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Abstract: 
 

This review is written to fulfill the need of a comprehensive guide for the manufacture of porous 

polymer particles. The synthesis section discusses and for the first time compares microfluidics, 

membrane/microchannel, suspension, dispersion, precipitation, multistage polymerizations and a 

few other less known methods, microfluidics being in greater detail. The comparison includes on one 

hand simplicity, scaling-up possibilities and the ability to yield nonspherical particles for these 

methods and on the other hand size, size monodispersity, pore characteristics and chemical 

functionality of the obtained particles. This extensive comparison certainly makes this review also 

useful for the preparation of nonporous particles. In addition, functionalization/characterization 

techniques and applications of porous particles are also discussed, including some visionary 

recommendations. The review is expected not only to enable individual experts of each field to 

compare their methods with the other ones, but also to be a handbook for the newcomers to this 

field to guide them from the synthesis to the applications.  

Abbreviations:  
 

AIBN, 2,2’-azobis(2-methylpropionitrile); ASTM, American Society for Testing and Materials; CuAAC, 

Cu(I) catalyzed azide-alkyne cycloaddition; CV, coefficient of variation defined as (σ/Dp)x100 where 

Dp is the number average diameter and σ is the standard deviation on the diameter; DSC, differential 

scanning calorimetry; DVB, divinylbenzene; EGDMA, ethylene glycol dimethacrylate; EtOH, ethanol; 

Fmoc, fluorenylmethyloxycarbonyl; GMA, glycidyl methacrylate; HEMA, 2-hydroxyethyl 

methacrylate; HIPE, high internal phase emulsion; HPLC, high performance liquid chromatography; 

MeOH, methanol; MMA, methyl methacrylate; MW, molecular weight; O/W, oil-in-water emulsion; 

PDMS, poly(dimethylsiloxane); PEO, poly(ethylene oxide); PMMA, poly(methyl methacrylate); PS, 

polystyrene; PVA, poly(vinylalcohol); SDS, sodium dodecyl sulfate; SEC, size exclusion 

chromatography; SEM, scanning electron microscopy; SPOS, solid phase organic synthesis; SPPS, 

solid phase peptide synthesis; SPG, Shirazu porous glass; TEM, transmission electron microscope; 

TGA, thermogravimetric analysis; THF, tetrahydrofuran; UV, ultra violet; W/O, water-in-oil emulsion. 



4 

 

1. Introduction 
 

Porous polymer particles, especially the ones that are spherical in shape, have been utilized in 

numerous applications for decades. They have been classified as macro-, meso- and microporous 

depending on the size of the pores, respectively > 50 nm, 50-2 nm and < 2nm. Two main features, 

their porous nature and higher crosslinking degree, differentiate them from gel-type polymer 

particles.  These differences give rise to different characteristics such as high surface area, ability to 

uptake various solvents with different polarity and increased brittleness. Size, size dispersity, 

chemical nature and functionality can be mentioned as the other features that porous particles 

share with their nonporous counterparts, the gel-type particles. The variety of applications requires 

different combinations of the mentioned features. For instance, while chromatography requires 

highly monodisperse (uniform in size, low coefficient of variation (CV)) sub 5 µm beads, solid phase 

peptide synthesis (SPPS) is usually conducted with 100-200 µm beads and monodispersity is not that 

crucial. On the other hand, functionality is a must for SPPS but can be undesired for 

chromatography.  

In general, polymer particles are produced by heterogeneous polymerizations using the immiscibility 

of two or more liquids. Suspension, dispersion, precipitation, multistage, membrane/microchannel 

emulsification and microfluidic polymerizations are the main techniques to form porous particles. In 

all cases, the application should be kept in mind prior to choosing the method of production.  

With this review about porous polymer particles, we would like to fulfill the need for a 

comprehensive guide, not only for the experts but also for scientists that are new in this broad field. 

The closest review on this topic by Okay in 2000 [1] deals more with particle characteristics, explains 

the methods of production and characterization briefly and lacks discussion about applications. 

Although in literature there are several reviews for polymer particles (not specifically porous), the 

older ones [1-3] merely cover the conventional methods (suspension, emulsion, dispersion, 

precipitation, seeded) while the new ones [4-6] only focus on the new methods 

(membrane/microchannel emulsification and microfluidics). To the best of our knowledge, we 

gathered in this review for the first time all the manufacture methods, including some less known 

methods. Novel explanations are delivered about these techniques by making use of schematic 

descriptions. Moreover, we focused more on the chemistry viewpoints using basic phenomena, 

rather than highlighting the technical aspects of the mentioned methods.  

The review also includes detailed characterization, functionalization and application sections. The 

functionalization section has the intention to give a summary of what is flourishing in polymer 

science as efficient chemical transformation methods, including click chemistries. This section also 

includes surface- and pore-size-specific functionalization. Together with current usage areas, future 

recommendations are given in the applications section. Last but not least, nonspherical particles are 

also discussed throughout the text since this is an immature field for porous particles with lots of 

opportunities waiting to be exploited to our belief.   

Porogens are the substances yielding the porous nature of particles. Throughout the text, we will 

avoid using the widely applied term ‘porogenic solvent’ since gasses and solids can also be used as 



5 

 

porogens. The term ‘inert diluent’ is also not proper to our understanding since we believe that 

there is room for innovations by making use of reactive porogens and that immiscible porogens 

cannot really dilute a monomer mixture. It is also worth to mention that the term ‘monomer’ will 

not necessarily exclude crosslinkers; all polymerizable species can be denoted together as the 

monomer mixture in this text. Moreover, we will focus on particle formation via vinyl 

polymerization, which constitutes the largest part of the field. Inorganic, hybrid and non-crosslinked 

polymer particles (produced via precipitation from polymer solutions) are kept out of the scope of 

this manuscript.  

