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Long-Lasting Cross-Protection 
Against Influenza A by 
Neuraminidase and M2e-based 
immunization strategies
Michael Schotsaert1,2,†, Tine Ysenbaert1,2, Anouk Smet1,2, Bert Schepens1,2, 
Dieter Vanderschaeghe1,3, Svetlana Stegalkina4, Thorsten U. Vogel4, Nico Callewaert1,3, 
Walter Fiers1,2 & Xavier Saelens1,2

There is mounting evidence that in the absence of neutralizing antibodies cross-reactive T cells 
provide protection against pandemic influenza viruses. Here, we compared protection and CD8+ T 
cell responses following challenge with H1N1 2009 pandemic and H3N2 viruses of mice that had been 
immunized with hemagglutinin (HA), neuraminidase (NA) and the extracellular domain of matrix 
protein 2 (M2e) fused to a virus-like particle (VLP). Mice were challenged a first time with a sublethal 
dose of H1N1 2009 pandemic virus and, four weeks later, challenged again with an H3N2 virus. Mice 
that had been vaccinated with HA, NA, NA + M2e-VLP and HA + NA + M2e-VLP were protected against 
homologous H1N1 virus challenge. Challenged NA and NA + M2e-VLP vaccinated mice mounted CD8+ 
T cell responses that correlated with protection against secondary H3N2 challenge. HA-vaccinated 
mice were fully protected against challenge with homologous H1N1 2009 virus, failed to mount 
cross-reactive CD8+ T cells and succumbed to the second challenge with heterologous H3N2 virus. In 
summary, NA- and M2e-based immunity can protect against challenge with (homologous) virus without 
compromising the induction of robust cross-reactive CD8+ T cell responses upon exposure to virus.

Human influenza remains a major health problem affecting all age groups worldwide. Current influenza vaccines 
aim at neutralizing virus by the induction of antibodies that target the globular head of the hemagglutinin (HA) 
protein, the receptor-binding protein. Neutralization of influenza viruses by antibodies that target HA is an effec-
tive strategy when HA in the vaccine antigenically matches the HA of circulating viruses. This requires regular 
vaccine updates as human influenza HA is prone to genetic drift. Influenza infection of an immunologically naïve 
host triggers robust CD8+  T cell responses that are broadly reactive. Those CD8+  T cells are essential to clear 
influenza viruses from the lungs and, given their broad antigen-specificity, can reduce disease caused by a pan-
demic influenza A virus outbreak1–3. Indeed, correlations between productive virus infection and cross-reactive 
cellular immunity against subsequent infection with heterologous influenza viruses have been reported based 
on studies involving humans, monkeys, ferrets and mice2–8. In addition, cytotoxic T cells can protect against 
influenza A virus and correlate with faster virus clearance and reduced virus shedding upon experimental chal-
lenge2,6,9,10. Preventing virus replication by neutralizing antibodies may hinder de novo viral gene expression and 
presentation of these gene products to B and T cells. Observational and experimental studies in different animal 
models suggest that immunization with inactivated influenza vaccines interferes with induction of cross-reactive 
CD8+  T cells in response to infection8,11–13.

Yearly vaccination of infants during their first year of life with licensed influenza vaccines is now recom-
mended in different countries (http://www.cdc.gov/flu/protect/children.htm, http://www.phac-aspc.gc.ca/
naci-ccni/flu-grippe-eng.php). This target group can be considered immunologically naïve for influenza. 
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Assuming a vaccine effectiveness of over 50%, virus replication and disease would be significantly reduced in 
this age group and likely concomitantly hamper the induction of influenza-specific CD8+  T cells early in life14.

Influenza A viruses encode three membrane proteins: HA, NA and matrix protein 2 (M2). Inspired by the 
identification of monoclonal antibodies that target conserved epitopes in the stalk of HA15,16, many research 
groups are focusing on novel HA-based vaccination strategies to induce or boost this type of immunity17–19. 
These type of monoclonal antibodies can neutralize influenza viruses in vitro but rely on Fcγ  Receptors to protect 
in vivo20. Antibodies against the surface exposed part of NA and M2 (referred to as M2e) also protect in exper-
imental influenza A virus challenge models21–23. Thanks to its strong sequence conservation M2e is a candidate 
universal influenza A vaccine antigen that has proven safe and immunogenic in a phase I clinical trial24. In ani-
mal models, these types of broadly protective antibodies prevent severe disease but do not provide sterilizing 
immunity. We recently showed that immunization with an M2e-based vaccine provided protection upon primary 
challenge but allowed potent priming of cross-reactive T cells, which strengthened protection against secondary 
infection with a heterosubtypic virus13. We and others also showed that sterilizing immunity provided by vacci-
nation with a whole inactivated virus vaccine was associated with strongly reduced induction of these protective 
cross-reactive T cell responses upon infection with an antigenically matching virus13,25.

Immunity to NA, the second viral glycoprotein, is considered infection-permissive21 and correlates with pro-
tection21,23,26–30. NA is a mushroom-like, tetrameric type II membrane protein that is necessary to release new 
progeny virus from the infected cell by removing terminal sialic acids from budding virions and the cell sur-
face31,32. NA of human influenza viruses is subject to antigenic drift and antigenic shift suggesting that it is under 
strong immune selection pressure in humans33–35. Serum antibodies that inhibit NA activity correlated with pro-
tection against infection-associated illness in the first two years of the 2009 H1N1 pandemic36 and NA inhibitory 
antibodies were a much better correlate of protection against disease in a ferret model than anti-HA antibodies 
were, even though the latter correlated with reduced viral loads in the lungs37.

Here, we evaluated protection by three recombinant influenza A vaccine antigens: soluble tetrameric NA 
(tetNA), soluble trimeric HA (triHA), both derived from 2009 H1N1 pandemic virus, and M2e-displaying 
virus-like particles (M2e-VLP). We evaluated protection induced by immunization with tetNA, triHA and 
M2e-VLP, separately and combined, against challenge with homologous and heterosubtypic influenza virus in 
mouse. We found that the infection-permissive immunity provided by tetNA- and M2e-based vaccines protected 
against body weight loss and significantly reduced lung virus loads after challenge with 2009 H1N1 pandemic 
virus (A/Belgium/2009, hereafter designated as H1N1v). The universal M2e-based vaccine, alone or combined 
with tetNA, also protected against a challenge with H3N2 virus. Primary challenge of animals that had been 
immunized with tetNA, M2e-VLP or a combination of both was associated with the induction of robust CD8+  T 
cell responses directed against the viral nucleoprotein (NP). These cross-reactive T cell responses correlated with 
protection against subsequent challenge with an H3N2 virus.

Results
Expression, purification and characterization of soluble trimeric HA and tetrameric NA.  We 
produced and purified recombinant, soluble oligomeric HA (triHA) and NA (tetNA) derived from H1N1v. To 
ensure correct oligomerisation and stability in the absence of the transmembrane domains, we genetically fused 
the extracellular domain of HA (HA 18–522) at the C-terminus to a trimerization GCN4-derived leucine zipper, 
and the extracellular domain of NA (NA 65–469), without the stalk, at the N-terminus to the tetramerization 
tetrabrachion coiled coil (Fig. 1a). TriHA and tetNA were produced in HEK293T cells and affinity purified from 
the cleared culture supernatant followed by a polishing step by size exclusion chromatography. The predominant 
peak of triHA eluted with a retention volume corresponding to glycosylated trimeric HA (Fig. 1b). A minor frac-
tion, which was discarded, eluted faster and likely corresponded to higher order complexes of triHA (Fig. 1b). 
Gel filtration analysis of tetNA revealed a single peak that corresponded to the predicted molecular weight of sol-
uble tetrameric NA (Fig. 1c). TetNA was enzymatically active and had a specific activity of 11,000 pmole/min/μg 
as determined by a fluorimetric assay using 2′-4-Methylumbelliferyl-α -D-N-acetylneuraminic acid as substrate 
(Fig. 1d,e). We also analyzed the N-glycan composition of purified triHA and tetNA using DNA-sequencer-
assisted fluorophore-assisted carbohydrate electrophoresis38. Recombinant triHA contained sialylated N-glycans 
(Fig. 1f). In contrast, purified tetNA only contained neutral, non-sialylated N-glycans (Fig. 1f), most probably 
because of self desialylation. We also analyzed the N-glycan profiles of triHA and tetNA mixed together in equal 
amounts (mass) in phosphate buffered saline and incubated at 4 °C for 30 min. Even though incubation was at 
4 °C, HA was almost completely desialylated by tetNA under these conditions (Fig. 1f). Prior denaturation of 
tetNA with 8 M urea did not affect the sialylation status of co-incubated triHA, indicating that enzymatically 
active tetNA was responsible for the desialylation of triHA. In summary, we obtained pure, soluble HA and NA 
with a natural oligomeric conformation. Furthermore, tetNA was enzymatically active.

