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ABSTRACT: Electrospinning is an efficient method for the production of polyamide nanofiber membranes that are suitable for water

filtration. Previous studies have shown that nanofiber membranes have high clean water permeability. The pathogen removal effi-

ciency can be improved by functionalization with (organic) biocides. However, these membranes, like other membranes, are vulnera-

ble to fouling which reduces the filtration efficiency. Therefore the present article investigates the potential of zinc phthalocyanines,

which can produce singlet oxygen in the presence of visible light, as a functionalizing agent. The polyamide nanofiber membranes

were functionalized with phthalocyanines using both a pre-functionalizing and post-functionalizing method. Only the post-

functionalization method shows to result in nanofiber membranes capable of producing singlet oxygen. After 30 min 45% of 1,2-

diphenylisobenzofuran (DPBF), used as an oxygen quencher, was removed by reaction with singlet oxygen. This resulted in a removal

rate of 0.33 mol DBPF mol21Zn min21. During short term leaching tests, phthalocyanines could not be detected. VC 2014 Wiley Periodi-

cals, Inc. J. Appl. Polym. Sci. 2014, 131, 40486.
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INTRODUCTION

In recent years, considerable research focusses on the develop-

ment of nanofiber membranes for water filtration.1–5 These

nanofiber membranes are mostly produced via electrospinning

and have pore sizes usually in the range of 200–400 nm which

makes them suited for microfiltration. Electrospinning is a sim-

ple, rapid and inexpensive method6,7 and is currently in the

beginning phase of industrial scale production.8 The electrospun

nanofiber membranes have unique characteristics such as high

porosity, high absorption capacity, high specific surface area

and high clean water permeability (CWP) values.2,9,10 However,

like other membranes, they are prone to the build-up of fouling

during the filtration process.

The pathogen removal efficiency and antifouling properties of the

nanofiber membranes can be improved by adding functionalizing

agents (such as inorganic particles or organic biocides) to the

membrane. Previous studies have shown that the pathogen

removal of polyamide nanofiber membranes can be significantly

increased by adding nanosilver or organic biocides to the electro-

spinning solution.2 Inorganic nanoparticles with known antibac-

terial properties, such as silver, copper oxide, zinc oxide, and

titanium dioxide, have been incorporated into membrane materi-

als to enhance the antibacterial properties.11–16 Different techni-

ques can be used for the functionalization of nanofibers. The

nanofibers can be prefunctionalized by adding the functionalizing

agents to the spinning solution before electrospinning or the

nanofibers can be post-functionalized using a dipcoating or sput-

tering method.2,11

In addition to these reported functionalizing agents, phthalocya-

nines (Figure 1) could also be used as a novel and innovative

functionalizing agent. Since their discovery over 70 years ago,

phthalocyanines and their derivatives have been extensively used

as blue, green or cyan colorants (dyes or pigments), for textiles,

paper, and inks.17

Some phthalocyanines, like other photosensitizers, can generate

reactive oxygen species (ROS) upon interaction with visible light
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of suitable wavelength in the presence of ground state molecular

oxygen. Whether the phthalocyanines can produce ROS or not

mainly depends on their structure. They can differ from each

other in chemical properties that may be tuned by modifying

the central metal/semi-metal atom and the number and type of

side chains.18 The central metal plays a crucial role in the

photobiological activity influencing the triplet yield and the tri-

plet lifetime of the compound and the introduction of polar

substituents on the side chains which modify the overall balance

of polarity. Thus, also influencing the solubility of the

phthalocyanines.19

The main ROS of phthalocyanines is singlet oxygen (1O2), a

metastable excited state of ground state molecular oxygen 3O2,

which is most often produced by energy transfer from an elec-

tronically excited triplet state of the sensitizer molecule to the

ground state 3O2. Singlet oxygen is highly cytotoxic and is

capable of killing cells and microorganisms. This effect has been

used in photodynamic therapy (PDT) to effectively kill tumor

cells in the treatment of cancer.20–24 Most studies focus on

water-soluble phthalocyanines since solubility in the blood

stream is necessary if they should be used for PDT,

however this is unwanted for use as a functionalizing agent in

membranes.

