−1 instead of η, if η is a successor.
Additionally, note that if m > 0 and τmα = Ωmβ + ωf(β)km−1α + η we have
β > 0 iff η > 0.

In the next theorem, we will again use the standard observation that ξ <
ρ+ ωµ and λ < µ imply ξ + ωλ < ρ+ ωµ.

Theorem 7.29. For all natural m and α, β ∈ T ′n+1[m], if α < β, then
τmα < τmβ.

Proof. We prove this theorem by induction on lhα+ lhβ. If α and/or β are
zero, this is trivial. So we can assume that α = ϑiα

′ and β = ϑjβ
′. One

can easily prove the statement if i < j, even if j = m. So we can assume
that i = j. If i = j < m, then this is also easily proved. So suppose that
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i = j = m. If m > n, then τmα = α < β = τmβ, hence we are done. So we
can also assume that m ≤ n.

α = ϑmα
′ < ϑmβ

′ yields α ≤ kmβ
′ or α′ < β′ and kmα

′ < β. In the former
case, the induction hypothesis yields τmα ≤ τmkmβ

′ < τmϑmβ
′ = τmβ, where

τmkmβ
′ < τmϑmβ

′ follows from the definition of τmϑmβ
′. (One can also look

at the proof of Lemma 7.28 for m > 0. The case m = 0 is straightforward.)
So we only have to prove the assertion in the latter case, i.e. if α′ < β′ and
kmα

′ < β. The induction hypothesis yields τm+1α
′ < τm+1β

′ and τmkmα
′ <

τmβ. Assume

τm+1α
′ =Ωm+1 · α1 + ωf(α1) · kmα′ + α2,

τm+1β
′ =Ωm+1 · β1 + ωf(β1) · kmβ′ + β2,

where α2 < ωf(α1), β2 < ωf(β1). Then

τmα =Ωm · ωα1 + ωω
α1 (ωf(α1) · τmkmα′ + α2) + 1,

τmβ =Ωm · ωβ1 + ωω
β1 (ωf(β1) · τmkmβ′ + β2) + 1.

The inequality τm+1α
′ < τm+1β

′ yields α1 ≤ β1. Assume first that α1 = β1.
Then τm+1α

′ < τm+1β
′ yields kmα

′ ≤ kmβ
′. If kmα

′ = kmβ
′, then α2 < β2 and

τmα < τmβ. If kmα
′ < kmβ

′ then the induction hypothesis yields τmkmα
′ <

τmkmβ
′ and ωf(α1) · τmkmα′ + α2 < ωf(α1) · τmkmβ′ + β2, since α2 < ωf(α1).

We then find that τmα < τmβ. So we may assume that α1 < β1.

Case 1: kmα
′ < ϑm0. Then τmkmα

′ = kmα
′. Hence,

τmα = Ωm · ωα1 + ωω
α1 (ωf(α1) · kmα′ + α2) + 1

< Ωm · ωβ1 + ωω
β1 (ωf(β1) · τmkmβ′ + β2) + 1

= τmβ

follows in a straightforward way.

Case 2: kmα
′ ≥ ϑm0. Using the definition, we then have (τmkmα

′)− + 1 =
τmkmα

′. We show that

ωω
α1ωf(α1) · (τmkmα′)− + ωω

α1 (ωf(α1) + α2) + 1 < (τmβ)−

holds, hence

τmα = Ωm · ωα1 + ωω
α1ωf(α1) · (τmkmα′)− + ωω

α1 (ωf(α1) + α2) + 1

< Ωm · ωα1 + (τmβ)−

= (τmβ)−

< τmβ.
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We know τmkmα
′ < τmβ, hence

(τmkmα
′)− < (τmβ)− = Ωm · ωβ1 + ωω

β1 (ωf(β1) · τmkmβ′ + β2).

Therefore, ωω
α1ωf(α1) · (τmkmα′)− < ωω

α1ωf(α1) · (τmβ)− = (τmβ)− because
ωω

α1ωf(α1) = ωf(ωα1 ) and f(ωα1) < ωα1+1 ≤ ωβ1 .

The last term in the normal form of ωω
β1 · β2 is bigger than ωω

β1 . Note
that τm+1β

′ = Ωm+1 · β1 + ωf(β1) · kmβ′ + β2. The observation just before
this theorem yields β2 > 0 otherwise β1 is zero, a contradiction (because
β1 > α1). So if

ωω
α1 (ωf(α1) + α2) + 1 < ωω

β1 ,

we can finish the proof by the standard observation ξ < ρ + ωµ and λ < µ
imply ξ + ωλ < ρ+ ωµ.

Now,

ωω
α1 (ωf(α1) + α2) + 1

= ωω
α1ωf(α1) + ωω

α1α2 + 1

< ωω
β1

because ωω
α1α2 < ωω

α1ωf(α1) = ωf(ωα1 ) and f(ωα1) < ωα1+1 ≤ ωβ1 .

