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Abstract

Staphylococcus aureus phage ISP was lyophilized, using an Amsco-Finn Aqua GT4 freeze dryer, in the presence of six
different stabilizers at different concentrations. Stability of the lyophilized phage at 4uC was monitored up to 37 months and
compared to stability in Luria Bertani broth and physiological saline at 4uC. Sucrose and trehalose were shown to be the
best stabilizing additives, causing a decrease of only 1 log immediately after the lyophilization procedure and showing high
stability during a 27 month storage period.

Citation: Merabishvili M, Vervaet C, Pirnay J-P, De Vos D, Verbeken G, et al. (2013) Stability of Staphylococcus aureus Phage ISP after Freeze-Drying
(Lyophilization). PLoS ONE 8(7): e68797. doi:10.1371/journal.pone.0068797

Editor: Baochuan Lin, Naval Research Laboratory, United States of America

Received November 9, 2012; Accepted June 3, 2013; Published July 2, 2013

Copyright: � 2013 Merabishvili et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MM and JPP were financially supported by grant MED 12 of the Royal Higher Institute for Defense. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: maia.merabishvili@mil.be

Introduction

Phage therapy has attracted intense renewed scientific and

public interest, mostly as a consequence of the increasing problem

of antibiotic-resistant strains emerging worldwide. While the

number of phage research articles and well-defined trials is

increasing [1,2,3,4] there is still a lack of information about proper

pharmaceutical formulations and preservation conditions guaran-

teeing effective outcome of phage therapy.

In general, phage preparations applied with therapeutic aims

are produced in liquid formulation, and the storage period of such

preparations, at 4uC, is considered as limited to one year.

Recently, different novel approaches have been described, such

as encapsulating phages into different biodegradable materials

[5,6,7] and aerosols [8,9]. These approaches mostly involve the

use of lyophilized bacteriophages. The methods of lyophilization

described in these studies vary significantly with regard to both

stabilizers and freeze-drying regimes. The most detailed studies on

lyophilization of bacteriophages date back to the 709s of the last

century [10,11,12,13,14] (Table 1). In this study, we optimized the

lyophilization process of the therapeutically important bacterio-

phage ISP, active against strains of Staphylococcus aureus including

MRSA, and explored in more detail the properties of different

modern pharmaceutically acceptable stabilizers.

Materials and Methods

Bacteria and Bacteriophages
Phage ISP is maintained in the phage collection of the LBR

(University of Ghent, Belgium) since 2002 and was received from

the Eliava IBMV (Tbilisi, Georgia). For the propagation of the ISP

phage, we used Staphylococcus aureus strain ‘13 S44 S9’, isolated from

a burn wound at the Brussels Burn Wound Centre (Queen Astrid

Military Hospital, Brussels, Belgium) in 2006.

Phage Propagation and Enumeration
The bacterial strain and the phage were cultured in Select

Alternative Protein Source Luria Bertani (APS LB) (Becton

Dickinson, Erembodegem, Belgium) media. The agar overlay

method with modifications as described earlier [15] was used to

obtain high titer (11 log pfu/ml) phage lysates. Briefly, 1 ml of

phage suspension containing 4 log pfu of ISP was mixed with

3.0 ml of molten (45uC) APS LB top agar (0.7%) and 0.1 ml of a

host bacterial suspension (end concentration of 8 log cfu/ml). This

mixture was plated onto Petri dishes, filled with a bottom layer of

1.5% APS LB agar and incubated at 37uC for 16–18 h. The top

agar layer was scraped off and centrifuged for 20 min at 6 000 g.

The supernatant was filtered through a 0.45 mm membrane filter

(Sartorius Stedim Biotech, Göttingen, Germany).

The obtained phage lysate was ultracentrifuged at 25000 g for

1 h at 4uC and the pellet was resuspended in the same volume of a

0.9% NaCl solution. Phage particles were enumerated by the agar

overlay method [15]. Briefly, decinormal serial dilutions (from

log(0) to log(210)) of the bacteriophage suspension were prepared.

One ml of each dilution was mixed with 3.0 ml of molten (45uC)

0.7% LB top agar and 0.1 ml of a host bacterial suspension (end

concentration of 8 log cfu/ml) and plated in triplicate onto 90 mm

diameter Petri dishes (Plastiques Gosselin, Menen, Belgium), filled

with a bottom layer of 1.5% LB agar and incubated for 18–24 h at

37uC. To estimate the original bacteriophage concentration, plates

with 100–1000 plaques were counted. Each titration was
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performed three times. The mean was then calculated for the

triplicate plates and for each titration.

