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Cell polarity is one of the fundamental properties of
multicellular organisms and is tightly linked with
processes such as cell division, differentiation, cellular
signaling, and intercellular communication. Polarities
of individual cells, transmitted by cell divisions, are
reflected at the tissue and organ levels and contribute
to the overall shape of the multicellular organism. In
addition, in plants, cell polarity provides means by
which they maintain developmental continuity and
adapt their development to optimally conform to
environmental conditions by flexible redefinition of
cell polarities. Thus, the mechanisms underlying the
establishment and maintenance of cell polarity belong
to the important themes of developmental and cell
biology.

At the level of the individual cell, polarity is mir-
rored by the asymmetric distribution of intracellular
components, such as organelles, cytoskeletal strands,
and single proteins. This asymmetric distribution of
intracellular components defines functionally and/or
morphologically distinct domains (Bonifacino and
Lippincott-Schwartz, 2003). Mechanisms that underlie
the sorted delivery of intracellular cargos to these
domains and thus contribute to the generation or
maintenance of cell polarity have been extensively
studied in different model organisms, including mam-
mals, flies, worms, and yeast (Knoblich, 2000; Irazoqui
and Lew, 2004; Nance, 2005). Animal epithelial cells
are a preferred model system, because their plasma
membrane (PM) is divided into two distinct domains,
the apical domain facing the lumen and the basolateral
domain (Mostov et al., 2003; Janssens and Chavrier,
2004). Selective recruitment of apical and basolateral
cargos is achieved by their targeted delivery to these
domains and results mainly from three processes: (1)
newly synthesized proteins are sorted on their way to
the PM (mainly in the trans-Golgi network) into ves-
icles that discriminately deliver them to the apical or
basolateral surface; (2) other proteins are selectively

retained at the PM polar domain; and (3) proteins that
are not retained are rapidly endocytosed and either
recycled back or, alternatively, delivered to a different
polar PM domain by a process called transcytosis
(Rodriguez-Boulan et al., 2005).

Comparable knowledge on the cellular mechanisms
underlying the polar localization of proteins in plant
cells is lacking, but conceptually similar modes of
polar delivery can be assumed. Plant and animal cells
might differ fundamentally in the manner by which
the polar-competent cargos are kept in their polar
domains. In animal cells, anchored protein complexes,
called tight junctions, form a physical barrier and limit
lateral diffusion of proteins between adjacent polar
PM domains (Brown and Stow, 1996). So far, no
indications for analogical structures in plant cells
have been found; therefore, it remains unclear how
lateral diffusion of polar cargos is limited in the plant
PM. Furthermore, despite significant advances in re-
cent years, the subcellular trafficking pathways in
plants are still only rudimentarily sketched; many
destinations of secretory and endocytic pathways as
well as their interconnections are vaguely defined, and
findings are contradictory. These deficiencies in the
basic cell biology knowledge of plants restrict our
understanding on where and how the main decision
on sorting and delivery of polar cargos occurs. The
availability of necessary tools and technologies along
with enough attention paid to these topics guarantee a
rapid advancement in coming years.

POLARITY IN PLANTS AND AUXIN

For the first time, the term polarity was applied to
plants by Hermann von Vöchting in 1878, when he
showed that pieces of willow (Salix species) stems
form roots and shoots at the corresponding ends ir-
respective of the orientation toward gravity (for re-
view, see Mohr and Schopfer, 1995). Plant polarity
is determined at the cellular level and is tightly con-
nected to the polarity of tissues and organs. Better than
other multicellular systems, plants can redefine their
cellular and tissue polarity based on the influence of
many factors. The plant hormone auxin (indole-3-
acetic acid) has been identified as an important factor
mediating tissue and organ polarity in plants, mainly
on account of its strictly directional (polar) flow
through plant tissues. The existence of polar auxin
transport together with its physiological and develop-
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mental roles, for example in the growth reorientation
in response to environmental stimuli, has led to the
hypothesis that a combination of environmental and
endogenous factors regulate the auxin flow in different
plant tissues and, thus, provide the vectorial informa-
tion for defining the cellular behavior (Went, 1974;
Friml, 2003). The important advancement in auxin
biology was the formulation of the chemiosmotic
model (Rubery and Sheldrake, 1974; Raven, 1975)
that proposed the existence of PM-localized auxin
carrier proteins that facilitate auxin uptake and auxin
efflux out of the cells. The model also proposed that
the asymmetric localization of the efflux carriers at one
side of the transporting cells determines the direction
of the intercellular auxin movement within the field of
cells. This remarkable insight, which was later verified
experimentally, connected polarities at the cellular and
tissue levels.

