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Abstract: Due to their sessile lifestyles, plants need to deal with the limitations and 

stresses imposed by the changing environment. Plants cope with these by a remarkable 

developmental flexibility, which is embedded in their strategy to survive. Plants can adjust 

their size, shape and number of organs, bend according to gravity and light, and regenerate 

tissues that were damaged, utilizing a coordinating, intercellular signal, the plant hormone, 

auxin. Another versatile signal is the cation, Ca
2+

, which is a crucial second messenger for 

many rapid cellular processes during responses to a wide range of endogenous and 

environmental signals, such as hormones, light, drought stress and others. Auxin is a good 

candidate for one of these Ca
2+

-activating signals. However, the role of auxin-induced Ca
2+

 

signaling is poorly understood. Here, we will provide an overview of possible developmental 

and physiological roles, as well as mechanisms underlying the interconnection of Ca
2+

 and 

auxin signaling. 
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1. Auxin and Ca
2+

: Essential Elements of Plant Development 

How do you survive when you are sessile? The answer is that you need to be extremely flexible and 

even change your body plan according to actual limitations imposed by the environment. Herein lays 

the key to the success of plants. They can develop highly complex and elaborate body plans under 

optimal conditions, while less favorable environments results in much smaller plants with reduced 
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body plan complexity. The ability to adjust the number and size of organs, regenerate damaged or 

destroyed organs and to (re)orient growth according to light and gravity are a few examples of the 

mechanisms that illustrate plants’ flexible, adaptive growth. 

At the very core of this developmental flexibility is the plant hormone auxin [1–3]. Several decades 

of intensive research have revealed that this plant hormone is involved in nearly every aspect of plant 

development, ranging from embryogenesis and multiple steps of organogenetic processes in the root 

(lateral root initiation, morphogenesis and outgrowth, stem cell niche maintenance) [4,5] and shoot 

(phyllotaxis [6], leaf initiation [7], leaf morphogenesis [8], vascular patterning [9], ovule patterning [10]), 

but is also involved in apical hook formation [11,12], gravitropism [13], hydrotropism [14], 

phototropism [15–17], shade avoidance [18], root hair formation [19,20], stomatal opening [21], pollen 

development [22], senescence [23,24], fruit development [25,26], leaf abscission [27], response to 

pathogens [28,29] and abiotic stress [30]. At the cellular level, this is reflected in control over cell 

differentiation [31], cell cycle regulation [32–34], cellular morphogenesis (e.g., leaf pavement cells) [35] 

and membrane trafficking [36–39]. Because of auxin’s pleiotropic morphogenetic capacities, plants 

have elaborate mechanisms to prevent unwanted/unnecessary auxin activity. Together, regulation of 

biosynthesis, conjugation, subcellular compartmentalization, degradation and active transport act to 

control the cellular auxin levels [40,41]. Additional fine-tuning of auxin’s action is achieved by 

modulation of the signal transduction pathway(s) [42,43]. Via one or more of these control 

mechanisms, a myriad of endogenous (developmental and hormonal) and exogenous signals (stresses, 

nutrient availability, etc.) impact on auxin’s action, thereby optimizing the plant’s growth and 

development [44].  

The divalent cation, Ca
2+

, is one of the most universal second messengers; a signal that relays a 

primary signal, such as derived from an activated receptor, from the surface of the cell to intracellular 

targets. It can be found in ancient bacteria and throughout eukaryotic lineages, where it is essential to 

support life [45,46]. The importance and pleiotropism of Ca
2+

 in cellular signaling processes is roughly 

summarized in the famous quote from Otto Loewi in 1959: ―Ja Kalzium, das ist alles!‖ (Yes, calcium 

is everything!). Furthermore, in plants, Ca
2+

 is a fundamentally important second messenger, as 

demonstrated by its involvement in a multitude of essential cellular process, ranging from cell division, 

cell growth/shrinkage, secretion, transcriptional regulation, cellular polarity, etc., by which it impacts 

on stomatal aperture regulation, responses to light, responses to biotic and abiotic stresses, immunity a 

and responses to multiple plant hormones, including response to auxin [47–49]. Because Ca
2+

 signals 

can be regulated by so many different cues and have such a broad impact on cellular processes, it is not 

unlikely that Ca
2+

 acts to integrate multiple cues in a single output. Here, we will focus on the effects 

of auxin on Ca
2+

 and vice versa.  