Lyophilization
Bacteriophage solutions were prepared using the following six

stabilizers with two different concentrations: 0.1 M and 0.5 M for

sucrose, trehalose, mannitol and glycine (BASF, Ludwigshafen,

Germany) and 1% and 5% for PVP (polyvinylpyrrolidone) (BASF,

Ludwigshafen, Germany) and PEG 6000 (polyethylene glycol)

(Fagron, Waregem, Belgium).

Phage stock solution (11 log pfu/ml) was diluted in stabilizers to

a final titer of 8 log pfu/ml for the first series of tests and 9 log

pfu/ml for the second series. Ten-ml freeze-drying vials, contain-

ing one ml of phage solutions, were lyophilized in an Amsco-Finn

Aqua GT4 freeze dryer (Amsco, Hürth, Germany), using the

following lyophilization cycle: prior to loading the vials into the

freeze dryer the shelves were pre-cooled to 25uC. After loading,

the vials were cooled to 230uC at a cooling rate of 1uC/min. A

temperature of 230uC was maintained during 80 min to ensure

complete solidification of the material. Primary drying was

performed at 230uC and 300 mbar during 1000 min. For

secondary drying the temperature was gradually increased from

230 to 25uC over a period of 550 min, followed by an isothermal

period at 25uC during 360 min. The pressure during secondary

drying was maintained at 300 mbar. After freeze-drying, the vials

were sealed at atmospheric pressure using Omniflex stoppers

(Helvoet Pharma, Alken, Belgium). Twenty replicates were made

for each concentration of each stabilizer.

Lyophilized phages were stored at 4uC and checked for stability

after different periods.

Phage Stability Tests
Lyophilized phages, phage particles suspended in LB broth

(10 log pfu/ml) and in non-buffered 0.9% NaCl solution (9 log

pfu/ml), stored at 4uC were monitored for the maintenance of

stability during a maximum of a 37 month period. In case of

lyophilized phages, the freeze-dried cakes were reconstituted by

adding 1 ml of sterile 0.9% NaCl solution and serial dilutions were

performed. Phage enumeration tests were performed in triplicate

by agar overlay method [15], as described above.

Comparison of Phage Genomes
DNA homology of bacteriophages ISP (GenBank: FR852584.1)

and Sb-1 (GenBank: HQ163896.1) was compared by EMBOSS

stretcher [16].

Transmission Electron Microscopy
Resuspended lyophilized samples of ISP were analyzed by

transmission electron microscopy as described in Merabishvili et al.

[15]. The samples were analyzed using a Technai Spirit

transmission electron microscope (FEI, Eindhoven, The Nether-

lands) operating at 120 kV. Micrographs were recorded using a

bottom-mounted digital camera (Eagle, 464K, FEI).

Results and Discussion

ISP is a virulent myovirus, representative of morphotype A1

[15] widely used since decades for therapeutic purposes in

Georgia. ISP represents the main component of the Intravenous

Staphylococcal Phage preparation produced in the 70–80’s by the

Eliava IMBV. Lately, ISP was included in a quality-controlled

prepared phage cocktail BFC-1, used for a pilot safety study in

Belgium [15], and its genome sequence has been determined [17].

According to different studies, ISP is active against 86% [17] –

91% [15] of the clinical isolates of S. aureus, including MRSA. ISP

as a broad-host-range phage is considered as an appropriate

candidate for production of monoclonal phage preparations.

Genome sequence analysis revealed that Myovirus ISP is closely

related to the ‘Twort-like viruses’ [17]. The genome of ISP is

99.5% and 90.6% identical to the genome of phages G1 [18] and

Sb-1 [19], respectively, as determined by EMBOSS stretcher

[16,17]. The genome sequence analysis of ISP confirmed the lytic

character of ISP and the absence of toxin genes [17].

Because, based on these different characteristics, ISP is a phage

with high therapeutic potential, it seemed to be an appropriate

candidate to study the lyophilization optimization process,

applicable for long storage of bacteriophages and for their further

incorporation in different pharmaceutical formulations.

In general lyophilization process generates a variety of freezing

and drying stresses, such as solute concentration, formation of ice

crystals, pH changes, etc. All of these stresses can cause

destabilization of the processed biological material or biomolecules

to various degrees [20].

Therefore special stabilizers must be added to protect these

fragile systems from freezing stress (cryoprotectant) or drying stress

(lyoprotectant) and also to increase its stability upon storage [21].

Six stabilizers representing various groups of common stabilizers

were chosen for the first set of tests performed on ISP phage. Each

stabilizer was applied in two different concentrations. Figure 1

presents the stability of the ISP lyophilisates, for each stabilizer.

