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Abstract 24 

Post-fire vegetation cover is a crucial parameter in rangeland management. This study aims to 25 

assess the post-fire vegetation recovery three years after the large fires on the Peloponnese 26 

peninsula in southern Greece. In this context, thirteen red-near infrared (R-NIR) Vegetation 27 
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Indices (VIs) were evaluated. Some of these indices, the so called Soil Adjusted VIs (SAVIs), 28 

attempt to minimize the influence of background variability, however, so far the impact of the 29 

variability in spectral response between different vegetation species on index performance has 30 

not yet been rigorously assessed. Using a combination of field and simulation techniques this 31 

study accounts for the impact of both background and vegetation variability on index 32 

performance. The field data included a spectral library (59 vegetation and 29 substrate 33 

signals) and 78 line transect plots. One Landsat Thematic Mapper (TM) scene of July 2010, 34 

three years after the fire event, was employed in the study. Results based on simulated 35 

mixtures of in situ measured reflectance showed that (i) SAVIs outperformed the Normalized 36 

Difference Vegetation Index (NDVI) in environments with a single vegetation type, (ii) the 37 

NDVI more accurately estimated vegetation cover in environments with heterogeneous 38 

vegetation layers and a single soil type and (iii) overall, when both vegetation and background 39 

variability is incorporated in the model, the NDVI was the most optimal index. Findings from 40 

the simulation experiment corroborated with the results from the Landsat application. The 41 

Landsat NDVI showed the highest correlation with the line transect field data of recovery 42 

(R
2
=0.68) and the rank in performance of the Landsat-based indices was similar to that of the 43 

simulation experiment in which both vegetation and substrate variability was introduced. 44 

Results depend on the initial variability present in the study area, however, some trends can be 45 

generalized. Firstly, results support the use of SAVIs in environments with a single vegetation 46 

type. Secondly, for applications in environments to which natural vegetation variability is 47 

inherent, such as the post-fire recovery landscape of this study, we, however, recommend the 48 

use of the NDVI because its strong normalizing capacity minimizes the impact of vegetation 49 

variability on fractional cover estimates. 50 

Keywords: forestry; vegetation; forest fire; Landsat; spectral 51 

1 Introduction 52 
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Wildfires have important biophysical and ecological consequences at multiple scale levels. At 53 

global scales, vegetation fires significantly contribute to the emission of trace gases in the 54 

atmosphere (Andreae and Crutzen 1997). As such they play an undeniable role in global 55 

climate cycles (Barbosa et al. 1999, Flannigan et al. 2000, Palacios-Orueta et al. 2005). At 56 

landscape levels, wildland fires partially or completely remove the vegetation layer and affect 57 

post-fire vegetation composition (Epting and Verbyla 2005, Lentile et al. 2005). Post-fire 58 

vegetation responses are highly dependent on vegetation type, soil, climate, scar patch size, 59 

fire severity, fire frequency etc. (Malanson and O'Leary 1985, Diaz-Delgado et al. 2002). 60 

These preconditions determine the potential regeneration pathways and the ecological 61 

functioning of plant communities with their inherent species composition and competition. In 62 

this respect, fire can be seen as a natural component in vegetation succession cycles 63 

(Capitaino and Carcaillet 2008, Roder et al. 2008a). For example Mediterranean-type 64 

shrublands are highly resilient to burning due to both obligate seeder and resprouter fire-65 

adapted strategies. At the same time, other ecosystems with few fire-adapted species may be 66 

vulnerable to fire pressure. For example, recovery in some forested ecosystems can be very 67 

slow with risks of environmental degradation when the fire-return period is short (Nepstad et 68 

al. 1999). While Mediterranean-type shrublands can present relatively high regeneration rates 69 

(Capitaino and Carcaillet 2008), complete recovery in forested ecosystems can take several 70 

decades (Nepstad et al. 1999). This also shows that the relation between fire impact and 71 

ecosystem responses depends on ecotype (White et al. 1996). Thus, in contrast with the 72 

concept of fire as integral part of autosuccession (Hanes 1971), biomass burning also 73 

potentially increases degradation processes. Moreover, although ash increases the nutrient 74 

availability, the burned surface becomes more sensitive to nutrient leaching and soil erosion 75 

due to modified hydro-geomorphological processes (Kutiel and Inbar 1993, Thomas et al. 76 

1999). These changes in soil hydrology and erodibility are closely connected to fire-induced 77 
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changes at micro-scale level, such as increased post-fire soil water repellency (Doerr et al. 78 

2006, Shakesby and Doerr 2006). The post-fire soil losses are dependent on topography, 79 

vegetation type, soil type, post-fire weather conditions and fire severity (Pausas et al. 2008). 80 

Vegetation fires thus have effects on a regional to global scale, which emphasizes the need for 81 

an improved knowledge on fire regimes and post-fire recovery trajectories (Chuvieco et al. 82 

2008). As a result, the assessment of post-fire vegetation regeneration is of crucial importance 83 

for the understanding of the environmental impacts of fire and for supporting sustainable post-84 

fire management (e.g. controlled grazing, Roder et al. 2008b). In comparison with labor-85 

intensive field work, the synoptic nature of remote sensing systems offers a time-and cost-86 

effective means to fulfill this duty (Lentile et al. 2006). 87 

In the post-fire environment it is crucial to distinguish between the direct fire impact, 88 

generally referred to as fire severity, and subsequent post-fire recovery (Lentile et al. 2006, 89 

Veraverbeke et al. 2010a). The Normalized Burn Ratio (NBR), a near infrared-short wave 90 

infrared (NIR-SWIR) band combination (Key and Benson 2005), has become the standard 91 

spectral index to assess fire severity (a.o. Key and Benson 2005, French et al. 2008, 92 

Veraverbeke et al. 2010b, 2011a). In contrast, the remote sensing of post-fire vegetation 93 

recovery has a long tradition in the use of the Normalized Difference Vegetation Index 94 

(NDVI) (a.o. Viedma et al. 1997, Diaz-Delgado et al. 2003, van Leeuwen 2008, Clemente et 95 

al. 2009, Lhermitte et al. 2010) because of the strongly established relationship between the 96 

index and above-ground biomass in a wide range of ecosystems (Carlson and Ripley 1997, 97 