PDT has also been used against bacterial infections, yeasts, para-

sites and fungi.25,26 In several studies, phthalocyanines appeared

to be effective inhibitors of various gram-negative and gram-

positive bacteria.27–29 Another advantage is that the adaptability

of microorganisms to the singlet oxygen and other reactive oxy-

gen forms is highly improbable. Therefore it could offer an

alternative for chlorination which does lead to the rise of resist-

ant pathogens. The application of photosensitizers, both por-

phyrins and phthalocyanines, in water treatment has so far been

limited to several specific purposes such as the removal of

chemical pollution in water30,31 or the removal of algae.32 How-

ever singlet oxygen is not selective and is toxic to all living cells

in the water. As such, singlet oxygen can be harmful towards

the environment and release of phthalocyanines into water

should be avoided as much as possible. For this reason, the use

of immobilized phthalocyanines in water treatment would be

more suited. Especially in filtration applications where there is

limited access to electricity, but visible light is abundantly pres-

ent (e.g., in some third world countries), the electrospun nano-

fiber membranes functionalized with phthalocyanines can have

great potential.33–35

The use of phthalocyanines as a functionalizing agent for elec-

trospun nanofiber membrane material is still very limited.

Phthalocyanines have been immobilized on electrospun nano-

fiber membranes such as reinforced chitosan membranes by

using a post-functionalization method33 and also polyurethane

nanofabrics have been functionalized with zinc photosensi-

tizers34 or zinc phthalocyanines.36 In this study, it will be inves-

tigated whether the zinc phthalocyanines can be incorporated

into a uniform polyamide 6 nanofiber membrane and whether

they have potential to improve the membranes properties. First,

filtration properties (clean water permeability and pathogen

removal efficiency) of the non-functionalized membrane are

characterized. Then different pre-functionalization and post-

functionalization methods will be compared. Preliminary

experiments had shown that the non-reinforced PA nanofiber

membranes could not tolerate an aggressive method (including

the use of NaOH) as used by Bonnett et al.,33 however the same

methods that have been used for functionalizing membranes

with Ag as described by Decostere et al.,1 can be used. The sin-

glet oxygen production of the two different functionalization

methods will be compared by studying the degradation of an

oxygen quencher. It will be demonstrated that the prefunction-

alized membranes perform better in terms of diphenylisobenzo-

furan (DPBF) removal, which indicates better singlet oxygen

production. As such this study aims at demonstrating the

proof-of-principle of the functioning of electrospun nanofiber

membranes functionalized with phthalocyanines.

EXPERIMENTAL

Materials

Polyamide 6, acetic acid, formic acid were purchased at Sigma–

Aldrich. N,N-dimethylformamide (DMF), chloroform, (tetrahy

drofuran (THF), were purchased from SAARCHEM; 1,2-diphe-

nylisobenzofuran (DPBF) was purchased from Aldrich.

Equipment

The viscosity of the electrospinning solution was measured

using a Brookfield viscometer LVDV-II, the conductivity was

measured with a CDM210 conductivity meter (Radiometer

Analytical) and the surface tension was determined using a Wil-

helmy plate method. Scanning electron microscope (Jeol Quanta

200 F FE) was used to verify the absence of beads and drops

and to determine the average fiber diameter of the nanofiber

membranes out of 50 measurements. The surface area of the

nanofiber membranes was analyzed using Micromeritics ASAP

2020 Physisorption Analyzer. The clean water permeability and

pathogen removal efficiency of the nonfunctionalized nanofiber

membrane were determined using a flow through system as

described in Decostere et al.1 and Daels et al.2 The clean water

Figure 1. Molecular structure of ZnTTQPc.17
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permeability was determined by measuring the flux at different

trans-membrane pressures. The pathogen removal efficiency was

determined by filtering 100 mL of water inoculated with 6

Log10 CFU/100 mL E. coli. Further, the culturable micro-

organisms were enumerated by inoculation in a nutrient agar

culture medium at 37�C for 24 h.

UV–vis absorption spectra were recorded on a Cary 500 Vis/

NIR spectrophotometer. A measurement path length of 1 cm

was used.

Preparation of the Polyamide Nanofiber Membranes

The membranes were prepared by nozzle electrospinning as

described in De Vrieze et al.7 The standard setup for nozzle

electrospinning consisted of a syringe with a metallic needle, a

syringe pump, a high-voltage power supply, and a grounded

collector. An electric field was applied across a polyamide 6 for-

mic acid/acetic acid solution and a collector plate. As the solu-

tion jet travels, it is bend and/or split by the electric forces

while the solvent evaporates. This mechanism led to the forma-

tion of nanofibers which were attracted to the grounded collect-

ing plate. Both single nozzle7 and multi nozzle2 setups were

used to produce the membranes.