2. The Source of Auxin-Induced Ca
2+

 Signals 

Via Ca
2+

 sensitive dyes and, recently, also genetically encoded Ca
2+

 sensors, strong correlations 

could be observed between Ca
2+

 and auxin signaling. This is most apparent after exogenous 

application of synthetic and natural auxins, which induce a rapid, transient increase in cytosolic Ca
2+

 

concentration in wheat leaf protoplasts [50,51], maize coleoptile and root cells [52–54], parsley 

hypocotyl segments [53], intact Arabidopsis roots [55] and closed orchid guard cells [21]. In nearly all 
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cases, the increase of cytosolic Ca
2+

 concentration was observed to occur within minutes after auxin 

application, demonstrating that auxin is a potent inducer of Ca
2+

 signals. One of the important 

questions that remain to be answered is how these auxin-induced Ca
2+

 signals are generated. 

Generally, rapid and local Ca
2+

 signals generated in the cytosol depend on a Ca
2+

 current that is driven 

by a steep concentration gradient between the cytosol (nanomolar range) and its adjacent organelles or 

extracellular space (millimolar range). This allows the bringing about of a rapid and strong Ca
2+

 rise in 

the cytosol required for immediate activation of an appropriate response by the simple opening of a 

few Ca
2+

 channels [45,46,56]. 

In plants, the apoplast, the vacuole, the endoplasmic reticulum and all smaller organelles could 

serve as sources for auxin-induced Ca
2+

. The apoplast is an important source for auxin-induced Ca
2+

 

signals. These could be prevented by application of membrane impermeable Ca
2+

 chelators and Ca
2+

 

channel inhibitors [55,57], and auxin-induced Ca
2+

 changes in leaf wheat protoplasts and root hairs 

depend strongly on the Ca
2+

 concentration in the extracellular medium [50,51,58]. Moreover, the direct 

involvement of plasma membrane-localized channels could be measured in plasma membrane-derived 

vesicles [59,60]. In these experiments, vesicles that consist of 70%–80% of plasma membrane were 

prepared from maize coleoptiles. Auxin-induced changes in membrane potential were then measured 

in the context of a different concentration of intraluminal and extraluminal K
+
 and Ca

2+
. From these 

measurements, it was inferred that auxin activates cation channels in the plasma membrane that 

facilitate Ca
2+

 influx and K
+
 efflux. Consistently, both auxin-induced currents could be inhibited by 

nifedipine and verapamil [59,60], two Ca
2+

 channel blockers that were reported to inhibit outward 

rectifying K
+
 channels [61]. Together, these findings strongly support the involvement of plasma 

membrane-localized Ca
2+

 channels to generate auxin-induced Ca
2+

 signals. Importantly, a large portion 

of wheat leaf protoplasts showed a LiCl-sensitive, biphasic Ca
2+

 signal after auxin treatment, 

suggesting the involvement of intracellular Ca
2+

 stores [51]. However, it remains to be further explored 

how intracellular Ca
2+

 stores contribute to auxin-induced Ca
2+

 signals. Unfortunately, most of the used 

dyes and genetically encoded Ca
2+

 sensors did not yield the needed resolution to detect intracellular 

sources for auxin-induced Ca
2+

. Recently, the genetically encoded Ca
2+

 sensor, aequorin, was  

targeted to the Golgi apparatus and revealed that application of the synthetic auxin analogue, 2,4-D 

(2,4-dichlorophenoxyacetic acid), caused a steady/slow decrease of its Ca
2+

 content, suggestive of a 

passive Ca
2+

 loss [62]. To be able to further explore the contributions of the different organelles to 

auxin-induced Ca
2+

 fluxes, one would require using a broad range of subcellularly targeted Ca
2+

 

sensors that were recently developed [62–66].  

3. Auxin Receptors for Auxin-Induced Ca
2+

 Signals  

Several decades of extensive auxin research allowed the mapping of the main auxin signaling 

pathways. First, and best characterized, are the auxin-induced transcriptional changes that reflect 

auxin-driven developmental decisions [1]. This pathway is defined by the SCF
TIR1/AFB

 E3-ligase, 

Aux/indole-3-acetic acids (Aux/IAAs) and auxin response factors (ARFs) (Figure 1). The Aux/IAAs 

are repressors of auxin response factors, which recruit the TOPLESS (TPL) co-repressor to these 

transcription factors. Under high auxin conditions, the interaction between the Transport Inhibitor 

Response1/Auxin Signaling F-Box (TIR1/AFB) component of the E3-ligase and Aux/IAAs is 
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stabilized, resulting in ubiquitination of the Aux/IAA and its subsequent proteasomal degradation. The 

rapid proteolysis of Aux/IAAs results in the derepression of ARFs and associated transcriptional 

changes [43]. However, the speed by which auxin can elicit Ca
2+

 signals precludes the involvement of 

transcriptional changes, suggesting that it acts independently from the canonical SCF
TIR1/AFB