Henry and Hope 1998, Cuevas-Gonzalez et al. 2009). The NDVI combines the reflectance in 98 

the R (red) and NIR (near infrared) spectral region and is the most widely used vegetation 99 

greenness measure (a.o. Reed et al. 1994, DeFries et al. 1995, Myeni et al. 1997, Heumann et 100 

al. 2007). Some studies used low spatial resolution time series to monitor recovery processes. 101 

Cuevas-Gonzalez et al. (2009), for example, monitored post-fire forest recovery in Siberia 102 
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using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived NDVI data, while 103 

van Leeuwen et al. (2010) conducted a similar study in three different study areas (Spain, 104 

Israel and USA). In these studies, limitations due to low spatial resolution are compensated by 105 

the advantage of image acquisition with high temporal frequency (Veraverbeke et al. 2011b). 106 

The assessment timing of post-fire effects studies is, however, crucial to distinguish between 107 

fire-induced changes and seasonal dynamics (Lhermitte et al. 2011, Veraverbeke et al. 2010a). 108 

At moderate resolution scale the Landsat-derived NDVI is the most widely used method to 109 

assess post-fire vegetation recovery (a.o. Viedma et al. 1997, Diaz-Delgado et al. 2003, 110 

McMichael et al. 2004, Malak and Pausas 2006, Clemente et al. 2009). 111 

The presence of char and ash in the post-fire environment is an ephemeral effect (Chuvieco et 112 

al. 2002, Pereira 2003). Once the char and ash have been removed due to weathering and 113 

erosion, the post-fire environment typically consists of a mixture of vegetation and substrate. 114 

In these mixed environments background and vegetation spectral properties result in mixed 115 

background-vegetation signals at the scale of moderate spatial resolution sensors. Numerous 116 

studies have denoted that the NDVI has higher values for a given amount of vegetation with a 117 

dark background than with a bright background (a.o. Huete 1998, Gao et al. 2000). Several 118 

modifications to the NDVI have been proposed in order to account for these background 119 

effects (Richardson and Wiegand 1977, Huete 1988, Baret and Guyot 1991, Qi et al. 1994, 120 

Rondeaux et al. 1996). The physical basis of these modifications relies on the fact that 121 

vegetation greenness isolines do not converge in the origin of the R-NIR bi-spectral space 122 

(Richardson and Wiegand 1997, Huete 1988). Soil-adjusted vegetation indices (SAVIs) were 123 

developed to account for the optical properties of the background in an attempt to align the 124 

index isolines with the isolines of the biophysical variables (e.g. fractional cover, leaf area 125 

index). Therefore SAVIs typically include an adjustment factor which is related to the 126 

direction of the soil line, i.e. the regression line of soil reflectance in the R-NIR space 127 
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(Richardson and Wiegand 1977, Huete 1988, Baret and Guyot 1991, Qi et al. 1994, Rondeaux 128 

et al. 1996). Although conceptually sound and backed with illustrative case studies, the 129 

theoretical improvements of the SAVIs do not consistently outperform the NDVI (Carreiras et 130 

al. 2006, Clemente et al. 2009). Several empirical studies indicated that the SAVIs did not 131 

result in more reliable estimates of vegetation cover compared to the NDVI (Leprieur et al. 132 

1996, Purevdorj et al. 1998, Schmidt and Karnieli 2001, Diaz and Blackburn 2003, Baugh and 133 

Groeneveld 2006). Purevdorj et al. (1998) assessed the relationship between several R-NIR 134 

VIs over a wide range of grass densities in Mongolia and Japan. The grasslands consisted out 135 

of a plethora of species. Although they acknowledged the capability of the SAVIs to reduce 136 

the influence of soil variation, they concluded that overall the NDVI was best index, 137 

outperforming the SAVIs. Carreiras et al. (2006) aimed to estimate tree canopy cover in 138 

heterogeneous Mediterranean shrubland. They assumed that the partition between the tree 139 

overstorey and shrub understorey was constant over the full density range and as such they 140 

could use the mixed overstorey-understorey signal to estimate oak tree coverage. Regression 141 

equations between VIs and estimates of tree coverage retrieved from aerial photographs were 142 

calculated. Here, the NDVI also obtained higher R
2
 values than the SAVIs. Clemente et al. 143 

(2009) and Vila and Barbosa (2010) represent two studies in a post-fire recovery environment. 144 

Clemente et al. (2009) contrasted the NDVI with the SAVIs for estimating post-fire 145 

vegetation regrowth 7 and 12 years after a fire in Spain. The vegetation layer was highly 146 

diverse and varied from shrublands to woodlands. The NDVI had higher correlations with 147 

field estimates of vegetation cover than any other index. Vila and Barbosa (2010) drew more 148 

or less the same conclusion. They also found that the NDVI was most accurately related to 149 

field data eight years after a fire in Italy. 150 

Although there is a multitude of studies focusing on the elimination of background optical 151 

variation (Richardson and Wiegand 1977, Huete 1988, Baret and Guyot 1991, Qi et al. 1994, 152 
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Rondeaux et al. 1996), to date, little work has been performed in assessing the impact of 153 

vegetation variability on the performance of existing Vegetation Indices (VIs). Canopy 154 

reflectance is highly variable and is not only governed by vegetation amount (Huemmrich and 155 

Goward 1997, Asner 1998, Asner et al. 2000). Yet, leaf optical properties (and thus foliar 156 

chemistry) and leaf angle distribution (LAD) also substantially affect canopy reflectance. 157 

Foliar chemistry and LAD can greatly vary between different vegetation species (Asner 1998) 158 

resulting in significantly different R and NIR reflectance. As a result, different canopy types 159 

can produce different VI values while having an identical fractional cover or Leaf Area Index 160 