NA-based immunity provided by vaccination is infection-permissive.  The canonical view is that 
IgG targeting influenza NA primarily interferes with virion release from infected cells and therefore NA-based 
immunity is considered infection-permissive39–41. To test the infection-permissive nature of NA-specific 
immunity, we performed a pilot experiment in which lung virus loads in mice that had been vaccinated with 
triHA, tetNA or a combination of both at different time points after infection with 0.1 LD50 of homologous 
mouse-adapted H1N1v virus. The mice (n =  30 for each group) seroconverted to the vaccine antigens (Fig. 2a,b). 
triHA and tetNA share the Streptag which likely explains why vaccination with triHA and tetNA resulted in low 
serum IgG in tetNA mice against triHA (Fig. 2a) and reciprocally low serum reactivity of triHA immunized mice 
against tetNA (Fig. 2b). When mice were challenged three weeks after the booster immunization with H1N1v, no 
detectable virus titers were observed at any time point after H1N1v challenge in mice that had been vaccinated 
with triHA or triHA +  tetNA (Fig. 2c). NA-specific immunity on the other hand was infection-permissive as 
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Figure 1.  Design and characterization of recombinant soluble trimeric hemagglutinin (triHA) and 
tetrameric neuraminidase (tetNA) antigens used for vaccination. (a) Schematic representation of triHA 
and tetNA expression constructs. Amino acid residues separating the building blocks of the constructs are 
shown in single letter code. CD5-SS: secretion signal of CD5; triGCN4: trimerization leucine zipper derived 
from Saccharomyces cerevisae GCN4; Tag: Strep-Tag; tetrabrachion: tetramerization coiled coil derived from 
Staphylothermus marinus tetrabrachion. (b,c) UV absorption profile after size exclusion chromatography 
of triHA (b) and tetNA (c). (d) Enzymatic activity of tetNA in culture medium from pEF-NA transfected 
HEK293T cells (closed symbols) or culture medium only (open symbols) as measured by kinetic release of 
fluorescent 4-Methylumbelliferone from the 2′-(4-Methylumbelliferyl)-α -D-N-acetylneuraminic substrate.  
(e) Fluorescence calibration curve for calculation of released 4-Methylumbelliferone. (f) Neuraminidase activity 
of tetNA results in desialylation of triHA N-glycans when mixed under conditions of vaccine formulation. Top 
panel shows a dextran ladder as a reference for the glycan structures, numbers represent glucose units. Other 
panels show N-linked glycan profiles for triHA (HA), tetNA (NA), triHA +  tetNA in the presence of 8 M Urea 
(HA +  NA (denatured)) and triHA +  tetNA under vaccine formulation conditions (30 min at 4 °C) (HA +  NA). 
Peaks in red indicate glycans on triHA that are desialylated in the presence of native tetNA.
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Figure 2.  NA-specific immunity permits reduced virus replication. Female 6–8 weeks old BALB/c mice 
(n =  30/group) were immunized twice with 1μg triHA, tetNA or triHA +  tetNA formulated with SAS adjuvant. 
Seroconversion was determined with serum collected two weeks after the booster vaccination by ELISA and 
(a) expressed as endpoint serum total IgG ELISA titers directed against coated triHA or (b) as OD450 of a 1/100 
serum dilution directed against coated tetNA. (c) After intranasal challenge with 0.1LD50 H1N1v, lung virus 
titers were determined by endpoint titration on MDCK cells in cleared lung homogenates (n =  5/day/group) 
harvested at different days post infection (dpi). Lung virus loads are expressed as mean ±  SD of tissue culture 
infectious dose 50 (TCID50) per gram of lung extract. Lung virus titers for triHA and triHA +  tetNA were 
below detection limit. Bars represent averages and error bars standard deviations. *P <  0.05 and **P <  0.01 
compared to PBS (two-sided Mann-Whitney U test with correction for ties).
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mice vaccinated with tetNA had detectable virus titers until 7 days post infection. However, lung virus titers were 
significantly lower in NA-immune mice compared to PBS +  adjuvant immunized mice (Fig. 2c).

Vaccination with triHA, tetNA, M2e-VLP and combinations thereof protects against primary 
homologous challenge.  A first objective of this study was to evaluate if immunization with different 
recombinant antigens, all derived from the extracellular domains of the viral membrane proteins, could protect 
mice against primary homologous (with respect to HA and NA antigens, both H1N1v-derived) and against pri-
mary heterosubtypic (H3N2) influenza A virus challenge. A second objective was to evaluate how the immune 
response upon the primary challenge of control and vaccinated mice affects the outcome of a second challenge 
with the heterosubtypic H3N2 virus (Fig. 3a). The first challenge, three weeks after the boost vaccination, was 
with 0.1 LD50 of H1N1v. In addition, half of the mice in each group were mock-infected at this time point. The 
H3N2 challenge was given at day 70 (i.e. 4 weeks after the mock or H1N1v challenge) at a dose of 2LD50.

We initially tested the protective capacity of vaccination with tetNA, triHA or a combination of both antigens 
against challenge with the two virus subtypes. Groups of 62 BALB/c mice were immunized twice with three weeks 
interval. Vaccination resulted in seroconversion against the respective antigens as determined by ELISA, HAI, 
NAI and microneutralisation assays (Fig. 3b–f). The microneutralization activity of tetNA-immune is in line with 
a recent report in which an raccoon poxvirus-vectored H5N1-derived NA vaccine was evaluated (Fig. 3f)42. Next, 
half (31 out of 62) of the mice from each group were challenged with a sublethal dose of H1N1v and the other half 
of the mice were mock-infected. None of the triHA, tetNA and triHA plus tetNA immunized mice displayed body 
weight loss, whereas adjuvant only immunized mice suffered significant body weight loss until day 9 after chal-
lenge and then recovered (Fig. 3g). Furthermore, at day 6 after challenge PBS-vaccinated control animals had sig-
nificant lung virus loads, whereas no residual virus was detectable in triHA and tetNA immunized mice (Fig. 3h).

Immunization of laboratory mice with M2e-VLP can protect against challenge with influenza A viruses 
regardless of the viral subtype13,22,43. Although the mechanism of protection afforded by M2e-based vaccination 
strategies largely relies on humoral immunity, antibodies against M2e have little if any direct impact on virus 
replication in vitro and their protection relies on Fcγ  Receptors expressed by innate immune cells44. In contrast, 
antibodies directed against HA or NA, especially those with HAI or NAI activity, directly impact virus replication 
in vitro. We therefore set up a second vaccination-challenge experiment in which we compared immune pro-
tection induced by M2e, NA, HA and combinations thereof against homologous and heterologous influenza A 
virus challenge (Fig. 4a). This experiment allowed us to compare immune protection induced by vaccination with 
M2e-VLPs with protection induced by tetNA against H1N1v challenge. In addition, we evaluated if vaccination 
with tetNA or triHA +  tetNA could benefit from co-administration of M2e-VLPs (Fig. 4a).

Inclusion of triHA in the vaccine resulted in seroconversion to HA as measured by ELISA (Fig. 4b) and only 
this group displayed HAI titers (Fig. 4e). Again, mice that had been vaccinated with a tetNA-containing for-
mulation seroconverted to triHA based on ELISA, most likely due to antibodies directed to the shared Streptag 
(Fig. 4b). Anti-NA IgG serum responses and NAI titers were comparable in the three groups that had been immu-
nized with a tetNA containing vaccine (Fig. 4c,f). M2e-specific serum IgG titers were comparable in all three 
groups that had been immunized with M2e-VLP-containing formulations (Fig. 4d). Finally, sera from mice that 
had been vaccinated with tetNA-containing antigens displayed H1N1v microneutralizing activity, with the high-
est activity observed in the group that had triHA included in the vaccine (Fig. 4g). The NAI and microneutraliza-
tion titers were comparable in the tetNA only vaccinated groups between the two experiments (compare Figs 3e,f 
and 4f,g).

Half of the mice in each group were challenged with a sublethal dose (0.1LD50) of H1N1v. PBS and VLP 
immunized mice suffered body weight loss after challenge, which was significantly higher than in vaccinated 
animals (Fig. 4h). Mice that were vaccinated with tetNA +  M2e-VLP +  triHA displayed no body weight loss 
after H1N1v challenge (Fig. 4h). The M2e-VLP immunized mice lost up to 10% of their original body weight 
(Fig. 4h). We note that M2e in the M2e-VLP differs at four positions compared with the H1N1v challenge virus. 
Mice that were immunized with tetNA displayed very moderate body weight loss upon H1N1v challenge whereas 
mice that were immunized with both NA and M2e did not display body weight loss. Lung virus loads in the 
PBS and control VLP group reached 105 TCID50 on day 6 after challenge, whereas challenged tetNA and tetNA 
+  M2e-VLP +  triHA vaccinated mice did not carry residual virus anymore at this time point (Fig. 4i). In line 
with previous reports, M2e-immune mice had considerable lung viral loads after challenge, although these were 
typically tenfold lower compared to the PBS and control VLP groups. Unexpectedly, two out of three mice that 
received tetNA +  M2e-VLP had residual pulmonary virus on day 6 post infection (Fig. 4i). Taken together, 
triHA- and tetNA- containing vaccines provide excellent protection against homologous challenge. In addition, 
challenged M2e-VLP immunized mice are significantly protected against disease compared to the PBS- and con-
trol VLP-immunized mice.

