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Abstract Despite decades of research, no early-onset

biomarkers are currently available for Alzheimer’s disease,

a cureless neurodegenerative disease afflicting millions

worldwide. In this study, transgenic Caenorhabditis ele-

gans were used to investigate changes in the metabolome

after induced expression of amyloid-b. GC- and LC–MS-

based platforms determined a total of 157 differential

features. Some of these were identified using in-house

(GC–MS) or public libraries (LC–MS), revealing changes

in allantoin, cystathionine and tyrosine levels. Since C.

elegans is far better suited to metabolomics studies than

most other model systems, the accordance of these findings

with vertebrate literature is promising and argues for fur-

ther use of C. elegans as a model of human pathology in

the study of AD.

Keywords Metabolomics � Metabolic profiling �
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1 Introduction

Alzheimer’s disease (AD) is the most common cause of

dementia, accounting for over 70 % of all cases worldwide

(World Alzheimer’s Report, 2009). In addition, AD causes a

severe social and financial impact on patients and their

environment. The number of patients worldwide with AD is

estimated at a current 24 million, a number that will have

tripled by 2050 (World Health Organization, 2012). AD is a

progressive disease with a long preclinical phase of

10–15 years (Tarawneh and Holtzman 2012), which creates

opportunities for a biomarker detection approach. AD is

characterized by inflammation, neuronal loss, intracellular

aggregation of the protein tau and extracellular plaques of the

peptide amyloid-b. Amyloid-b, generated from the amyloid-

b precursor protein (APP), is mainly processed in an anti-

amyloidogenic manner (Haass et al. 2012). However, in AD

patients, APP is overly processed according to the amyloi-

dogenic pathway, which leads to the release of aggregating

amyloid peptides (Haass et al. 2012). Additionally, the

microtubule stabilizing protein tau becomes hyperphos-

phorylated and forms intracellular neurofibrillary tangles

(Mandelkow and Mandelkow 2012). Since there is no cure

for AD, it is becoming increasingly more important to find

early pathological markers which could easily be measured

by a non-invasive method, prior to the emergence of clinical

symptoms.

Current biomarkers in cerebrospinal fluid (CSF) are the

amount of total tau, phosphorylated tau, amyloid-b (Blen-

now et al. 2012) and the 42/40 ratio of amyloid-b (Wiltfang

et al. 2007). Although CSF removal is an uncomfortable,

invasive procedure, it is often used to diagnose AD. A range

of imaging techniques has been developed over the last

couple of years to improve the diagnosis of AD (Johnson

et al. 2012). Despite the improvement of fluid biomarker
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discovery and imaging techniques, AD is typically diag-

nosed when patients start displaying cognitive impairment.

Recently, researchers have started turning towards meta-

bolomics as a promising method to assist in the search for

early biomarkers of AD (Trushina and Mielke 2013).

Metabolomics uses a range of sensitive and comple-

mentary analytical platforms to study the levels of small

molecules in cells, tissues, bio-fluids and entire organisms,

referred to as the metabolome (Roessner and Bowne 2009).

Because gene expression, protein activity and environment

all exert certain influences on the metabolome, metabolo-

mic readouts closely reflect cellular processes and provide

highly accurate snapshots of an organism’s state. Two

platforms are mainly used: gas or liquid chromatographic

separation hyphenated to mass spectrometry (GC–MS and

LC–MS) and nuclear magnetic resonance (NMR)-based

spectroscopy (Temmerman et al. 2013). Current literature

on metabolomics related to AD is rather limited and a

distinct set of metabolic markers has not yet been discov-

ered (Graham et al. 2013a, b; Kaddurah-Daouk et al. 2011,

2013; Lin et al. 2013; Mapstone et al. 2014; Motsinger-

Reif et al. 2013; Orešič et al. 2011; Salek et al. 2010; Sato

et al. 2012; Trushina et al. 2013). This may in part be due

to the underlying heterogeneity of the sample groups. To

improve this issue, the use of a model can be advantageous.