-based 

auxin signaling cascade. This notion can also be deduced indirectly from the available literature on 

auxin-induced pH changes. Within minutes, auxin induces a rapid acidification of the cytosol [21,54,67,68] 

and an alkalinization of the apoplast in the root cells of Arabidopsis [55]. Interestingly, the  

auxin-induced apoplast alkalinization of Arabidopsis root cells occurs equally fast in wild-type as in 

tir1 and tir1afb2ab3 mutants [55], suggesting that this process is SCF
TIR1/AFB

 independent. On the 

other hand, both auxin-induced Ca
2+

 and auxin-induced apoplast alkalinization were abolished in the 

presence of the general Ca
2+

 channel inhibitor, La
3+

 [55]. This together suggests a Ca
2+

-dependence of 

the apoplast alkalinization response, which is SCF
TIR1/AFB

 independent. 

An alternative auxin signaling pathway based on the stabilized interaction between F-box protein 

SKP2A and cell cycle transcription factor DPB was recently proposed to explain the effects of auxin 

on cell cycle progression [69]. However, as this would also act in the nucleus to drive transcriptional 

changes, it also seems unlikely that this pathway could account for auxin-induced Ca
2+

 changes.  

A second main auxin receptor is defined by Auxin Binding Protein 1 (ABP1) [3,70–72]. This 

protein resides mainly in the endoplasmic reticulum (ER), where it is probably unable to bind auxin, 

due to the high pH. A small fraction of ABP1 seems to escape from the ER via the secretory pathway, 

to the more acidic apoplast, which is more favorable for auxin binding [73]. In the apoplast, it remains 

closely associated with the plasma membrane, where it could modulate auxin responses that do not 

require transcriptional changes, such as membrane hyper/depolarization [74,75], regulation of auxin-

induced currents of K
+
 and Cl

−
 across the plasma membrane [76,77] and regulation of clathrin-

mediated endocytosis [39,78–80]. Recently, it was found that ABP1 is required for the auxin-mediated 

activation of Rho of Plant (ROP) GTPases, which exert their effects through interaction with ROP 

interactive CRIB (Cdc42/Rac Interactive Binding) motif-containing proteins (RIC) [78] (Figure 1). As 

ABP1 controls fast auxin responses at the plasma membrane, one might expect that ABP1 also acts 

upstream of auxin-induced Ca
2+

 signaling. However, available data are indirect and inconclusive as 

exemplified in auxin-induced stomatal opening. Firstly, it is well established that auxin induces stomatal 

opening [81], which has been correlated with the induction of Ca
2+

 signals and cytosolic acidification in 

guard cells [21]. Secondly, lowering Ca
2+

 via ethylene glycol tetraacetic acid (EGTA) prevented  

auxin-induced stomatal opening [57] indicating that apoplastic Ca
2+

 is required for auxin-induced 

stomatal opening. Thirdly, activation of apoplastic ABP1 via exogenous application of a specific 

antibody induced stomatal opening, while exogenous application of polyclonal antibodies could interfere 

with auxin-induced stomatal opening [82]. Together, these findings are consistent with a model in which 

extracellular ABP1 acts upstream of Ca
2+

 during auxin-induced stomatal opening. However, in 

mutants defective in AUX1-mediated IAA uptake, IAA could no longer counteract abscisic acid 

(ABA)-induced stomatal closure [83], arguing against the involvement of an extracellular auxin 

receptor. Moreover, the Ca
2+

-dependent portion of auxin-induced protoplast swelling was suggested to 

be independent of apoplastic ABP1 [84].  
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Figure 1. Scheme of auxin-induced Ca
2+

 signals. (Left) Canonical SCF
TIR1/AFB

-mediated 

auxin signaling; (Right) ABP1-mediated auxin signaling. The curved arrow represents a 

hypothetical model in which Ca
2+

 acts as a connecting signal between ABP1 and 

SCF
TIR1/AFB

 signaling cascades.  

 

The ABP1 and SCF
TIR1/AFB

 signaling cascades are interconnected: in conditional knockdown lines 

for ABP1, SCF
TIR1/AFB

-regulated transcripts were less auxin-sensitive [34], and TIR1/AFB-dependent 

Aux/IAA degradation was enhanced [85]. While the underlying mechanism is currently unknown, one 

could speculate that Ca
2+

 acts as a coordinating signal between both signaling cascades (Figure 1). 

Indeed, the early auxin-responsive gene, TaIAA1, could be controlled by Ca
2+

 application, which was 

prevented by Ca
2+

 chelation [86], suggesting that the SCF
TIR1/AFB

 signaling cascade can be controlled 

by Ca
2+

 signals, which are potentially generated downstream of ABP1. 