NA- and M2e-immune hosts mount functional humoral and T cell responses upon virus expo-
sure when they lack HA-specific immunity.  In the experiments described above we had created both 
infection-permissive (vaccination with tetNA, M2e-VLP and tetNA +  M2e-VLP) and sterilizing immunity 
(vaccination with triHA, triHA +  tetNA, and triHA +  tetNA +  M2e-VLP). We therefore assessed how these 
different types of pre-existing immune status would modulate the immune responses during and after recovery 
from H1N1v challenge. HAI titers against H1N1v were detectable in all mice after challenge (Fig. 5a,b). Pre- and 
post-challenge HAI titers were the same in mice that had been immunized with triHA-containing antigen for-
mulations. All except the triHA only immunized mice had serum NAI titers after challenge and NAI titers were 
highest in challenged mice that had been immunized with a tetNA-containing vaccine (Fig. 5c,d). The absence of 
NAI in the triHA group and the lack of a boost of the pre-existing NAI titer in the triHA +  tetNA +  M2e-VLP 
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Figure 3.  (a) Outline of Experiment 1. Groups of 62 female SPF BALB/c mice (6–8 weeks old) were immunized 
two times subcutaneously with the indicated antigens in the presence of SAS. Three weeks after the booster 
immunization, half of the mice in each group were challenged with a sublethal dose of H1N1v (0.1 LD50) and 
the other mice were mock-challenged. Four weeks after the primary challenge, all mice were rechallenged with 
a lethal dose (2 LD50) of mouse-adapted X47 (H3N2) virus. Following challenge, body weight and survival 
were monitored and some of the mice were sacrificed for lung and spleen sampling. Seroconversion after 
prime/boost vaccination of female BALB/c mice (6–8 weeks old) with 1μg triHA, 1μg tetNA or 1μg triHA 
+  1μg tetNA formulated with SAS adjuvant (from experiment 1, n =  62 mice/group) was determined by 
ELISA and (b) expressed as endpoint serum total IgG ELISA titers for triHA or (c) as OD450 of a 1/100 serum 
dilution for tetNA. In (b,c) bars represent averages and error bars standard deviations. (d) Serum HAI titer 
against homologous pandemic H1N1v virus in pooled sera (n =  10) for each group collected two weeks after 
booster vaccination. (e) NAI titer determined with tetNA as source of sialidase in pooled sera (n =  10) for 
each group collected two weeks after booster vaccination. (f) Microneutralization titer against homologous 
pandemic H1N1v virus determined with pooled sera (n =  10) for each group collected two weeks after booster 
vaccination. (g) Protection by vaccination with triHA, tetNA or triHA +  tetNA against homologous challenge 
with 0.1LD50 of H1N1v virus (n =  12 mice/group). PBS-vaccinated mice showed significantly more body weight 
loss between 4 and 18 dpi compared to triHA-, tetNA- or triHA +  tetNA mice (two-sided Mann-Whitney U test 
with correction for ties for each dpi. P value <  0.01). (h) Lung virus titers (n =  3/group) harvested at 6 dpi. Lung 
virus loads are expressed as tissue culture infectious dose 50 (TCID50) per gram of lung extract. Individual virus 
titers are given and lines represent averages. Lung virus titers in triHA, tetNA and triHA +  tetNA were below 
the detection limit.
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Figure 4.  (a) Outline of Experiment 2. Groups of 62 female SPF BALB/c mice (6–8 weeks old) were immunized 
two times subcutaneously with the indicated antigens in the presence of SAS. Mice were challenged, monitored 
and sampled as described in Fig. 3. Seroconversion after prime/boost vaccination (n =  62/group) was 
determined by ELISA using (b) coated triHA and expressed as endpoint serum total IgG ELISA titers for triHA, 
(c) as OD450 of a 1/100 serum dilution against coated tetNA or (d) as endpoint serum total IgG ELISA titers 
using coated M2e peptide. (e) HAI titer against homologous pandemic H1N1v virus. (f) NAI titer determined 
with tetNA as source of sialidase. (g) Microneutralization titer against homologous pandemic H1N1v virus. 
In (b), (c) and (d) bars represent averages and error bars represent standard deviations. In (e,f,g) bars are from 
pooled sera (n =  10/group) isolated two weeks after booster vaccination. “M2e” in the X-axis means M2e-VLP. 
(h) Protection by vaccination with tetNA, M2e-VLP, tetNA +  M2e-VLP or triHA +  tetNA +  M2e-VLP against 
homologous challenge with 0.1LD50 of H1N1v virus three weeks after booster vaccination (n =  12 mice/group). 
PBS-vaccinated mice (control for tetNA-vaccination) showed significantly more body weight loss between 2 and 
14 dpi compared to tetNA-, tetNA +  M2e-VLP or triHA +  tetNA +  M2e-VLP mice (two-sided Mann-Whitney 
U test with correction for ties for each dpi. P value <  0.05). Mice vaccinated with VLP (control for M2e-VLP-
vaccination) showed significantly more body weight loss between 4 and 14 days after infection compared to 
M2e-VLP-, tetNA +  M2e-VLP or triHA +  tetNA +  M2e-VLP mice (two-sided Mann-Whitney U test with 
correction for ties for each dpi. P value <  0.01). (i) Lung virus titers (n =  3/group) harvested at 6 dpi. Lung virus 
loads are expressed as tissue culture infectious dose 50 (TCID50) per gram of lung extract. Individual virus 
titers are given and lines represent averages. Lung virus titers on the X axis are below detection limit. “M2e” in 
the X-axis means M2e-VLP.



www.nature.com/scientificreports/

8Scientific Reports | 6:24402 | DOI: 10.1038/srep24402

groups, is in line with the sterilizing immunity induced by triHA in these vaccine compositions. Finally, all mice 
had significant and comparable H1N1v microneutralizing antibody titers after challenge (Fig. 5e,f).

We next quantified CD8+  T cell responses specific for the cross-reactive NP T cell epitope TYQRTRALV 
(NP155) in splenocytes isolated on day 10 after mock or H1N1v challenge. Importantly, NP was only introduced 
in the animals by the H1N1v challenge virus, not by any of the recombinant vaccine antigens. We observed 
significant levels of interferon gamma (IFNγ ) producing, NP155-specific CD8+  T cells in all challenged mice 

Figure 5.  Infection-permissive immunity allows induction of humoral responses upon infection. Twenty 
one days after challenge with 0.1LD50 of H1N1v of BALB/c mice that had been vaccinated with the indicated 
antigens, pooled serum (n =  10) was used for in vitro antiviral assays. Results for experiment 1 are shown on the 
left and results for experiment 2 on the right. (a,b) HAI titers, (c,d) neuraminidase inhibiting titers and  
(e,f) microneutralization titers determined against H1N1v virus. “M2e” in the X-axis means M2e-VLP.
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except for the groups that had been immunized with triHA containing vaccine: i.e. triHA and triHA +  tetNA 
in experiment 1 and triHA +  tetNA +  M2e-VLP in experiment 2 (Fig. 6a,b; p <  0.01 compared to respective 
mock-infected groups). Although vaccination with infection-permissive vaccine antigens protected mice against 
morbidity, NP155-specific T cell responses in these mice were comparable in magnitude with those observed in 
unprotected PBS or control VLP immunized mice. To assess the functional capacity of these T cells we performed 
an in vivo killing assay. CFSE-labeled NP155-peptide pulsed target cells were injected into convalescent or mock 
challenged mice and these cells were retrieved 19 h later from the spleen and quantified by flow cytometry. All 
challenged mice, except those that had been immunized with triHA-containing vaccine, exhibited specific target 
cell killing (Fig. 6c,d). Taken together, pre-existing HAI immunity protects against a homologous challenge and 
strongly dampens the NP-specific T cell response upon challenge. In contrast, immunization with tetNA and 
M2e-VLP, separate or combined, provides near complete immune protection against homologous challenge with-
out affecting the NP-specific CD8+  T cell response.

Figure 6.  Infection-permissive immunity allows induction of cellular responses upon infection. Results 
for experiment 1 are shown on the left and results for experiment 2 on the right. (a,b) Ten days after mock 
challenge or challenge with 0.1LD50 of H1N1v of BALB/c mice that had been vaccinated with the indicated 
antigens, 6 mice from each group were sacrificed and splenocytes were isolated. Splenocytes were restimulated 
ex vivo with NP155 peptide for 6 hours. IFN-γ  production in NP-specific CD8+  T cells was determined by 
flow cytometric analysis by intracellular cytokine staining of NP155 pentamer positive cells. *P value <  0.01 
compared to respective mock-infected groups with two-sided Mann-Whitney U test with correction for ties. 
The horizontal line denotes the median. (c,d) In vivo clearance of NP155-pulsed target cells. Splenocytes 
from naïve mice were pulsed in vitro for 1 h with NP155 or irrelevant Respiratorial Syncytial Virus-derived 
F85 peptide, differentially labeled with CFSE and injected intravenously in mice 9 days after mock or H1N1v 
challenge. Nineteen hours later, pulsed target cells were recovered from the spleens of the recipient mice and 
analyzed by flow cytometry. Bars represent averages (n =  3/group) and error bars represent standard deviations. 
NP155-pulsed and F85-pulsed target cells were labeled with 1 μM CFSE and 10 μM CFSE respectively in (c) 
and with 10 μM CFSE and 1 μM CFSE respectively in (d). Higher concentrations of CFSE result in lower cell 
recovery which explains tenfold higher ratios in (d) compared to (c). “M2e” in the X-axis means M2e-VLP.
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Cytokine and chemokine milieu correlates with lung virus loads.  Replicating virus can cause 
the release of a plethora of cytokines and chemokines, derived from directly infected cells and from recruited 
immune cells. We quantified 19 chemokines and cytokines in lung samples isolated on day six after challenge 
with H1N1v. Overall, the extent of virus replication (Figs 3h and 4i) positively correlated with the levels of 
pro-inflammatory cytokines and chemokines measured in the lung samples (Fig. 7a and Supplementary Fig. 
1 for experiment 1, Fig. 7b and Supplementary Fig. 2 for experiment 2). For example, triHA-immunized mice, 
which had undetectable pulmonary virus titers in the lungs had cytokine and chemokine levels that were com-
parable to those in mock-challenged mice. TetNA-immunized mice controlled H1N1v replication better than 
M2e-immune mice, and in general their cytokine and chemokine expression patterns are also similar to those of 