Model organisms are used to investigate the function of

certain factors in a simplified system in comparison to

humans. Many model organisms have been used in the

study of AD (e.g. Saccharomyces cerevisiae (De Vos et al.

2011), Caenorhabditis elegans (Link 2006), Drosophila

melanogaster (Iijima-Ando and Iijima 2010), Mus muscu-

lus (Elder et al. 2010). Here, C. elegans was chosen

because it allows for the most stringent level of experi-

mental control in the study of multicellular organisms. This

addresses the importance of minimizing unwanted varia-

tion, especially necessary when using sensitive techniques

like metabolomics, biomarker discovery and compound

screens. A transgenic, temperature-sensitive strain

expressing amyloid-b in the neurons was selected, enabling

time- and site- controlled expression of the transgene. Such

strains have already proven their value in AD research in

the study of amyloid-b aggregation (Fay et al. 1998), gene

expression (Link 2003), toxicity screening (Dostal and

Link 2010), learning behavior (Dosanjh et al. 2010) and

proteomic changes (Boyd-Kimball et al. 2006). In this

study, a metabolic fingerprint was generated of a well-

established (Boyd-Kimball et al. 2006; Dosanjh et al. 2010;

Dostal and Link 2010; Link 1995, 203) transgenic AD

strain in order to monitor metabolic changes due to

expression of amyloid-b. Both non-targeted GC–MS and

LC–MS analyses were performed, ensuring a broad

detection of the extracted metabolites. LC–MS analysis

was further refined using two different chromatographic

separation methods (reversed phase (RP) and aqueous

normal phase (ANP)). Because C. elegans can be used to

screen a large amount of metabolites in a relatively short

time, these findings will form the basis of future testing of

drug efficiency and the mode-of-action during AD

progression.

2 Materials and methods

2.1 C. elegans culture and sampling

Temperature-sensitive transgenic (CL2355) and control

(PD8120) strains were kindly provided by Professor

Christopher Link (University of Colorado at Boulder,

USA). Strains were cultured at 16 �C on standard nema-

tode growth medium (NGM) agar seeded with Escherichia

coli OP50 bacteria (Brenner, 1974). CL2355 (smg-

1(cc546);dvIs50 [pCL45 (Psnb-1::Ab1-42::30 UTR(-

long) ? Pmtl-2::GFP]) drives pan-neuronal expression of

the peptide Ab1–42 under control of the C. elegans syna-

ptobrevin (snb-1) promoter. The expression can be induced

by a temperature upshift from 16 to 23 �C (Fig. 1), as a

result of the temperature-sensitive smg-1ts background,

also present in the control strain, in which nonsense-med-

iated mRNA decay (NMD) is disturbed upon temperature

upshift (Link 2003).

Age-synchronized transgenic and control strains were

cultured in liquid medium with E. coli K12 as a food source,

for 34 h at 16 �C. Food availability was held constant

(OD600 = 1.68) by adding bacteria twice a day during cul-

turing. After 34 h, both strains were shifted to 23 �C,

inducing the expression of Ab1-42 in the AD strain only.

Another 30 h later, worms were collected by pelleting on ice

(Fig. 1). The removal of bacteria and debris was carried out

using a sucrose-flotation (60 % sucrose). After collection,

the worms were washed with S-buffer (Brenner 1974) for 5

times and partitioned into aliquots of maximum 0.3 ml per

tube (Precellys lysing kit, Bertin Technologies). The aliquots

were snap frozen in liquid nitrogen and stored at -80 �C.

A total of 14 biologically independent samples for each

condition were used. As negative controls, three samples of

each condition without temperature upshift were produced,

in addition to four supernatant samples. The latter were

used to establish the metabolite baseline of the medium:

features extracted from these negative controls were

omitted from all further sample analyses.