POLAR-COMPETENT PROTEINS IN PLANT CELLS

More than 20 years after the chemiosmotic model
had been formulated, the hypothetical molecular com-
ponents were identified. Molecular genetics and phys-
iological studies in Arabidopsis (Arabidopsis thaliana)
led to the discovery of genes coding for auxin influx
and efflux carriers.

The PINFORMED (PIN) proteins have been identi-
fied and characterized as key regulators of a multitude
of auxin-mediated developmental processes, including
tropic growth (Chen et al., 1998; Luschnig et al., 1998;
Müller et al., 1998; Utsuno et al., 1998; Friml et al., 2002b),
axis formation in embryogenesis (Friml et al., 2003),
postembryonic organogenesis (Benková et al., 2003;
Reinhardt et al., 2003), root meristem maintenance
(Friml et al., 2002a; Blilou et al., 2005), and vascular
tissue differentiation and regeneration (Sauer et al.,
2006; Scarpella et al., 2006). PIN proteins are PM
proteins that act as auxin efflux carriers (Petrášek
et al., 2006) and have mainly a polar localization that

correlates with and is required for the direction of
auxin flow (Wiśniewska et al., 2006). The Arabidopsis
PIN family consists of eight members, most of which
have been functionally characterized and found to be
localized polarly at different sides of the various cell
types (Vieten et al., 2007). For example, during embryo-
genesis, PIN1, PIN4, and PIN7 show polar localiza-
tions and act together to specify the apical-basal axis of
the embryo (Fig. 1). Postembryonically, PIN proteins
have different PM localizations, most being localized
at the basal (root apex-facing) side of the vasculature
and stele cells, such as PIN1, PIN3, PIN4, and PIN7,
whereas some localize also apically (shoot apex-facing
side), such as PIN1 in the shoot apex epidermis or
PIN2 in the lateral root cap and epidermis cells. In the
shoot endodermis and root pericycle cells, PIN3 local-
izes also at the inner lateral side, whereas it has a sym-
metric localization in columella cells (Fig. 2). Thus, PIN
proteins constitute prominent cell polarity markers in
plants. Furthermore, polar targeting of PIN proteins has
a clear developmental output, because the polarity of
the PIN localization at the single-cell level determines
the direction of intercellular auxin transport and the
directional signaling to neighboring cells (Wiśniewska
et al., 2006).

Besides PIN proteins, other polarly localized com-
ponents are involved in auxin transport. The AUXIN
RESISTANT1/LIKE AUX1 (AUX1/LAX) proteins are
PM-localized auxin influx carriers (Bennett et al., 1996;
Yang et al., 2006; Swarup et al., 2008). The AUX1 pro-
tein has a polar localization in some cells, such as the
protophloem and the shoot apical meristem (Swarup
et al., 2001; Reinhardt et al., 2003; Kleine-Vehn et al.,
2006; Fig. 3). Other auxin transport proteins from the ATP-
binding cassette multidrug resistance/P-glycoprotein
family are localized mainly symmetrically, but polar
localization in some cells has been reported as well
(Geisler et al., 2005; Terasaka et al., 2005).