The post-functionalization was performed on pieces of one large

polyamide nanofiber membrane (100 3 40 cm2) which was

produced on a 10-nozzle setup using a 16 wt% 50/50v% formic

acid/acetic acid solution under steady state conditions (in terms

of e.g., voltage difference between syringe tip and collector).7,37

These steady state conditions guarantee that the membrane

structure is free of drops and beads.37 The speed of the collector

was set so that the grammage of the membrane is constant at

15 g m22, which guarantees a uniform thickness of the whole

membrane. SEM images (Figure 2) show that the result is

indeed a defect-free nanofiber membrane.

Preparation and Incorporation of Photosensitizers

The synthesis of ZnTTQPc ((4)-tetra[2-thioquinoline]phthalo-

cyaninato zinc(II)) is performed according to Erdogmus and

Nyokong.38 The molecular structure of the complexes are shown

in Figure 1.

Prefunctionalization was achieved by adding ZnTTQPc to the

16 wt % polyamide 6, 50/50 v/v% formic acid/acetic acid solu-

tion. This solution is electrospun into a membrane using the

single nozzle setup as described above. This membrane is fur-

ther denoted as membrane-pre.

Post-functionalization with ZnTTQPc was performed by sub-

merging 0,07 g of nanofiber membrane produced by the multi

nozzle setup in 50 mL of a ZnTTQPc/THF solution for 12 h.

After the adsorption, the membranes are rinsed in a clear THF

solution so that all unbound phthalocyanines are removed.

Then the membranes are rinsed in demineralized water to

remove all remaining solvent and left to dry at room tempera-

ture. This membrane is further denoted as membrane-post.

During both functionalization methods an almost equal

ZnTTQPc concentration was used as starting point. For both

solutions (ZnTTQPc in formic acid/acetic acid and ZnTTQPc

in THF) a final ZnTTQPc concentration of about 4 3 1026

mol L21 was obtained (similar to Erdogmus and Nyokong38).

In fact, ZnTTQPc was added to the solution until the normal-

ized absorbance reached a value of 1 at the wave length that

corresponds with the Q-band (see Figure 4 below). As such,

similar amounts of ZnTTQPc were used initially during both

functionalization methods. Also both functionalization methods

were performed at room temperature.

Singlet Oxygen Production

Singlet oxygen may be determined by two main methods, using

chemical quenchers or using luminescence at 1270 nm. The

method applied in this work makes use of singlet oxygen scav-

engers or quenchers. The 1,3-diphenylisobenzofuran (DPBF) is

known to be an exclusive and widely used quencher in organic

solvents.39 The reaction of singlet oxygen with DPBF yields

endoperoxide as shown in Figure 3.

Irradiations for singlet oxygen studies were performed using a

General Electric Quartz lamp (300 W), 600 nm glass (Schott)

and water filters, to filter off ultraviolet and far infrared radia-

tions respectively. An interference filter, 670 nm with a band of

40 nm, was placed in the light path just before the cell

Figure 2. SEM images of non-functionalized PA nanofiber membrane.
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containing the sample. The cell contained a volume of 3 mL of

DBPF solution and a nanofiber membrane with a weight of

4.5 3 1023 g and a width of 1 cm and a length of 3 cm (3 3

1024 m2).

DBPF was used to compare the release of singlet oxygen in the

THF at room temperature. Membranes -pre and -post were sus-

pended in THF for these studies. To avoid chain reactions

induced by DPBF in the presence of singlet oxygen, the concen-

trations of DPBF was lowered to 3 3 1025 mol L21. DPBF deg-

radation was monitored in the UV–vis spectrophotometer at

413 nm.

RESULTS AND DISCUSSION

Electrospinning and Characterization of Nonfunctionalized

Nanofiber Membranes

Table I summarizes the solution properties that play an impor-

tant role in the electrospinning process such as viscosity, con-

ductivity and surface tension. Further it includes the properties

of the nanofiber membrane that are important for water filtra-

tion purposes. Additional measurements have demonstrated

that similar values are obtained for these properties when using

with functionalized membranes (data not shown). The average

nanofiber diameter is determined at 168 6 19 nm. BET-analysis

calculates the specific surface area to be 12 m2 g21. For both

the nonfunctionalized and functionalized nanofibers. This is

much higher than literatures values on conventional textiles.10

The membranes are used without any further reinforcement.