2.2 Extraction

We opted for an extraction using ice-cold 80 % methanol,

as described earlier for C. elegans (Geier et al, 2011). Ice-

cold methanol, containing an external standard (13C6-
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sorbitol (0.5 mg ml-1), 13C5
15N-Valine (0.5 mg ml-1),

2-aminoanthracene (0.25 mg ml-1) and pentafluoroben-

zoic acid (0.25 mg ml-1), was added to the worm pellet

until 80 % methanol was reached. All samples were

homogenized at low temperature (Precellys 24, Bertin

Technologies; 2 9 30 s, 4800 rpm, -20 �C) to avoid

potential metabolite degradation. Subsequently, samples

were held on ice for 15 min and were then centrifuged for

15 min at 13,000 rpm. Supernatants were transferred to

new Eppendorf tubes and pellets were re-extracted with

80 % methanol. To avoid protein contamination, all sam-

ples were filtered using a 3 kDa cutoff filter (Amicon Ultra

UFC500308). Both supernatants were combined and re-

divided into 3 aliquots for GC–MS and LC–MS (RP and

ANP coupled to quadrupole time of flight mass spec-

trometry (Q-TOF)) analyses. These aliquots were dried

using a speed-vacuum concentrator and then stored at

-80 �C until analysis.

2.3 GC–MS analysis

The dried samples were redissolved in 10 ll of

30 mg ml-1 methoxyamine hydrochloride in pyridine

and derivatised at 37 �C for 120 min with mixing at

500 rpm. The samples were then treated for 30 min with

20 ll N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA)

and 2.0 ll retention time standard mixture [0.029 %

(v/v) n-dodecane, n-pentadecane, n-nonadecane, n-doco-

sane, n-octacosane, n-dotriacontane, n-hexatriacontane

dissolved in pyridine] with mixing at 500 rpm. Each

derivatised sample was allowed to rest for 60 min prior

to injection.

Samples (1 ll) were injected into a GC–MS system

comprised of a Gerstel 2.5.2 autosampler, a 7890A Agilent

gas chromatograph and a 7000 Agilent triple-quadrupole

MS (Agilent). The MS was adjusted according to the

manufacturer’s recommendations using tris-(perfluorobu-

tyl)-amine (CF43). The GC was performed on a 30 m VF-

5MS column with 0.2 lm film thickness and a 10 m

Integra guard column (J & W, Agilent). The injection

temperature was set at 250 �C, the MS transfer line at

280 �C, the ion source adjusted to 250 �C and the quad-

rupole at 150 �C. Helium was used as the carrier gas at a

flow rate of 1.0 ml min-1. For the polar metabolite ana-

lysis, the following temperature program was used; start at

injection 70 �C, a hold for 1 min, followed by a 7 �C

Fig. 1 Scheme of experimental

setup. Both AD model and

control strains were cultured for

34 h at 16 �C. After this period,

a temperature upshift to 23 �C

was performed, inducing

amyloid-b42 expression in the

AD strain only. Thirty hours

later, worms were collected and

snap frozen with liquid nitrogen.

An 80 % ice-cold methanol

extraction was performed and

samples were aliquoted for GC–

MS, RP-QTOF or ANP-QTOF.

A After data-analysis, features

that were putatively identified

showed a similar pattern as seen

in previous human AD research.

B Some of our unidentified

features could be linked to LC–

MS AD metabolomics profiling

literature
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min-1 oven temperature ramp to 325 �C and a final 6 min

heating at 325 �C in which the data was acquired in full-

scan mode. Both chromatograms and mass spectra were

evaluated using AMDIS (NIST, www.chemdata.nist.gov)

and Agilent MassHunter Workstation Software, Quantita-

tive Analysis, Version B.05.00/Build 5.0.291.0 for GCMS.

Mass spectra of eluting compounds were identified using

NIST08 database and the in-house Metabolomics Australia

mass spectral library. All matching mass spectra were

additionally verified by determination of the retention time

and index in comparison to those of standard substances.

Every six samples, a pooled instrument control sample

consisting of 54 standard compounds was run to evaluate

potential retention time shifts and loss in sensitivity (Sup-

plemental Fig. 1). As can be expected for GC, all quality

control runs overlapped clearly and no significant retention

time shift was present. A significant loss in sensitivity was

not observed. It can therefore be taken into account by

normalization strategies (see below). None of the differ-

ential and identified metabolites had multiple TMS deriv-

atives. All data were exported as a comma separated value

file for further data analysis.