2. Synthesis 

2.1. An introduction to the Production of Porous Polymer Particles  
 

For decades chemists learnt how to use physical principles to design their reactors, rather than 

chemical principles. Temperature, pressure, viscosity, stirring and fluid dynamics are the important 

principles to be mentioned first. Liquid immiscibility is another ‘tool’ that chemists are familiar with 

and make it serve to their quests, for instance to produce regular particulate materials. From daily 

life, we all know that oil and water are immiscible and will phase separate. When it is desired to 

form a dispersion of one of the two liquids in the other, which is called an emulsion, a sufficient 

amount of emulsion stabilizer should be added together with applied shear. The words emulsifier, 

surfactant, surface active molecules and many more are all used to describe emulsion stabilizers that 

are readily present in our everyday life, such as soap and detergents. Emulsifiers are molecules that 

have both hydrophilic and hydrophobic parts, recognized by water and oil, respectively. When oil 

and water are mixed in the presence of such an emulsifier, the emulsifier molecules cover the 

surface of the dispersed phase droplets by reducing the interfacial tension. Milk is a well known 

example of a stable emulsion in nature where oil (butterfat) droplets are dispersed in water by the 

aid of phospholipids and proteins.  

Already in 1912, chemists realized that an emulsion can be utilized to produce polymer particles [7]. 

Keeping water as the continuous phase, the discrete phase could be droplets of hydrophobic 

monomeric species, which can be converted into polymer particles after polymerization. The 

emulsion stabilizer can be a soap molecule, a polymeric stabilizer or a natural surface active material 

such as gum, starch or gelatin. A free radical polymerization initiator is used and can be added to 

either phase. These ingredients and their immiscibility are the basis of heterogeneous 

polymerizations (also called heterophase polymerizations), with the exception of dispersion and 

precipitation polymerizations where the initial mixture starts from a completely homogeneous 

solution, which will be discussed later in this section. It is also worth to mention that water soluble 

monomers can be polymerized as discrete phase droplets in an organic solvent (the oil phase). These 

type of W/O systems are generally denoted as inverse heterogeneous polymerizations.    

The importance of controlling the interfacial tension is already discussed in the introduction 

paragraph. However, it is also necessary to stress that the spherical shape of the monomer droplets 

is caused by this interfacial tension. Indeed, the sphere is the shape with the lowest surface to 
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volume ratio, which is the reason why in most cases polymer particles are spherical in shape, thus 

explaining the difficulty to make regular nonspherical particles.  

Emulsion polymerization, mini- and microemulsion polymerization, suspension polymerization, 

dispersion polymerization, precipitation polymerization, membrane emulsification and microfluidics 

are the techniques utilized for polymer particle manufacture. With exception of emulsion, 

miniemulsion and microemulsion polymerizations, all these polymerization methods will be covered 

by this review as emulsion polymerization is not readily used to form porous particles [8]. This is 

ascribed to its unique mechanism where the location of initiation, chain growth and largest 

monomer presence are all different from each other [3].  

Nevertheless, emulsion polymerization is widely (but not only) utilized as the first stage of seed 

polymerizations that can be defined as multistage heterogeneous polymerization techniques where 

almost any combination of the aforementioned techniques can be used. In this two stage approach, 

first nonporous ‘seed’ particles are produced, which are the initial relatively small monodisperse 

particles. These seed particles are subsequently enlarged in a second stage. As a result, seed 

polymerization techniques will also be covered. As mentioned before, this review will also cover 

microfluidics in detail since this is the most recent among all heterogeneous polymerization 

techniques and allows the synthesis of unprecedented structures such as regular nonspherical forms 

or core-shell structures. This is an area of research in which also our own research group has been 

contributing recently [9-10]. The following sub-section describes suspension polymerization together 

with all main pore formation mechanisms/methods, which are also applicable in the other 

techniques including microfluidics.  

 

2.2. Suspension Polymerization and General Pore Formation 

Techniques 
 

In terms of physical categorization, whereas an emulsion denotes a liquid/liquid dispersion, a 

suspension denotes a solid/liquid dispersion. However, this does not apply for heterogeneous 

polymerizations since both emulsion and suspension polymerizations start with liquid/liquid 

mixtures in the beginning and end up as solid/liquid dispersions. A suspension polymerization starts 

with dispersing monomer droplets in a continuous phase with the aid of surfactants such as sodium 

dodecyl sulphate (SDS) (Fig. 1). A monomer soluble initiator is added, aiming to drive both initiation 

and chain growth inside the monomer droplets. This is the main difference with the emulsion 

polymerization where a continuous phase soluble initiator is used so that the mechanism completely 

changes, for which we refer to other literature [3]. Moreover, radical trapping species such as NO2
- 

salts, can also be added to suspension polymerization recipes [11] to prevent nucleation in the 

continuous phase [12].  
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Fig. 1. Basic depiction of the suspension polymerization technique.  

 

Suspension polymerization can be considered as the least complicated heterogeneous 

polymerization technique in terms of its mechanism. As depicted in Fig. 1, there are the discrete 

phase droplets with monomeric species (monomers and crosslinkers), initiator and porogen on one 

hand and there is the continuous phase with dissolved surfactant and/or polymeric stabilizers on the 

other hand. The molecular transfer between the two phases needs to be minimized in suspension 

polymerization because initiation and propagation all take place in the monomer droplets. Two 

parameters are of utmost importance: solubility of monomers in the continuous phase and the role 

of surfactants and stabilizers. The monomer solubility in the continuous phase becomes an 

important  issue in systems where the monomer to continuous phase ratio is low. If there are no 

phase transfer limitations, a significant amount of monomer would be present in the continuous 

phase at the start of the polymerization reaction and will transfer back to discrete phase droplets by 

time since polymerization consumes the monomers in these droplets. This process may result in 

retardation of the polymerization. Also the porous nature of the final particles would be affected 

since porosity depends very much on the concentration difference between monomers to 

porogen(s). Nevertheless, a porogen can also be used to increase the partition of a water soluble 

monomer in the discrete phase droplets where the continuous phase is water. For example, Fréchet 

et al. managed to polymerize a completely water soluble crosslinker in a "classical" suspension 

polymerization by using cyclohexanol as the porogen [11].  