4. Calcium Modulates pH and Growth  

After the discovery of the molecular nature of auxin, it was readily recognized that auxin can 

promote or inhibit growth depending on its concentration [87]. At low concentrations, auxin stimulates 

growth, while high auxin concentrations repress growth.  

Auxin-induced growth can be largely explained by a rapid elongation of cells and is correlated with 

acidification of the apoplast [88], activation of cell wall modifying enzymes [89,90] and K
+
  

uptake [91–93]. These elements have been rationalized in the ―Acid Growth Theory‖ [94–99], which 

suggests that apoplast acidification is the major regulator of auxin-induced elongation by activating 

cell wall loosening enzymes and by providing the electrochemical gradient that drives K
+
 uptake, 

which is necessary for water uptake and cell expansion. This theory provides a nice overview of events 

that correlate with auxin-induced growth, but remains controversial, due to a lack of strong 

biochemical and molecular support. 

Central to the activation of plasma membrane-localized H
+
 ATPases (AHAs) is the  

phosphorylation-dependent interaction with a 14-3-3 protein. This interaction, and, thus, proton 

extrusion, depends mainly on phosphorylation of the penultimate Thr in its C-terminus [100,101], 

which is also targeted during auxin-induced elongation and occurs with a lag of ~10 min after auxin 

application [88]. On the other hand, the interaction between AHA2 and the activating 14-3-3 protein 

can be inhibited by phosphorylation of a Ser-931 in its C-terminus by the protein kinase 
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PKS5/CIPK11, which acts in concert with the Ca
2+

 binding protein, ScaBP1/CBL2 [102], and could 

explain the Ca
2+

-dependent root growth inhibition in high auxin levels [103,104]. Importantly, this 

Ca
2+

-dependent inhibition could be part of a feedback mechanism that keeps apoplast acidification in 

check, as arabinogalactan glycoproteins (AGBs) are proposed to act as pH-sensitive Ca
2+

 sources in 

the periplasm [105]: Acidification of the apoplast would thus increase the unbound Ca
2+

 concentration 

that can contribute to cytosolic Ca
2+

 signals that inhibit AHA activity (Figure 2). 

The existence of two antagonistic pathways for regulating AHA activity with two different auxin 

sensitivities would provide an easy explanation for the observed concentration-dependent dualism of 

auxin as a regulator of elongation growth [87] (Figure 2). At suboptimal concentrations, auxin would 

mainly stimulate AHA activity to drive elongation, until a threshold concentration at which auxin 

triggers Ca
2+

-dependent inhibition of AHAs. The auxin receptor for these responses might be ABP1, as 

auxin-induced elongation and H
+
 ATPase phosphorylations are independent of the canonical SCF

TIR1/AFB
 

signaling pathway [88,106], and antigenic inhibition of ABP1 can prevent auxin-induced H
+
 ATPase 

activity [72,75,107]. 

Figure 2. Hypothetical model of auxin concentration-dependent control over apoplastic 

pH. At low concentrations, auxin activates plasma membrane (PM) H
+
 ATPases, thereby 

lowering apoplastic pH and increasing apoplastic Ca
2+

 concentrations via arabinogalactan 

glycoproteins (AGBs). At high auxin concentrations, auxin induces a Ca
2+

 signal that 

inactivates H
+
 ATPases. The auxin-induced Ca

2+
 signal can be inhibited by La

3+
.  

 

Besides a possible modulation of H
+
 ATPase activity, Ca

2+
 is well known to control K

+
 uptake via 

direct regulation of K
+
 channels in guard cells and in roots [108–113]. In these examples, Ca

2+
 sensing 

proteins of the calcineurin B-like (CBL) family, together with CBL interacting kinases (CIPK) or 

Ca
2+

-dependent kinases (CPKs), mediate Ca
2+

-dependent phosphorylation of K
+
 channels to fine-tune 

their activities. Furthermore, during auxin’s effect on osmoregulation, Ca
2+

 could be an important 

signal, as high extracellular Ca
2+

 impairs acid-induced growth, which is associated with reduced inward 

K
+
 currents [93]. Moreover, K

+
 transporters, TRH1/AtKT3/AtKUP4 [114,115] and ZIFL1 [116], and 

CIPK6 [117] (which can phosphorylate the K
+
 transporter AKT2 [118]) have been connected to the 

regulation of auxin transport. Therefore, the effect of Ca
2+

 on K
+
 channels could be related to 

regulating osmotic pressure for both cell elongation and for auxin transport.  