2.4 LC–MS analysis

2.4.1 Materials

LC–MS grade formic acid and ammonium acetate were

purchased from Sigma-Aldrich (Sydney, Australia). Deion-

ized water (18.2 MX) was used throughout all experiments.

HPLC grade methanol and acetonitrile (ACN) were pur-

chased from Burdick and Jackson (Ajax, Sydney, Australia).

Reversed phase (RP) chromatography was done using a

Zorbax Eclipse XDB-C18 m 2.1 9 100 mm, 1.8 lm (Agi-

lent, Santa Clara, CA, USA). The Cogent diamond hybrid

2.1 9 100 mm, 4 lm particle size ANP column was pur-

chased from MicroSolv Technology (Brisbane, Australia).

2.4.2 LC–MS system

In this experiment an Agilent 1200 series HPLC was used

(Santa Clara, CA, USA) comprising of a vacuum degasser,

binary pump, thermostated auto sampler and column

compartment. Extraction procedures, solvent gradients,

concentration sample, column conditions and mass spec-

trometer settings were optimized using pooled samples;

reflecting an averaged sample of the overall experiment.

The settings found to be optimal for C. elegans metabolites

were then used for all subsequent runs. For RP chroma-

tography, a 10 min linear gradient of 95:5 water/ACN to

5:95 water/ACN at 0.4 ml min-1 was used while the

column temperature was held at 50 �C. Both mobile phases

contained 0.1 % formic acid. For the complementary ANP

procedure, solvents were made with uttermost care and the

system was thoroughly flushed to ensure a proper separa-

tion of the metabolites. The organic mobile phase solvent

(B) was composed of 90 % ACN with 0.1 % (w/v)

ammonium acetate and 0.1 % acetic acid. The aqueous

mobile phase (A) was composed of 100 % deionized water

with 0.1 % (w/v) ammonium acetate and 0.1 % acetic acid

(pH 3.4). The column flow-rate was 0.4 ml min-1 and

column temperature was kept at 50 �C. The optimal gra-

dient started at 100 % B then linearly decreased to 40 % B

over 10 min, followed by a 1 min hold at 40 % B. The

column was then re-equilibrated at 100 % B for 6 min20.

For both modes, a washing step was added every run to

control for unwanted carry-over. Every six samples, a

pooled biological control sample was run to evaluate

potential retention time shifts and variations in mass

accuracy (Supplemental Fig. 2). Retention time shifts were

never bigger than 0.1 min and the average deviation of the

mass accuracy always remained lower than 1.78 ppm

(Supplemental Table 1).

The mass spectrometer used was an Agilent 6520 QTOF

MS system (Santa Clara, CA, USA) with a dual spray ESI

source. The conditions for the source were: nebulizer

pressure of 45 psi, gas flow-rate of 10 l min-1, gas tem-

perature 300 �C, capillary voltage of 4 kV and skimmer

65 V. Measurements were performed in the extended

dynamic range mode (m/z range of 70–1700 amu), both in

positive and negative ion mode and collecting centroid data.

Data were exported as.mzdata to be further analyzed in

MZmine 2.10 (Pluskal et al. 2010). In addition, to increase

the accuracy of the identification, high resolution (70,000),

more accurate (\3 ppm) MS and MS/MS data of differen-

tial features were obtained by running pooled samples using

a ‘top 10’ method on a Q Exactive Hybrid Quadrupole-

Orbitrap mass spectrometer (Thermo Scientific).

LC–MS data analysis was performed using MZmine

2.10 (Pluskal et al. 2010). After centroid peak detection,

all data points above the noise level were processed as

pairs of m/z and intensity values. Peak lists were created

using the chromatogram builder. The chromatograms

were deconvoluted and isotopic peaks were grouped.

Finally, peak lists were aligned using the random sample

consensus (RANSAC) alignment method (Pluskal et al.

2010). After filtering and gap filling, the data matrix was

exported as a comma separated value file for further

processing. All parameters were optimized for each data

collection mode. LC–MS identification was performed

using public databases (HMDB, KEGG and Metlin).