In suspension polymerization, continuous mechanical agitation with a constant speed is applied 

throughout the whole process to keep the monomer droplets well dispersed (Fig. 1). However, 

droplet collision and break-up cannot be prevented. Since the droplet formation is governed by the 

chaotic agitation and since droplet collision/break-up takes place continuously throughout the 

process, particles obtained via suspension polymerization are almost always polydisperse. 

Notwithstanding the fact that this polydispersity is the main drawback of suspension polymerization, 

this technique is widely applied in industry because of the low cost and upscaling possibilities. The 

obtained particles are sieved to specific size ranges when needed. The agitation speed and the shape 

of both the reactor and the mechanical stirrer are the main factors influencing the size distribution 



8 

 

and size of final particles, without forgetting the importance of the viscosity values of both phases 

and surfactant concentration that tunes the interfacial tension. 

Here we will discuss the general pore formation mechanisms which can be directly applied to the 

other techniques as well, especially membrane/microchannel emulsification and microfluidics. Other 

techniques about pore formation, which are not applicable to suspension polymerization, are 

discussed within the relevant sections. 

2.2.1. Using a Good Solvent as the Porogen (ν-Induced Syneresis) 

Polymerization of styrene in water can be accepted as a text-book example of the suspension 

polymerization. As an example, the discrete phase may consist of styrene (monomer), 

divinylbenzene (DVB, crosslinker), 2,2’-azobis(2-methylpropionitrile) (AIBN, initiator) and toluene 

(porogen), whereas the continuous phase can be an aqueous poly(vinylalcohol) (PVA, emulsion 

stabilizer) solution. Toluene is a thermodynamically good solvent for the polymer, which means that 

it can readily swell the final crosslinked beads. A good solvent is characterized by a Hildebrand 

solubility parameter close to that of the polymer [2]. Inside every discrete phase monomer droplet, a 

continuous network grows by addition of monomer and after a certain time, the network becomes 

incapable of absorbing more toluene due to an increasing amount of crosslinking. A precipitation or 

deswelling (phase separation) occurs at this point, which is after the gelation point of the network. It 

is this phase separation that yields the porous nature of the particles. The amount of crosslinker is of 

great importance as it determines the time of precipitation and the extent of porosity. Micro- and 

mesopores are predominant, resulting in beads with high surface area values but low pore volumes 

[2]. This type of pore formation is called ν-induced syneresis [1].  

2.2.2. Using a Nonsolvent as the Porogen (χ-Induced Syneresis) 

On the other hand, if a nonsolvent  for the final polymer is used as a porogen, such as n-heptane[13] 

instead of toluene in the previous case, pore formation occurs via χ-induced syneresis [1]. In this 

case, phase separation occurs before the gelation point since heptane cannot swell/dissolve the 

growing polymer chains. At the start of the initiation, separated smaller particles of polymer (nuclei) 

grow as a discontinuous phase (early phase separation due to the nonsolvent) inside every discrete 

monomer phase droplet. These nuclei agglomerate via inter-nuclei crosslinking and the final bead is 

formed. In contrast to the previous case, macropores are predominant, resulting in particles with a 

significantly lower surface area but larger pore volumes [2]. Moreover, suspension polymerization of 

monomers like vinyl chloride and acrylonitrile yields intrinsically macroporous particles without the 

addition of an external nonsolvent due to the fact that these monomers cannot dissolve/swell their 

corresponding polymers [7, 14]; this could be referred to as the ‘self-porogen’ effect.  

2.2.3. Using Linear Polymers as the Porogen 

Various polymers and oligomers can also be used, generally together with a solvent, as the porogen. 

Also in this case pore formation occurs via χ-induced syneresis [1]. Examples of polymers and 
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oligomers used as porogens include poly(methyl methacrylate) (PMMA) [15], PS [16], poly(ethylene 

oxide) (PEO) [17], poly (propylene oxide) [18] and poly(dimethylsiloxane) (PDMS) [18]. It is important 

to note that Okubo et al. [19-20] reported that the amount and the nature of polymeric porogen 

may either induce a porous or a nonporous hollow final structure. The pioneers of methacrylate 

based porous particles, Svec and Horák, reported the differences between the use of a good solvent 

(toluene), nonsolvent (dodecanol) and a polymeric porogen (polystyrene in toluene, 15%) for the 

synthesis of a copolymer of glycidyl methacrylate (GMA) and ethylene glycol dimethacrylate 

(EGDMA) [2]. In the order of good solvent, nonsolvent and polymeric porogen, the specific surface 

area decreases below 1 m2/g whereas the size of microglobules and total pore volume increase (Fig. 

2).  

 

Fig. 2. Scanning electron microscopy (SEM) images from surface of EGDMA-GMA (24%-%16) beads 
prepared by using different porogens at 60% ratio: (a) toluene (good solvent), (b) dodecanol 
(nonsolvent), (c) PS solution in toluene (polymeric porogen, 50000 g/mol, 15%). From left to right, 
pore size increases and total surface area decreases. Reproduced from [2] with permission. 
Copyright 2005 Wiley-VCH Verlag GmbH & Co. KGaA. 

 

Sherrington et al. [18] reported that a bimodal pore size distribution can be obtained in some cases 

by using a mixture of toluene (good solvent, inducing micropores) and PDMS (polymeric porogen, 

inducing macropores) for a bead composed of DVB alone. Although it should be against expectations 

that from a single porogen the combination of high surface area and high pore volume could be 

reached, Li et al. [21] found out that polyDVB particles exhibit a surface area equal to 720 m2/g, 

together with a very high pore volume of 68%, when prepared in the presence of 1-chlorodecane 

alone, which is a nonsolvent for polyDVB. However, the authors were unable to explain this 

unexpected behavior. 