The clean water permeability and the pathogen removal effi-

ciency for E. coli of the nonfunctionalized polyamide nanofiber

membrane was determined to be 23,000 L h21 bar21 m22 and

3.2 Log10 CFU/100 mL, respectively. Decostere et al.1 had previ-

ously reported a CWP value of 6000 L h21 bar21 m22 and a

2 Log10 CFU/100 mL removal for polyamide nanofiber mem-

branes, produced on a multinozzle system. The improvement in

filtration properties is based on the optimization of the materi-

als production method and the use of a thinner membrane.

This resulted in a more uniform membrane with a higher CWP

value and a better pathogen removal efficiency. Even with these

improvements the membrane remains vulnerable to fouling

which can affect the filtration properties and eventually lead to

clogging of the membrane. An additional improvement is neces-

sary to decrease the potential of fouling.

Characterization of the Functionalization Agent

The synthesis and characterization of (4)-tetra[2-thioquinoli-

ne]phthalocyaninato zinc(II) (ZnTTQPc) has been previously

described in Erdogmus and Nyokong.38 It was determined that

ZnTTQPc has a high singlet oxygen quantum yield, which gives

indication of the potential of this complex as photosensitizer in

applications where singlet oxygen is required. This phthalocya-

nine is less suited for cancer treatment (PDT) because its lack

of solubility in water. However as a functionalization agent for

water filtration membranes, this could be an advantage. It has a

very low affinity for water and therefore it is likely to remain in

the membrane after functionalization and not leach out.

The solubility of ZnTTQPc in different solvents is investigated

by measuring the UV-Vis spectra of the different solutions (Fig-

ure 4). The phthalocyanine can be used as a functionalizing

agent when it has a good solubility in different solvents. The

ZnTTQPc is characterized by an intense Q band in the visible

region and B band in the UV region. The THF and chloroform

solutions show a clear Q band at 684 and 690 nm, respectively.

In some solvents, the ZnTTQPc may aggregate which can be

detected by a widened Q band, in this case the Q band is nar-

row which indicates that ZnTTQPc does not aggregate in these

solvents. In line with this, ZnTTQPc has a good solubility in a

formic acid and acetic acid mixture. As such, ZnTTCPc is solu-

ble in the 50/50v% formic acid/acetic acid solvent mixture that

is used in the electrospinning solution. The split in the Q band

of the acid solution is a direct result of the acidity. This split

could be the result of demetalation or protonation of the

ZnTTQPc. Because of the acidity of the solvent mixture, the

Figure 4. UV spectra of ZnTTQPc dissolved in THF, Formic acid:Acetic

acid (FA:AA) and chloroform.

Table I. Properties of the Nanofiber Membrane and Its Solution

Property Value Unit

Electrospinning solution

Viscosity 470 Pa s

Conductivity 0.639 mS cm22

Surface tension 0.0361 N m21

Polyamide nanofiber membrane

Average fiber diameter 167.9 nm

Grammage 15 G m22

Specific surface area 12.22 m2 g21

Clean water permeability 23000 l h21 bar21 m22

Pathogen removal
efficiency (E.coli)

3.2 Log10 CFU/100 mL

Figure 3. Reaction of DPBF with singlet oxygen.
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ZnTTQPc will have partially protonated but will still be capable

of producing singlet oxygen. The ZnTTQPc can thus be used to

compare the two functionalization methods.

ZnTTQPc Functionalized Membrane Production

The membrane further denoted as “membrane-pre” is produced

using the pre-functionalization method by adding ZnTTQPc to

the electrospinning solution before spinning. The duration of

electrospinning is chosen so that the grammage is 15 g m22, as

such the pre-functionalized and post-functionalized nanofiber

membranes are easily comparable in terms of grammage. The

measured average fiber diameter is 159 6 24 nm. Changing the

composition of the electrospinning solution can influence the

steady state behavior; however in this case, the small amount of

phthalocyanines does not affect the steady state conditions. The

resulting nanofiber membrane is very pale green. Through this

method the ZnTTQPc can be distributed both in the center and

more towards the surface of each individual nanofiber.2,13 The

amount of ZnTTQPc can be calculated based on the electro-

spinning conditions. To obtain a 16 wt % solution, 4.32 g of

polyamide 6 was dissolved in 20 mL of a 50/50 v/v% formic

acid (density 1.22 g cm23)/acetic acid (density 1.05 g m23)

solution. This solution contained also 4 3 1026 mol L21

ZnTTQPc and resulted in 0.29 m2 of nanofiber membrane. As

such 2.8 3 1027 mol Zn m2 or 1.85 3 1028 mol Zn g21 was

incorporated.