(LAI) (Gao et al. 2000). Gao et al. (2000) demonstrated that NDVI values were fairly uniform 161 

across vegetation types, whereas the SAVI exhibited pronounced differences among canopy 162 

types. Our study aims to build on this knowledge by evaluating VIs in the R-NIR spectral 163 

domain for estimating fractional vegetation cover in mixed vegetation-background post-fire 164 

recovery landscape in which several vegetation species prevail. We aim to evaluate the 165 

potential of thirteen well-established spectral indices for monitoring post-fire vegetation 166 

regrowth three years after the large fires on the Peloponnese peninsula in Greece in 2007. 167 

Using a combination of field and simulation techniques we will account for both the effect of 168 

background and vegetation variability. 169 

2 Methodology 170 

2.1 Study area 171 

This study focuses on the recovery of several large burned areas situated at the Peloponnese 172 

peninsula, in southern Greece (36°30’-38°30’ N, 21°-23° E) (Fig. 1). The first large burn 173 

initiated at July 26, 2007 and the burns prolonged till September 1, 2007. These fires were the 174 

worst natural disaster of the last decades in Greece. The fires consumed more than 175 000 175 

ha, which merely consisted of shrub land and pine forest (Veraverbeke et al. 2010a) with 176 

Black pine (Pinus nigra) being the dominant conifer species. The shrub layer consists of a 177 
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mixture of species and is mainly characterized by Quercus ilex, Erica arborea and Arbutus 178 

unedo. 179 

FIGURE 1 HERE 180 

Elevations in the study area range between 0 and 2404 m above sea level. Limestone 181 

sediments cover most of the mountainous inland. Also significant outcrops of flysch, 182 

sandstone with finer siltstone and clay, sediments occur (Institute of Geology and Mineral 183 

Exploration 1983, Higgins et al. 1996). The hilly and mountainous inland is covered with 184 

shallow and gravelly soils (European Commission 2005). The climate is typically 185 

Mediterranean with hot, dry summers and mild, wet winters. For the Kalamata meteorological 186 

station (37°4’ N, 22°1’ E) the average annual temperature is 17.8 °C and the mean annual 187 

precipitation is 780mm (Hellenic National Meteorological Service, www.hnms.gr, accessed 188 

22 September, 2011).  189 

2.2 Field data 190 

2.2.1 Spectral library 191 

In September 2010, field spectrometry measurements of the dominant background substrates 192 

and vegetation species were collected in the burned areas three years after the fire. 193 

Measurements were obtained within one hour before local solar noon on clear-sky days with a 194 

Unispec single channel spectroradiometer covering the 300-1100 nm spectral domain with a 195 

3.7 nm resolution (PP Systems 2006). Fifty-nine top-of-canopy (TOC) measurements of 196 

regenerating vegetation were recorded: 23 of Q. ilex individuals, 16 of A. unedo individuals, 197 

15 of E. arborea individuals and five of P. nigra individuals. Canopy height ranged between 198 

0.5 and 2 m which made it possible to collect TOC signatures. Twenty-nine spectra of shallow 199 

and gravelly soils of both flysch and limestone sediments were also obtained: 15 above flysch 200 

substrate and 14 above limestone substrate. The spectra of each class collected were collected 201 
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from various locations throughout the study area. More vegetation signals were measured 202 

compared to substrate measurements in order to incorporate the full inter-species vegetation 203 

variability. The collected spectra were resampled to the TM wavebands to facilitate further 204 

analysis. Fig. 2 shows the spectral signatures for each vegetation species and substrate class. 205 

Mean vegetation and background signals are equally presented. The TM red and near infrared 206 

band passes are indicated in the figure. In corroboration with Huete (1988) and Asner (1998) 207 

the background and vegetation variability are obvious in the figure. 208 

FIGURE 2 HERE 209 

2.2.2 Line transect data 210 

Seventy-eight line transect plots were sampled to estimate the cover of regenerating 211 

vegetation in the burned areas three years post-fire, in September 2010. All plots were located 212 

in areas that burned with high severity (Veraverbeke et al. 2010ab, 2011ab). Sixty-three plots 213 

were measured in shrub land, whereas 15 plots were sampled in mixed pine forest-shrub land. 214 

The cover metric was chosen because of its high correlation with biomass and its relative ease 215 

to measure (Bonham 1989). This field metric has been proven to be a reliable means to assess 216 

remotely sensed post-fire vegetation cover estimates (Clemente et al. 2009, van Leeuwen et 217 

al. 2010, Vila and Barbosa 2010). The sample scheme was designed for the 30m Landsat 218 

resolution. The plots were selected during several one-day hikes based on a stratified 219 

sampling approach taking into account the constraints on mainly accessibility and time, while 220 

encompassing the range of variability in recovery rates in the study area. The plot's centre 221 

coordinates were recorded with a handheld Garmin eTrex Visa Global Positioning System 222 

(GPS, 15 m error in x and y, Garmin, 2005). To minimize the influence of spatial 223 

autocorrelation, plots were located at least 500m apart, although preferably more. They 224 

consist of two perpendicular 60m line transects, of which the first was directed north-south. 225 

The point-intercept method (Bonham 1989, Clemente et al. 2009, van Leeuwen et al. 2010, 226 
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Vila and Barbosa 2010) was used at one meter interval along the line transects to verify the 227 

vegetation cover. Either the point contacts a part of the plant, or it does not. The fraction of 228 

vegetation cover equals the total number of vegetation interception points divided by the total 229 

number of interception points (Bonham 1989, Fig. 3). Linear transects of 60m were preferred 230 

to 30m transects to anticipate potential satellite misregistration. Moreover, samples were 231 

located in relatively homogeneous areas of regrowth. Fig. 4 shows example plot photographs 232 

of shrubland at different recovery rates. 233 

FIGURE 3 HERE 234 

FIGURE 4 HERE 235 

2.3 Satellite data and preprocessing 236 

One 30m resolution Landsat TM image (path/row 184/34, acquired on July 18, 2010) was 237 

used in this study. The image dates from the 2010 summer season which corresponds with the 238 

timing of the field work. Because of the focus on the R-NIR bi-spectral space of post-fire 239 

vegetation recovery studies (a.o. Viedma et al. 1997, Diaz-Delgado et al. 2003, McMichael et 240 

al. 2004, Malak and Pausas 2006, Clemente et al. 2009) and to retain consistency with the 241 

field spectral library, analysis was restricted to the R (TM3, 630-690 nm) and NIR (TM4, 242 