Lemma 7.30. For all α ∈ T ′n+1[m + 1] we have that if τm+1α = Ωm+1β +
ωf(β)kmα + η, then β < ω0 = ω0 if m ≥ n,

β < ωn−m if m < n.

Proof. We prove this by induction. If m ≥ n, then τm+1α = Ωm+10 + ω0α,
hence we are done. Assumem < n. If α = ϑjα

′ with j < m+ 1, then β = 0 <
ωn−m. Assume α = ϑm+1α

′. Assume τm+2α
′ = Ωm+2β

′+ωf(β′)km+1α
′+η′ and

τm+1km+1α
′ = Ωm+1β1+ωf(β1)kmkm+1α

′+η1. From the induction hypothesis,
we know β′ < ωn−m−1 and β1 < ωn−m. Then

τm+1α

= Ωm+1ω
β′ + ωω

β′

(ωf(β′)(Ωm+1β1 + ωf(β1)kmkm+1α
′ + η1) + η′) + 1

= Ωm+1ω
β′ + ωω

β′

ωf(β′)(Ωm+1β1 + ωf(β1)kmα
′ + η1) + ωω

β′

η′ + 1

= Ωm+1(ωβ
′
+ β1) + ωω

β′

ωf(β′)(ωf(β1)kmα
′ + η1) + ωω

β′

η′ + 1.

Now, ωβ
′
+ β1 < ωn−m.
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Lemma 7.31. Let n ≥ 1. For all α ∈ T ′n+1[0] we have that τ0α < ωn+2.

Proof. We prove this by induction on lh(α). If α = 0, this is trivial. Assume
α ∈ T ′n+1[0], meaning α = ϑ0α

′ with α′ ∈ T ′n+1[1]. Assume τ1α
′ = Ω1β

′ +
ωf(β′)k0α

′+η′ with η′ < ωf(β′). Using Lemma 7.30, we know that β′ < ωn−0 =
ωn. Additionally, the induction hypothesis yields τ0k0α

′ < ωn+2. Now,

τ0ϑ0α
′ = ωω

β′

(ωf(β′)τ0k0α
′ + η′) + 1.

From the definition of f , one obtains that f(β′) ≤ β′ ·ω. Hence, ωf(β′)τ0k0α
′+

η′ < ωf(β′)(τ0k0α
′ + 1) < ωn+2, so τ0ϑ0α

′ < ωn+2.

Corollary 7.32. otype(T ′n+1) ≤ ωn+2.

Proof. By Theorem 7.29, τ0 is an order preserving embedding from T ′n+1[0]
to T all0 = E. Furthermore, from Lemma 7.31, we know τ0α < ωn+2 for all
α ∈ T ′n+1[0]. Hence otype(T ′n+1) ≤ ωn+2.

Corollary 7.33. ϑ0ϑ1 . . . ϑnΩn+1 ≤ ωn+2.

Proof. By Lemma 7.19, we know

ϑ0ϑ1 . . . ϑnΩn+1 = otype(Tn+1[0]) = otype(T ′n+1[0]),

hence the previous corollary yields ϑ0ϑ1 . . . ϑnΩn+1 ≤ ωn+2.

7.3.3 Binary ϑ-functions

We were not able to give a positive answer to the following question: Does
there exist a suitable choice of unary functions that realizes a maximal linear
extension of S

wgap
n ?. However, if we allow binary functions, this is possible.

For the sake of completeness, we show this here, although the proofs are due
to Weiermann.

Let n be a fixed non-negative integer. We also use the notation Tn, however
this is different than the previous one.

Definition 7.34. Let Tn be the least set such that the following holds. On
Tn, define S and Ki.

1. 0 ∈ Tn, S0 := −1, Ki0 := ∅,
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2. if α, β ∈ Tn, Sα ≤ i + 1 and Sβ ≤ i < n, then θiαβ ∈ Tn, Sθiαβ := i
and

Kjθiαβ :=

Kjα ∪Kjβ if j < i,

{θiαβ} otherwise.

Note that all indices in Tn are strictly smaller than n.

Definition 7.35. For θiαβ, θiγδ ∈ Tn, define θiαβ < θiγδ iff either i < j or
i = j and one of the following alternatives holds:

• α < γ & Kiα ∪ {β} < θjγδ,

• α = γ & β < δ,

• α > γ & θiαβ ≤ Kiγ ∪ {δ}.

Let 0 < θiαβ for all θiαβ ∈ Tn\{0}.

Here θiαβ ≤ Kiγ ∪ {δ} means that θiαβ ≤ ξ for every ξ ∈ Kiγ ∪ {δ}.

Lemma 7.36. For θiαβ ∈ Tn, we have β < θiαβ.

Proof. This can be proven by induction on lh(β).

Definition 7.37. Define OTn ⊆ Tn as follows.

1. 0 ∈ OTn,

2. if α, β ∈ OTn, Sα ≤ i+ 1, Sβ ≤ i < n and Kiα = ∅, then θiαβ ∈ OTn

Note that Kiα = ∅ yields that α does not contain any θj for j ≤ i.