The membrane further denoted as “membrane-post” was

produced by dipcoating 0.07 g (or 0.005 m2) of a non-

functionalized membrane in 50 mL of a ZnTTQPc/THF solu-

tion for 12 h. Afterward, it was rinsed twice in clear THF to

remove all unbound ZnTTQPc. The UV spectra of the washing

solvent were analyzed and no ZnTTQPc could be detected in

the solution. After the functionalization, the membranes were

uniformly colored green. Because the membrane was fully

immersed into the functionalizing solution, the ZnTTQPc are

adsorbed onto the surfaces of each individual nanofiber and not

only on the top surface of the membrane. The amount of

ZnTTQPc for this post-functionalized membrane can be calcu-

lated based on these dipcoating conditions. The dipcoating

solution contained 4 3 1026 mol L21 ZnTTQPc. It is estimated

that after 12 h of dipcoating about 30% of this ZnTTQPc is

actually attached to the membrane, which is similar to results

obtained with for example methylene blue. This results in 1.3 3

1025 mol Zn m22 or 8.6 3 1027 mol Zn g21. As such about

46 times more ZnTTQPc can be incorporated with this post-

functionalization technique.

Singlet Oxygen Production

DPBF is known to be an exclusive and mostly used quencher of

singlet oxygen in organic solvents. The singlet oxygen produc-

tions of membrane-pre and membrane-post are compared by

monitoring the degradation of singlet oxygen quencher DPBF

in THF to determine which functionalization method is most

appropriate for the enhancement of the filtration properties of

the polyamide nanofiber membrane. To produce singlet oxygen,

the ZnTTQPc needs to be excited by visible light. Figure 5

shows UV spectra of the initial DPBF/THF solution and of the

solution after 30 min of irradiation of the functionalized

nanofiber membranes. The dipcoated membrane-post has a

much higher DPBF removal efficiency than the electrospun

membrane-pre.

For all spectra, the absorbance of DPBF at 413 nm is deter-

mined and plotted in Figure 6 in function of time. The non-

functionalized membrane removes DPBF at the same rate as

membrane-pre. Because of the high specific surface area of the

nanofiber membrane, it is capable of adsorbing not only the

ZnTTQPc but the DPBF as well. Thus, it is likely that prefunc-

tionalized membrane-pre does not effectively produce singlet

oxygen, but that the removal of DBPF in solution is caused by

adsorption rather than by reaction with singlet oxygen.

Postfunctionalized membrane-post is clearly capable of remov-

ing significantly more DPBF than membrane-pre and the non-

functionalized membrane. After 30 min the concentration of

DBPF has decreased with 55%. When taking into account that

10% is caused by adsorption (based on the results with the

non-functionalized membrane), the removal by reaction with

singlet oxygen reaches 45%. This difference in removal is attrib-

uted to the fact that much more ZnTTQPc can be incorporated

with the post-functionalization technique. Further, the visible

light has much better access to the ZnTTQPc on membrane-

post, since they are distributed on the surface of the individual

nanofibers and will therefore have better access to visible light,

although the use of different solvents during the preparation of

the membranes could also play a minor role.40 In contrast with

the biocides used in our previous studies, the pre-

functionalization method is not suited for photosensitizers,

since access to visible light is key in producing singlet oxygen,

even if a longer reaction time (30 min compared to 80 min as

Figure 5. UV spectra of DPBF/THF solutions. Initial DPBF/THF solution

and after 30 min of irradiation membrane-pre and membrane-post in THF.

Figure 6. Absorbance of DBPF at 413 nm in function of time.
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applied). The post-functionalization method has thus the best

potential in improving the antibacterial and antifouling

properties of the polyamide nanofiber membrane using

photosensitizers.

