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The recently increased efficiency of organic light emitting devices �OLED� brings lighting
applications within reach. If the area of the OLED is of the order a cm2, voltage and brightness
losses related to the square resistance of the transparent electrode become important. The
homogeneity of the voltage and brightness can be improved by contacting the transparent electrode
from all edges and by adding a metallic grid to the transparent electrode. This grid should have
narrow lines to minimize transmission losses and improve the total light emission from the OLED.
The voltage losses in grids with different shapes �triangular, square, and hexagonal� are evaluated
and the grid parameters are optimized to maximize the total light emission. It turns out that a
hexagonal grid has lower loss than a square grid with the same line width. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2907960�

I. INTRODUCTION

As white organic light emitting diodes �OLEDs� reach
efficiencies in the range of 50 lm /W, large area lighting ap-
plications come into reach. The resistivity of conventional
transparent electrodes sets serious limitations to the maxi-
mum size of the OLED, because there is a voltage and lumi-
nance drop related to the current flowing laterally in the
transparent electrode.1 For commercial transparent electrode
layers, the losses become important for devices with dimen-
sions in the order of a few centimeters, so it is essential to
provide a metallic grid in contact with the transparent elec-
trode. The problem of voltage loss and grid optimization has
also been investigated for solar cells.2–6

This paper introduces a numerical model for the voltage
loss in the OLED anode which is in contact with a metallic
grid and uses this model to compare different regular grids.
The aim is to find an expression for the different loss mecha-
nisms that occur in an OLED with metallic grid �voltage loss
in the grid, voltage loss in the electrode, and transmission
loss� and to use this to optimize the grid parameters.

II. MODELING THE GRID

For the electrical modeling of the OLED with the con-
ductor grid we consider three conducting layers �see Fig. 1�:
a metallic grid �not homogeneous�, a transparent bottom
electrode, and a grounded metallic top electrode �reflective�,
with respective thicknesses dg, db, and dt. The thicknesses of
these layers �order of 1 �m� are much smaller than the lat-
eral dimensions of the OLED device �order of 1 mm� and we
can make the following approximations:

• The cathode can be considered as a perfect conductor
and it is grounded: Vt=0.

• The organic layers have a much higher resistivity than

the bottom electrode, therefore the potential in the bot-
tom electrode is independent of the z-coordinate
Vb�x ,y�.

• For the same reason, the grid electrode potential is
equal to the bottom electrode potential: Vg�x ,y�
=Vb�x ,y�.

• As in Ref. 1, we assume that the current density
�A /m2� in the emitting layer is in first approximation
homogeneous and perpendicular to the substrate: jz.
This is acceptable because in a realistic design the
relative brightness variations should be limited to
about 10%.

The lateral current density in a conducting layer is pro-
portional with the electric field and the material conductivity
�,

j�b = − �b grad Vb,

j�g = − �g grad Vg. �1�

The conservation of the current flux in a stationary situation
requires
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FIG. 1. Cross-section of OLED device with aluminum cathode and trans-
parent bottom electrode. Below the anode a metallic grid is applied. The
thicknesses and conductivities of the different layers are indicated.
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div�dbj�b + dgj�g� = − jz or div�dbj�b� = − jz, �2�

for regions with or without the presence of the metal grid,
respectively. Eliminating the current densities jz from these
equations leads to the following differential equation for the
electrode voltages, again in two regions:

�2Vb =
RbRg

Rb + Rg
jz � Rgjz or �2Vb = Rbjz, �3�

with R��� the sheet resistance of the electrode,

Rb,g =
1

�b,gdb,g
, �4�

and Rg�Rb. This means that we can model the combination
of the bottom electrode and grid as a single electrode with
inhomogeneous sheet resistivity Rb when there is no grid and
Rg when there is a metal grid below the bottom electrode. In
short notation,