Definition 7.38. If K0α = ∅, let α− be the result of replacing every oc-
curence of θi by θi−1.

Lemma 7.39. If α < β & K0α = K0β = ∅, then α− < β− and (Ki+1α)− =
Kiα

−.

Proof. This can be proven in a straightforward way by induction on lh(α) +
lh(β).

Therefore, if θiαβ ∈ OTn, then α− is defined and it is an element of OTn−1.
Additionally, if i = 0, then S(α−), S(β) ≤ 0.

Definition 7.40. Define OTn[0] as OTn ∩ Ω1, where Ω1 := θ000
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Definition 7.41. Define o1 : OT1[0] → ω as follows. An arbitrary element
of OT1 is of the form θ0(0, θ0(0, . . . θ0(0, 0) . . . )). Define the image of this
element under o1 as k if θ0(·, ·) occurs k many times. Define on : OTn[0]→
ω2n−1 for n > 1 as follows.

1. on(0) := 0,

2. on(θ0αβ) := ϕon−1(α−)on(β).

Note that S(α−), S(β) ≤ 0 if θ0αβ ∈ OTn[0].

Theorem 7.42. For every n ≥ 1, on is order-preserving and surjective.

Proof. The surjectivity of on is easy to prove. We prove that on is order-
preserving. If n = 1, this is trivial. Assume n > 1 and assume that on−1

is order preserving. We will show that for all α, β ∈ OTn[0], α < β yields
on(α) < on(β). If α and/or β are equal to zero, this is trivial. Assume
0 < α < β. Let α = θ0α1α2 and β = θ0β1β2. Then α < β iff one of the
following cases holds:

1. α1 < β1 and α2 < θ0β1β2,
2. α1 = β1 and α2 < β2,
3. α1 > β1 and θ0α1α2 ≤ β2.

Note that α1 < β1 yields α−1 < β−1 by Lemma 7.39, hence on−1(α−1 ) <
on−1(β−1 ). Furthermore, the induction hypothesis yields that the previous
case i. is equivalent with the following case i. for all i.

1. on−1α
−
1 < on−1β

−
1 and onα2 < onθ0β1β2,

2. on−1α
−
1 = on−1β

−
1 and onα2 < onβ2,

3. on−1α
−
1 > on−1β

−
1 and onθ0α1α2 ≤ onβ2.

Hence the above case i. is equivalent with the following case i.:

1. on−1α
−
1 < on−1β

−
1 and onα2 < ϕon−1β

−
1
onβ2,

2. on−1α
−
1 = on−1β

−
1 and onα2 < onβ2,

3. on−1α
−
1 > on−1β

−
1 and ϕon−1α

−
1
onα2 ≤ onβ2.

This is actually the definition of ϕon−1α
−
1
onα2 < ϕon−1β

−
1
onβ2, so onθ0α1α2 <

onθ0β1β2.

This yields the following corollary.
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Corollary 7.43. otype(OTn[0]) = ω2n−1 if n ≥ 1.

This ordinal notation system corresponds to a maximal linear extension of
S
s
n[0] = S

w
n [0].

Definition 7.44. Define f from S
s
n to OTn as follows. f(ε) := 0 if ε is the

empty sequence. f(ii1 . . . ikj~s) := θi(f(i1 . . . ik))(f(j~s)) if i < i1, . . . , ik and
j ≤ i. This yields that f(i) is defined as θi(0, 0).

Lemma 7.45. OTn is a linear extension of S
s

n.

Proof. We prove by induction on the length of s and t that s ≤sgap t yields
f(s) ≤ f(t). If s and/or t are ε, then this is trivial. Assume not, then
s = ii1 . . . ikj~s′ and t = pp1 . . . prq~t′ with i1, . . . , ik > i ≥ j and p1, . . . , pr >
p ≥ q. If i < p, then f(s) ≤ f(t) is trivial. Furthermore, s ≤sgap t yields
that i > p is impossible. Therefore we can assume that i = p. If the
first i of s is mapped into q~t′ according to the inequality s ≤sgap t, then

i = q and s ≤sgap ~qt′, hence f(s) ≤ f(qt′). From Lemma 7.36, we know

f(q~t′) < f(t), hence we are done. Assume that the first i of s is mapped onto
the first i = p of t according to the s ≤sgap t inequality. Then j~s′ ≤sgap q~t′
and i1 . . . ik ≤sgap p1 . . . pr. The induction hypothesis yields f(j~s′) ≤ f(q~t′)
and f(i1 . . . ik) ≤ f(p1 . . . pr). If f(i1 . . . ik) = f(p1 . . . pr), then f(s) ≤ f(t)
follows from f(j~s′) ≤ f(q~t′). If f(i1 . . . ik) < f(p1 . . . pr), then f(s) ≤ f(t)
follows from f(j~s′) ≤ f(q~t′) < f(t) and Ki(f(i1 . . . ik)) = ∅.