760-900nm) wavebands. The image was subjected to geometric, radiometric, atmospheric and 243 

topographic correction. 244 

The TM image was geometrically corrected using a set of homologous points of a previously 245 

georeferenced TM image of the study area (Veraverbeke et al. 2010ab, 2011ab). The resulting 246 

Root Mean Squared Error (RMSE) was lower than 0.5 pixels. The image was registered in 247 

Universal Transverse Mercator (UTM, zone 34S), with ED 50 (European Datum 1950) as 248 

geodetic datum. 249 
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Raw digital numbers (DNs) were scaled to at-sensor radiance values (Ls) (Chander et al. 250 

2007). The radiance to reflectance conversion was performed using the COST method 251 

(Chavez 1996): 252 

22 ))(cos/(
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where ar  is the atmospherically corrected reflectance at the surface; Ls is the at-sensor 254 

radiance (Wm
-2

sr
-1

); Ld is the path radiance (Wm
-2

sr
-1

); Eo is the solar spectral irradiance 255 

(Wm
-2

); d is the earth-sun distance (astronomical units); and zθ  is the solar zenith angle. The 256 

COST method is a dark object subtraction (DOS) approach that assumes 1% surface 257 

reflectance for dark objects (e.g. deep water).  258 

Additionally, it was necessary to correct for different illumination effects due to topography. 259 

This was done based on the modified c-correction method (Veraverbeke et al. 2010c), a 260 

modification of the original c-correction approach (Teillet et al. 1982), using a digital 261 

elevation model (DEM) and knowledge of the solar zenith and azimuth angle at the moment 262 

of image acquisition. Topographical slope and aspect data were derived from a 30m DEM 263 

(Hellenic Military Geographical Service, HMGS) resampled and co-registered with the TM 264 

images. The illumination is modeled as: 265 

)cos(sinsincoscoscos oazpzpi φϕθθθθγ −+=       (2) 266 

where iγ  is the incident angle (angle between the normal to the ground and the sun rays); 
 pθ  267 

is the slope angle;  zθ  is the solar zenith angle; 
 aφ  is the solar azimuth angle; and oφ  is the 268 

aspect angle. Then terrain corrected reflectance tr  is defined as: 269 
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where ck is a band specific parameter kkk mbc =  where bk and mk are the respective 271 

intercept and slope of the regression equation ikka mbr γcos+= . Since topographic 272 

normalization works better when applied separately for specific land cover types (Bishop and 273 

Colby 2002) specific c-values for the recovering 2007 scars were calculated by masking the 274 

unburned areas using the burned area map of Veraverbeke et al. (2010c). 275 

2.4 Vegetation indices 276 

The formulas of vegetation indices evaluated in this study are listed in Table 1. The NDVI 277 

(Tucker 1979) probably is the most widely used index in ecological remote sensing (a.o. Reed 278 

et al. 1994, DeFries et al. 1995, Myeni et al. 1997, Heumann et al. 2007). It combines the 279 

advantages of its predecessors: the Difference VI (DVI, Jordan 1969) and the Ratio VI (RVI, 280 

Pearson and Miller 1972). The DVI was a first approach to extract vegetation structural 281 

information from R-NIR reflectance measurements, whereas the RVI has demonstrated to be 282 

robust for illumination effects because of its ratioing property. A defining characteristic of the 283 

NDVI is that it limits are bound from minus one to one. Haboudane et al. (2004) presented a 284 

relatively novel index, the Renormalized DVI (RDVI), based on a combination of DVI and 285 

NDVI data, whereas Payero et al. (2004) highlighted the potential of the Transformed VI 286 

(TVI) for estimating plant height. These two indices present relative simple adaptations to the 287 

NDVI in order to linearize their relationship with plant biophysical variables (Haboudane et 288 

al. 2004). 289 

TABLE 1 HERE 290 

The relationship between R and NIR reflectance of bare soils is generally linear because the R 291 

and NIR reflectance values are proportionally related to each other (Richardson and Wiegand 292 

1977, Baret et al. 1991, Rondeaux et al. 1996). Based on the 29 pure substrate spectra 293 

acquired in the field (section 2.2.1), the linearity of the soil line is demonstrated in Fig. 5. In 294 

an attempt to reduce the influence of the background signal, several indices made use of the 295 
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concept of the soil line. The simplest adaptation is the Weighted DVI (WDVI, Clevers 1991), 296 

in which the slope of the soil line regression is incorporated in the DVI. Similarly, Richardson 297 

and Wiegand (1977) presented the Perpendicular VI (PVI). The PVI is defined as the 298 

orthogonal distance between a point representing a fractional vegetation cover and the soil 299 

line. Although the PVI reduces background influences at low vegetative covers, high 300 

fractional covers are still affected by soil reflectance (Huete 1988). A significant improvement 301 

was achieved by Huete (1988) by presenting the SAVI. To reduce first-order soil background 302 

variations, Huete (1988) proposed the use of a soil-adjustment factor L. He found that any 303 

adjustment factor between 0.5 and one considerably eliminated background influences over a 304 

range of vegetation densities. SAVI is only an exact solution for bare soil if the soil line slope 305 

and intercept equal respectively one and zero (Baret et al. 1991). This causes problems when 306 

estimating the cover of low density biomass and gave birth to the Transformed SAVI 307 

(TSAVI, Baret et al. 1991) which incorporates the soil line parameters. Based on the fact that 308 

the soil-adjustment factor L varies with vegetation density (Huete et al. 1988), Qi et al. (1994) 309 

proposed the Modified SAVI (MSAVI). In the equation of MSAVI the adjustment factor L is 310 

replaced by a self-adaptable correction factor that changes with changing vegetation density. 311 

By doing so, MSAVI theoretically further reduces background noise and enhances vegetation 312 

sensitivity. After reexamining the SAVI-family of VIs, Rondeaux et al. (1996) proposed the 313 