Based on mass value (Dppm \ 10 ppm) and accurate

mass (Dppm \ 3 ppm) features were matched against

these databases.
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2.5 Data analysis

Statistical analysis was performed using the R package

metabolomics (De Livera et al. 2013) and the MetaboAn-

alyst webserver (Xia et al. 2012). An initial log2 transfor-

mation was applied to obtain a normal distribution. After

this transformation, the dataset was median normalized and

a combination of multivariate and univariate statistical tests

was performed. Principal components analysis (PCA), an

unsupervised explorative data analysis method, was per-

formed to evaluate the overall variance in the obtained

datasets. Similarly, supervised partial-least squares dis-

criminant analysis (PLS-DA) was conducted to better

explore the variance differentiating the two experimental

conditions (AD vs. control). Variable Importance in Pro-

jection (VIP) scores represent which of the features con-

tribute most to the differentiation of the experimental

groups in PLS-DA analysis. Significant differences in

abundance of individual features between conditions were

evaluated using a standard t test. All p values were adjusted

according to the Benjamini & Hochberg principle to take

false discovery rate into account.

3 Results and discussion

There are already a few reports on the metabolome of

human AD cerebrospinal fluid (CSF) (Kaddurah-Daouk

et al. 2011, 2013; Orešič et al. 2011; Trushina et al. 2013)

(Graham et al. 2013a), plasma (Trushina et al. 2013) and of

CSF reflecting the pathological progress from mild cogni-

tive impairment to AD (Orešič et al. 2011). Despite these

research efforts, working with human samples implies a

high level of inherent variation (age, sex, diet, medical

history, etc.), which may mask relevant results. Therefore,

use of more controllable model organisms can help to

deliver a more delineated fingerprint, which can then be

used for targeted studies in patients. Based on this rea-

soning, metabolic analyses on transgenic AD mice (Fuku-

hara et al. 2013; Graham et al. 2013b; Salek et al. 2010)

revealed a widespread perturbation of metabolism in dif-

ferent tissues and bio fluids. In the same vein, here C.

elegans was used to discover metabolic changes due to AD

by generating a metabolic fingerprint of a transgenic, pan-

neuronal amyloid-b strain.

Caenorhabditis elegans is a suitable model organism to

screen multiple drug compounds efficiently and has the

potential to discover markers for diseases in a cheap, fast

and controlled manner. Metabolomics has proven its value

for C. elegans research (Fuchs et al. 2010; Hughes et al.

2009), although profiling, to our knowledge has not been

performed with transgenic C. elegans AD models. We used

a metabolic approach to evaluate the C. elegans amyloid-b

AD model, relying on a combination of GC–MS and four

LC–MS platforms (ANP-MS and RP-MS, each acquired in

positive and negative ion mode).

3.1 Overall feature detection and sample separation

A clear chromatographic separation was achieved for all

approaches (Fig. 2), resulting in a final total of 157 dif-

ferential features (p value \0.05) (Table 1). Mean nor-

malized abundance and standard deviation of all samples in

all modes were determined (Supplemental Table 2).

Unsupervised multivariate statistics did not always

succeed in separating the experimental groups (Supple-

mental Figs. 3, 4). Principal components analysis (PCA)

generally resulted in a modest separation of the experi-

mental groups. Poor PCA plot separations are also the case

in similar studies (Lin et al. 2013; Trushina et al. 2013), but

these rely on less controllable model systems. This could

possibly be explained by the sample type: as opposed to

human CSF or brain tissue samples, we used whole-mount

extracts for analysis. Therefore, the behavior of some dif-

ferentiating features might yet be diluted or masked. Even

though the central nervous system is the actual site of

interest, it can currently not be distinguished from other

tissues in C. elegans. Nevertheless, partial least squares

discriminant analysis (PLS-DA) in combination with var-

iable importance in projection tables (Supplemental

Figs. 5–11) illustrate that observed differential features

considerably contribute to the separation of the two groups.