Other plant proteins, whose functions are not di-
rectly connected to auxin transport, also have been

Figure 1. Establishment of apical-basal polarity during Arabidopsis embryogenesis. At early stages, PIN7 localizes to the apical
sides of suspensor cells mediating auxin flow into the proembryo, where PIN1 is localized first in a nonpolar manner. At the
middle globular stage, PIN1 basal polarity in provascular cells is established, followed by PIN7 relocation to the basal side of
suspensor cells. These PIN polarity rearrangements result in redirection of the auxin flow to the basal part of the embryo, where
auxin accumulation contributes to root meristem specification. At later stages, PIN4 expression in the central root meristem aids
the establishment of local auxin accumulation in the center of developing root meristems. Furthermore, PIN1 relocates at the
apical surface of the proembryo to establish two symmetrically positioned auxin accumulation foci marking sites of future
embryonic leaves.
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found to be localized asymmetrically in plant cells,
namely at the inner lateral side, outer lateral side, and
both longitudinal sides of the cells (Roudier et al.,
2005; Ma et al., 2006, 2007; Miwa et al., 2007). Examples
of laterally localized proteins include transporters for
boron (BOR1 and BOR4) and for low silicon (LSI1 and
LSI2) in rice (Oryza sativa) and the regulator of the
anisotropic cell expansion (COBRA). A special asym-
metric localization has been detected for a small G
protein of the Rho family ROP2 that localizes to a
distinct position close to the basal end of the outer
membrane of elongating epidermis cells and marks
the initiation position of the outgrowing root hair
(Molendijk et al., 2001). This unprecedented diversity
of polar cargos that localize to different sides of plant
cells suggests that plants possess more diverse polar
targeting machineries than are known from other
eukaryotic systems.

ROLE OF PHOSPHORYLATION IN
POLAR TARGETING

An important and yet unsolved question concerns
how the different polar-competent proteins are recog-
nized and delivered to the correct side of the cell. In

animal systems, polar cargo proteins carry signals that
determine their residence at different polar domains
(Dugani and Klip, 2005; Rodriguez-Boulan et al., 2005).
Similar concepts of polarity determinants in the pro-
tein sequence also apply to plants, because different
polar cargos, such as PIN1 or PIN2, localize to differ-
ent polar domains of the same cell, necessitating some
identification mechanism. Furthermore, by inserting a
GFP tag at a specific position of the PIN1 sequence, the
basal targeting of PIN1 is disrupted in epidermal cells,
leading to apical localization (Wiśniewska et al., 2006).
This observation implies a PIN1 sequence-based sig-
nal for decision on the PIN1 subcellular localization.
Several findings suggest that the PIN polarity signals
are related to the phosphorylation sites found in the
PIN sequences. One of the major decision regulators
on the PIN polarity are the Ser/Thr protein kinase
PINOID (PID; Christensen et al., 2000; Benjamins et al.,
2001; Friml et al., 2004) and the protein phosphatase
2A (PP2A; Michniewicz et al., 2007). High levels of
PIN phosphorylation as achieved by overexpression of
PID or inhibition of PP2A lead to a preferential apical
PIN targeting, whereas low phosphorylation levels in
the pid mutants result in a preferential basal PIN
targeting (Friml et al., 2004; Treml et al., 2005). Impor-
tantly, PID has been shown to directly phosphorylate

Figure 2. Polar localization of PIN
proteins in the Arabidopsis root tip.
The directionality of auxin transport
(arrows) is determined by the polar,
subcellular localization of PIN pro-
teins. PIN1 is localized at the basal
(root apex-facing) side of the root
vasculature; PIN2 at the basal side
of the cortical cells and at the apical
(shoot apex-facing) side of the epi-
dermal and root cap cells; PIN3 in
an apolar manner in the columella
cells of the root; PIN4 at the basal
side of cells in the central root mer-
istem and with less pronounced po-
larity in the cells of the quiescent
center; and PIN7 at the basal side of
the stele cells and apolar in the
columella cells. ROP2 is also asym-
metrically localized, associated with
the places of root hair formation.
Examples of PIN1:GFP, PIN2:GFP,
PIN4:GFP, and PIN7:GFP expression
in the root are depicted.
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the hydrophilic loop of PIN proteins in vivo and in
vitro and PP2A phosphatase has been shown to an-
tagonize this action (Michniewicz et al., 2007). The
available data are thus consistent with the model:
when dephosphorylated, PIN is preferentially recruited
by the basal targeting machinery, and phosphorylated
PIN is trafficked by the apical pathway (Fig. 3). Such a
model also has implications for the conditional regu-
lation of PIN polarity and directional auxin fluxes by
different signaling pathways that act upstream of the
PID-dependent PIN phosphorylation. Other polar-
competent proteins probably possess different types
of also phosphorylation-unrelated polarity signals that
have yet to be identified.