An important problem of using a nonsolvent as the porogen is the possibility of the formation of a 

dense and often impermeable polymer layer on the surface of particles, although the internal 

structure is highly porous. In literature, this nonporous layer is referred to as either a "skin" [22-25] 
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or "shell" [26-27]. As mentioned before, a nonsolvent should possess a solubility parameter value 

that significantly differs from that of the polymer. However, when the difference in the solubility 

parameter is too large, "skin" formation is promoted, as reported in detail by Kumacheva et al. [28]. 

In their case, the difference in the solubility parameter was increasing by a decreasing polarity of 

porogen. Since the continuous phase was water in their system, highly nonpolar porogens disliked to 

be present in the water/oil interface due to the high interfacial tension. Thus, the interface became 

rich in monomer and polymer, resulting in a "skin" layer, while the interior was porous.  On the 

other hand, more polar solvents resulted in "skin"-free macroporous particles. Moreover, they 

provided an excellent solution to this problem by decreasing the interfacial tension without changing 

the highly nonpolar porogen. They lowered the interfacial tension by decreasing the polarity of the 

continuous aqueous phase or by adding a specific surfactant next to a polymeric stabilizer. However, 

it should be noted that this solution avoiding the skin formation may not be valid for every 

monomer/continuous phase system since the interfacial tension and solubility parameters may not 

follow the same trend. Although the technique utilized was microfluidics in this case [28], these 

results should also be applicable to suspension polymerization. The similarities between the two 

techniques will be discussed further on in the microfluidics section.  

2.2.4. Using Water as the Porogen 

Unlike a nonsolvent, solvent or a polymer, a porogen that is even immiscible with the initial 

monomer mixture can also be utilized to obtain porous particles. The most common example of such 

strategy is using water as the porogen. A water-in-oil-in-water (W/O/W) double emulsion is formed 

by adding oil soluble surfactants to the discrete monomer (oil) phase. Water is absorbed from the 

continuous water phase by the monomer droplets as a result of the stabilizing effect of the oil 

soluble surfactants [29]. Although porogen water droplets should have been separated initially 

inside the monomer phase, highly porous polymer beads with pore sizes around 80 nm and surface 

area values reaching up to 200 m2/g (proving the interconnectivity of pores) are obtained after 

polymerization. The same authors also published that a combination of surfactants can produce 

hollow porous beads (Fig. 3(B)) [30]. Although produced by a uniquely facile template-free approach, 

such hollow porous particles were not further discussed in their paper [30]. However, the same 

authors published later that hollow porous particles can also be obtained via addition of a W/O 

emulsion (the oil being the monomer phase) into a second water phase [31], thanks to ripening. 
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Fig. 3. (A) Porous and (B) hollow porous particles prepared by aqueous suspension polymerization, 
utilizing water as the porogen with the aid of various monomer soluble surfactants. Monomer 
soluble surfactants captured water from the continuous phase, resulting in the hollow and/or 
porous structure. The hollow core only formed with specific surfactants. Scale bars indicate 10 µm. 
Adapted from [30] with permission. Copyright 2007 Elsevier. 

 

2.2.5. HIPE Technique 

The highest amount of a liquid dispersed as monodisperse spherical droplets in another liquid can be 

74 vol% [32]. However, by a careful choice of the surfactant and dropwise addition of the internal 

phase over a vigorously stirred continuous phase (including the surfactant), high internal phase 

emulsions (HIPE) can be obtained with internal phase volumes exceeding 99% [33] because of the 

nonspherical packing of internal phase droplets [32]. When the continuous phase is polymerized, a 

poly(HIPE) is obtained, i.e. a very light, highly porous material with fully interconnected pores 

exceeding 10  µm in diameter [32-33]. Particulate poly(HIPE) with regular shapes has been a 

challenge for scientists due to the difficulties faced during forming HIPE droplets in a second 

continuous phase (double emulsion). Nevertheless there are few reports in patents [34-35] and in 

open literature [36-39] of polymerizing HIPE formulations in a suspension media yielding 

polydisperse beads with ultra large pore sizes (Fig. 4(A)). Deleuze et al. reported [36] a surface area 

value of 124 m2/g when they added 20% petroleum ether (a volatile porogen) to the monomer 

phase of the HIPE whereas the surface area was 20 m2/g in the absence of petroleum ether. This is 

another example where a combination of porogens is utilized to obtain different pore sizes. Based 

on the W/O/W double emulsion approach, Nelissen et al. [40] prepared water absorbed PS beads. 

The obtained beads were heated above their glass transition temperature in order to use the 

entrapped water molecules as blowing agents, which resulted in pores reaching up to 100 µm (Fig. 

4(B)). In this example water replaces the traditional blowing agent pentane [41], which results in 

avoiding the use of volatile organic compounds.  
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Fig. 4. The surface of (A) a poly(HIPE) bead [36] and (B) a water expanded PS bead [40] both 
prepared by suspension polymerization using water as the porogen. While the largest pore is only 
~5 µm for the poly(HIPE) bead, the water expanded PS bead possesses pores as large as 100 µm. 
Adapted from [36, 40] with permission. Copyright 2002 Elsevier; Copyright 1999 Elsevier. 

 

2.2.6. Using Solids as the Porogen 

Another type of immiscible porogens can be a solid instead of water, which results in the realization 

of solid-in-oil-in-water (S/O/W) dispersions. Pores are formed after the removal of solid particles 

embedded on polymer beads via washing or etching. Washing is also needed to reveal the porous 

structure in the previous cases where a liquid porogen is used, with the exception of volatile 

solvents, which can be removed via evaporation. As an example for S/O/W dispersion, Wu et.al. 

dispersed ∼0.8 µm CaCO3 particles in a EGDMA-GMA monomer mixture and suspension polymerized 

this S/O dispersion in water [42]. After removal of CaCO3 via HCl etching, the beads exhibited pores 

as large as 10 µm and a surface area value of 79 m2/g. In another report [43], a mixture of solid 

(CaCO3), nonsolvent (dodecanol) and good solvent (cyclohexanol) porogens are utilized all together 

for the suspension polymerization of the same EGDMA-GMA monomer mixture. Together with a 

total surface area of 91 m2/g, the formation of a bimodal distribution of micropores (10-90 nm) and 

macropores (180-4000 nm) is observed. We would like to stress here that, in principle, also gas 

forming reactive porogens can be used to obtain larger pores but no example was reported to the 

best of our knowledge.  