5. Ca
2+

 Controls the Rate of Auxin Transport  

As early as the nineteenth century, Charles Darwin already recognized the existence of a mobile 

signal that moves between the site of light perception and the site of elongation growth during 
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phototropic bending [119]. Ever since the discovery of auxin, auxin transport has been recognized as a 

crucial aspect of auxin-regulated growth [2]. Two types of auxin transport can be distinguished. The 

first is passive, long-distance auxin transport via the vascular tissues for source-to-sink auxin  

transport [120]. The second is slower, directional (polar), cell-to-cell transport for auxin-regulated 

plant development. The latter is one of the main mechanisms by which instructive auxin gradients in 

tissues are formed to regulate plant development. Interestingly, polar auxin transport was found to be 

highly dependent on Ca
2+

 availability [104,121–125]. Together, these findings highlight the 

importance of Ca
2+

 in auxin transport.  

The minimal mechanistic constituents of polar auxin transport have been delineated in the 

chemiosmotic polar diffusion hypothesis [126–129] (Figure 3). This model states that the natural 

auxin, indole-3-acetic acid (IAA), in the acidic environment of the apoplast exist (in part) in its 

protonated form, which renders it more lipophilic and, thus, allows it to diffuse through the plasma 

membrane. Once inside the neutral cytosol, it loses its lipophilicity by deprotonation and is trapped 

inside the cell. The rate of auxin efflux from the cell is, therefore, dependent on the activity of auxin 

efflux proteins. By extension, this model predicts that asymmetric localization of such auxin efflux 

transporters could explain polar auxin transport across tissues.  

Figure 3. Summary of the effects of Ca
2+

 on polar auxin transport rates. (a) Cellular Ca
2+

 

signaling impacts on auxin uptake mechanisms via effects on the abundance and activity of 

the plasma membrane H
+
 ATPase. The amount of protons in the apoplast determine the 

auxin uptake rate via diffusion of protonated indole-3-acetic acid (IAAH), as well as 

H
+
/IAA

-
 (indole-3-acetic acid) symport; (b) Ca

2+
 can change the affinity of NRT1.1 for 

nitrate and auxin uptake; (c) Ca
2+

 controls the activity of the auxin efflux machinery by 

modulating the kinase activity of PINOID (PID) and, possibly, also D6PKs. PID also 

impacts on PIN-formed (PIN) polarity (not depicted). Uptake refers to active uptake 

mechanisms. Efflux refers to active auxin efflux mechanisms. 
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Since the formulation of this model, most of the underlying molecular machinery has been 

identified and characterized in detail. Besides passive auxin entry, auxin was found to be actively 

taken up into the cell (Figure 3). This is mainly mediated by auxin influx transporters of the 

AUX1/LAX family [130,131], at least one member of the ABCB family [132] and the nitrate 

sensor/transporter, NTR1.1 [133]. The AUX1/LAX proteins are amino acid permease-like proteins that 

act as high affinity H
+
/IAA

−
 symporters [134]. They are involved in efficient auxin uptake into the 

cell, which is needed for gravitropism [131,135], lateral root emergence [136] and phyllotaxis [137]. 

Interestingly, vacuolar Ca
2+

 was found to have a profound, but indirect, impact on AUX1-mediated 

H
+
/IAA

−
 symport, via effects on plasma membrane H

+
 ATPase activity [83] (Figure 3a). Mutants 

defective in the vacuolar Ca
2+

/H
+
 exchangers, CAX1 and CAX3, were insensitive to IAA’s inhibitory 

effect on ABA-induced stomatal closure. This defect in IAA sensitivity could be fully rescued by the 

lowering of apoplastic pH in the mutants. This illustrates how vacuolar Ca
2+

 homeostasis processes 

can impact on auxin uptake. Similarly, cax1 mutants show reduced lateral root densities and show 

IAA-resistant root growth [138], reminiscent of aux1 mutant phenotypes [120,139], suggesting that a 

similar mechanism as described for stomata can explain the observed root phenotypes. 

While AUX1/LAX transporters mediate the bulk of the auxin influx into the cell, ABCB4, its close 

homologue, ABCB21, and NRT1.1 represent conditional auxin uptake mechanisms. On the one hand, 

ABCB4 and ABCB21 mediate auxin uptake when auxin levels are low, but catalyze auxin efflux at 

higher concentrations [132,140]. However, no effects of Ca
2+

 on their auxin transport activity were 

thus far reported. On the other hand, the NRT1.1/CHL is a dual-affinity nitrate transporter, which also 

serves as a nitrate sensor [141]. This protein was recently reported to also facilitate auxin uptake [133]. 

Importantly, NRT1.1-dependent auxin uptake could be inhibited by nitrate, highlighting a direct  

cross-talk between nutrient sensing and auxin transport. Moreover, NRT1.1’s affinity for nitrate is 

controlled by CIPK23-mediated phosphorylation [141], suggesting that Ca
2+

 signals control auxin 

uptake via modulating NRT1.1’s affinity for nitrate (Figure 3b).  