Evaluation of volcano plots, showing the significance and

fold-changes of all data points, was also indicative of a

defined set of robustly differential features (Supplemental

Figs. 12–16).

3.2 Differential features as a result of AD pathology

in C. elegans

For the GC approach every peak corresponding to a feature

was manually selected and compared to a library of ref-

erence compounds, resulting in a final list of 76 unique

compounds. Upon differential analysis, only a few known

metabolites were significantly altered in AD conditions as

compared to controls (Table 2). Of all features, 38 % could

not be identified because of a lack of corresponding library

entry (in-house or NIST08) (Supplemental Fig. 17).

LC–MS data were acquired in positive and negative ion

mode, each combined with two separation methods (RP

and ANP) (Fig. 2). As such, an elaborate spectrum of

metabolites could be examined. RP and ANP methodolo-

gies are suitable for differing sub-populations of the me-

tabolome, explaining why only a few features were seen in

both approaches. Features detected in both ANP and RP

delivered similar readouts (Supplemental Fig. 18),
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providing corroborative evidence for the observed results.

LC–MS profiling resulted in a detection of 2,096–11,039

features, depending on the acquisition mode (ANP-MS

negative mode: 2096; ANP-MS positive mode: 4424; RP-

MS negative mode: 5992; RP-MS positive mode: 11039).

It is immediately clear that the RP negative mode dataset

shows the highest amount of differential features (Table 1,

Supplemental Table 3). By looking in further detail to this

mode, many features were observed to co-elute and have

similar fold changes. This may imply that a single

metabolite may be present as a number of adducts which

could lead to deconvolution of several related features.

Therefore, an adduct search using the CAMERA package

was performed on RP negative mode data (Kuhl et al.

2012). Approximately 15 % of the features were identified

as adducts. The most significant differential (p value

\0.01) features are presented in Table 3, remaining dif-

ferential results are shown in supplemental Table 3. In

sum, LC–MS analysis revealed 149 differential features,

mostly detected from reversed phase LC in combination

with negative ion mode.

By comparing the obtained results with research on AD

LC–MS metabolomics literature (Lin et al. 2013; Trushina

Fig. 2 Representative UPLC ESI-base peak chromatograms of C. elegans extracts from different platforms. X-axis: Retention time (from 0 to

14 min), Y axis: Peak intensity (total ion count from 0 to 8.0E6)

Table 1 Total of differential features in different modes

Differential features different modes

Method Ion mode Differential features

LC–MS: RP ? 14

LC–MS: RP - 113

LC–MS: ANP ? 21

LC–MS: ANP - 1

GC–MS ? 8

LC liquid chromatography, RP reversed phase, ANP aqueous normal

phase, GC gas chromatography)

Table 2 Significant GC–MS (p value \0.05) features with mass

identifiers, retention time, p value (*adjusted according to the Ben-

jamini & Hochberg principle), Z-factor, fold change and identity

GC–MS differential features

Mass

identifiers

RT p value* Z-

factor

Fold

change

Identity

188 15.1 0.0253 -1.75 3.33 Unknown

314, 329 15.5 0.0253 -3.28 1.93 Unknown

411 31 0.0253 -6.2 0.56 Unknown

299 16.2 0.0253 -3.51 1.88 Unknown

403, 189 17.2 0.0253 -3.04 0.53 Unknown

264, 279 20.8 0.0253 -3.06 1.83 Allantoin

278, 245 25.3 0.0253 -3.34 0.54 Cystathionine

243, 128 15 0.0481 -3.83 1.58 Unknown

218, 280 21.8 0.0022 -11.09 1.35 Tyrosine

Z-factor provides a useful tool for comparison and evaluation of the

quality of the assay (Zhang 1999)
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et al. 2013), some putative features were found with

matching mass (Dppm \ 50 ppm) and similar fold changes

(Fig. 1; Table 3, Supplemental Table 3). These confirm

that the same reactions might be (de)activated in C. elegans

when comparing to mouse or human. Since most meta-

bolomics experiments conducted to date relied on targeted

methods, it can be assumed that this number is an under-

estimation of the actual correspondence (i.e. when com-

paring to other non-targeted studies). In addition, more

corresponding features can be expected if not only amy-

loid-b1–42, but also the protein tau would be expressed in

the C. elegans model. Amyloid-b1–42 probably only indu-

ces a part of the metabolic changes which occur in AD

(Ittner and Götz 2011), therefore, adding tau might better

reflect the biochemical changes related to AD progression.