ROLE OF STEROLS IN POLAR TARGETING

Plant sterols are essential components of plant mem-
branes. Their chemical structure resembles that of
animal cholesterol, whose cellular functions are sup-
posed to be similar. Depletion of cholesterol, the main
animal sterol, decreases the polar delivery of target
proteins (Keller and Simons, 1998), while depletion of

plant sterols leads to cell polarity defects followed by
reduced auxin transport and auxin-related develop-
mental defects. Studies carried out on sterol-deficient
orc and cyclopropylsterol isomerase1 (cpi1) mutants have
detected defects in the polar localization of PIN and
AUX1 proteins, indicating that the polar delivery of
cargos in plants also depends on the sterol composi-
tion of the PM (Souter et al., 2002; Grebe et al., 2003;
Willemsen et al., 2003; Kleine-Vehn et al., 2006). Recent
work has highlighted the essential role of sterols in the
reiteration of PIN polarity after the division of polar-
ized cells (Men et al., 2008). PIN proteins have been
shown to be targeted to the forming cell plate during
cell division (Geldner et al., 2001). This poses a prob-
lem that, after the fusion of the cell plate to the PM,
PIN will be present at both apical and basal sides of
one of the daughter cells. In order to maintain the
polarity of the mother cell in both daughter cells, there
must be a mechanism that stabilizes the polar cargo at
one side and retrieves it from the opposite side of the
newly formed cell wall. Little is known of how that is
achieved and which cellular and molecular mecha-
nisms are involved, but sterols seem to play a crucial
role. The cpi1 sterol-deficient mutants have impaired

Figure 3. Overview of the subcellular trafficking routes in a polarized plant cell. Auxin influx and efflux (black thick arrows) are
mediated by AUX1 and PIN proteins, respectively. PGP ATP-binding cassette-type transporters are also involved in auxin efflux.
According to the chemiosmotic model, auxin in the protonated form can also enter the cell passively. Basally localized PIN1
recycles in a BFA-sensitive and GNOM-dependent manner between endosomes and the PM. Constitutive cycling of vesicles
between these two compartments is disrupted by 2,3,5-triiodobenzoic acid (TIBA) and 1-pyrenoylbenzoic acid (PBA), drugs that
inhibit auxin transport and actin cytoskeleton dynamics (Dhonukshe et al., 2008). AUX1 also displays constitutive cycling to and
from the apical PM that is dependent of an unknown BFA-insensitive ARF GEF. Auxin, such as a-naphthaleneacetic acid (NAA),
inhibits PIN internalization, increasing the amount and activity of PINs at the PM (Paciorek et al., 2005). PID kinase and PP2A
phosphatase mediate reversible PIN phosphorylation, thus contributing to the decision on the apical-basal PIN targeting.
Phosphorylated and dephosphorylated PIN proteins are preferentially sorted into the apical and basal targeting pathways,
respectively (Michniewicz et al., 2007). PIN1 is able to translocate between the basal and apical cell sides by a combination of
constitutive endocytic cycling and alternative recruitment by distinct ARF GEF-dependent apical and basal targeting machineries
(Kleine-Vehn et al., 2008).
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endocytosis and show depositions of PIN2 at both
apical and basal PMs in postcytokinetic cells (Men
et al., 2008), suggesting that sterol-dependent endocy-
tosis is required to retrieve PINs from the ‘‘wrong’’
side of the cell after cell division. In summary, these
observations indicate that sterol-enriched PM micro-
domains related to the so-called lipid rafts (Martin
et al., 2005) are important also in plant cells for
different membrane-related trafficking and signaling
processes, including the regulation of cell polarity.

ROLE OF SECRETION AND RECYCLING IN
POLAR TARGETING

Direct delivery of secreted proteins and other cargos
to distinct polar domains at the PM is one of the basic
possibilities for generating an asymmetric distribution
at the cell surface. Indeed, in animal epithelial cells,
different cargos are secreted directly to the apical and
basolateral domains (Mostov et al., 2003). In plants, no
data are available on such a mode of polar secretion.
On the contrary, PIN proteins, as tested for the basally
localized PIN1 or apically localized PIN2, seem to be
delivered originally in a nonpolar fashion after the de
novo synthesis, and their apical or basal polarity is
then established in the next step involving internali-
zation from the PM and polar recycling (Dhonukshe
et al., 2008). Thus, the secretion, clathrin-dependent
endocytosis (Dhonukshe et al., 2007), and subsequent
recycling are important processes in the generation of
the PIN polar localization.