Corollary 7.46. OTn[0] is a maximal linear extension of S
w

n [0] = S
s

n[0].

Proof. The previous lemma yields that OTn[0] is a linear extension of Sn[0].
We also know that otype(OTn[0]) = ω2n−1 = o(Sn[0]).

In a sequel project, we intend to determine the relationship between other
ordinal notation systems without addition with the systems studied here.
More specifically, we intend to look at ordinal diagrams [79], Gordeev-style
ordinal notation systems [34] and non-iterated ϑ-functions [14,91].
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7.4 From a reverse mathematical point of view

The subsection explores the reverse mathematical strength of a statement
about the sequences with the gap-embeddability relation. Well-ordering prin-
ciples, i.e.

∀X(WO(X)→ WO(f(X))),

are interesting statements that are quite often strong enough to prove axioms
of specific theories over a fixed base theory. For example if f(X) = ωX , then
this well-ordering principle yields ACA0 over RCA0 (see Lemma 1.63). A
similar observation is also valid for wpo’s: a well-partial-ordering principle of
the form ∀X(‘X is a wpo’ → ‘f(X) is a wpo’) is normally strong enough to
imply a specific theory in the context of reverse mathematics over a fixed base
theory. For example, if f(X) is the Higman order on X, then this statement
also implies ACA0 (again, see Lemma 1.63).

We are interested in the reverse mathematical strength of sequences with
the gap-embeddability relation. We only have the true statement ∀n(‘Swgapn

is a wpo’), but this assertion is too weak to imply a theory in the context
of reverse mathematics over RCA0. So we have to generalize this statement
to arbitrary wpo’s. If one considers X∗ with the gap-embeddability relation
instead of Sn = {0, . . . , n − 1}∗ (with X a wpo), the statement is not true
in general. So we have to modify the statement ∀n(‘Swgapn is a wpo’) in a
different way. The proposed form was stated by Keita Yokoyama in a private
communication with the author. More precisely, Keita Yokoyama wondered
what the reverse mathematical strength is of the statement

∀n∀Q∀η [(WPO(Q) ∧ η : Q→ {0, . . . , n})→ WPO(Q∗,≤η,gap)].

Here, the wpo (Q∗,≤η,gap) has the following ordering:

(q1, . . . , qk) ≤η,gap (q′1, . . . , q
′
l)

⇐⇒ ∃1 ≤ i1 < · · · < ik ≤ l such that qj ≤Q q′ij for every j,

(η(q1), . . . , η(qk)) = (η(q′i1), . . . , η(q′ik)),

and for all j = 1, . . . , k − 1: if ij < r < ij+1, then η(q′r) ≥ η(q′ij+1
).

As you can see, this ordering uses a labeling function η. On Q∗, we can define
the strong gap-embeddability relation ≤η,sgap in the same way, but we have
to add the following line:

if r < i1, then η(q′r) ≥ η(q′i1).
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Although, one can define a wpo in many different ways (see Lemma 1.49),
we have to fix one definition because the different versions of the definition
are not computably equivalent, meaning that they are not equivalent over
the base theory RCA0. For more information on this subject from a reverse
mathematical point of view, we refer to [17,30]. We use the usual definition
(see Definition 1.46).

Before we answer Yokoyama’s question, it is also worth to mention other
results from the literature. For example, Gordeev [36] investigated a related
question. He introduced a new gap-embeddability relation (called the sym-
metric gap-ordering) on the sequences X∗ such that X∗ with this ordering is
now a wpo. Therefore, he could investigate the reverse mathematical strength
of the, now true, statement ∀X(‘X is a wpo’→ ‘X∗ with the symmetric gap-
ordering is a wpo’). This turned out to be the theory ATR0. Also in this
context, we should say that he also explored the symmetric gap-condition on
trees. For more information, see [35,36].

Let us go back to the question raised by Keita Yokoyama. Let Q be a partial
ordering. Define on (Q× {0, . . . , n})∗ the following ordering:

((q1, n1), . . . , (qk, nk)) ≤∗,gap ((q′1,m1), . . . , (q′l,ml))

⇐⇒ ∃1 ≤ i1 < · · · < ik ≤ l such that qj ≤Q q′ij for every j,

(n1, . . . , nk) = (mi1 , . . . ,mik),

and for all j = 1, . . . , k − 1: if ij < r < ij+1, then mr ≥ mij+1
.

Define ≤∗,sgap (strong gap-embeddability relation) in the same way, but add
the following line:

if r < i1, then mr ≥ mi1 .

Let us recall Definition 1.62.

Definition 7.47. Let X be a linear order. Define ωX as the subset of X∗

such that (x0, . . . , xn−1) ∈ ωX if x0 ≥X · · · ≥X xn−1. Define the ordering
on ωX as the lexicographic one: (x0, . . . , xn−1) ≤ωX (y0, . . . , ym−1) if either
n ≤ m and xi = yi for all i ≤ n, or there exists a j < minn,m such that
xj <X yj and xi = yi for all i < j.