3.3 Known metabolic markers of AD

In our C. elegans experiments, several putatively identified

metabolites correspond to metabolites previously associ-

ated with AD pathology (Tables 2, 3). These are of special

interest for further discussion. A higher level of allantoin

was observed in our experiments in C. elegans, matching

observations in human plasma and mice (Fukuhara et al.

2013; Zitnanová et al. 2004). Allantoin is produced in a

non-enzymatic oxidation reaction when uric acid is

exposed to reactive oxygen species (ROS). This is further

supported by evaluation of the GC–MS VIP scores (Sup-

plemental Fig. 7), which are high for both uric acid and

allantoin itself, indicating these features contribute strongly

to the differentiation of both conditions. Allantoin is often

used as an oxidative marker (Yardim-Akaydin et al. 2006).

Oxidative stress is a frequently discussed topic in AD

research, since it may precede the appearance of patho-

logical hallmarks, e.g. senile plaques and neurofibrillary

tangles (Perry et al. 2002). Oxidative stress in AD is

probably the result of a disturbed redox balance due to

malfunctioning of the mitochondria (Zhao and Zhao 2013).

Both amyloid-b and tau can be found in the mitochondria

where they dysregulate the oxidative phosphorylation

system (complex IV and I, respectively) (Rhein et al.

2009), associated with an increased ROS production. This

could then indeed set the scene for the observed increase in

allantoin levels.

Upon expression of amyloid-b, tyrosine was upregu-

lated in both LC- and GC–MS analyses, indicating the

robustness of this result. Alterations of the tyrosine

pathway in CSF, serum and autopsy-confirmed brain tis-

sue of AD patients were also previously observed

(Kaddurah-Daouk et al. 2011; Trushina et al. 2013).

Tyrosine is an important precursor of the neurotransmitter

dopamine, and of the catecholamines norepinephrine and

epinephrine. When dopamine is formed, tyrosine is pro-

cessed by tyrosine hydroxylase (TH). A reduced activity

of TH (Trillo et al. 2013) and norepinephrine/epinephrine

(Kaddurah-Daouk et al. 2011) have been observed in AD

patients. The here observed upregulation of tyrosine

might therefore be due to a reduced activity of TH, but

this remains to be confirmed.

A decreased cystathionine concentration was observed

after the expression of amyloid-b in C. elegans. Polymor-

phisms in cystathionine beta synthase (CBS), catalyzing

the conversion of homocysteine to cystathionine, are well-

known risk factors for AD (Perluigi and Butterfield 2012).

These gene polymorphisms are known to decrease CBS

activity and cause a high concentration of homocysteine

and a low concentration of cystathionine (Bi et al. 2010), in

line with our observations in C. elegans.

Table 3 Features related to AD pathology from LC–MS analysis

(p value \0.01)

LC–MS differential features

m/z value RT p value* Z-factor Fold change Mode

180.065 1.3 0.0446 -2.63 1.36 RP-

Identified as tyrosine (C9H11NO3, [M–H]–)

173.1108 3.1 0.0017 -1.38 2.11 ANP?

131.1159 7 0.0017 -1.07 4.76 ANP?

169.0724 7 0.0017 -1.1 3.21 ANP?

230.1783 8.1 0.0017 -0.19 7.92 ANP?

384.1027 1.4 0.0037 -2.06 0.57 RP-

509.3433a 12.4 0.0037 -1.1 9.54 RP-

929.62740 11.6 0.005 -1.35 15.77 RP-

464.57130 11.6 0.005 -1.83 5.48 RP-

366.1274 12.7 0.005 -1.71 9.96 RP-

929.8786 3.8 0.005 -0.72 4.03 RP-

114.0901 0.8 0.0052 -1.37 2.91 RP?