Figure 7.  Heat maps representing cytokine and chemokine concentrations measured in cleared lung 
homogenates from individual mice (n = 3/group) harvested at 6 days after mock infection or infection 
with 0.1LD50 of H1N1v for experiment 1 and 2. Cytokine and chemokine expression levels were determined 
using a 19-plex cytokine bead array. Each column represents a specific cytokine or chemokine as indicated at 
the bottom of the heat map. Each row represents an individual mouse, with the vaccine status indicated on the 
right hand side of the heat map. Individual samples were clustered and rows were reordered based on the profile 
of cytokine and chemokine expression. Infection status and hierarchical cluster dendrogram is shown at the left 
hand side of the heat map. “M2e” on the right hand side of the heat map means M2e-VLP.
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Figure 8.  Formation of inducible bronchus associated lymphoid tissue (iBALT) after primary challenge 
with 0.1LD50 of H1N1v is observed in M2e-immune but not in HA- or NA-immune mice. (a) Representative 
lung sections isolated on day 21 after challenge of mice with 0.1 LD50 of H1N1v. Lung sections were stained with 
hematoxylin/eosin to illustrate presence or absence of possible iBALT structures (arrows) near bronchi in lungs 
of infected mice (10×  magnification). Data are from experiment 1 with the vaccination status indicated as insets. 
(b) Presence of iBALT at 21 dpi (mock or H1N1v) was investigated by quantification of GL7+  immunoglobulin 
(Ig)M-IgD-Fas+  B-cells in total lung cells by flow cytometry. PBS mice had significantly more GL7 +  IgM-IgD-
Fas+  B-cells compared to mock-challenged controls (Two-sided Mann-Whitney U test with correction for ties, 
*P value <  0.05). Bars represent averages of four mice, error bars represent standard deviations. Data are from 
experiment 1 with the vaccination and challenge status of the mice indicated below the X-axis. (c) Presence 
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mock-infected animals. Unexpectedly, two out of three mice that had been immunized with tetNA +  M2e-VLP 
showed a pro-inflammatory cytokine and chemokine signature that was comparable to that of challenged, 
unprotected PBS and control VLP groups (Fig. 7b). In particular IL4 levels were high in these samples (Fig. 7b)  
(Supplementary Fig. 2).

Pulmonary germinal center formation after H1N1v infection.  Germinal center formation 
is induced in lungs of naïve mice that survive an influenza A virus infection and is a key feature of inducible 
bronchus-associated lymphoid tissue (iBALT)45,46. Therefore, histopathological analysis of lung section from mice 
that had been vaccinated and challenged in experiment 1 was performed to evaluate the extent of immune infil-
tration and potential iBALT formation. iBALT typically consists of structured areas with DCs, T and B cells at 
peribronchial and perivascular locations in the lung45. Lung sections from PBS vaccine control mice analyzed on 
day 21 after challenge, displayed such dense peribronchial structures containing infiltrating immune cells, indica-
tive for the presence of iBALT (Fig. 8a, arrows). In contrast, challenged mice that had been vaccinated with triHA, 
tetNA or a combination of both, lacked these dense peribronchial structures (Fig. 8a).

We also determined GL7 expression, a feature of activated B and T cells involved in germinal center forma-
tion47 by flow cytometry to compare the extent of germinal center formation. In line with our previous findings13, 
we observed that 21 days after infection, the highest number of GL7 +  IgM-IgD-Fas+  B-cells was induced in the 
control mice that had received PBS or control VLP antigen (Fig. 8b,c). Challenged M2e-VLP immunized mice 
also had a significantly higher number of GL7 +  IgM-IgD-Fas+  B cells in the lungs compared to mock challenged 
controls (Fig. 8c). In contrast, GL7 +  IgM-IgD-Fas+  B cells remained close to baseline after H1N1v challenge of 
mice immunized with triHA- or tetNA-containing vaccines (Fig. 8b,c).

Lack of heterosubtypic immunity induced by prior infection in triHA-immunized mice.  Our 
sequential infection model allowed to evaluate how the different vaccine regimens would perform against pri-
mary heterosubtypic challenge (mock followed by H3N2), and how vaccination followed by challenge with 
H1N1v would potentially influence protection against a subsequent challenge with a heterosubtypic influenza 
virus (H1N1v followed by H3N2)(Fig. 3a). All remaining mice from experiment 1 and 2 were thus challenged 
on day 70 with 2 LD50 of a mouse-adapted H3N2 virus (i.e. seven weeks after the booster immunization). Mice 
that had been immunized with triHA or tetNA, separate or combined, and mock challenged on day 42 were not 
protected against H3N2 challenge and displayed morbidity and mortality that was comparable to PBS and control 
VLP immunized mice (Figs 9a,c and 10a,c). This illustrates that vaccination with H1N1 triHA and tetNA (sepa-
rate or combined) does not protect against challenge with an H3N2 virus. In contrast, all mock-infected mice that 
had been immunized with M2e-VLP containing vaccines, separately or combined with triHA or tetNA survived 
the H3N2 challenge but experienced transient body weight loss (Fig. 10a,c). This outcome illustrates the universal 
influenza A protection offered by M2e-based vaccination and also its capacity to control but not completely pre-
vent disease following challenge. When mice that had been previously exposed to H1N1v were rechallenged with 
H3N2 virus, the outcome was strikingly different. PBS and control VLP immunized mice that had recovered from 
prior H1N1v challenge were now fully protected against the H3N2 challenge (Figs 9b,d and 10b,c). In contrast, 
triHA, or triHA +  tetNA vaccinated mice were not protected against the rechallenge with H3N2 virus (Fig. 9b,d). 
TetNA only immunized mice3 survived the rechallenge with H3N2 virus but experienced significant body weight 
loss (Figs 9b,d and 10b,c). All mice that had been immunized with M2e-VLP and then challenged with H1N1v 
survived the secondary H3N2 challenge and did not display any body weight loss. This illustrates that in the latter 
group the protection against the H3N2 challenge was at least partially mediated by the H1N1v elicited immune 
response and not solely the consequence of anti-M2e antibodies. In the triHA +  tetNA+  M2e-VLP immunized 
mice morbidity after rechallenge with H3N2 was highest and comparable to the body weight loss seen in mice 
that had been vaccinated similarly but for which the H3N2 virus was the first challenge (Fig. 10a,b). This suggests 
that there was no contributing protection from the prior H1N1v challenge against secondary challenge in the 
triHA +  tetNA +  M2e-VLP group and that protection was largely if not exclusively derived from M2e-specific 
immunity induced by the vaccination.

We also determined the H3N2 lung virus load following mock/H3N2 and H1N1v/H3N2 challenge. In the 
mock/H3N2 groups, only M2e-VLP immunized mice displayed significantly reduced lung virus titers compared 
with PBS and control VLP immunized mice (Figs 9e and 10d). NA-immune mice showed a modest reduction 
in virus titers upon heterologous H3N2 challenge without prior H1N1v challenge, but this was noticed only in 
the second of the 2 experiments (Figs 9e and 10d). In the groups challenged with H1N1v followed by H3N2, no 
residual lung virus was detectable on day six after secondary challenge with H3N2 virus in PBS, control VLP 
and M2e-VLP immunized mice (Figs 9f and 10e). One out of three (experiment 1) and two out of three (exper-
iment 2) tetNA immunized mice had residual H3N2 virus on day 6 after rechallenge (Figs 9f and 10e). The 
triHA and triHA +  tetNA immunized mice had the highest lung virus titers after rechallenge with H3N2 virus 
(Fig. 9f). Taken together, M2e-VLP immunization provides broad and disease-modulating immunity against 
influenza A virus infection. Supplementing tetNA antigen with M2e-VLP improves the protection against pri-
mary homologous and secondary heterosubtypic infection compared to tetNA alone. Finally, immunization with 

of iBALT at 21 dpi (mock or H1N1v) was investigated by quantification of GL7 +  IgM-IgD-Fas+  B-cells in 
total lung cells by flow cytometry. PBS, VLP and M2e-VLP mice had significantly more GL7 +  IgM-IgD-Fas+  
B-cells compared to mock-challenged controls (Two-sided Mann-Whitney U test with correction for ties, *P 
value <  0.05). Bars represent averages of four mice, error bars represent standard deviations. Data are from 
experiment 2 with the vaccination and challenge status of the mice indicated below the X-axis.
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H1N1v-derived triHA vaccine with or without added tetNA antigen does not protect against primary (mock/
H3N2) or secondary (H1N1v/H3N2) challenge with a heterosubtypic virus in the absence of M2e-specific 
immunity.