Definition 7.48. Define for a linear order X, ω<0,X> as X and ω<n+1,X>

as the linear order ωω
<n,X>

. For an ordinal or well-order α, we sometimes
write ωn(α) instead of ω<n,α>.

A tree in the reverse mathematical setting is defined as a subset T of S = N∗

such that any initial segment of a finite sequence in T also belongs to T . The
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empty sequence denotes the root of T . If X is a countable wpo, we encode
X and ≤X as a subset of the natural numbers. Therefore, we can talk about
the tree of the finite bad sequences Bad(X) in reverse mathematics. More
specifically, if X is a countable wpo, we can define Bad(X) in RCA0. A path
in a tree is defined by a function f : N → N such that ∀n(f [n] ∈ T ), where
f [n] is (the code for) the finite sequence (f(0), . . . , f(n− 1)).

On S, define the Kleene/Brouwer ordering as follows (see [77]): σ ≤KB τ iff
either τ is an initial segment of σ or

∃j < min(lh(σ), lh(τ))(σj < τj and ∀i < j(σi = τi)).

If T ⊆ S is a tree, define KB(T ) as the linear order (T,≤KB� (T × T )).
The definitions of ≤KB and KB(T ) can be taken care of in RCA0. Hence,
if X is a countable wpo, we can define KB(Bad(X)) in a decent way over
RCA0. A very useful lemma of the Kleene/Brouwer ordering states that for
an arbitrary tree T , KB(T ) is well-ordered if and only if T is a well-founded
tree (a tree is well-founded if it does not have an infinite path).

Lemma 7.49. The following is provable in ACA0. Let T ⊆ S be a tree. Then

KB(T ) is a well-order ⇔ ∀f∃n(f [n] /∈ T ).

Proof. See Lemma V.1.3 in [77].

Recall that if there exists a reification f from Bad(X) to a well-ordering,
than one can prove that X is a wpo. If X is a wpo, one can naturally define
a reification from Bad(X) to the well-ordering KB(Bad(X)) (if we can use
the theory ACA0).

Theorem 7.50. The following are equivalent over RCA0:

1. ACA′0,

2. ∀n∀X(WO(X)→ WO(ω<n,X>)),

3. ∀n∀Q∀η [(WPO(Q) ∧ η : Q→ {0, . . . , n})→ WPO(Q∗,≤η,gap)],

4. ∀n∀Q∀η [(WPO(Q) ∧ η : Q→ {0, . . . , n})→ WPO(Q∗,≤η,sgap)],

5. ∀n∀Q [WPO(Q)→ WPO((Q× {0, . . . , n})∗,≤∗,gap)].

6. ∀n∀Q [WPO(Q)→ WPO((Q× {0, . . . , n})∗,≤∗,sgap)].
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Proof. It is well-known that 1. and 2. are equivalent. See [53] for a proof.
The rest of the proof comes down to the determination of the maximal or-
der types of the occurring wpo’s, or at least determining upper and lower
bounds for the maximal order types. We do not present sharp upper and
lower bounds. The techniques are based on the article of Schütte and Simp-
son [72].
5. implies 3. and 6. implies 4.: is easy by looking to sequences of the form
((q1, η(q1)), . . . , (qk, η(qk))).
4. implies 3. and 6. implies 5.: trivial.
3. implies 2.: Fix a well-ordering X. We now recursively construct quasi-
embeddings en from ω<n,X> into the partial ordering (({0, . . . , n − 1} +
X)∗,≤ηn,gap) with ηn(i) = i and ηn(x) = n for x ∈ X. If we have such
en’s, we obtain that ω<n,X> is a well-ordering using 3.
If n = 0, define e0(x) as (x) for every x ∈ X = ω<0,X>. It is trivial to see
that e0 is a quasi-embedding. Now, let n = m+1 and assume that we have a
quasi-embedding em from ω<m,X> into (({0, . . . ,m− 1}+X)∗,≤ηm,gap) with
ηm(i) = i and ηm(x) = m for x ∈ X.
Take α < ω<m+1,X> = ωω

<m,X>
. Then α = ωα1 + · · · + ωαk with ω<m,X> >

α1 ≥ · · · ≥ αk. Therefore, one can assume that we have em(αi) ∈ ({0, . . . ,m−
1}+X)∗. Define (em(αi))

+ as the sequence in ({1, . . . ,m}+X)∗, where an
element j is replaced by j + 1 for j = 0, . . . ,m− 1. Define em+1(α) as

0(em(α1))+0 . . . 0(em(αk))
+0,

which is an element of partial ordering ({0, . . . ,m} + X)∗. We want to
prove that em+1 is a quasi-embedding from ω<m+1,X> into (({0, . . . ,m} +
X)∗,≤ηm+1,gap) with ηm+1(i) = i and ηm+1(x) = m + 1 for x ∈ X. So take
α = ωα1 + · · · + ωαk < ω<m+1,X> and β = ωβ1 + · · · + ωβl < ω<m+1,X> and
assume that

0(em(α1))+0 . . . 0(em(αk))
+0 ≤ηm+1,gap 0(em(β1))+0 . . . 0(em(βl))

+0.