For the above described strategies on pore formation in suspension polymerization, the continuous 

phase was water in every single case. Water soluble monomers are also suspension polymerized but 

in that case the continuous phase is an organic solvent. Thus the overall medium should be a W/O 

emulsion, which is also referred to as an inverse suspension polymerization. The aforementioned 

porogen types are applicable (at least theoretically) to inverse suspension polymerization under the 

condition that the porogen is chosen accordingly [44-46].  



13 

 

For the above mentioned pore formation techniques, the comparison of the size of the particles 

follows the trend of their pore sizes. Whereas porous beads in the size range of a few microns [2] 

can be prepared via syneresis techniques, poly(HIPE) beads need to be over 100 µm [36] and water 

expanded polystyrene beads were prepared with a diameter range above millimeter scale [40] and 

pores as large as 100 µm. As a rule of thumb, particles prepared via suspension polymerization (in 

the range of 5-2000 µm [3]) are always larger than those prepared via other techniques. However, it 

is possible to provide smaller diameters via microsuspension polymerization. In this case, after the 

ingredients are mixed, a high shear force such as ultrasonification is applied prior to the start of 

polymerization, forming finer monomer droplets [22, 47]. 

We would like to note that in suspension polymerization, every single monomer droplet behaves like 

a microreactor of a bulk polymerization if a porogen is absent. These droplets will become 

microreactors of a solution polymerization where a good solvent is added as porogen. Addition of a 

poor solvent will make the droplets microreactors for precipitation polymerization. In the case of 

HIPE, droplets can be regarded as microreactors of monolith polymerization.  

 

2.3. Precipitation and Dispersion Polymerizations: Homogeneous at the 

Start 
 

In contrast to all other techniques described in this review, dispersion and precipitation 

polymerizations start as completely homogeneous solutions. However, they are still classified as 

members of heterogeneous polymerizations since phase separation takes place in an early stage as a 

result of the polymerization. Although the two techniques have similar mechanisms, there are two 

main differences: 1) a stabilizer is used in dispersion polymerization but not in precipitation 

polymerization, 2) a crosslinker is necessary and used in large proportions in precipitation 

polymerization, while crosslinkers are most of the cases omitted in dispersion polymerization. As a 

result of the second reason, dispersion polymerization is mostly used for non-crosslinked, nonporous 

particle production. On the other hand, precipitation polymerization is more suitable for highly 

crosslinked and porous particles. The most important and common feature of the two techniques is 

the production of monodisperse particles in the range of 0.1-10 µm 

 

2.3.1. Precipitation Polymerization  

As depicted in Fig. 5(A), precipitation polymerization starts as a homogeneous solution of crosslinker 

and initiator in a medium composed of a near Θ-solvent (for the crosslinker) and porogen(s). The 

near Θ-solvent later becomes the continuous phase as the precipitation of particles starts. 

Precipitation polymerization requires a high amount of crosslinker and in many cases DVB is 

polymerized alone [48-49]. It should be noted that commercial DVB is technical, composed of either 

55% or 80% DVB with the rest being mostly ethyl styrene monomer. Methacrylate crosslinkers are 
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also polymerized via precipitation polymerization with a low percentage of added monomer [50-51]. 

As a result, precipitation polymerized particles are rich in remaining double bonds that can be 

efficiently utilized in post-functionalization [52] (see further functionalization section).  

 

Fig. 5. Schematic description of the stages of precipitation polymerization for porous particle 
production. (A) Initially, only crosslinker and initiator molecules are in the medium. (B) Oligomers 
and nuclei are being formed because of radical polymerization. (C) As the reaction continues, nuclei 
grow by adding monomers and oligomers from the medium. In reality, there is a swollen layer of 
oligomers around the nuclei. 

 

As the polymerization starts, oligomers and nuclei are being formed (Fig. 5(B)). Whereas the 

oligomers are still soluble in the medium, the nuclei precipitate resulting in a  heterogeneous 

mixture. The nuclei are swollen by porogen (shown as the yellow background) and the medium (the 

continuous phase) becomes less rich in porogen. Although no stabilizer is used, the nuclei are 

stabilized by a layer of oligomers that are swollen by the medium. The polymerization continues at 

the particle-continuous phase interface [53]. The nuclei do not overlap but only grow by adding fresh 

monomer and oligomers from the medium  (Fig. 5(C)). The porogen that is initially absorbed by the 

growing nuclei phase separates from the particle and forms the pores. As a result of the fact that the 

nuclei do not overlap, highly monodisperse particles, generally in the size range of 1-5 µm, are 

obtained [54]. Recently, monodisperse nanoparticles are also reported [50]. As one of the unique 

properties of this technique, particles grow constantly and the polymerization can be stopped when 

the desired particle size is reached.  

It has been reported earlier that, whereas a good solvent as the porogen gives only small pores 

(below 10nm) and thus very high surface area values (800 m2/g), a poor solvent results in larger 

pores and thus lower surface area values [48]. This theory seems to overlap with the ν-induced and 

χ-induced synereses, as explained in the previous section. However, a latest report on precipitation 

polymerization of DVB do not coincide with the initial results. In this paper, 1-decanol resulted in a 

surface area as high as 419 m2/g and lower pore sizes (2.7 nm), which were 29.8 m2/g and 5.9 nm 

respectively when toluene was used [55]. The effect of porogens on the structure and porous 
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character of the final beads prepared from DVB/vinylbenzyl chloride mixture can be observed from 

Fig. 6 [56].  