The other rate-limiting aspect of the polar auxin transport is auxin efflux (Figure 3c). This process 

is mainly mediated by auxin transporters of the PIN-formed (PIN) family and a subgroup of the ABCB 

transporter family [142,143]. They can transport auxin independently, but also in concert with each 

other [144–147]. Among the ABCB transporters, ABCB1, ABCB4, ABCB19 and ABCB21 are best 

characterized for their auxin-transport capacities [140,148,149]. Their auxin efflux activities are 

stimulated by interaction with the immunophilin-like TWISTED DWARF1 (TWD1) [150,151], and 

this interaction is inhibited by synthetic and natural auxin transport inhibitors [140,146]. Besides the 

interaction with TWD1, ABCB1 auxin efflux activity can be impaired or stimulated by phosphorylation 

via the AGC kinase, PINOID (PID) [146]. In the presence of TWD1, PID-mediated phosphorylation 

inhibits auxin efflux, whereas it acts in a stimulatory manner in the absence of TWD1. On the other 

hand, PIN-mediated auxin transport rates can be regulated by D6PK-mediated phosphorylation, 

another subclade of AGC kinases [152]. Interestingly, PID kinase activity can be enhanced or 

repressed by interaction with the Ca
2+

-binding proteins, PID-BINDING PROTEIN 1 (PBP1) and 

TOUCH 3 (TCH3), respectively [153]. This suggests that Ca
2+

 can have a positive, as well as a 

negative, impact on PID activity and, thus, on ABCB-mediated auxin transport. Conversely, as D6PKs 

are alsoAGC-type kinases, it is tempting to speculate that these kinases could also be regulated by  

Ca
2+

-binding proteins to regulate PIN-mediated auxin transport activity.  
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These examples demonstrate how Ca
2+

 could impact on auxin transport rates via direct effects on 

the auxin transport machinery. However, there are probably even more mechanisms by which Ca
2+

 can 

impact on polar auxin transport. One example of this is the recent finding that overexpression of 

SAUR19, a member of an early auxin responsive protein family that binds with high affinity to 

calmodulin [154], promotes cell expansion and polar auxin transport by an unknown mechanism [155]. 

6. Ca
2+

 in the Balance of Exocytosis and Endocytosis  

While the above examples demonstrate how Ca
2+

 impacts on the speed of auxin transport, it was 

already proposed in 1984 that reduced polar auxin transport under low Ca
2+

 conditions was the result 

of both a lower velocity and a lower capacity for auxin transport [156]. This implies that Ca
2+

 controls 

not only the activity, but also the relative abundance of auxin transporters at the plasma membrane.  

Newly biosynthesized PINs are trafficked from the endoplasmic reticulum, via the Golgi apparatus 

and trans-Golgi Network (TGN) to the plasma membrane. Via clathrin-mediated endocytosis, PIN 

proteins are removed from the plasma membrane to early endosomes/TGN from which they can be 

targeted to the vacuole for degradation or recycled for exocytosis at the PM [157]. Thus, the predicted 

impact of Ca
2+

 on PIN abundance at the plasma membrane is determined by the balance between 

exocytosis and endocytosis. 

One of the most famous effects of Ca
2+

 on membrane trafficking in animals is the activation of 

exocytosis during neurotransmission [158] and hormone secretion [159]. In plants, Ca
2+

is also 

intimately connected to regulated exocytosis, as exemplified in gibberellic acid-induced alpha-amylase 

secretion [160,161], peroxidase secretion [162,163] and polar growth [164–167]. The stimulatory 

effect of Ca
2+

 on exocytosis could also be directly observed by Ca
2+

-induced increases of membrane 

capacitance in protoplasts of barley aleurone cells [168,169], maize coleoptiles [170,171], maize root 

caps [172] and tobacco calli [173]. Additionally, Ca
2+

 might also increase secretion by stimulating de 

novo synthesis of secretory cargoes [173,174]. That Ca
2+

 could be involved in PIN secretion would be 

a plausible assumption; however, without supporting experimental evidence, it remains equally 

plausible that PINs are constitutively secreted, in a Ca
2+

-independent manner.  

Indications for the involvement of Ca
2+

 as a coordinator of PIN trafficking derive from the spatial 

separation of clathrin-mediated endocytosis and exocytosis of polarized PINs [175], which is 

reminiscent of a polarized tip growth in pollen tubes and root hairs (Figure 4). During tip growth, a  

tip-focused Ca
2+

 gradient coordinates secretion, endocytosis and actin dynamics [167,176,177]. 