Based on Figure 6, the activity of the post-functionalized mem-

brane-post can be calculated. After 30 min 45% of the initial

DBPF (3 3 1025 mol L21) was removed by reaction with singlet

oxygen. As such the removal rate is 4.3 3 1027 mol DBPF L21

min21. The experiment was performed in 3 mL of reaction vol-

ume and a nanofiber membrane with a weight of 4.5 3 1023 g

containing 8.6 3 1027 mol Zn g21. As such this nanofiber mem-

brane contained 3.86 3 1029 mol Zn, which results in a reaction

rate of 0.33 mol DBPF mol21Zn min21. This about 27% of the

activity (1.22 mol DBPF mol21Zn min21) reported by Erdogmus

and Nyokong.38 However, by incorporating the ZnTTQPc on a

membrane, the ZnTTQPc can easily be reused, which offers a

benefit in the application for water filtration.

Leaching

The prevention of leaching is key when using functionalized

nanofiber membranes for water filtration. The absence of leach-

ing will ensure that the environment is not polluted with phtha-

locyanines that produce singlet oxygen which is toxic to all

organisms. For the moment, at very small scale this would not

be a problem, however at larger scale it could be problematic.

Also the membranes will lose their properties in the long term,

when they lose the functionalizing agent.

As ZnTTQPc is a non water-soluble phthalocyanine, leaching of

the ZnTTQPc in water cannot be easily detected, since UV/Vis

will not be able to detect dissolved phthalocyanines. Therefore

the leaching from the post-functionalized membranes was inves-

tigated by evaluating the washing solvent after functionalization.

Membrane-pre was washed with 50 mL of pure THF to remove

all unbound ZnTTQPc. When analyzing the UV–vis spectra of

this solution, no ZnTTQPc could be detected, thus if leaching

occurred, the concentration is below detection limit (Figure 7).

It can be concluded that even without the desired covalent

bond, ZnTTQPc are suitable for use as a functionalizing agent

for membranes.

During the determination of singlet oxygen production by

ZnTTQPc, leaching was also monitored. During these experi-

ments, a small peak at 684 nm is measured in the spectrum of

membrane-post after 30 min (Figure 7). No peak is measured

in the spectrum of membrane-pre. The difference is to be

expected since in membrane-post all ZnTTQPc is on the surface

and could therefore leach out easier than in membrane-pre in

which the complexes can also be present in the center of the

nanofiber. The peak at 740 nm can be attributed to the use of a

molecular sieve in the solvent (used for drying the THF).

It can be concluded that the leaching of the functionalizing

agent cannot be fully avoided, however when evaluating larger

quantities (50 mL) of solvent, the concentration of the func-

tionalizing agent is below detection limit. Furthermore, it

should also be taken into account that the selected ZnTTQPc

does not dissolve in water and therefore does not have the same

affinity for water as it does for THF. When trying to add small

amounts of ZnTTQPc in water, it precipitates. For this reason,

even if it would leach out, the ZnTTQPc is less likely to pro-

duce singlet oxygen in the environment compared to water-

soluble phthalocyanines.

CONCLUSIONS

Polyamide nanofiber membranes which have good characteris-

tics for use in water filtration can be functionalized with zinc

phthalocyanines. Two different methods have been used to inte-

grate zinc phthalocyanines into the nanofiber membranes. The

one step pre-functionalization method which had been proven

to be successful for other functionalizing agents, such as nano-

silver and organic biocides, is not suited for the functionaliza-

tion with phthalocyanines since this study shows that no singlet

oxygen can be produced. Only a post-functionalization method

which ensures that the phthalocyanines are on the surface of

the nanofibers where they have more access to visible light has

potential in improving the antibacterial and antifouling proper-

ties of the membranes. This potential was demonstrated by sin-

glet oxygen production measurement, but needs to be

confirmed in future studies by actual filtration experiments.

Short term leaching tests (50 mL) could not detect any leaching

of the ZnTTQPc used in this study which indicates that they

are successfully incorporated onto the nanofiber membrane.

This is due to large specific surface area of the membrane which

allows the ZnTTQPc to be easily adsorbed. Thus, a covalent

bond between the membrane and the ZnTTQPc is not necessary

for a successful functionalization. Therefore a wide range of

zinc pthalocyanines with very different structures have potential

as functionalizing agents. It can be concluded that the PA nano-

fiber membranes functionalized with zinc phthalocyanines have

potential as water filtration membranes. This should be further

explored in future research, especially in areas where electricity

is not available, but visible light is abundant. The functionalized

filters should now be investigated in filtration mode as the high

clean water permeability value which is a key property of the

polyamide nanofiber membranes, allows to filter large amounts

of water without the need for extra pressure.
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