Figure 9.  Prior infection with H1N1v virus contributes to protection against subsequent infection with 
heterologous H3N2 virus. Data are from experiment 1 with the vaccination status indicated. (a) Weight loss 
following challenge with H3N2 virus (2LD50) four weeks after mock challenge of mice vaccinated as indicated 
(n =  12/group). (b) Weight loss of mice vaccinated as indicated following secondary challenge with H3N2 virus 
(2LD50) four weeks after primary sublethal challenge with H1N1v (n =  12/group). Compared to PBS mice, body 
weight loss was significantly higher in triHA and in triHA +  tetNA mice between days 2 and 8 after infection, and 
in tetNA mice between days 4 and 14 after infection (Two-sided Mann-Whitney U test with correction for ties, 
P value <  0.05). (c) Mortality of mice vaccinated as indicated following challenge with H3N2 virus (2LD50) four 
weeks after mock challenge or (d) four weeks after primary sublethal challenge with H1N1v (n =  12/group).  
(e,f) Lung virus titers in cleared lung homogenates harvested at 6 dpi with H3N2 virus (2LD50) of mice 
vaccinated as indicated (n =  3/group). H3N2 challenge was given four weeks after mock challenge (e) or four 
weeks after primary sublethal challenge with H1N1v (f). In (e,f) individual virus titers are given and lines 
represent averages. Lung virus loads are expressed as tissue culture infectious dose 50 (TCID50) per gram of lung 
extract. Lung virus titers on the X axis are below detection limit.
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Figure 10.  Prior infection with H1N1v virus contributes to protection against subsequent infection 
with H3N2 virus. Data are from experiment 2. (a) Weight loss following challenge with H3N2 virus 
(2LD50) four weeks after mock challenge (n =  9/group). Compared to PBS mice, body weight loss was 
significantly different at 4 dpi and 7 dpi in mice vaccinated with tetNA (P <  0.05), and between 4–8 dpi in 
mice vaccinated with tetNA +  M2e-VLP and triHA +  tetNA +  M2e-VLP (P <  0.01). Compared to VLP 
mice, body weight loss was significantly different between 6–9 dpi in M2e-VLP, tetNA +  M2e-VLP and 
triHA +  tetNA +  M2e-VLP mice (P <  0.05). Compared to tetNA mice, body weight loss was significantly 
different between 6–9 dpi in mice vaccinated with tetNA +  M2e-VLP or triHA +  tetNA +  M2e-VLP (P <  0.01). 
(b) Weight loss of mice vaccinated as indicated following secondary challenge with H3N2 virus (2LD50) 
four weeks after primary sublethal challenge with H1N1v (n =  9/group). Compared to PBS mice, body 
weight loss was significantly higher between 4–14 dpi in mice vaccinated with tetNA, tetNA +  M2e-VLP and 
triHA +  tetNA +  M2e-VLP (P <  0.05). Compared to VLP mice, body weight loss was significantly higher 
at 4 dpi in mice vaccinated with tetNA +  M2e-VLP (P <  0.05) and between 4–10 dpi and at 14 dpi in mice 
vaccinated with triHA +  tetNA +  M2e-VLP (P <  0.05). Mice vaccinated with tetNA showed significantly more 
body weight loss between 4–14 dpi compared to tetNA +  M2e-VLP mice (P <  0.05) and at 7 dpi compared to 
triHA +  tetNA +  M2e-VLP mice (P <  0.05). (c) Mortality of mice vaccinated as indicated following challenge 
with H3N2 virus (2LD50) four weeks after mock challenge or primary sublethal challenge with H1N1v (n =  9/
group). (d) Lung virus titers (n =  3/group) in cleared lung homogenates harvested at 6 dpi of mice vaccinated as 
indicated following challenge with H3N2 virus four weeks after mock challenge or (e) after primary sublethal 
challenge with H1N1v. In (e,f) individual virus titers are given and lines represent averages. Lung virus loads are 
expressed as TCID50 per gram of lung extract. Lung virus titers on the X axis are below detection limit. “M2e” in 
the X-axis means M2e-VLP. Statistical analysis was by two-sided Mann-Whitney U test with correction for ties.
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Figure 11.  Mice with NP-specific T-cells in circulation show higher and faster T cell responses upon 
secondary infection with heterologous virus. (a) Kinetic analysis of NP-specific CD8+  T cell frequencies 
before and after challenge with H3N2 virus (2LD50) by flow cytometry following NP155 pentamer staining on 
whole lysed blood of pools (n =  3/group). Data are from experiment 1 and the vaccination and prior mock or 
H1N1v challenge status of the mice are indicated on the right. Only PBS and tetNA vaccinated mice that had 
experienced prior H1N1v challenge survived the H3N2 challenge. (b) Kinetic analysis of NP-specific CD8+  
T cell frequencies before and after challenge with H3N2 virus (2LD50) by flow cytometry following NP155 
pentamer staining on whole lysed blood of pools (n =  3/group). Data are from experiment 2 and the vaccination 
and prior mock or H1N1v challenge status of the mice are indicated on the right. “M2e” means M2e-VLP. Only 
PBS and tetNA vaccinated mice that had experienced prior H1N1v challenge or mice vaccinated with M2e-
VLP survived the H3N2 challenge. PBS-, VLP- and tetNA-vaccinated mice that had previously been mock-
challenged did not survive the H3N2 challenge. (c) Representative density plots for cell surface markers CD127 
and CD62L on total (left plot) and NP-specific (right plot) circulating CD8+  T cells. (d) Frequencies of NP-
specific CD62L- CD127+  CD8+  T cells in whole lysed blood of pools (n =  3/group) collected on 10 dpi. “M2e” 
in the X-axis means M2e-VLP. (e) Correlation between frequency of NP-specific CD62L- CD127+  CD8+  T 
cells in whole lysed blood of pools (n =  3/group) collected at 10 dpi and in vivo clearance of NP155 peptide-
pulsed target cells recovered from spleens 6 h after intravenous administration of these cells. Data in c-e are 
from experiment 2.
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T cell responses induced by primary homologous infection are boosted after secondary  
heterologous challenge.  Finally, we determined the NP-specific CD8+  T cells at different time points after 
mock/H3N2 and H1N1v/H3N2 challenge. NP-specific T cells were determined in lysed whole blood collected 
before and at different time points after H3N2 challenge. Mice that had been mock challenged as well as mice 
that had received triHA (triHA, triHA +  tetNA and triHA +  tetNA +  M2e-VLP) followed by challenge with 
H1N1v did not have detectable NP-specific CD8+  T cells before H3N2 challenge (Fig. 11a,b). In the blood of 
PBS, control VLP, tetNA-, M2e-VLP- and tetNA +  M2e-VLP-vaccinated mice that had been challenged before 
with H1N1v, NP155-specific CD8+  T cells were detectable prior to rechallenge with H3N2 virus (Fig. 11a,b). In 
these mice, the percentage of NP155 pentamer positive T cells dropped during the first days after H3N2 chal-
lenge, but increased drastically between day 4 and 8 after the H3N2 infection. This increase in percentage of 
NP-specific CD8+  T cells was higher and faster compared to that in mice that were previously mock-challenged 
or in H1N1v/H3N2 mice that had received triHA (triHA, triHA +  tetNA or triHA +  tetNA +  M2e-VLP groups). 
NP-specific CD8+  T cell levels remained highest over time in NA only-immune mice that had been challenged 
earlier with H1N1v virus.

In mice from experiment 2, we also stained the surface markers CD127 and CD62L on NP-specific CD8+  T 
cells in lysed whole blood collected at 10 days post infection with H3N2 virus. CD127 is the receptor for IL 7 and 
is expressed on memory precursor cells early after infection48 whereas CD62L is a lymph node homing receptor, 
which allows discrimination between effector and central memory T cells49. Although over 7% of total memory 
(CD127+) CD8+  T cells in the blood showed surface expression of CD62L, NP155-specific CD8+  T cells were 
negative for CD62L, indicating their effector memory nature (Fig. 11c). Mice that had been vaccinated with tetNA 
or tetNA +  M2e-VLP followed by challenge with pandemic H1N1v and then H3N2 virus showed the highest 
percentage of CD127+  CD62L- cells (Fig. 11d). M2e-VLP vaccinated and control mice had somewhat lower fre-
quencies of CD127+  CD62L- NP-specific CD8+  T cells than tetNA-only vaccinated mice. In the triHA +  tetNA 
+  M2e-VLP immunized group, frequencies of CD127+  CD62L- NP-specific CD8+  T cells were comparable to 
those in mice that had been mock-challenged before. To investigate the activity of the induced NP-specific T cells 
we performed an in vivo cell killing assay. In parallel the frequency of circulating CD127+  CD62L- NP-specific 
effector memory CD8+  T cells was measured as described above. Figure 11e illustrates that the frequencies of 
CD127+  CD62L- NP-specific CD8+  T cells in circulation correlated with clearance of NP155-peptide pulsed 
target cells in vivo.