448.2284 9.7 0.0052 -1.89 2.35 RP?

131.1167 0.8 0.0061 -1.36 3.56 RP?

362.2059 8.8 0.0061 -2.09 2.56 RP?

131.2164 0.8 0.0061 -1.62 2.72 RP?

485.1334 4.4 0.0061 -1.3 7.21 RP?

516.0773 3.7 0.0061 -1.77 3.87 RP?

131.0899 0.8 0.0068 -1.84 2.85 RP?

397.2089 8.5 0.0068 -2.05 3.35 RP?

173.1239 3 0.0084 -0.69 3.39 ANP?

449.1221 8 0.0096 -2.1 6.72 RP-

m/z value, retention time, p value (*adjusted according to the Ben-

jamini and Hochberg principle), Z-factor, fold change, separation-

detection mode and putative similarities with literature are provided.

For tyrosine, formula and adduct ion are also shown. Z-factor pro-

vides a useful tool for comparison and evaluation of the quality of the

assay (Zhang 1999). Adducts were combined and indicated with 0

a Confirmed in Lin et al. 2013. Accurate mass of tyrosine in Sup-

plemental Table 4
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The clear correlations of these identified, differential

metabolites with vertebrate AD pathology support the

robustness of the C. elegans model system.

3.4 Long-lived C. elegans exhibit opposite alterations

Because C. elegans is also a well-established model system

for aging research, there is added value in comparing

information for long-lived, healthy strains with the here

used AD strain. This is because the latter is hallmarked by

a decreased lifespan and impaired learning behavior due to

neurodegeneration (Dosanjh et al. 2010), therefore dis-

playing opposite phenotypes. Proteomic analysis (Depuydt

et al. 2014) of the long-lived daf-2 mutant revealed an

increase in tyrosine catabolism. This contrasts with the

higher levels of tyrosine observed in the AD model used

here. Similarly, a strong upregulation of CBS is observed

in the long-lived daf-2 mutant (Depuydt et al. 2014),

implying increased concentrations of cystathionine. This

again confirms the molecular basis for the opposite phe-

notypes. As more and more-omics data are becoming

available, such comparisons could in the future assist in

discriminating general, aging-related effects from more

AD-specific perturbations.

3.5 Prospects

Although our results are promising and some comparisons

with human AD pathology could be made, elaborate

comparison of studies is not straightforward. This has a

dual reason: for one, human studies rely on very distinct

sample types. Brain tissue, on one hand, can only be used

from post-mortem patients and often suffers from degra-

dation. CSF from patients, on the other hand, is an

achievable alternative, but implies a change towards indi-

rect results from a biofluid, rather than direct information

from the affected tissue. In addition, limited effort is made

for the complete determination of the metabolic fingerprint.

This is readily understood from the set of metabolic

markers discussed above, which do not (yet) display any

clear biological coherence or pathway logic. If we want to

accurately map the pathological process, complete identi-

fied metabolic fingerprints—which represent the compre-

hensive status of all extracted metabolites—should be

compared over time in profiling experiments. This strategy

will allow for the robust discovery of potential biomarker

candidates and grants an invaluable advantage to comple-

mentary compound screens. After administration of a cer-

tain lead compound, the fingerprint can indicate which

(sub)processes are altered. Currently, essential information

can easily be overlooked due to the partial identification of

the fingerprints. Such analyses should ideally be performed

preclinical, in a controlled model where metabolic finger-

prints can be identified more easily.

3.6 Concluding remarks

Our results show that C. elegans has the abilities to develop

into an amenable model for AD metabolomics experi-

ments. The here described set of metabolites provide a

blueprint for future completion of the AD fingerprint, as

such further refining our mechanistic insights into this

devastating disease. Metabolomic analyses, compound

screenings and biomarker discovery require an exceptional

high level of experimental control. Future experiments with

optimized double transgenic worms, expressing amyloid-b
and tau together, will therefore be invaluable to assist in the

advances of metabolomics with regards to AD progression.
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