PVP, representative of polymer excipients, inactivated the phage

completely at both concentrations (1 and 5%), even prior to

lyophilization. Stabilization of proteins by polymers is generally

attributed to preferential exclusion, surface activity, steric

hindrance of protein – protein interactions, and/or increased

solution viscosity limiting protein structural movement [20].

However in our study PVP proved to be absolutely unacceptable

for lyophilization of ISP phage.

Another stabilizer without any effect appeared to be glycine.

Complete phage inactivation immediately after lyophilization was

observed with both concentrations of 0.1 and 0.5 M Glycine is

important in the lyophilization process mostly as a bulking agent

and tonicity adjuster, but at the same time glycine alone has a

minimal protective effect because it tends to crystallize during

freezing. Glycine as a crystalline bulking agent is more suitable for

lyophilization of small-chemical drugs and some peptides [20].

The sugar alcohol mannitol presents also one of the common

excipients but mannitol in comparison with other sugars can be

easily crystallized and its crystallization is responsible for the

destabilization of some proteins during lyophilization. In general

mannitol appears most effective in combination with other

stabilizers [20]. Freezing rate also influences the extent of

crystallization of mannitol which may potentially affect protein

stability and reconstitution.

Also in our case, no phage activity was detected after

lyophilization in mannitol at a concentration of 0.1 M and a

4 log decrease in phage titer was observed at 0.5 M, caused by the

lyophilization procedure itself. This was followed by stable

maintenance of the same titer throughout 27 months and a

2 log decrease after a 37 month storage period.

A polyhydric alcohol such as PEG is among the most commonly

used and effective cryoprotectants. PEG can be affiliated to two

different groups of excipients, i.e., polymers and non-aqueous

solvents [21]. Immediately after lyophilisation, a 1.8 and 5.0 log

decrease of the ISP titer was detected for 1 and 5% PEG 6000

preparations, respectively. Activity of ISP during storage dimin-

ished gradually, resulting in a final 3 log (for 1% PEG 6000) and a

ISP Phage Lyophilization
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1.7 log pfu/ml (for 5% PEG 6000), after the 37 month storage

period.

Nowadays the most popular cryoprotectants are sugars. The

mechanism of their cryoprotection implies vitrification during

freezing and formation of glass matrix within which phages (in our

case) are prevented from aggregation which protects them against

mechanical stress of ice crystals [21]. It is generally accepted that

among all sugars trehalose is the most preferable cryoprotectant

for biomolecules due to its minimal hygroscopicity, the absence of

internal hydrogen bounds which allows more flexible formation of

hydrogen bonds with proteins during freeze-drying, a very low

chemical reactivity and finally, a higher glass transition temper-

ature [21]. In our study, trehalose, along with sucrose, also proved

to be the the most effective stabilizer, in particular at a

concentration of 0.5 M: approximately only one log decrease

was observed as an immediate loss and further on one log decrease

was observed at this concentration for both stabilizers after a 37

month storage period.

Transmission electron microscopy of the lyophilized samples

showed that in the samples with decreased phage activity number

of intact phage particles was drastically reduced due to their

complete lysis or the destruction, as depicted by loss of tails and by

uranyl-acetate-penetrated heads. The phage particles were asso-

ciated mostly with bacteriophage debris, forming agglomerates,

often by tail-tail interactions. The samples differed from each other

mostly by the number of intact phage particles, without other

significant specific changes. Therefore Figure 2 presenting ISP

lyophilized in mannitol 0.5 M can be considered as an example of

the common picture seen in all lyophilized samples.

Based on the results of the first set of experiments, as determined

after a 10 month period, the best two out of the six tested

stabilizers, i.e. sucrose and trehalose, were chosen for further

detailed study. The level of stabilization afforded by sugars

generally depends on their concentration [21]. The results of a

number of studies [7,10,11,12] show that various concentrations

are optimal for different phages. Therefore, four different

concentrations of each of these stabilizers, i.e. 0.3, 0.5, 0.8 and

1.0 M were applied (Figure 3). The starting titer of ISP in the

second set of experiments was 9 log pfu/ml, instead of 8log pfu/ml

as in the first set of experiments. The immediate decrease in titer

after lyophilization varied between 0.6 and 1.4 logs and the best

results were obtained in case of 0.8 and 1.0 M sucrose with loss of

only 0.4–0.5 logs (Figure 3). During the 27 month storage period,

the activity of ISP stayed stable with variations within one log in all

preparations of sucrose and trehalose, except for 0.3 M of

trehalose.