We conclude that NP-specific CD8+  T cells are still circulating four weeks after primary H1N1v challenge in 
mice that lacked HAI immunity provided by vaccination. Furthermore, this pre-existing T cell pool expanded 
quickly upon rechallenge with heterologous H3N2 virus. Importantly whereas vaccination with HA (triHA +  
tetNA +  M2e-VLP) prevented the induction and boosting of cross-protective cell killing T cells, M2e and/or 
tetNA vaccination allowed induction and boosting of these cells.

Discussion
We compared seven different vaccination regimens ranging from none (PBS and control VLP) to complete (triHA 
+  tetNA +  M2e-VLP) membrane-exposed viral antigen coverage in the recombinant vaccine antigens. Our find-
ings reveal that NA- and M2e-based vaccination strategies, in the absence of HA immunity, can offer significant 
immune protection without compromising the induction of cross-reactive CD8+  T cells upon influenza A virus 
infection. We showed that vaccination with recombinant soluble oligomeric forms of HA and NA and to a lesser 
extent with M2e-VLPs, protected against morbidity following challenge with a sublethal dose of homologous 
H1N1v virus. Therefore, increasing and standardizing the content of NA in conventional influenza vaccines could 
improve protection in cases where HA-based protection is reduced due to antigenic mismatch with circulating 
virus strains or in individuals that mount a suboptimal response against currently licensed flu vaccines.

Only immunization with M2e-VLPs protected against primary challenge with heterosubtypic H3N2 virus. 
M2e-based vaccine candidates have not been evaluated in human beyond phase 1 clinical trials. Nevertheless, a 
study in human volunteers in which a M2e-specific human monoclonal antibody was administered 24 hours after 
a controlled challenge with A/Wisconsin/67/2005 (H3N2) virus, significantly reduced infection related symp-
toms, suggesting that M2e-based vaccines could contribute to protection against influenza A50.

Currently licensed inactivated influenza vaccines mainly aim at the induction of HA-specific, 
virus-neutralizing immunity, which necessitates almost yearly vaccine updates due to antigenic drift and shift in 
circulating viruses. NA of human influenza viruses is also subject to antigenic drift34, which suggests that like HA, 
the NA molecule is under immune selection pressure. Despite being recognized as a good vaccine candidate for 
several decades21 and having shown to be safe and immunogenic when administered unadjuvanted to humans51, 
the NA protein content is neglected in influenza vaccines. Due to its higher representation on the viral surface, 
HA is considered to be immunodominant over NA in the intact virus52. When administered together at equal 
amounts as recombinant soluble molecules formulated in oil-in-water SAS adjuvant, we also observed a trend of 
immunodominance of triHA over tetNA. We found that triHA was rapidly desialylated in the presence of tetNA, 
even when the two glycoproteins were co-incubated at 4 degrees Celsius for a short time (Fig. 1f). In the case that 
the antigens were combined, triHA and tetNA were coincubated under similar conditions prior to injection into 
mice, and triHA was thus likely delivered as a desialylated protein in those groups. Although it has been proposed 
that the extend of N-glycosylation of HA may influence the B cell response after vaccination53, we did not observe 
a difference in ELISA, HAI and microneutralization titer between triHA and triHA +  tetNA vaccinated groups 
(Fig. 3b,d,f). In addition, triHA and triHA +  tetNA vaccinated mice were equally sensitive to primary H3N2 
infection as tetNA vaccinated mice. This suggests that desialylation of HA did also not enable significant induc-
tion of cross-protective antibodies that can protect against both group 1 and group 2 influenza virus infections.

NA-based immunity can protect mice against challenge with homologous influenza virus21,30. Likewise, we 
found that vaccination with tetNA protected from severe virus-induced morbidity following H1N1v challenge. 
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However, complete absence of morbidity was only obtained by supplementing tetNA with M2e-VLP and 
triHA. M2e-immune mice showed a reduction in lung viral load compared to PBS and control VLP groups, but 
NA-immunity performed much better for this parameter. This is most likely due to the fact that M2e-specific 
antibodies likely protect by eliminating infected cells through Fcγ  receptor-dependent mechanisms44 rather than 
by binding to influenza virions13,21. On day 6 after challenge there was no virus detectable in lung homogenates 
of NA-immune mice (Figs 3h and 4i). This suggests that replicating virus was already cleared in NA-immune 
mice by that time point as opposed to sterilizing immunity provided by HA vaccination, which resulted in unde-
tectable virus at all time points in our mouse model (Fig. 2c). In naïve mice influenza virus infection induces 
cross-reactive T cell responses that provide protection against challenge with influenza virus of a different sub-
type4,54,55. Comparable NP155-specific T cell responses were measured in spleens of PBS, control VLP, M2e-VLP 
and tetNA immunized mice after challenge with H1N1v. This suggests that the reduced viral replication in tetNA 
mice does not lead to limiting concentrations of viral antigen available for immune presentation and T cell prim-
ing and/or that formation of NA-specific antibody-antigen complexes in the course of infection contributes to 
viral antigen presentation to T cells.

Mice vaccinated with M2e-VLP alone or in combination with tetNA and/or triHA were protected from het-
erologous challenge by the universal M2e-based vaccine. However, heterologous protection was enhanced in 
M2e-immune mice that had mounted NP-specific CD8+  T cells during a prior infection (Fig. 10a,b). This high-
lights the advantage of infection-permissive over virus-neutralizing immunity in this sequential influenza infec-
tion model13,56 and the correlation of cross-reactive T cells with heterosubtypic immunity13. However, we only 
analyzed T cell responses in the spleen for one well characterized CD8+  T cell epitope and at one time point (day 
10) after the H1N1v challenge. It is possible that T cell responses to other viral epitopes, dominant or subdom-
inant, as well as recall responses after a second heterosubtypic virus challenge, were affected by NA-immunity.

Mice with NA-specific immunity did not display iBALT following H1N1v infection (Fig. 8). These tertiary 
lymphoid organs have also been observed in humans57 and are marked by specific structural organization and 
formation of germinal center reactions13,46. The observation that M2e vaccinated but not tetNA vaccinated mice 
develop iBALT could be explained by the higher or longer viral replication in M2e vaccinated mice (Fig. 4i). 
Inducible BALT also contributes to heterosubtypic immunity45, which may explain why protection against a sec-
ond challenge with H3N2 virus was stronger in PBS- and VLP- than in tetNA-vaccinated mice despite similar 
T cell levels in the spleen. Our data suggest that induction of iBALT requires a certain degree of virus replica-
tion, with the associated production of cytokines and chemokines and morbidity. Indeed, local production of 
chemokines like CCL19, CCL21 and lymphotoxin β  is important for iBALT formation46,58,59. The difference in 
infection-permissivity provided by M2e−  or NA-based vaccines results in different cytokine and chemokine 
profiles (Fig. 7) and may therefore influence iBALT formation.

NP-specific CD8+  T cells remained detectable in lysed blood until four weeks after challenge with H1N1v 
in NA- and M2e-immune mice. This suggests that infection-permissive immunity provided by vaccination with 
M2e or NA antigens does not interfere with induction of memory T cell responses. Wiley et al. reported that 
virus-specific T cells peaked between days five to seven after rechallenge, depending on their location in the 
respiratory tract54. Therefore, it is possible that the actual peak of NP155-specific CD8+  T cells is between four 
and ten days after H3N2 challenge. During the retraction phase, frequencies of NP155-specific CD8+  T cells 
remained highest in H1N1v-experienced mice that had been immunized with tetNA or tetNA +  M2e-VLP. 
These mice also had the highest frequencies of NP155-specific CD127+  T cells. CD127, the receptor for inter-
leukin 7, is considered a marker for memory T cells that is expressed already early after infection48. Moreover, all 
NP155-specific CD8+  T cells that expressed CD127 were negative for the lymph node-homing marker CD62L, 
which classifies them as effector memory T cells. TetNA or tetNA +  M2e-VLP mice displayed higher morbidity 
and had higher viral load after secondary heterologous infection with H3N2 virus compared to mice vaccinated 
with control vaccines or M2e-VLP only. The higher viral load after heterologous infection in tetNA and tetNA +  
M2e-VLP mice may have contributed to higher T cell responses, as more viral antigen was available for presenta-
tion and therefore for boosting the pre-existing CD8+  T cell response induced by prior infection with H1N1v. 
On the other hand we can’t exclude an immunomodulatory effect due to NA-specific immunity, which may result 
in more efficient boosting of pre-existing T cell responses.

Irrespective of prior encounter with virus, HA-immune mice (triHA, triHA +  tetNA and triHA +  tetNA +  
M2e-VLP) showed very low frequencies of NP-specific CD8+  T cells in circulation compared to those observed 
in mice that had not been exposed before to H1N1v virus. This illustrates that blunting virus-induced T cell 
responses during homologous virus challenge by providing strong HA-specific immunity results in failure to 
prime cross-reactive T cell responses. Caution should be taken however as T cell immunity against influenza is 
particularly strong in mice, compared to the human situation. Still, in the absence of neutralizing antibodies, T 
cells in human correlate with protection against disease caused by influenza A viruses2,3.