Secretory vesicles are polarly delivered to the growing tip via filamentous actin (F-actin), where they 

cannot fuse to the plasma membrane until the cortical F-actin is depolymerized to allow vesicle docking 

and fusion [178]. The tip-focused, oscillating Ca
2+

 induces F-actin depolymerization via activation of 

ABP29 in lily pollen [179], thereby stimulating exocytosis. During tip growth, too much membrane 

material is delivered compared to what is necessary for the fast, expansive growth [180]. Therefore, a 

considerable amount of materials, including regulators, are recycled by endocytosis. In pollen, two types of 

endocytosis could be distinguished: in the shank and subapical region, clathrin-mediated, actin-

dependent endocytosis occurs, whereas in the apex, bulk endocytosis is actin-independent [181–185]. 

Thus, the sites of secretion and that of clathrin-mediated endocytosis coincide with high and low Ca
2+
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concentrations, respectively, suggesting that Ca
2+

 not only stimulates exocytosis, but simultaneously 

inhibits clathrin-mediated endocytosis.  

Figure 4. Scheme of membrane trafficking in tip growth and PIN polarization. (Left) 

Scheme of a tip-growing cell, with high secretion rates centered on a tip-focused Ca
2+

 

gradient and high endocytosis rates at the shank of the cell; (Right) A cell with polarized 

PINs at its apical cell side shows high rates of PIN endocytosis at its flanks and polar 

recycling to the center of its apical domain. Polarized auxin efflux locally causes an 

increase in auxin concentration, which could elicit Ca
2+

 signals in the underlying 

cytoplasm. (endo = clathrin-mediated endocytosis; exo = exocytosis).  

 

Therefore, auxin-induced Ca
2+

 could simultaneously induce secretion and inhibit clathrin-mediated 

endocytosis of PINs, thereby increasing the local auxin transport capacity, resulting locally in higher 

auxin concentrations, which, in turn, activate Ca
2+

 signaling. Such a positive feedback mechanism is 

consistent with our current models of auxin-regulated PIN polarization [175,186]. Thus far, it has been 

established that auxin can enhance its own efflux by inhibition of clathrin-mediated endocytosis of 

PINs [38]. Upon perception of auxin, extracellular ABP1 activates Rho of plant (ROP) GTPases to 

inhibit clathrin-mediated endocytosis via regulation of the actin cytoskeleton [39,78–80]. Recently, 

Ca
2+

 was placed upstream of ROP activity in pavement cells, as Rho GDI1 activity depends on 

phosphorylation by Ca
2+

-dependent kinase, CPK3 [187]. However, ROP GTPases could also act 

upstream of Ca
2+

, as the pollen-specific ROP interactor, RIC3, controls the tip-focused Ca
2+

 gradient in 

pollen tubes [188]. 

Such interplays between Ca
2+

 and ROPs are potential mechanisms by which signals, such as  

auxin [37,38], cytokinins [189], strigolactones [190], gibberellins [191,192], salicylic acid [193], etc., 

could control the turn-over of PINs to change auxin transport. 

7. Ca
2+

 As a Means to Change Auxin Flow Direction  

The plasma membrane-localized PIN proteins show typical asymmetric distribution  

patterns [2,194] that dictate the auxin flow direction within a given cell [195]. These subcellular 

polarities are not static, as they can be dynamically rearranged in response to endogenous [7,9,25,196] 

and exogenous signals [15,36,197,198].  
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Via misexpression studies, it was found that PIN polarities are not only determined by the cell type, 

but also by cues embedded in the structure of the PIN itself [195]. These polarity-determining signals 

within the PIN structure can be explained by specific phosphorylations in their hydrophilic loop [199,200] 

controlled by PINOID [201] and its counteracting phosphatase (PP2A) [202]. Phosphorylation  

by PINOID impacts on the subcellular trafficking of PINs by modulating their differential recruitment 

to distinct trafficking routes. In the root, PID-mediated phosphorylation renders PINs insensitive to 

GNOM-dependent trafficking, resulting in an apical (shootward) polarization [203]. During 

photostimulation, perception of light represses PID activity, allowing PIN3 to be recruited into  

GNOM-dependent trafficking toward the inner-lateral side of the cell [16]. Similarly, PID and GNOM 

activity are involved in PIN3 repolarization during shoot gravitropism [197]. That PID activity can be 

regulated by interaction with different Ca
2+

 binding proteins [153] suggests that Ca
2+

 signals could 

control PIN polarization via effects on PID activity. Indeed, important Ca
2+

 signals roughly coincide 

with PIN polarity changes during phototropism and gravitropism [15,16,197,204–206]. Moreover, 

mutations or treatments that lead to elevated Ca
2+

 levels were associated with shifts in PIN polarity [207].  