ηm+1(0) = 0 and ηm+1(ai) > 0 for all elements ai in (em(αj))
+. Therefore,

there exists 1 ≤ i1 < · · · < ik ≤ l such that (em(αj))
+ ≤ηm+1,gap (em(βij))

+

for every j. Hence em(αj) ≤ηm,gap em(βij), which implies αj ≤ βij by the
induction hypothesis. So there exist indices 1 ≤ i1 < · · · < ik ≤ l such that
αj ≤ βij for j = 1, . . . , k. Therefore α ≤ β.

2. implies 6.: Trivially, 2. implies ∀X(WO(X) → WO(ωX)), hence we
can make use of the theory ACA0 (see Lemma 1.63). Assume that Q is a
wpo. Therefore, the tree Bad(Q) is well-founded, hence the linear ordering
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KB(Bad(Q)) is a well-ordering (see Lemma 7.49). As mentioned before,
there exists a natural primitive recursive reification from Bad(Q) to this well-
ordering which we denote by f : Bad(Q)→ α + 1 with α = KB(Bad(Q)).

From Lemma 5.2 in [72], there exists a primitive recursive reification f0 from
Bad((Q× {0})∗,≤∗,sgap) to the linear ordering ω2(α + 1).
Now, assume that we have a primitive recursive reification fn from Bad((Q×
{0, . . . , n})∗,≤∗,sgap) to ω3n+2(α+ 1). We can recursively define a reification
fn+1 from Bad((Q × {0, . . . , n + 1})∗,≤∗,sgap) to ω3n+5(α + 1) from fn. The
proof is more or less similar as Lemma 5.5 in [72] (see Theorem 7.8). We
have to change the mapping hn+1 in that lemma as follows: hn+1 is now a
mapping from

((Q× {0, . . . , n+ 1})∗,≤∗,sgap)
to

((Q× {0, . . . , n})∗,≤∗,sgap)× [Q× ((Q× {0, . . . , n})∗,≤∗,sgap)]∗.

It maps the element () to {(), ()} and it maps

((q1, n1), . . . , (qi1−1, ni1−1), (qi1 , 0), (qi1+1, ni1+1), . . . ,
(qik−1, nik−1), (qik , 0), (qik+1, nik+1), . . . , (qm, nm)),

with ni > 0 for every i to

{((q1, n1 − 1), . . . , (qi1−1, ni1−1 − 1)), [(qi1 , ((qi1+1, ni1+1 − 1), . . . )), . . . ,
(qik−1

, (. . . , (qik−1, nik−1 − 1))), (qik , ((qik+1, nik+1 − 1), . . . , (qm, nm − 1)))]}.

Then, let fn be a reification from Bad((Q×{0, . . . , n})∗,≤∗,sgap) to ω3n+2(α+
1). Construct from fn a reification gn, similar as in Lemma 5.2 and Lemma
5.4 in [72], from

Bad (((Q× {0, . . . , n})∗,≤∗,sgap)× [Q× ((Q× {0, . . . , n})∗,≤∗,sgap)]∗)

to ω3n+2(α+1)×ωω
(ωω

α
×ω3n+2(α+1))+1

, which is strictly smaller than ω3n+5(α+
1). Define fn+1(x1, . . . , xm) as gn(hn+1(x1), . . . , hn+1(xm)). This procedure
can be done all at once, meaning that one can prove that there exists a func-
tion f such that f(〈i, s〉) = fi(s) because the construction never explicitly
depends on n itself. Now pick an arbitrary natural number m. From 2. it
follows that ω3m+2(α+1) is a well-ordering, hence ((Q×{0, . . . ,m})∗,≤∗,sgap)
is a wpo.

We conclude that the reverse mathematical strength of the proposed assertion
of Keita Yokoyama is the theory ACA′0, which lies between ACA0 and ATR0.
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Appendix A

Nederlandstalige samenvatting

A.1 Inleiding

Ordinalen zijn in zekere zin veralgemeende natuurlijke getallen ontwikkeld
door Cantor in de 19de eeuw. Ze laten toe te tellen tot in het transfiniete. Een
getal wordt transfiniet genoemd indien het groter is dan alle eindige getallen.
In het begin start men met 0, 1, 2, . . . Men definieert de limiet van deze rij
ook als een getal (genoteerd als ω) en men telt dan gewoon verder: ω, ω +
1, enzovoort. Zo creëert men ook ωω, ωω

ω
, . . . , net zoals exponentiatie op

natuurlijke getallen. De limiet ωω
··
·

wordt, in wiskundige kringen, genoteerd
als ε0. Aan dit proces komt nooit een eind: men heeft ook ε0 + 1 ε0 + 2,
enzovoort. De ordinaal getallen zorgen ervoor dat men verschillende soorten
oneindigheden van elkaar kan onderscheiden.