Optimized SAVI (OSAVI). In this reexamination they demonstrated that the most optimal 314 

formula for the SAVI was the formula of the NDVI in which 0.16 was added to the 315 

denominator (Rondeaux et al. 1996). 316 

2.5 Analysis 317 

The analysis is twofold. Firstly, we used the spectral library with pure substrate (29) and 318 

vegetation signals (59) to create simulated mixed pixels. Although some authors recognize the 319 

occurrence of multiple photon scattering (Ray and Murray 1996, Somers et al. 2009), most 320 
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vegetation monitoring studies consider a mixed pixel spectrum (rm) as a linear combination of 321 

pure spectral signals of its constituents, weighted by their corresponding sub-pixel fractional 322 

covers (Adams et al. 1986): 323 

ε+−+= svvvm rfrfr )1(          (4) 324 

where rv is a vegetation spectrum, rs is a substrate spectrum, fv is the fractional vegetation 325 

cover and ε  represents residuals noise. A total of 1000 mixed vegetation-substrate spectra 326 

were calculated according to equation 1. Pure pixel spectra combinations and fractional covers 327 

were randomly assigned to each pixel. To account for ambient and instrumental error, 328 

normally distributed noise was added to the signal (with a mean of zero and standard 329 

deviation ranging from 0 % to 15 % of the mixed signal, Asner and Lobell 2000). For each 330 

mixed spectrum the R and NIR reflectance were extracted and VIs values were calculated 331 

according to the equations in Table 1. Simulated data supply a reliable means to evaluate the 332 

performance of the various indices as it inherently provides correct validation data (Rogge et 333 

al. 2006). To assess the influence of the variability in background and vegetation three 334 

different scenarios were performed: 335 

• The first scenario only allows substrate variability. The vegetation spectrum (rv in 336 

equation 4) is kept fixed and is defined by the mean vegetation spectrum of Fig. 2.  337 

• In the second scenario the substrate spectrum (rs in equation 4) is kept fixed and is 338 

defined by the mean substrate spectrum of Fig. 2. By doing so, substrate variability is 339 

eliminated and only vegetation variability is incorporated. Considering the mixed layer 340 

of regenerating shrubs rv was modeled as a linear combination of the prevailing shrub 341 

species weighted by their corresponding fractional cover: 342 

 pnpneaeaauauqiqiv rfrfrfrfr +++=        (5) 343 
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 where rqi is a Q. ilex spectrum, rau is a A. unedo spectrum, rea is a E. arborea spectrum 344 

 and rpn is a P. nigra spectrum. The cover fractions of the constituting vegetation 345 

 species are bound to sum to unity and to be positive (Roberts et al. 1993).  346 

• The third scenario allows both substrate and vegetation variability. Equation 5 was 347 

used to model the reflectance response of the heterogeneous shrub layer.  348 

For each scenario, the performance of the VIs (Table 1) was expressed in the coefficient of 349 

determination (R
2
) of the linear regression with the VI values as independent variable and the 350 

fractional vegetation covers a dependent variable. 351 

In addition, we performed a sensitivity-to-variability analysis over the full fractional cover 352 

range (0-100 %, steps of 1 %) for each scenario. Therefore, we composed 29 (number limited 353 

by the number of substrate samples in the spectral library) random vegetation-substrate 354 

mixtures and their corresponding VI values were calculated for each fractional vegetation 355 

cover (steps of 1 %). For each fractional vegetation cover (steps of 1 %), the standard 356 

deviation of the 29 VI values of the 29 different mixtures is a measure for the sensitivity to 357 

variability in background and/or vegetation for this specific fractional cover. However, due to 358 

differences in index design (Table 1), the units of the different VIs are not directly 359 

comparable. To normalize for this, the obtained standard deviations were divided by the VI 360 

ranges. The VI ranges were defined as the absolute difference between the lowest VI value of 361 

the 29 mixtures at fractional vegetation cover of 0 % and the highest VI value of the 29 362 

mixtures at a fractional vegetation cover of 100 %. The ratio between the standard deviation 363 

and the total index range represents the sensitivity-to-variability. For example, a ratio value of 364 

0.10 for a certain fractional vegetation means that for that specific fractional cover 68 % of the 365 

corresponding VI values are within a range that equals 10 % of the total index range. The 366 

same three scenarios as above were performed (scenario one: only background variability, 367 

scenario 2: only vegetation variability, scenario 3: background and vegetation variability). The 368 
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lower the ratio value is, the less sensitive the VI is for variability effects. The sensitivity-to-369 

variability metric can be seen as an addition to the linear regression. It has the advantage that 370 

it, unlike the regression analysis, visualizes differences in sensitivity to variability over the 371 

whole fractional cover range  372 

The second part of the analysis focused on the Landsat TM data. VI imagery was generated 373 

according to the formulas of Table 1. The index values of the line transect locations were 374 

extracted by calculating the mean index value of a 3-by-3 pixels matrix. It is widely accepted 375 

that using the mean of a pixel matrix minimizes the effect of potential misregistration (Ahern 376 

et al. 1991, Clemente et al. 2009). Linear regressions were performed to correlate the TM VIs 377 

(independent variables) and line transect field data of vegetation recovery (dependent 378 

variables). Regression model results were compared using the R
2
 statistic. The best 379 

performing index was used to map the vegetation cover three years after the large 2007 380 

Peloponnese wildfires. 381 

3 Results 382 

3.1 Simulation data 383 

Table 2 lists the slope (a), intercept (b) and R
2
 of the linear regression fits between modeled 384 

fraction of vegetation cover and 13 VIs for three scenarios based on 1000 random vegetation-385 

substrate mixtures created from the spectral library. For each scenario both a noise-free and 386 

noise-added (Asner and Lobell 2000) model were performed. For all scenarios and all VIs the 387 

noise-added model generally resulted in a slightly lower R
2
 compared to the noise-free model, 388 

however, the general trends and the ranking between the different indices did not depend on 389 

the incorporation of noise. For this reason and for clarity we will only consider the results of 390 

the no-noise model here: 391 

• The first scenario only accounts for substrate variability while the vegetation spectrum 392 

was kept fixed. For all the indices that incorporate some kind of soil-adjusting 393 
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parameter (WDVI, PVI, SAVI, TSAVI, MSAVI, OSAVI) the R
2
 statistic (R