Our results highlight the advantages of infection-permissive vaccination as it allows induction of heterosub-
typic immunity upon virus exposure. Interfering with virus replication by virus-neutralizing antibodies induced 
with conventional vaccines clearly is advantageous for specific at risk target groups like pregnant women, immu-
nocompromised people and the elderly. Prioritizing influenza vaccination in young children will most probably 
protect them for one influenza season, and continue to do so each time the flu vaccine is re-administered to 
keep track with viral antigenic drift. However, such practice may also hamper building up of cross-reactive T 
cell responses, each time a child is exposed to influenza virus11. On the other hand, one should also bear in mind 
that in practice conventional vaccines may fail to induce virus-neutralizing antibodies to levels that completely 
neutralize virus in the respiratory tract, and therefore are to some extent infection-permissive. In addition, it 
would be worthwhile to investigate to which extent a mismatched vaccine, as was the case for the H3N2 compo-
nent during the 2014–2015 season, is associated with the induction of cross-protective T cells in influenza virus 
infected vaccinees.
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Methods
Influenza challenge viruses and mice.  The A/Belgium/2009 pandemic H1N1 virus is derived from a clin-
ical isolate kindly provided by Dr Isabelle Thomas (Scientific Institute of Public Health, Brussels, Belgium). The 
influenza A/X47 H3N2 virus is a reassortant laboratory strain (A/Victoria/3/75 (H3N2) ×  A/Puerto Rico/8/34 
(H1N1)). Viruses were adapted to mice by serial passages and produced in Madin Darby Canine Kidney (MDCK) 
cells in serum-free medium in the presence of TPCK (L-1-tosylamide-2-phenylethyl cholormethyl ketone)-
treated trypsin (Sigma-Aldrich). All infection experiments were performed in a biosafety level 2+-contained lab-
oratory. The sequence of mouse-adapted A/Belgium/2009 pandemic virus has been determined and is available 
at http://www.ncbi.nlm.nih.gov/nuccore/?term= txid1502382.

Female BALB/c mice aged 6–8 weeks were obtained from Charles River and housed under specified 
pathogen-free conditions with food and water ad libitum. Mice were challenged intranasally with 50 μl virus 
preparation diluted in PBS under mild isoflurane anesthesia. Body weight loss was measured as a read-out for 
morbidity. Mice were killed and considered dead in the survival analysis when a decrease of > 30% in body weight 
was observed. All experiments were approved by and performed according to the guidelines of the animal ethical 
committee of Ghent University. The methods used were carried out in accordance with the approved guidelines.

Vaccine antigens and immunization.  Trimeric soluble hemagglutinin triHA and tetrameric soluble NA 
(tetNA) were produced with an N-terminal CD5-derived secretion signal and a Strep tag for purification pur-
poses (Fig. 1a). The trimeric conformation of HA was stabilized by C-terminal fusion to the trimeric variant of 
GCN4 leucine zipper60. The tetrameric conformation of NA was stabilized by N-terminal fusion to the tetrabra-
chion tetramerization coiled coil61. The HA and NA expression constructs were ordered as synthetic genes from 
Genescript and cloned into the pEF mammalian expression vector. HEK293T cells were cultured in Dulbecco’s 
Modified Eagle’s Medium supplemented with 5% of fetal calf serum, non-essential amino acids, glutamate and 
antibiotics and were transfected with the HA and NA expression vectors using calcium phosphate Culture super-
natant was collected 96h after transfection and cleared by centrifugation and filtration (0.22 μm Steritop filter, 
Millipore). Recombinant soluble triHA and tetNA was trapped on a 5 ml StrepTrap HP column (GE Healthcare 
Life Sciences) and eluted with 2.5 mM desthiobiotin (Sigma-Aldrich) in PBS using an AKTApurifier purification 
system (GE Healthcare Life Sciences). Affinity purification was followed by a polishing step with size exclusion 
chromatography (65 cm Superdex 200 for triHA and 30 cm Superdex 200 column for tetNA, GE Healthcare Life 
Sciences). NA activity was determined by liberation of 4-methylumbelliferone from 2′-(4-methylumbelliferyl)-
α -D-N-acetylneuraminic acid (1 mM) by tetNA in 200 mM NaAc (pH 6.5), 2 mM CaCl2 and 1% butanol at 37 °C. 
Release of 4-methylumbelliferone was measured every 2 min for 1 h. One neuraminidase unit is defined as the 
amount of neuraminidase that releases 1 nmol of 4-methylumbelliferone per minute.

Virus like particles (VLP) were derived from the Hepatitis B core protein and have been described elsewhere43. 
Briefly, control VLP (previously referred to as VLP-1632) were derived from the gene encoding Hepatitis B core 
protein amino acids 1–163 followed by a cysteine residue. M2e-VLP (previously referred to as VLP-1965) are 
comparable to control VLP but contain three tandem copies of M2e fused N-terminally to Hepatitis B core 
(1–163), with the N-terminal M2e retaining the initiator methionine. Cysteine residues at position 17 and 19 
in M2e are mutated to serine residues in the first two M2e copies to promote M2e-VLP formation upon rupture 
of E. coli cells. Control VLP and M2e-VLP were produced in and purified from BLR (Novagen) E. coli. Bacteria 
were transformed with either the control VLP or M2e-VLP and a single colony was picked, expanded overnight, 
and used to inoculate a 500-ml culture in Terrific Broth media (Invitrogen) and 50 μg/ml of ampicillin. Overnight 
cultures were harvested by centrifugation; cell paste was diluted to 10% solids in Tris-EDTA buffer (50 mM 
Tris-HCl, 10 mM EDTA, pH 8.0) and passed through a microfluidizer (Microfluidics, model 110Y) at 18,000 psi 
to disrupt cells. The lysate was clarified by centrifugation at 27,000×  g for 60 min at 4°. Target protein was precip-
itated with 30% ammonium sulfate after continuous stirring for 60–90 min at 4 °C, collected by centrifugation at 
10,000×  g for 60 min at 4°, and resuspended in a minimal volume of Tris-EDTA buffer (50 mM Tris-HCl, 10 mM 
EDTA, pH 8.0). Suspension was dialyzed against the same buffer and clarified by centrifugation at 27,000×  g for 
30 min at 4°. Recombinant particles were purified from the cleared solution by gel filtration chromatography on 
a Sepharose CL-4B column, 2.6 ×  95 cm (GE Healthcare Life Sciences), followed by flow-through purification on 
ceramic hydroxyapatite Type II resin with 20 μm particles size (BioRad Laboratories) in the presence of 20 mM 
sodium phosphate. Purified VLPs were dialyzed against 20 mM sodium phosphate, pH 6.8, followed by sterile 
filtration. The protein concentration was determined using a standard bicinchoninic acid assay (Pierce Thermo 
Fisher Scientific). Protein purity and integrity were visualized by NuPAGE 4–12% Bis-Tris 1.0 mm Gels in MES 
SDS Running buffer at 200 V constant voltage and stained with SimplyBlue SafeStain (all from Novex by Life 
Technologies). Endotoxin levels were tested by Endosafe –PTS cartridges (Charles River Laboratories).

Mice were vaccinated twice with 10 μg control VLP or M2e-VLP alone or in combination with one μg of 
triHA or tetNA as described in the text. Vaccine antigens were formulated in Sigma Adjuvant System (SAS, 
Sigma-Aldrich) according to the manufacturer’s instructions and administered subcutaneously. Mice were vac-
cinated twice with a three week interval and mock challenged or challenged with 0.1 LD50 of H1N1v three weeks 
after the boost injection. Seven weeks after the boost immunization mice were challenged with two LD50 of X47 
virus. were three week intervals between primer and booster vaccinations, and between booster vaccination and 
homologous virus challenge (Figs 3 and 4).

N-glycosylation analysis.  N-glycosylation analysis was performed as described before38. Briefly, 2.5 μg 
tetNA, tetHA or a combination of both proteins was diluted to a concentration of 0.07 μg/μL in PBS (4 °C, 30 min) 
or in denaturing buffer (360 mM Tris-HCl pH 8.6, 8 M Urea, 3.2 mM EDTA, 55 °C, 30 min) before N-glycans were 
released using the on-membrane deglycosylation method and labeled with 8-aminopyrene-1,3,6-trisulphonic 

http://www.ncbi.nlm.nih.gov/nuccore/?term=txid1502382
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acid (Molecular Probes, Eugene, OR, USA)38. N-glycan samples and a reference dextran ladder (Sigma-Aldrich) 
were analyzed with a multicapillary electrophoresis-based ABI3130 sequencer.

Serology.  Blood was collected from the lateral tail vein and serum was prepared before vaccination, two 
weeks after primer and booster vaccination, and one week before challenge with X47 virus. Seroconversion was 
tested in ELISA. Hereto antigen-specific total IgG titers were determined using 96-well Maxisorp immune-plates 
(Nunc) coated over night with antigen: M2e peptide (SLLTEVETPIRNEWGCRCNGSSD, 2 μg/ml in carbonate 
buffer, 50 μl per well, 37 °C), triHA (1 μg/ml in PBS, 50 μl per well, 4 °C) or tetNA (1 μg/ml in PBS, 50 μl per 
well, 4 °C). After coating, plates were washed with wash buffer (PBS +  0, 1% Tween20) and blocked with 1% 
bovine serum albumin (Sigma-Aldrich) for 1 h at room temperature. For triHA and M2e ELISAs, 1/3 serial dilu-
tions of mouse serum were incubated on coated plates for 1 h at room temperature, starting with 1/100 dilution. 
For tetNA ELISAs, a 1/100 dilution of each serum sample was used instead of a serial dilution series to check 
seroconversion. Sheep-derived anti-mouse serum conjugated with horseradish peroxidase (GE Healthcare) and 
tetramethylbenzidine substrate (Sigma-Aldrich) were used to detect antigen-reactive antibodies. Antibody titers 
against M2e and triHA are defined as the reciprocal of the highest dilution with an OD450 that is at least two 
times the OD450 of a pool of pre-immune serum samples.