The delivery of PIN proteins to the PM is sensitive to
brefeldin A (BFA), a known inhibitor of secretion and
subcellular trafficking (Steinmann et al., 1999; Geldner
et al., 2001). A molecular target of the BFA action
is GNOM, an endosomal exchange factor for ARF
GTPases (ARF GEF). GNOM functions as the GDP/
GTP exchange factor for the small G proteins of the
ARF class that mediate vesicle budding processes at
different subcellular compartments (Shevell et al.,
1994; Geldner et al., 2001). In the presence of BFA,
PIN1 largely disappears from the PM and can be
found internalized in so-called BFA compartments.
The PIN1 internalization is completely reversible and
occurs also when de novo protein synthesis is inhib-
ited, indicating constitutive endocytosis and recycling
of PIN proteins (Geldner et al., 2001). The repeated
cycles of PIN endocytosis and recycling to the PM
were also visualized with a green-to-red photoconvert-
ible fluorescent PIN2 version (Dhonukshe et al., 2007).
These findings, together with the analysis of the gnom
mutant (also called emb30), have shown that GNOM
is a BFA-sensitive regulator of PIN trafficking from the
endosomes back to the PM. GNOM seems to be more
crucial for basal polar targeting, because the apical
PM localization of PIN proteins and AUX1 is not
strongly affected when GNOM function is inhibited
(Kleine-Vehn et al., 2008). Thus, the apical cargos
utilize a different targeting pathway that might require
another, possibly BFA-insensitive, ARF GEF. These

observations and, in particular, the PIN polarity de-
fects in the gnom loss-of-function mutants tightly link
endocytic recycling and polar targeting in plant cells.

The GNOM-dependent, BFA-sensitive recycling path-
way applies mainly to the polar PIN targeting in the
interphase cells that depend on the actin cytoskeleton.
On the contrary, in dividing cells, PIN proteins are
delivered to the forming cell plate by the microtubule-
dependent pathway (Geldner et al., 2001; Dhonukshe
et al., 2006). These observations demonstrate the diver-
sity of different trafficking pathways for the polar
delivery of PIN proteins and other polar cargos.

TRANSCYTOSIS MECHANISM FOR PIN
POLARITY SWITCHES

A prominent mechanism for polar delivery of cargos
in animal cells is transcytosis, which involves traffick-
ing of polar cargos from one side of the cell to the
other. In the animal epithelium, this process is crucial
for the polar delivery of multiple cargos (Rodriguez-
Boulan et al., 2005; Leibfried and Bellaı̈che, 2007).

In plants, the directional translocation of PIN1 pro-
tein from the basal to the apical PM can be induced by
BFA treatment, as has been directly visualized with
photoconvertible PIN2 versions. After BFA removal,
the basal localization of PIN proteins is restored by
translocation in the opposite direction from the apical
to the basal cell side (Kleine-Vehn et al., 2008). These
results demonstrate that apical and basal targeting
pathways in plants are interconnected and can be used
by PIN proteins to move between the apical and basal
sides of cells. Thus, the transcytosis mechanism in
plant cells is realized by a combination of constitutive
endocytic recycling and alternative recruitment of
cargos by distinct ARF GEF-dependent apical and
basal targeting machineries. It remains unclear to what
extent the transcytosis mechanism contributes to the
establishment of polar PIN localization in different
cells and developmental contexts; nonetheless, it is
likely that the rapid PIN polarity switches, which can
be observed during different developmental processes,
are realized by the transcytosis mechanism.

DEVELOPMENTAL AND ENVIRONMENTAL
MODULATION OF PIN POLARITY

The connection between constitutive endocytic re-
cycling and polar PIN localization via transcytosis
provides a plausible mechanism for the quick changes
in the polarity of the PIN proteins that are utilized to
integrate various signals at the single-cell level and
translate them into redirecting the intercellular auxin
flow through the tissues, ultimately modifying the
developmental program of the given tissue or organ.