Ordinaal notatiesystemen zijn ontwikkeld om (aftelbare) ordinalen op een
effectieve manier voor te stellen met de gewone natuurlijke getallen. Er
bestaat geen ordinaal notatiesysteem die alle aftelbare ordinaal getallen kan
voorstellen, waardoor men eigenlijk voor elk ordinaal getal α een nieuw ordi-
naal notatiesysteem moet creëren. Uit Cantors theorie kan men bijvoorbeeld
een ordinaal notatiesysteem voor ε0 afleiden: elk ordinal getal strikt kleiner
dan ε0 kan voorgesteld worden door middel van het symbool 0 en de functies
ξ, η 7→ ξ + η en ξ 7→ ωξ. In 1908 publiceerde Veblen een belangrijk artikel
waarin hij functies op ordinaal getallen introduceerde gebaseerd op iteratie en
afleiding (tegenwoordig bekend onder de naam Veblen hiërarchie). Dit levert
een ordinaal notatiesysteem op voor Γ0 als we ons beperken tot binaire func-
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ties. Veblen beschouwde ook functies met een groter aantal argumenten. Dit
resulteerde in notatiesystemen voor het kleine Veblen (ordinaal) getal ϑΩω

en het grote Veblen (ordinaal) getal ϑΩΩ.

In de geschiedenis zijn verschillende methodes van het creëren van ordinaal
notatiesystemen ontwikkeld. Bachmanns vernieuwende methode gebruikte
fundamentale rijen en overaftelbare kardinaalgetallen. Later werd dit verfi-
jnd door gebruik te maken van collapsing functies. Een voorbeeld van dit
soort functies zijn de ϑi- en ϑ-functies, die grote ordinalen kunnen beschri-
jven, zelfs tot het bewijstheoretisch ordinaalgetal van de theorie Π1

1-CA0.
Collapsing functies zijn functies die overaftelbare ordinaal getallen afbeelden
op aftelbare. Met andere woorden, ze leggen een verband tussen de aftelbare
en overaftelbare wereld.

In de praktijk is een ordinaal notatiesysteem T een koppel (T,<T ), waarbij T
de kleinste verzameling van ordinaal getallen is en <T de natuurlijke ordening
tussen twee ordinaal getallen, zodat

• 0 ∈ T ,

• Als α1, . . . , αn ∈ T , dan f(α1, . . . , αn) ∈ T , waarbij de symbolen f
functies voorstellen die werken op de klasse van ordinaal getallen.

Het ordinaal notatiesysteem T stelt het ordinaal getal α voor, waarbij α het
kleinste ordinaal getal is zodat α /∈ T . α wordt ook het closure ordinaal
(getal) van T genoemd. Een belangrijk aspect van ordinaal notatiesyste-
men is de studie van geassocieerde goede partiële ordeningen. Deze thesis is
geschreven in de lijn van dit soort onderzoek.

Een goede partiële ordening is een partiële ordening (X,≤X) zodat voor
elke oneindige rij (xi)i van elementen in X er twee natuurlijke getallen i
en j bestaan zodat i < j en xi ≤X xj. Deze karakteristieke eigenschap
zorgt ervoor dat goede partiële ordeningen gezien kunnen worden als een
veralgemening van goede ordeningen. Een van de meest bekende voorbeelden
van een goede partiële ordening staat bekend als Kruskals stelling, dat zegt
dat voor elke oneindige rij (Ti)i van eindige gewortelde bomen Ti, er twee
natuurlijke getallen i < j bestaan zodat Ti inbedbaar is in Tj. Deze stelling
wordt onder meer gebruikt in de informatica. Ook Higmans stelling, dat zegt
dat de verzameling van eindige rijen over een goede partiële ordening ook een
goede partiële ordening is onder Higman zijn inbeddingsrelatie, is welbekend
in de contreien van de wiskunde.

Eén van de belangrijkste voorbeelden van goede partiële ordeningen in de
context van de onbewijsbaarheidsleer is die van H. Friedman over eindige



Chapter A. Nederlandstalige samenvatting 187

gewortelde bomen met n labels met de gap-inbeddingsrelatie. Zijn goede
partiële ordeningen, Twgapn en Tsgapn , kunnen worden gebruikt in een uitspraak
die onbewijsbaar is in de sterkste theorie (Π1

1-CA0) van reverse mathematics.
Er zijn nog tal van open problemen rond deze beruchte partiële ordening en
één daarvan is het specifiek verband vinden met gekende ordinaal notatiesys-
temen.

A.2 De resultaten

Diana Schmidt toonde in haar Habilitationsthesis aan dat één van de betere
manieren om closure ordinaal getallen van ordinaal notatiesystemen T te
bestuderen, het overgaan was naar corresponderende goede partiële ordenin-
gen. Specifieker bestudeerde ze maximale ordeningstypes van goede partiële
ordeningen bestaande uit gewortelde gestructureerde en gelabelde bomen. De
maximale ordeningstypes van deze goede partiële ordeningen zijn gelijk aan
de closure ordinaal getallen van ordinaal notatiesystemen die geconstrueerd
worden met monotone stijgende functies.