As a control, phage stability was also monitored in LB broth and

in physiological saline (0.9% NaCl) for the same period at 4uC
(Figure 4). Phages stayed stable in LB broth for one year and a one

log decrease was observed only after the 21 month period, while in

physiological saline phage activity decreased gradually by each log

after 12, 21 and 37 months resulting in a final 6.7 log pfu/ml.

Table 1 summarizes phage lyophilization studies, dating back to

at least 1962, and carried out mostly for well-known E. coli phages.

Duration of storage periods that have been checked ranges from 7

days to 20 years. Comparison of the data is difficult, because very

different stabilizers at different concentrations, different initial

phage titers and different storage temperatures have been used,

and/or because parameters, such as storage temperature, have not

been documented and/or titer changes have been expressed in

different manners.

Thus far, phages have been lyophilized most frequently in

normal culture media with addition of gelatin, peptone and some

sugars at different concentrations [10,11,12,13]. It is also

important to notice that most of the stabilizers used in the studies

at the end of the last century with the aim to optimize phage

storage conditions, nowadays are not pharmaceutically acceptable

any more. In our study, all stabilizers were chosen taking into

Figure 1. Stability of ISP (8 log pfu/ml) in six different stabilizers after freeze-drying procedure and storage at 46C. The results are the
mean values of three titrations. Standard deviations are indicated.
doi:10.1371/journal.pone.0068797.g001
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account this particular criterion. In a number of studies

[10,11,12], sugars, in particular sucrose, proved to be effective

cryoprotectants for phage lyophilization and one of the best results

were obtained in case of 14 phages active against Corynebacterium

spp., lyophilized in the presence of 10% sucrose [10].

In most of the studies (Table 1), the storage period after

lyophilization either is not implied or is limited to several months.

However the longest post-lyophilization storage period thus far

studied lasted 20 years [22], indicating that the phage particles

remained viable, but without specifying the exact titers before and

after lyophilization/storage. In three other studies [10,23,24] the

storage period also comprises several years (from 2 to 18) during

which lyophilized phages showed high stability with a maximum

2 log decrease. In two of these studies [23,24], skim milk was used

as a stabilizer and the third study [10] used more complex media,

consisting of 20% peptone +10% sucrose +2% sodium glutamate.

Four studies on lyophilization and storage stability involving a

relatively large number of phages (from 14 to 25), clearly indicate

that phage survival rate also strongly varies from phage to phage

and does not necessarily depend on only processing conditions

[10,22,23,24]. The phages used in these studies belong to different

morphological families and are active against different species of

bacteria. Based on all the studies presented in Table 1, it can be

assumed that there is no similarity of survival rate even between

very closely related phages lyophilized in the same conditions, for

e.g. such as T3 and T7 [11]. Therefore, lyophilization conditions

must be defined and adjusted for each phage individually which

makes pharmaceutical formulations of therapeutically important

phages more elaborative especially regarding phage cocktails.

Interesting novel approaches have been presented in several

recent studies (Table 1). Anany et al. [25] investigated the

effectiveness of phages immobilized on cellulose membranes with

Figure 2. Transmission electron micrograph of lyophilized ISP sample in 0.5 M mannitol.
doi:10.1371/journal.pone.0068797.g002
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Figure 3. Stability of ISP (9 log pfu/ml) in two different stabilizers after freeze-drying procedure and storage at 46C. The results are
the mean values of three titrations. Standard deviations are indicated.
doi:10.1371/journal.pone.0068797.g003

Figure 4. Stability of ISP (10 log pfu/ml) in LB broth and 0.9% NaCl (9 log pfu/ml) at 46C. The results are the mean values of three
titrations. Standard deviations are indicated.
doi:10.1371/journal.pone.0068797.g004
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further application in meat preservation and Alfadhel et al. [26]

and Puapermpoonsiri et al. [6,7] evaluated the potency of

therapeutic phages, encapsulated in biodegradable microspheres,

for in vitro application of nasal inserts harboring certain doses of

the same phages. All authors implied application of lyophilized

phages in their novel formulations and therefore different

stabilizers/conditions were tested to define most favorable

conditions for maximal phage activity. However, in most of the

experiments shelf-life preservation either was not considered at all

or was limited to maximum several month period.

Conclusion
In conclusion, we found that sucrose and trehalose proved to be

quite effective stabilizers for lyophilization and long term

preservation of bacteriophage ISP. The most efficient concentra-

tions for these stabilizers in this study were 0.8 and 1.0 M with

maximal loss of 0.6 log10s after lyophilization procedure and

steady stability during a storage period of 27 months. Our findings

are also comparable with the results of most studies reviewed here

and presented in Table 1 according to which overall titer losses

usually range between 1 and 3 logs, i.e., between 90 and 99.9% of

the initial titer.
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