The earliest known switches in PIN polarity occur
during embryogenesis and contribute to the specifica-
tion of the root pole and the initiation of root meristem

PIN Polar Targeting

Plant Physiol. Vol. 147, 2008 1557



development (Fig. 1). At the early embryogenesis
stages, PIN7 is found at the apical side of the suspen-
sor cells, where it mediates the auxin flow toward the
small apical cell to specify it as a proembryo. PIN1 is
expressed at this stage in a nonpolar manner in the
proembryo. At the defined moment of embryo devel-
opment, PIN1 polarizes toward the basal side of pro-
vascular cells and PIN7 changes its localization to the
basal side of the suspensor cells. These PIN polarity
rearrangements redirect the auxin flow toward the
area of the future root meristem, where auxin accu-
mulates and contributes to the specification of the root
meristem (Friml et al., 2003; Weijers et al., 2005).
Similarly, during postembryonic organogenesis, illus-
trated by the formation of lateral roots or leaves and
flowers at the shoot apical meristem, PIN polarity
undergoes rearrangements that are important for de-
termining both the position of the future organ relative
to the preexisting ones and the new growth axis of the
organ primordium (Benková et al., 2003; Reinhardt
et al., 2003; Heisler et al., 2005).

Other examples of PIN polarity changes are related
to the canalization hypothesis, which assumes that
auxin, by a positive feedback, can induce the capacity
and polarity of its own transport within the field of
cells that form the auxin channels preceding the flex-
ible formation of the vasculature (Sachs, 1981). Indeed,
predicted rearrangements of PIN polarity have been
observed during leaf vasculature formation (Scarpella
et al., 2006) and during vasculature regeneration after
wounding (Sauer et al., 2006). The underlying mech-
anism is unknown, but feedback regulations of PIN
polarity by auxin itself are the indispensable parts of
models describing different auxin-dependent pattern-
ing processes, such as the phylotactic pattern of organ
initiation (Barbier de Reuille et al., 2006; Jönsson et al.,
2006; Smith et al., 2006).

Besides the changes in PIN polarity in response to
internal signals, PIN polarity switches can occur also
in response to environmental stimuli. After gravistim-
ulation, PIN3 has been found to relocate to the lower
side of columella cells, thus rerouting the auxin flow to
the lower side of the root and triggering root bending
(Friml et al., 2002b; Harrison and Masson, 2008). It is
possible, although not demonstrated, that other envi-
ronmental signals, such as light, trigger PIN polarity
changes for mediating other developmental responses.
These polarity modulations in response to various
signals illustrate how the integration of signals at the
level of subcellular dynamics of individual cells can be
translated into the directional signaling at the tissue
level and contribute to the unique plasticity of plant
development.
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Grebe M, Xu J, Möbius W, Ueda T, Nakano A, Geuze HJ, Rook MB,

Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated

trafficking via ARA6-positive early endosomes. Curr Biol 13: 1378–1387

Harrison BR, Masson PH (2008) ARL2, ARG1 and PIN3 define a gravity

signal transduction pathway in root statocytes. Plant J 53: 380–392

Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz

EM (2005) Patterns of auxin transport and gene expression during

primordium development revealed by live imaging of the Arabidopsis

inflorescence meristem. Curr Biol 15: 1899–1911

Feraru and Friml

1558 Plant Physiol. Vol. 147, 2008



Irazoqui JE, Lew DJ (2004) Polarity establishment in yeast. J Cell Sci 117:

2169–2171

Janssens B, Chavrier P (2004) Mediterranean views on epithelial polarity.

Nat Cell Biol 6: 493–496

Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006)

An auxin-driven polarized transport model for phyllotaxis. Proc Natl

Acad Sci USA 103: 1633–1638

Keller P, Simons K (1998) Cholesterol is required for surface transport of

influenza virus hemagglutinin. J Cell Biol 140: 1357–1367

Kleine-Vehn J, Dhonukshe P, Sauer M, Brewer P, Wiśniewka J, Paciorek
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