Later werd dit soort onderzoek verdergezet, bijvoorbeeld door Andreas Weier-
mann, de promotor van deze thesis. Hij breidde Diana Schmidts methode uit
naar transfiniete argumenten. Specifieker bestudeerde hij een goede partiële
ordening, die in deze thesis genoteerd zou worden als T (M�(τ × ·)), en be-
wees hij dat deze een maximale ordeningstype ϑΩτ heeft. Hierdoor kan deze
goede partiële ordening resulteren in een ordinaal notatiesysteem voor dit
ordinaal getal. In deze thesis tonen we aan dat als we het ordinaalgetal τ
vervangen door eerdere gedefinieerde termen, dit een notatiesysteem voor
het grote Veblen ordinaal getal oplevert. Specifieker tonen we de volgende
stelling aan.

Stelling A.1. Het maximale ordeningstype van T (M�(· × ·)) is gelijk aan
ϑΩΩ, het grote Veblen ordinaal getal.

M� stelt de multiset-constructor voor. Met andere woorden, de vermelde
goede partiële ordening bestaat in zekere zin uit ongestructureerde bomen.
Als we deze multiset-constructor vervangen door zijn geordende versie, dan
bekomen we verrassend genoeg een groter ordinaal getal.

Stelling A.2. Het maximale ordeningstype van T ((·×·)∗) is gelijk aan ϑΩΩω .

Stellingen A.1 en A.2 worden behandeld in Hoofdstuk 3.
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In een andere paper toonde Andreas Weiermann aan dat het Howard-Bach-
mann ordinaal getal een bovengrens is van closure ordinalen van notatiesyste-
men die gebruik maken van essentieel monotone stijgende functies. Sindsdien
was het nog onbekend of we een corresponderende goede partiële ordening
konden vinden met hetzelfde ordinaal getal. We tonen in Hoofdstuk 4 de
volgende stelling aan.

Stelling A.3. Het maximale ordeningstype van T (B(·)) is gelijk aan ϑεΩ+1,
het Howard-Bachmann ordinaal getal.

In Hoofdstuk 2 wordt aangetoond dat het maximale ordeningstype van de
ongestructureerde bomen (zonder labels) gelijk is aan het maximale orden-
ingstype van de gestructureerde versie van Diana Schmidt.

In 2008 introduceerde Andreas Weiermann een vermoeden over het max-
imale ordeningstypes van structuren met de gap-inbeddingsrelatie. Speci-
fieker claimde hij dat het maximale ordeningstype van zijn gëıntroduceerde
partiële ordeningen T (W ) gelijk is aan ϑ(o(W (Ω))). Dit zou kunnen resul-
teren in een classificatie van Friedmans bekende goede partiële ordeningen
Twgapn en Tsgapn . In Hoofdstuk 5 tonen we aan dat Weiermanns vermoeden
inderdaad de maximale ordeningstypes van Twgap2 en Tsgap2 goed raadt.

Stelling A.4. 1. Het maximale ordeningstype van Twgap2 is gelijk aan

ϑ0(ϑ1(Ωω
2 )ω).

2. Het maximale ordeningstype van Tsgap2 is gelijk aan

ϑ0(Ωω
1 + ϑ0(ϑ1(Ωω

2 )ω)).

Voor het geval n > 2 is de exacte karakterisatie nog steeds een open vraag,
maar we vermoeden dat de oplossing binnen handbereik is.

Hoofdstuk 6 behandelt onbewijsbaarheidsuitspraken over de goede partiële
ordeningen T (W ). We bestuderen het bewijs-theoretisch ordinaal getal van
bepaalde theorieën die bestaan uit lightface Π1

1-comprehensie. Met deze
bewijs-theoretische ordinaal getallen kunnen we onbewijsbaarheidsuitspraken
bewijzen, die gebruik maken van specifieke T (W )’s, in concrete theorieën.

Tenslotte bestudeert Hoofdstuk 7 of Andreas Weiermanns vermoeden ook
correct is als we werken met rijen over de verzameling van natuurlijke getallen
{0, . . . , n− 1} met de gap-inbeddingsrelatie in plaats van gewortelde bomen.
Verrassend genoeg is dit niet het geval. Indien we strikt meer dan 2 la-
bels hebben (met andere woorden n > 2), dan komt het corresponderende



Chapter A. Nederlandstalige samenvatting 189

ordinaal notatiesysteem van de ϑi’s niet meer overeen met het maximaal
ordeningstype van de rijen met de gap-inbeddingsrelatie.
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[43] G. Jäger, %-inaccessible ordinals, collapsing functions and a recursive notation system,
Arch. Math. Logik Grundlag. 24 (1984), no. 1-2, 49–62.

[44] T. Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin,
2003. The third millennium edition, revised and expanded.
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