�2Vb�x,y� = R�x,y�jz. �5�

In this paper we consider three types of regular grids: trian-
gular, square, and hexagonal, as illustrated in Fig. 2. We
characterize the grid by the apothem h of the holes in the
grid and the width w of the metal lines �see Fig. 2�. Usually
the features of the metal grid are much smaller than the total
dimensions of the grid, and therefore it is interesting to de-
termine the macroscopic properties of the grid. Due to the
three- or fourfold rotation symmetries of the grid structures,
the macroscopic resistivity tensor reduces to a scalar effec-
tive sheet resistivity. By evaluating the current for a given
voltage difference over an elementary rectangle of the grid,
and assuming Rg�Rb and w�h, the effective sheet resistiv-
ities of the three grids can be determined as

Reff �
2h

w
Rg. �6�

This is easily verified for the square grid, by considering an
elementary square as in Fig. 2. For a field in the x-direction,
for example, only the horizontal line contributes to conduc-
tion and its resistance in the elementary square is given by
Eq. �6�. The same formula �6� is found for triangular and
hexagonal grids by considering the grid resistance in the
horizontal direction �respectively, 2h /�3w�Rg� and
2�3h /w�Rg�� and the length/width ratio �respectively, 1 /�3
and �3� for the elementary rectangles that are indicated in
Fig. 2.

As the bottom electrode is transparent and the metallic
grid is not, the transmissivity T of the grid is equal to the
area of the metal grid divided by the total area,

T = � h

h + w/2�
2

� 1 −
w

h
, �7�

with the approximation holding for w�h. The two previous
equations indicate that grids with the same parameters w and
h have the same effective resistivity and transmissivity.7 We
will now evaluate if they are also equivalent with respect to
the voltage loss inside a grid element.

III. AVERAGE VOLTAGE INSIDE A GRID ELEMENT

In this section we determine the voltage loss inside a
grid element, assuming that the voltage on the metal grid is
constant and equal to Vg. Because the metal grid is typically
much more conductive than the transparent electrode, this is
usually a good assumption. Inside a polygon grid element,
the potential of the bottom electrode is described by the dif-
ferential equation �5� with R=Rb. For many applications the
function that has to be optimized is proportional with the
voltage or can be linearized in a small voltage interval, e.g.,
the OLED brightness. Therefore it is important to maximize
the average voltage over a grid element �or to minimize the
average voltage loss�. A dimension analysis of the differen-
tial equation shows that the voltage loss is proportional with
Rb, jz, and h2 and therefore, we can write

Vb,avg = Vg − fshapeRbjzh
2, �8�

with fshape a dimensionless geometry factor depending on the
shape of the grid element �triangular, square, or hexagonal�.
For each shape, we solved the differential equation �5� for Vb

with a finite difference method, fixing the given voltage Vg

on the edges of the element. From the average voltage Vb,avg

inside the element, the geometry factor fshape can be found
from Eq. �8� for the three shapes and the results are presented
in Table I. This shows that the voltage loss in a square ele-
ment is about 6% larger than the loss in a hexagonal element,
for equivalent grids with the same apothem h. For a circular
element the apothem h is equal to the radius and the geom-
etry factor can be calculated analytically as a function of the
distance from the center r �see Ref. 1�,

Vb�r� = Vg − Rbjz
h2 − r2

4
, �9�

yielding fcircle=0.125 after averaging. From the finite differ-
ence simulation we find a value of 0.126, indicating that the

FIG. 2. �Color online� Top view of the three regular metallic grids: triangu-
lar �left�, square �middle�, and hexagonal �right�. The apothem h and the line
width w are the same for the three grids. For each grid an elementary
rectangular building block is indicated in the figure.

TABLE I. Number of sides, element area, and geometry factor f for the
three grid element shapes and for a circular element.

Element shape No. of sides Element area Geometry factor f

Triangular 3 3�3h2 0.152�0.001

Square 4 4h2 0.143�0.001
Hexagonal 6 2�3h2 0.134�0.001

Circular � �h2 0.125
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accuracy of the simulation results in Table I is of the order of
1%.