 

 

Fig. 6. Effect of the media on porosity of DVB/vinylbenzyl chloride (56/44) particles prepared via 
precipitation polymerization. (A) Acetonitrile/toluene 80/20, (B) acetonitrile/toluene/cyclohexanol 
70/15/15, (C) acetonitrile/toluene/dodecanol 70/15/15. Reproduced from [56] with permission. 
Copyright 2008 Elsevier. 

 

Precipitation polymerization needs highly diluted monomer concentrations (2-5%), i.e. a high 

amount of continuous phase, which is a drawback of this method. However, Stöver et al. reported 

the repeated usage of the continuous phase for subsequent precipitation polymerizations while still 

obtaining monodisperse particles [48]. The polymerization is rather slow due to the high monomer 

dilution in comparison to suspension polymerization, where high local monomer concentrations are 

achieved. It is also important to note that only gentle stirring or shaking is applied to avoid 

coagulation.   

Polymerization of DVB in an acetonitrile/toluene mixture together with AIBN [48, 57] could be 

considered as the basic procedure for precipitation polymerization. Acetonitrile is the mostly used 

continuous phase in precipitation polymerization, next to the other solvents [58-59]. Toluene is the 

porogen, which can form up to 40% of the continuous phase [48]. In addition, depending on the 

crosslinker and monomer, the porogen can be a solvent, a non solvent or even a polymer [55-56]. 

Whereas the thermal initiation is the most applied route, there is a recent report about ultraviolet 

(UV) initiated precipitation polymerization [55] to obtain porous particles.  

2.3.2. Dispersion Polymerization  

Dispersion polymerization is generally used to obtain non-crosslinked and nonporous particles [60-

63]. As seen from Fig. 7(A), a monomer, initiator, porogen and a polymeric stabilizer is dissolved 

generally in an alcohol with mechanical stirring, such as in the case of the suspension polymerization 

setup (Fig. 1). With the start of heating, the initiator decomposes to form radicals and oligomers 

start to form, which are still soluble in the media (Fig. 7(B)). This homogeneous mixture becomes 

cloudy as the oligomers grow and precipitate, forming the nuclei of the final particles (Fig. 7(C)). The 

nuclei are stabilized by the polymeric stabilizer added in the beginning of the reaction. If no external 

intervention is made at this stage, such as addition of other species, nuclei grow by capturing new 

monomers and oligomers/polymers from the medium. The crosslinker should be added only after 
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the nucleation stage (Fig. 7(C)), which corresponds to less than 1% monomer conversion [64]. By the 

addition of crosslinker, porogen swollen particles continue to grow and crosslink (Fig. 7(D)), resulting 

in porous particles.   

 

 

Fig. 7. Schematic description of the stages of dispersion polymerization. A) Initially monomer, 
initiator, porogen and polymeric stabilizer are dissolved in the medium. B) Oligomers are forming, 
which are still soluble in the medium. C) Nucleation stage at 1% monomer conversion. As their 
length increase, polymer chains precipitate and form the nuclei that are stabilized by the polymeric 
stabilizer. At this stage, a crosslinker may be added if desired. D) Particles grow by capturing 
monomers and oligomers from the medium.  

 

The reason that the crosslinker should be introduced later is well explained by Winnik et al.[64] They 

reported that crosslinkers and polar monomers significantly influence the particle growth and the 

monodispersity may be lost in such cases. The most important stage for the monodispersity of final 

particles was found to be the nucleation step. After the nucleation, crosslinker and polar monomers 

can be added and perfectly monodisperse crosslinked particles are obtained. 

The medium is an alcohol such as EtOH and MeOH in dispersion polymerization procedures, 

although other possibilities have been recently reported [61]. In a report on the preparation of 

porous poly (methacrylic acid) particles via this route [65], 11 wt% of methacrylic acid was 

polymerized in a chloroform/EtOH mixture (∼5/1). The obtained porous particles were then 

crosslinked [65-66]. The monomer concentration is much higher in the medium compared to the 

precipitation polymerization procedures because of the high amount (6.5 wt%) of polymeric 

stabilizer used.   

 

2.4. Multistage Heterogeneous Polymerizations 
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2.4.1. Seeded Suspension Polymerization 

Ugelstad et al. [67] discovered in the late 70’s that polymer particles can absorb slightly hydrophilic 

molecules up to 100 times of their own volume and form stable emulsions. An important 

observation was that the final droplet size and size distribution were completely determined by the 

initial polymer particles, the so called "seeds". A polymerization in the second stage yields much 

larger monodisperse latexes provided that the seeds are monodisperse. This is the basis of so called 

seeded (also called templated) suspension polymerizations today.  

Seeds need not only to be monodisperse but also non-crosslinked to allow swelling in the second 

stage. (Soap free) emulsion and dispersion polymerizations are readily utilized to obtain seeds. Since 

emulsion prepared seeds are generally in the submicron range, they are suitable for obtaining 

particles up to 10 µm in diameter after the suspension polymerization stage [68-69]. On the other 

hand, dispersion polymerized seeds can be in the range of 1-20 µm, thus 10-200 µm particles can be 

obtained in the suspension polymerization stage [70-79]. Note that a volume enlargement of 106 

times would be needed for a 1 µm seed to be swollen by the new monomer(s) to 100 µm.  

 

 

Fig. 8. Schematic description of seeded suspension polymerization for obtaining porous particles. In 

the first stage, submicron seeds are prepared from styrene by emulsion or dispersion 

polymerization. In the second stage, that is being suspension polymerization, seeds are first swollen 

with an activator (i.e. dibutyl phthalate) and then swollen with new monomer, crosslinker, initiator 

and porogens . Polymerization results in larger, porous and monodisperse particles. 