2
 = 0.92-394 

0.99) was clearly higher than the R
2
 obtained from the NDVI model (R

2
 = 0.88). The 395 

DVI and RDVI regression models also resulted in high R
2
 values (respectively R

2
 = 396 

0.99 and R
2
 = 0.97). The RVI model was markedly poorer (R

2
 = 0.69), whereas the 397 

TVI model obtained a result similar to the NDVI (R
2
 = 0.88).  398 

• When the substrate spectrum was kept constant and only vegetation variability was 399 

allowed (second scenario), a totally different picture emerges. Only the NDVI and TVI 400 

model demonstrated a relatively strong performance (R
2
 = 0.95). For the other models 401 

the performance markedly deteriorated by the inclusion of vegetation variability 402 

resulting in R
2
 values between 0.61 and 0.92.  403 

• The trends of the second scenario are similar to those of the third scenario, which 404 

combines both substrate and vegetation variability. Again the NDVI and TVI 405 

outperformed the other indices with a R
2
 = 0.85. Results from the OSAVI and TSAVI 406 

were also reasonable with moderate-high R
2
 statistics of respectively 0.81 and 0.80. 407 

The RDVI, SAVI and MSAVI models appear next in the rank with R
2
 values between 408 

0.69 and 0.74. Finally, the DVI, RVI, WVDVI and PVI achieved lower  regression fits 409 

(R
2
 = 0.51-0.59). 410 

TABLE 2 HERE 411 

The outcomes of Table 2 are clarified in Fig. 6, which visualizes the sensitivity-to-variability 412 

of the different VIs over the full range of vegetation cover (0-100 %). Again, the same three 413 

scenarios were considered: 414 

• Fig. 6A (scenario 1) demonstrates the beneficial performance of the VIs with soil-415 

adjusting parameters (WDVI, PVI, SAVI, TSAVI, MSAVI, OSAVI) in an 416 

environment with only substrate variability (fixed vegetation spectrum). Compared to 417 

the NDVI, all these indices revealed a lower sensitivity to the variation in background. 418 
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The NDVI, and also the TVI, were especially sensitive to background variability for 419 

intermediate vegetation cover (40-70 %). In contrast, the sensitivity to soil variability 420 

of the RVI progressively increased with increasing fractional vegetation cover, except 421 

for the abrupt drop for very high cover values (larger than 90 %). 422 

• Fig. 6B (scenario 2) shows that for all VIs except the RVI the sensitivity to vegetation 423 

variability almost linearly increased with increasing vegetation coverage from 0 to 50 424 

%. The NDVI's and TVI's sensitivity to variation in vegetation, however, stabilized for 425 

fractional covers larger than 50 %. In contrast, the sensitivity to variability in 426 

vegetation of the other indices kept increasing with increasing vegetation coverage 427 

over 50 %. The RVI showed a different behavior being very insensitive to vegetation 428 

variability between 0 and 75 % fractional vegetation cover. However, for a vegetation 429 

cover larger than 75 % vegetation cover the sensitivity of the RVI increased 430 

exponentially. 431 

• Fig. 6C (scenario 3) combines substrate and vegetation variability. This graph merely 432 

is a combination of figures 6A and 6B, but the variability in vegetation seemed to be 433 

more dominant. For lower vegetation fractions (0-40 %) the NDVI and TVI performed 434 

poorer than the other indices, however, for moderate to high vegetation coverage 435 

(more than 40 %) the NDVI and TVI clearly outperformed the other indices. The RVI, 436 

conversed to 12 other indices, showed again a different behavior, similar to what was 437 

observed in scenario 2. 438 

FIGURE 6 HERE 439 

3.2 Landsat imagery 440 

Table 3 summarizes slope, intercept and R
2
 of the regression fits between the line transect 441 

points and VIs retrieved from the Landsat imagery. The goodness-of-fit ranking of the indices 442 

shows a very strong similarity with the ranking obtained from the third scenario (vegetation 443 
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and substrate variability) based on simulated mixtures (Table 2, scenario 3). The NDVI and 444 

TVI demonstrated the best performance with R
2
 values of respectively 0.68 and 0.67. OSAVI 445 

and TSAVI closely followed with model performance of R
2
 = 0.64-0.66. The regression 446 

models of the other indices (DVI, RDVI, WDVI, PVI, SAVI, MSAVI) were clearly poorer as 447 

the R
2
 dropped below 0.6. The only index that did not follow the trend of scenario 3 based on 448 

simulated data is the RVI. The correlation between the RVI and line transect data is relatively 449 

high (R
2
 = 0.68), whereas its relationship with the modeled fractional vegetation cover in the 450 

simulation was markedly weaker. Fig. 7A displays the fractional vegetation cover map based 451 

on the relationship between the Landsat NDVI and the line transect field ratings (Fig. 7B). 452 

TABLE 3 HERE 453 

FIGURE 7 HERE 454 

4 Discussion 455 

4.1 Background variability 456 

In line with the theoretical improvements of the SAVIs (Richardson and Wiegand 1977, 457 

Huete 1988, Baret and Guyot 1991, Qi et al. 1994, Rondeaux et al. 1996), these indices 458 

clearly outperformed the majority of VIs without a soil-adjustment factor when vegetation 459 

variability was not accounted for (i.e. only a single vegetation type occurs). The DVI also 460 

revealed a very strong performance. This can be explained by the fact that the soil line 461 

regression slope (1.05, Fig. 5) only slightly deviated from one which minimized the difference 462 

between the DVI and WDVI in this case study. The NDVI and its transformed variant (TVI) 463 

were more sensitive to variations in background brightness, especially for medium-to-high 464 

vegetation cover environments (Fig. 6A). For the first scenario with only background 465 

variability, the RVI revealed the lowest performance. This is due to very high sensitivity to 466 

background variation for high vegetation covers as illustrated in Fig. 6A. These outcomes 467 

support the well established idea that SAVIs are better suited for monitoring vegetation 468 
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parameters in mixed vegetation-soil environments because their adjusted index design 469 

improves the alignment between the index isolines and the true vegetation isolines (a.o., 470 