IV. OPTIMIZING THE GRID PARAMETERS

We now consider a square OLED panel with side s, with
a metal grid below the bottom electrode and the four edges
of the square held at a certain potential Vedge. The voltage
Vb�x ,y� can be determined numerically by using the differ-
ential equation �5�. Examples of electrode potentials for tri-
angular and hexagonal grids are given in Fig. 3. For large
structures the parameter simulation and parameter optimiza-
tion of a certain design require a lot of calculation time.
Therefore we will follow an alternative approach, using a
few simplifying assumptions.

The average voltage in the metal grid �averaged over the
total area s2 of the device� can be determined by applying the
same theory as in the previous section �using Reff instead of
Rb�, and we find

Vg,avg = Vedge −
1

4
fsquareReffjzs

2. �10�

The voltage inside the grid elements is lower, because there
are also voltage losses in the transparent electrode. To obtain

the average potential of the transparent electrode both loss
mechanisms can be added if they are sufficiently small. Us-
ing Eqs. �8� and �10�, this yields

Vb,avg = Vedge − fshapeRbjzh
2 −

h

2w
fsquareRgjzs

2. �11�

Let us now consider the case of an OLED for which the
brightness is a linear function of the voltage �Fig. 4�. As
small variations in the luminance are targeted, such a linear
variation is an acceptable assumption.

The presence of the metal grid reduces voltage �and
brightness� losses, but there is no light emitted from below
the grid, because the metal is absorbing. We assume that the
width of the gridlines is large compared to the wavelength,
so outcoupling effects can be neglected. Therefore, we can
consider the transmission of Eq. �7� as an additional loss
mechanism and write for the average brightness of the device

Lavg

Ledge
= �1 −

jz

Ledge

dL

dV
� fshapeRbh2 + fsquareRg

hs2

2w
��

��1 −
w

h
� � 1 − 	fshape

h2

w2 −
1

2

fsquare

h

w
−

w

h
,

�12�

with dL /dV as the slope of the L�V� characteristic and

	 =
Rbjzw

2

Ledge

dL

dV
,


 =
Rgjzs

2

Ledge

dL

dV
, �13�

which are two dimensionless parameters. The three loss
terms are related to, respectively, the loss in a grid element,
the loss in the grid, and the loss in transmission. In the case
that the area above the metallic grid would not be active �not
drawing any current�, another weight factor should be used
for the transmission loss.

Maximizing Eq. �12� with w and h as free parameters
leads to an infinitely fine grid �w and h zero� which cannot be
realized technologically. Usually the technology sets a lower
limit for the width w of the gridlines and we will use this
value in our optimization. With w given, we can find the
overall optimum value h* that maximizes the average lumi-

FIG. 3. �Color online� Simulated lateral variation of the electrode voltage
Vb�x ,y� for a square OLED device with two different metal grids: triangular
grid �top� and hexagonal grid �bottom�.

FIG. 4. Schematic luminance-voltage characteristic of an OLED. As the
lateral variation in the luminance should remain limited, it is a good ap-
proximation to use the derivative �dashed line� in the modeling.
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nance of formula �12� by solving a third order polynomial
equation. First we consider two particular cases for which
one of the loss terms can be neglected: the loss in the grid or
the loss in the holes, respectively.