Pooled serum samples were also evaluated for the presence of hemagglutination inhibition (HAI) activity, 
according to the WHO guidelines (WHO manual on animal influenza diagnosis and surveillance, 2002, Geneva; 
(WHO/CDS/CSR/NCS/2002.5) p28-39, http://whqlibdoc.who.int/hq/2002/WHO_CDS_CSR_NCS_2002.5.pdf). 
Briefly, sera were heat-inactivated at 56 °C for 30 min. Four volumes of receptor destroying enzyme (cholera fil-
trate from Vibrio cholerae culture fluid, Sigma-Aldrich) were added to each volume of mouse serum to remove 
aspecific agglutinins. To prevent aspecific binding to RBCs, sera were preabsorbed with 0.1 volumes of a 50% RBC 
suspension in PBS. Treated serum samples were mixed with 4 HAU of H1N1v in a final volume of 50 μl. After 
virus-antibody incubation for 1 h at room temperature, equal volumes of a 0.5% RBC suspension were added and 
HAI titers were recorded 30 min later. Endpoint titers were defined as the dilutions at which hemagglutination 
was inhibited completely.

RDE-treated serum pools were also tested in a microneutralization assay. Hereto two-fold serum dilutions 
were incubated with ten 50% tissue culture infective doses of H1N1v at 37 °C for 45 min. After incubation, mon-
olayers of MDCK cells seeded in 96 well plates were washed with PBS and inoculated with the virus-serum mix-
tures. One hour post inoculation, serum-free growth medium supplemented with 2 μg/ml TPCK-treated trypsin 
was added and cells were further incubated at 37 °C for 72 h. Virus growth was determined by hemagglutination 
activity in the culture supernatants.

NA activity-inhibiting (NAI) antibody titers of pooled sera were quantitated by desialylation of immobilized 
fetuin as described62. Briefly, 96 well MaxiSorp plates (Nunc) were coated over night at 4 °C with 100 μl of fetuin 
in PBS (5 μg/ml). Serum samples were serially diluted in PBS enriched with 0.901 mM Ca+ +  and 0.493 mM 
Mg and incubated with 30 ng tetNA for 30 minutes at 37 °C. Serum-tetNA mixtures were then added to the 
fetuin-coated 96-well plates and incubated for 1 h at 37 °C. After washing, desialylated fetuin was detected by 
adding horseradish peroxidase-labeled peanut agglutinin (2.5 μg/ml, Sigma) for 1 h at room temperature. After 
washing, tetramethylbenzidine substrate (Sigma-Aldrich) was added. After five minutes, the reaction was stopped 
by adding 1 M sulfuric acid and optical densities were measured at 450 nm with a reference at 650 nm. NAI titers 
are defined as the reciprocal of the highest dilution with an OD450 that is at least half the OD450 of a pool of 
pre-immune serum samples.

Lung virus titers.  Three mice of each group were euthanized at the indicated day post infection (dpi). Lungs 
were removed aseptically and 10% (w/v) lung homogenates were made in PBS. Lung homogenates were cleared 
by centrifugation (400 g, 10 min, 4 °C) and stored at − 80 °C. Infectious virus titers were determined on MDCK 
cells in serum-free TPCK-treated trypsin-containing medium. Chicken RBC agglutination activity in the cell 
supernatant at 7 dpi was used to calculate endpoint virus titer according to the method of Reed and Muench63. 
Lung virus loads are expressed as tissue culture infectious dose 50 (TCID50) per gram of lung extract.

Cytokine/chemokine measurements.  Twenty five μl of undiluted cleared lung homogenates prepared for 
lung virus titration were used for measurement of chemokines and cytokines using Luminex®-based Milliplex 
MAP Mouse Cytokine/Chemokine multiplex assay (EMD Millipore) according to the instructions of the manu-
facturer using a Bio-Plex® 200 system (Bio-Rad).

T cell analysis
Intracellular staining of IFNγ.  Spleens of six mice/group were removed aseptically at 10 dpi and sple-
nocytes were prepared. RBCs were lysed with NH4Cl solution and 2× 106 splenocytes were restimulated for 
6h with MHCI-binding H2d-restricted NP-derived TYQRTRALV peptide (5 μg/ml, NP155) in 100 μl culture 
medium in the presence of brefeldin A (Golgiplug, BD) for intracellular staining of IFNγ . T cells were immu-
nophenotyped after blocking of Fc receptors with anti-CD16/CD32 (Fc Block, BD) by anti-CD3ε -APC-Cy7 (BD) 
and anti-CD8α -FITC (BD). After staining of cell surface markers, cells were fixed and permeabilized with the 
Cytofix/Cytoperm kit (BD) according to the manufacturer’s protocol. Intracellular IFNγ  was stained with anti-
IFNγ -AF647 (BD). NP-specific T cells were identified by adding PE-conjugated pentamers associated with the 
NP155-peptide (15 μl of 0.05 mg/ml solution/106 cells, ProImmune) to the culture medium during restimulation. 
Background signals were reduced by creation of a dump channel for dead cells (Live/Dead Fixable Aqua dead cell 
stain kit, Invitrogen) and for MHCII-eFluor450 (eBiosciences) or CD19-PERCP-Cy5.5 (BD). Cells were analyzed 

http://whqlibdoc.who.int/hq/2002/WHO_CDS_CSR_NCS_2002.5.pdf
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using a LSRII flow cytometer (BD) with FACSDiva software (BD). Analysis of flow cytometric data was with 
FACSDiva (BD) or FlowJo (Treestar) software.

In vivo killing assay.  In vivo clearance of NP155-peptide pulsed target cells was used to estimate kill-
ing capacity of NP-specific T cells. Briefly, splenocytes of naïve BALB/c mice were pulsed for 1h at 37 °C with 
NP155-peptide or with an irrelevant peptide F85 (KYKNAVTEL), derived from the F protein of respiratory syn-
cytial virus. Peptides were added to the culture medium (RPMI1640 +  10% fetal calf serum) at a concentration of 
10 μg/ml. After washing with PBS, NP155-pulsed cells or F85-pulsed cells were stained with either 10 μM or 1 μM 
carboxyfluorescein diacetate succinimidyl ester (CFSE, Invitrogen) for 15 min at 37 °C in the dark. After wash-
ing and resuspending in PBS, NP155- and F85-pulsed cells were mixed at a 1:1 ratio and 107 cells were injected 
intravenously into receiver mice. After the indicated time (6 h or 19 h), splenocytes were prepared from receiver 
mice and analysed on a LSRII flow cytometer (BD). The ratio of the number of NP155-pulsed splenocytes over 
the number of F85-pulsed splenocytes was calculated and used as a measure for the in vivo NP155-specific killing 
capacity.

NP-specific T cells in circulation.  NP155-peptide specific T cells were quantitated in pooled blood sam-
ples (n =  3/pool) collected from the lateral tail vein at the indicated time points. Hereto 100 μl blood was col-
lected in 30 μl 100 mM EDTA. RBCs were lysed in 500 μl RBC NH4Cl buffer and resulting cells were washed in 
PBS. Fc receptors were blocked (Fc Block, BD) and live NP155-specific CD8+  T cells were quantified by stain-
ing with Live/Dead (Fixable Aqua dead cell stain kit, Invitrogen), surface markers (CD3ε -APC, CD8a-PERCP, 
B220-AF700) and NP155-peptide associated PE-conjugated pentamers (ProImmune) in PBS +  1% BSA followed 
by analysis on a FACSverse flow cytometer (BD). A dump channel was made with B220-AF700 and Live/Dead 
stain to reduce back ground staining.

Inducible bronchus-associated lymphoid tissue analysis.  Lungs were isolated, homogenized in PBS 
and forced through a 40 μm cell strainer to obtain single cell suspensions. After blocking of Fc receptors (Fc 
Block, BD), cells were stained for viability (Live/Dead Fixable Aqua dead cell stain kit, Invitrogen) and surface 
markers (IgM PERCP-Cy5.5, IgD-PE, Fas-PE-Cy7, B220-AF700 and GL7-FITC). The number of live germinal 
center B cells (IgM-IgD-Fas +  GL7+) was used to estimate presence of iBALT in lungs using a BD LSRII flow 
cytometer. For histology, lungs were inflated with a 1:1 mixture of PBS and Neg-50 cryo-medium (Prosan). Lungs 
were snap-frozen in liquid nitrogen after excision and stored at − 80 °C. Cryo-sections of 5 μm were stained with 
hematoxylin/eosin.

Statistics.  Statistical analyses were performed with Graphpad Prism version 6.00 for Windows (GraphPad 
Software, San Diego California; www.graphpad.com) and with the R language and environment for statistical 
computing, R Development Core Team, 2009 (R Foundation for Statistical Computing, Vienna, Austria (ISBN 
3-900051-07-0, URL http://www.R-project.org). The statistical tests used for computing significance levels as well 
as the significance levels are mentioned in the figure legends.
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