Huete 1988, Rondeaux et al. 1996). However, it should be noted that this finding remains 471 

restricted to environments with one specific vegetation type, or at least environments in which 472 

the spectral signatures of the constituting vegetation species show only slight differences. 473 

Therefore, SAVIs are a significant improvement for precisions agriculture applications such 474 

as monitoring crop status or predicting crop yield (Haboudane et al. 2004). Agricultural 475 

applications generally contemplate only one crop in a controlled environment (Huete 1988, 476 

Clevers 1991, Payero et al. 2004). As a consequence, these studies inherently disregard 477 

natural variability in vegetation which is present in most (semi)natural landscapes. 478 

4.2 Vegetation variability 479 

Asner (1998) comprehensively demonstrated that leaf optical properties and LAD importantly 480 

govern canopy reflectance response and that these characteristics vary between vegetation 481 

species. Although this variation in canopy reflectance is well known (Huemmrich and 482 

Goward 1997, Asner et al. 2000), so far, few studies have assessed the impact of this 483 

vegetation variability on VI performance (Gao et al. 2000). Logically, the sensitivity to 484 

vegetation variability increased with increasing vegetation cover (Fig. 6B). However, this 485 

increase was clearly more explicit for the SAVIs compared to the NDVI (and the TVI). The 486 

NDVI managed to minimize the influence of vegetation variability thanks to its strong 487 

normalizing property. This normalizing feature consists of dividing the subtraction ��� − � 488 

by the sum ��� + �. Illumination differences due to topography for example result in clearly 489 

different reflectance values for the same amount of vegetation, whereas the normalizing 490 

property of the NDVI is known to minimize the difference in index values along an 491 

illumination gradient (Song and Woodcock 2003). While some of the tested indices lack a 492 

similar normalization feature (DVI, WDVI, PVI and MSAVI), the index design of the others 493 
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(RVI, RDVI, TVI, SAVI, TSAVI, OSAVI) does consist of a quotient between reflectance 494 

values. Results from Table 2 scenario 2, however, show that the higher the relative importance 495 

of the soil-adjustment factor is in the equation, the lower the R
2
 was. This is clearly 496 

demonstrated by the R
2
 values of the SAVI with varying soil-adjustment factor L = 0.5, 0.75 497 

and 1. The corresponding R
2
 values were respectively 0.87, 0.85 and 0.83. In addition, the 498 

OSAVI, which has an soil-adjustment factor of 0.16, obtained a R
2
 = 0.92. This also explains 499 

why the TVI, in which no soil-adjustment factor is used, performed as well as the NDVI. The 500 

beneficial behavior of the NDVI in accounting for vegetation variability was also 501 

demonstrated in Fig. 6B. This finding corroborates with Gao et al. (2002) who found that 502 

NDVI values for a given vegetation amount were fairly uniform across different canopy types, 503 

while SAVI values drastically varied among the different canopy types. The RVI again 504 

underperformed due to its very high sensitivity to variability for vegetation covers larger than 505 

75 %. This phenomenon can be explained by the fact that simple ratioing (
R

NIR
RVI = ) for 506 

these high vegetation covers implies a very low R reflectance due to the increased absorption 507 

by chlorophyll. When dividing by a R reflectance close to zero only a small amount of 508 

additional variability can cause considerable changes in the index outcome. 509 

4.3 Background and vegetation variability 510 

Most (semi)natural landscapes consist of a variety of vegetation species while several 511 

different lithologies generally occur over large areas. The results of the analysis which 512 

combined background and vegetation variability were more complex. For low vegetation 513 

cover environments (lower than 40 %), the SAVIs were less sensitive to variability than the 514 

NDVI (Fig. 6C). For these cases, the background signal dominates the mixed pixel spectrum. 515 

As a result, the insensitivity-to-background variability of the SAVIs outweighs their higher 516 

sensitivity to vegetation variability. However, for higher fractional vegetation covers (larger 517 

than 40 %) the overall sensitivity to variability of the SAVI became markedly higher than the 518 
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NDVI's sensitivity to variability. In the simulation experiment with both background and 519 

vegetation variability, the NDVI (and TVI) obtained the best scores (Table 2 scenario 3). This 520 

experiment mimicked the variability in substrates and vegetation as it occurs in natural 521 

environments. It is remarkable that the observed improvement of the SAVIs in reducing soil 522 

background influences is strongly diminished when vegetation variability was also allowed. 523 

The findings of the simulation experiment also corroborate with the rank in obtained R
2
 524 

values of the regression fits between the TM and line transect data. The only exception is the 525 

RVI, which, in contrast with its behavior in the simulation experiments, showed a very strong 526 

agreement with the field ratings of recovery. As discussed earlier, the RVI becomes very 527 

sensitive to variability for high vegetation cover (larger than 75 %). The highest fraction of 528 

vegetative cover observed in the field plots is 70 %. For the range between 0-70 %, the RVI 529 

proved to be a very consistent index (Fig. 6).  530 

The obtained results, of course, depend on the initial spectral variability present in the study 531 

area. In our case study both the variation in substrate and vegetation were considerable (Fig. 532 