 

The approach of Fréchet et al. [12] is a good example of seeded suspension polymerization as 

depicted in Fig. 8. Polystyrene seeds with a diameter of 560 nm were first prepared by emulsifier-

free emulsion polymerization. In the second stage, these seeds are first swollen by dibutyl phthalate 

in an aqueous emulsion, which is necessary to "activate" [2] the seeds prior to swelling them with 

the monomers. The amount of activator used was 6-7 times higher in volume compared to the 

seeds. Finally, these activated seeds were added to a new aqueous emulsion where the dispersed 

phase consisted of propargyl acrylate and EGDMA as monomers, a mixture of 
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cyclohexanol/dodecanol (9/1) as solvent and nonsolvent porogens respectively and AIBN as the 

thermal initiator. The aqueous phase contained PVA as the stabilizer, SDS as the surfactant and 

NaNO2 as the radical trapping species. At the end of this successful second suspension 

polymerization stage,  5 µm monodisperse functional (alkyne groups) beads were obtained with 

surface area values reaching up to 243 m2/g and a pore size of 10 nm. In this example, a volume 

enlargement of 794 times is achieved without sacrificing the monodispersity. In addition, it is also 

reported by Margel et al. [80-81] that porous particles can be prepared by just dissolving the PS 

seeds after the second stage. In this case the swelling medium included DVB however excluded the 

use of any porogen. A surface area of 630 m2/g is obtained since PS chains distributed in the DVB 

network acted as a polymeric porogen.  

The power of seeded suspension polymerization is that the advantages of two techniques can be 

combined, i.e. the monodispersity of emulsion/dispersion polymerizations with porosity-

functionality-larger size of suspension polymerization. On the other hand, this is ultimately a multi-

step approach and thus needs the knowledge and experience of the two applied polymerization 

techniques in order to obtain the desired particles.  

2.4.2. Supraballs: Seed Assembly 

Supraballs are spherical colloidal crystals obtained via assembly of monodisperse seeds (0.1-2 µm 

latex) into larger spheres [82-83] (Fig. 9). To achieve those structures, droplets of concentrated seed 

suspensions are generally formed in a continuous phase [84-85] or even on a superhydrophobic 

surface [86]. Drying (often spontaneous) yields unique assemblies of the latex. Spherical [87], 

dimpled [85], hollow [84], torroidal [88], eyeball [89] and patchy [88] colloidal crystal particles were 

prepared by the pioneering work of Velev et. al. It should be noted that these supraballs are unique 

in the sense that the globular inner structure and pores are perfectly monodisperse, which is not the 

case for the other beads prepared by any other method. This "globular monodispersity" may lead to 

interesting performances such as in chromatography.  

 

Fig. 9. SEM images of supraballs obtained via nano to micro assembly. Seeds are hexagonally packed 
resulting in uniform pores and uniform inner structure. Adapted from [83] with permission. 
Copyright 2009 Elsevier. 
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The above mentioned examples of supraballs are assembled only via drying, which makes them 

unstable against physical manipulation or solvents. In this respect, Weitz et. al. reported the 

preparation of colloisodomes [90]. PS seeds were assembled in the water/oil  interface and merged 

by sintering at 105 °C for 5 min. The obtained colloidosomes were hollow since a low concentration 

of seeds were utilized. The size of the pores on the colloisodome shell were controlled by sintering 

time and the size of the seeds used. The authors also showed that these colloidosomes selectively 

allow other particles to enter the core if they are smaller than the pores. These colloisodomes were 

physically stable but not stable against organic solvents. Later, Sherrington et al. [91] managed to 

assemble 200 nm styrene/MAA latex seeds into aggregates in the second stage where toluene is the 

continuous phase (with an added surfactant). The water phase inside the seed aggregates was 

removed at 105 °C by Dean-Stark distillation, which yielded melt fusion of the nano-seeds into ∼30 

µm polydisperse supraballs. Although the seeds were non-crosslinked and no chemical reagent and 

monomer were added in the second stage, the obtained supraballs were stable, both mechanically 

and towards several solvents. This was explained by the authors as a result of a crosslinking process 

taking place during the heat treatment. Surface area values of 9-16 m2/g and pore size values of 3-12 

nm have been reported.  

In yet another contribution [92], the Sherrington group also managed to assemble 1 µm particles 

into larger supraballs where the possession of –OH groups was necessary for the seeds. The authors 

have taken the advantage of the reactive groups of the seeds to further crosslink the supraballs to 

improve their stability. Undesired inter-supraball crosslinking also occurred. Lower surface area 

values and comparable pore sizes are obtained in this second study. A recent paper from another 

group [83] applied the same approach, together with the help of an ink-jet apparatus and obtained 

rather monodisperse and smaller supraballs with regular spherical shapes (Fig. 9). The seeds used 

were crosslinked in this study.  

2.4.3. Davankov Approach: Hypercroslinking the Phenyl Rings 

Another approach that will be briefly discussed in this section is called the Davankov approach [93]. 

This approach is based on the formation of extensive post-crosslinking between the phenyl groups 

on the PS resin via Friedel-Crafts reactions [94].A bis-halide such as dichloroethane is needed 

together with the catalyst FeCl3 to form the bridges between the phenyl groups of pure PS resins [95] 

and FeCl3 alone is sufficient for post-crosslinking PS resins containing 4-(chloromethyl)styrene 

comonomer [96]. The first stage can be any heterogeneous polymerization such as emulsion [97], 

suspension [98] or precipitation polymerization [99] while the second stage involves the Friedel-

Crafts hypercrosslinking where the seeds are simply swollen in dichloroethane and heated in the 

presence of FeCl3. These hypercrosslinked resins are commercially available from various 

manufacturers [94] because of their high surface area values reaching up to 2000 m2/g [100], 

resulting in very different sorption characteristics [101]. In the case of emulsion polymerized seeds 

[97], monodisperse beads as small as ∼500 nm with a surface area of 1200 m2/g  are successfully 

prepared, which has never been achieved via another approach to the best of our knowledge. 