For the case that the loss in the grid �second loss term in
Eq. �12�� can be neglected, the optimum h* is determined by
the parameters of one grid element,

hshape
*

w
=�3 1

2fshape	
. �14�

For this optimum value, the loss in the grid element �first
term� is half of the transmission loss �third term�. If the rela-
tive loss in average luminance should be smaller than �, then
	 should satisfy

	 �
4�3

27fshape
. �15�

For a luminance loss �=0.1 and a grid with hexagonal shape
the maximum value for 	 is 0.0011. For a given OLED, with
a voltage operation point and an electrode width, the maxi-
mum sheet conductivity of the bottom electrode is given by

Rb �
4�3Ledge

27fshapejzw
2

dV

dL
. �16�

For the case that the loss in the grid element �first loss term
in Eq. �12�� can be neglected, the optimum h* is determined
by the parameters of the grid,

hgrid
*

w
=� 2

fsquare

. �17�

For this optimum value, the loss in the grid �second term�
equals the transmission loss �third term�. If the relative loss
in average luminance should be smaller than �, then 
 should
satisfy


 
�2

2fsquare
. �18�

For a luminance loss �=0.1 and the maximum value for 
 is
0.035. For a given OLED, with a voltage operation point and
an electrode width, the maximum sheet conductivity of the
bottom electrode is given by

Rg 
�2Ledge

2fsquarejzs
2

dV

dL
. �19�

The general solution for h* �when all three terms are impor-
tant� can be found by solving a third order polynomial equa-
tion. The solution as a function of the parameters 	 and 
 is
given in Fig. 5. Small values of 	 and 
 allow to use a grid
with a larger apothem and this result in a higher average
brightness. It can be seen from this figure that the global
minimum h* is smaller than the optimal values calculated for
the two simplified cases,

h* � min�hshape
* ,hgrid

* � . �20�

V. OPTIMIZATION EXAMPLES

Consider an OLED device which is driven at the follow-
ing operation point, as in Ref 1:

Vedge = 3.9 V,

Ledge = 1200 Cd m−2,

jz = 50 A m−2,

dL

dV
= 2000 Cd m−2 V−1. �21�

We will now consider different electrode/grid structures and
investigate the dimensions for which an average luminance
loss is as small as possible.

The first structure is a square device without grid and
with fixed voltage Vedge at the edges. For the bottom elec-
trode we assume a sheet resistance of Rb=200 �, corre-
sponding to the spin-coated polymer conductor Baytron.1,8 In
this case only the first loss term in �12� is important and we
find that the value for the apothem �half of the side� that
realizes a loss �=10% is given by

FIG. 5. Optimal value for h* /w �left�
and the corresponding relative average
luminance Lavg /Ledge �right� as a func-
tion of the two dimensionless param-
eters 	 and 
.
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h =� Ledge

fsquareRbjz�dL/dV
= 65 mm. �22�

Using an ITO electrode with a sheet resistance of only 20 �
allows to enlarge the apothem of the square to 205 mm,
keeping the same 10% luminance loss.

The second structure is a square panel with side s
=0.5 m using an aluminium grid with �g=42
�106 �−1 m−1, w=1 mm, and dg=10 �m. In this case the
square resistivity of the grid material is only 0.0024 � and
the parameters 	 and 
 have the values 0.017 and 0.05,
respectively. For the hexagonal grids the optimum value for
the apothem is in this case 5.8 mm and the average lumi-
nance is 73.2% of the luminance near the edge. For the
square and triangular grids, the optimal apothems are, re-
spectively, 5.7 and 5.6 mm and the average relative lumi-
nances are 72.7% and 72.2%.

VI. CONCLUSION

In this paper, we studied the voltage variation in a trans-
parent electrode, containing a regular metallic grid, of an
OLED. The differential equation was used to determine the
average voltage loss in grid elements with different shapes:
triangular, square, or hexagonal. It is found that grids with
identical line width and apothem have the same conductivity
and transmissivity, For such equivalent grids, the hexagonal
grid has the lowest average voltage loss, which is 6% lower
than for the square grid. An approximate analytical expres-
sion for the different loss mechanisms �loss in the grid, loss
in the grid elements, and loss in transmission� is developed

and an optimization algorithm for the apothem, using a fixed
electrode width, is described. The results provide a simple
means to estimate and optimize the different loss mecha-
nisms in OLEDs with a metallic grid below the transparent
conductor.
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