2). It is likely that similar trends as those from our study will occur in environments with high 533 

vegetation variability. However, for environments with only slight differences in optical 534 

properties between vegetation types and significant soil color variation, SAVIs will 535 

potentially obtain the overall best results, especially for plots with low vegetation cover and 536 

thus relative high importance of the soil endmember. 537 

Our findings in a mixed vegetation-substrate natural environment contribute to the many 538 

papers that compared several VIs and concluded that the SAVIs do not necessarily outperform 539 

the NDVI, despite of their theoretical improvements (a.o. Purevdorj et al. 1998, Carreiras et 540 

al. 2006, He et al. 2006, Clemente et al. 2009, Vila and Barbosa 2010). While those studies 541 

reported the beneficial performance of the NDVI over the SAVIs for estimating post-fire 542 

fractional vegetation cover, none of them elaborated on the reason why. Our study clearly 543 
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demonstrated that, in line with Gao et al. (2000), the NDVI is more stable than SAVIs against 544 

the variability in spectral response of different vegetation types. This finding combined with 545 

the knowledge from Smith et al. (2010), in which the NDVI outperformed the NBR in terms 546 

of insensitivity to soil type in soil-char mixtures, support the use of the NDVI for short- to 547 

long-term post-fire monitoring across regions in which natural variability in soils and 548 

vegetation is present. 549 

5. Conclusions 550 

This paper demonstrated that (i) SAVIs outperformed the NDVI in environments with 551 

background variation and one single vegetation type, (ii) the NDVI revealed better results 552 

than SAVIs in mixed vegetation environments with a constant soil background, (iii) when 553 

both vegetation and background variability is present SAVIs outperformed the NDVI for low 554 

vegetation cover environment (lower than 40 %), (iv) for intermediate to high vegetated 555 

covers (larger than 40 %) in variable vegetation-background mixtures the NDVI is more 556 

optimal and (v) overall, the NDVI was the index that managed best to account for vegetation 557 

and background variability. These findings obtained from simulation experiments corroborate 558 

with the correlations retrieved between Landsat VIs and line transect field data of recovery. 559 

Findings also depend on the initial variability in both background and vegetation present in 560 

the study area, however, it is likely that these trends are more general. From a practical 561 

perspective, our results support the widely accepted idea of using SAVIs in controlled 562 

environments with a single vegetation type. The classic example of such monotonous 563 

environments are agricultural systems in which one generally focuses on a specific crop. For 564 

these applications, the use of SAVIs is recommended. However, for applications in which 565 

natural variability is important, we recommend the use of the NDVI. Due to its strong 566 

normalizing capacity this index effectively handles variability between vegetation species 567 

resulting in more reliable vegetation cover estimates. In this post-fire vegetation recovery case 568 
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study, this is clearly demonstrated using both field and simulation techniques. Although we 569 

acknowledge the prospect of more innovative techniques such as Spectral Mixture Analysis 570 

(SMA) for estimating fractional cover of different vegetation types, especially with 571 

hyperspectral data (Somers et al. 2009ab), this paper is restricted to the utility of broadband 572 

vegetation indices for monitoring vegetation coverage without distinguishing between species. 573 

Total vegetation cover remains the most important parameter in rangeland management 574 

(Kutiel and Inbar 1993, Thomas et al. 1999) and the use of conceptually comprehensible VIs 575 

is aligned with the capabilities of current broadband satellite systems such as Landsat. 576 

Another possible amelioration could be the inclusion of the short-wave infrared (SWIR: 1300-577 

2400 nm) spectral bands. This spectral region has proven to be very effective in 578 

discriminating soil and vegetation (Drake et al. 1999, Asner and Lobell 2000). Moreover, the 579 

SWIR spectrum is very sensitive to moisture content (Hunt and Rock 1989, Zarco-Tejada et 580 

al. 2003) and is consequently strongly related to plant water content. Carreiras et al. (2006) 581 

demonstrated that adding the SWIR Landsat bands resulted in better estimates of tree canopy 582 

cover in Mediterranean shrublands. To retain consistency with the field spectral library these 583 

wavebands were not included in our study. 584 
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 815 

Figure 1. Location of the study area (the areas encircled with black represent the 2007 burned areas) and 816 

distribution of the field plots (marked with green dots) (Landsat Thematic Mapper image July 18, 2010 RGB-817 

432). 818 

Figure 2. Mean spectral signatures of the prevailing vegetation species and main substrate classes acquired in the 819 

field with a Unispec single channel field spectroradiometer (dashed lines). The overall mean vegetation and 820 

substrate signature are represented by full lines. The Thematic Mapper (TM) red (TM3) and near infrared (TM4) 821 

bandpasses are also indicated.  822 

Figure 3. Line transect plot design (Bonham 1989) 823 

Figure 4. Example plot photographs of shrubland with a high (A), moderate (B) and low (C) recovery rate. 824 

Figure 5. Relationship between the red and near infrared reflectance of 29 substrate samples resulting in the soil 825 

line. 826 

Figure 6. Sensitivity-to-variability over the full fractional vegetation range (0-100%) of the 13 Vegetation 827 

Indices (VIs) as listed in Table 1. Twenty-nine (number limited by the number of substrate samples in the 828 

spectral library) random mixtures and corresponding VI values were calculated for each fractional cover. 829 

Subsequently, the ratio between the standard deviation and the total index range represents the sensitivity-to-830 

variability. Three scenarios were performed: (i) only substrate variability, (ii) only vegetation variability and (iii) 831 

both substrate and vegetation variability. The data shown in the figure refer to a noise-free model. 832 

Figure 7. Fractional vegetation cover map (A) three years after the fires based on the regression fit between the 833 

Landsat Normalized Difference Vegetation Index (NDVI) and the line transect field ratings of vegetation cover 834 

(B). 835 

 836 

Table 1. Red-near infrared (R-NIR) vegetation indices used in this study. The parameters a (1.05) and b (0.03) 837 

are retrieved from the soil line represented in figure 5.  838 

Table 2. Slope (a), intercept (b) and coefficient of determination (R
2
) of the linear regression fits between the 839 

modeled fraction of vegetation cover (FCOV) and the 13 Vegetation Indices (VIs) as listed in Table 1 (840 

bVIaFCOV +×= ). The data consist of 1000 random mixtures created from the field spectral library. Three 841 

scenarios were performed: (i) only substrate variability, (ii) only vegetation variability and (iii) both substrate 842 

and vegetation variability. For each scenario, a, b and R
2
 were retrieved from a no-noise and noise model (Asner 843 

and Lobell 2000). 844 



35 

Table 3. Slope (a), intercept (b) and coefficient of determination (R2) of the linear regression fits between the line 845 

transect estimates of vegetation cover (FCOV) and the 13 Vegetation Indices (VIs) as listed in Table 1 calculated 846 

from Thematic Mapper imagery ( bVIaFCOV +×= ). 847 