8. The Ca
2+

-Auxin Interplay during Gravitropism  

Gravitropism is an excellent example in which the interplay between auxin and Ca
2+

 is particularly 

apparent. Gravistimulation induces transient Ca
2+

 signals
 
in maize coleoptiles [208], whole Arabidopsis 

seedlings [209], Arabidopsis leaf petioles and hypocotyls [210] and Arabidopsis roots [55]. The auxin 

dependence of these gravitropism-associated Ca
2+

 changes was demonstrated by genetic [55] and 

pharmacological interference with auxin transport [209,210]. Via a highly sensitive, genetically encoded 

Ca
2+

 sensor, Yellow Cameleon 3.60, a wave of Ca
2+

 was visualized that spread across the lower side of 

the root within minutes after gravistimulus [55], correlating spatially and temporally with the reported 

dynamics of auxin redistribution [211]. Not only cytosolic Ca
2+

 showed dynamics that correlate with 

auxin transport, but also auxin transport-dependent directional movement of Ca
2+

 across the 

gravistimulated tissues could be detected [212,213]. The gravistimulus-induced Ca
2+

 signals are 

particularly relevant, as gravitropic bending is severely impaired upon chelation of apoplastic Ca
2+

, 

inhibition of calmodulin or Ca
2+

 channels [214–219]. This illustrates the importance for Ca
2+

 in 

gravitropic bending. However, the underlying molecular mechanism remains poorly understood and, in 

some cases, even controversial [13,220].  

A potential target of gravistimulus-induced Ca
2+

 signals is the plant’s ability to redirect auxin 

transport in response to the gravistimulus. Within minutes after graviperception, PIN3 and PIN7 root 

columella cells repolarize towards the direction of the gravitational pull [15,221], thereby enhancing 

auxin transport to the new lower side of the root (Figure 5). This additional auxin is efficiently taken up 

in root cap and epidermal cells via AUX1-mediated H
+
/IAA

-
 symport [134,135], to allow rapid efflux 

towards the root elongation zone via apically localized PIN2 and apical, PID-activated ABCB auxin 

transporters [146,222,223]. The increased auxin flux via PIN2 is capacitated by transient inhibition of 

endocytosis, which increases PIN2 abundance at the plasma membrane [37,38]. Simultaneously, the 

reduced auxin flows across the upper side of the root meristem and destabilizes PIN2 at the plasma 

membrane [36,37]. These complex effects on auxin transport differentially regulate auxin between the 

lower and upper side of the root elongation zone, differentially regulating elongation-driven growth 
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and, thus, root bending. When Arabidopsis roots reach about the mid-point of bending, the asymmetry 

in auxin distribution is rapidly lost [211] and is associated with a neutralization of the imbalance of 

PIN2 abundance by auxin-induced PIN2 degradation [37].  

Figure 5. Interplay between auxin transport and calcium signaling during root 

gravitropism. Graviperception causes PIN repolarization in the columella, redirecting auxin 

flow to the lower side of the root. The new auxin flux is associated with local Ca
2+

 signals, 

altered PIN polarity and turnover, pH changes and inhibition of elongation. (The black 

arrow indicates the direction of gravistimulus).  

 

Nearly every step of this summary of auxin-dependent root gravitropism has been highlighted in the 

paragraphs before as potentially regulated by Ca
2+

 and can be summarized in the following 

hypothetical model: Calcium signaling during graviperception activates PIN3 and PIN7 relocation in 

the columella to redirect auxin flow to the lower side of the gravistimulated root. Here, auxin induces 

Ca
2+

 signals that enhance auxin transport by impacting on trafficking, polarity and, even, the activity of 

the auxin efflux machinery (Figure 5). Moreover, the increase in auxin concentration interferes with 

elongation growth via inhibition of H
+
 ATPase activity, resulting in differential growth that is 

associated with root bending. 

9. Conclusions and Future Perspectives 

Following an era of physiological approaches, the auxin field shifted its attention towards 

elucidating the mechanisms of auxin-regulated transcription. This move has proven to be very 

successful with the genetic and molecular characterization of SCF
TIR1/AFB

-based auxin signal 

transduction. Numerous aspects of plant development can now be explained via this pathway and are 

fully justifying the efforts invested. Yet, it is clear that our understanding of auxin signaling will never 

be complete by only studying auxin-regulated transcription. Recent work on leaf pavement cell 

morphogenesis and feedback regulation of auxin transport highlighted the non-transcriptional effects 

of auxin as important aspects of general auxin physiology. Therefore, it will be of interest to revisit 

some of these physiological experiments in the context of more recent models of auxin action, armed 

with a new array of cell biological, genetic and molecular tools to gain more holistic insight into the 

mechanism of auxin-regulated plant growth and development.  
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