Although vinylpyridine-based resins were also hypercrosslinked [102] and post-modification of 

hypercrosslinked PS resins is possible [103], to our knowledge this method is only applicable to 

aromatic resins, PS being the prime example. 
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2.4.4. Other Multistage Heterogeneous Polymerization Approaches 

This section will be finalized by discussing few other individual multistage approaches before an 

overview is given at the end. The first example is a triple dispersion polymerization for the 

preparation of "golf ball-like" particles. Okubo et al. [104-105] first prepared PS seeds and then 

enlarged these seeds by sodium styrene sulphonate monomer in the second dispersion 

polymerization stage. As discussed previously in dispersion polymerization section, polar monomers 

may result in polydisperse particles in dispersion polymerization if present at the initial mixture. 

Finally, these new hydrophilic seeds were swollen with butyl methacrylate and dodecane in the third 

dispersion polymerization stage and polymerized.  Removal of the dodecane resulted in dimples but 

not interconnected pores (Fig. 10).  

 

 

Fig. 10. "Golf ball-like" particles by Okubo et al. via a triple stage dispersion polymerization approach. 
Dodecane used in the last stage resulted in the dimples instead of an interconnected porous 
network. (a,b) SEM and (c-f) TEM images of microtomed beads. Image e and f are the enlargement 
of white rectangles on image c and d, respectively. Reproduced from [105] with permission. 
Copyright 2008 American Chemical Society. 

 

Another triple-stage heterogeneous polymerization approach to obtain "walnut-like multihollow" 

particles is proposed by Ge et al. [106]. The authors first prepared PS seeds by dispersion 

polymerization and used these seeds in a following suspension polymerization stage to form ∼3 µm 

monodisperse crosslinked but still nonporous styrene-DVB particles. After sulfonation, these 

crosslinked seeds are swollen by the styrene monomer, again in water without the addition of any 
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stabilizer, surfactant, initiator or porogen. A final exposure to γ-ray irradiation for polymerization 

resulted in walnut-like multihollow particles. Such as the previously mentioned “golf balls-like” 

particles, these ones also lack a truly porous structure, where pores are interconnected. However, 

both structures may be inspiration points for the development of novel porous particles with 

complex structures in the future.  

 

 

Fig. 11. SEM (A, B, D, E) and TEM (C, F) images of hollow core, porous shell (“cage-like”) particles 
prepared by a combination of Pickering emulsion approach and γ-ray polymerization of additional 
monomer that are swelling these seeds (see Fig. 12 for the mechanism). (A-C) PMMA, (D-F) 
poly(vinylacetate). Adapted from [107] with permission. Copyright 2005 American Chemical Society. 

 

The final example of this section is the “cage-like” particles that are basically hollow particles 

possessing huge pores (Fig. 11), also reported by Ge et al. [107-109]. The Pickering emulsion route 

was utilized where emulsions are stabilized by particles instead of surfactants [110] similar to the 

colloisodomes that have been previously explained. They first prepared polydisperse sulfonated PS 

particles and used these particles to stabilize an O/W emulsion where the oil phase is either methyl 

methacrylate (MMA) or vinyl acetate. A stable emulsion is formed after stirring owing to the 

sulfonated PS particles, which covered the surface of the monomer droplets (Fig. 12). These PS 

particles were allowed to swell the monomer phase, which is the reason for the hollow core 

formation. Shrinkage of the new polymer phase via γ-ray polymerization resulted in the removal of 

the seeds. Consequently, the space initially occupied by the seeds, turned into huge pores of the 

final porous hollow particles, which are referred to as cage-like particles by the authors.  
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Fig. 12. Mechanism of the formation of ”cage-like” particles shown in Fig. 11. Adapted from [107] 
with permission. Copyright 2005 American Chemical Society. 

 

It was our aim to highlight in this section the power of multistage heterogeneous polymerizations. 

By a careful selection and control of the different stages of the polymerization, it is possible to 

achieve polymer particles with any desired size, monodispersity, porosity, pore size distribution, 

hollowness and functionality. On the other hand, moving away from the spherical shape still does 

not seem to be achievable. Fig. 13 provides an overview of the multistage approaches discussed 

above. We believe that there are still opportunities for further developments, especially in the 

second stage.   
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Fig. 13. Overview of multistage approaches with the monomer styrene as an example. In the first 
stage (yellow background), monodisperse submicron seeds are prepared. The second stage (blue 
background) can be either suspension polymerization to obtain larger and porous particles, or 
assembly to obtain supraballs, or hypercrosslinking to obtain very high surface areas or a 
combination of assembly and polymerization (Ge approach) to obtain cage-like particles.  

 

2.5. Membrane/Microchannel Emulsification: Controlling the Droplet 

Formation 
 

It was discussed in the previous section that seeded suspension polymerization leads to 

monodisperse particles provided that the seeds are monodisperse. Thus, it is clear that the control 

of the final size dispersity in a suspension polymerization is merely connected to controlling the 

initial droplet size distribution. As a matter of fact, the invention of the Shirasu Porous Glass (SPG) 

with uniform pore sizes, leading to uniform emulsions, paved the way for controlled suspension 

polymerizations [111].  

The name membrane emulsification is appropriate for such a technique and low CV (around 10%) 

porous beads with diameters ranging from 1 to 100 µm can be easily prepared in a single stage 

avoiding seed preparation and swelling steps. However, particles prepared via SPG are generally not 
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monodisperse since the CV of the SPG pores varies between 10-17% (Fig. 14(B)) [112]. Later, other 

ceramic membranes have also been invented next to SPG [113-114]. Moreover, researchers 

developed microchannel emulsification for which every hole (channel) for discrete phase droplet 

formation is custom made. Silicon [115-118], metal [119-120] and polymer [121-122] based highly 

uniform microchannels have been used for monodisperse (CV <5%) particle manufacture [123]. The 

difference between membrane and microchannel emulsification is the fabrication of the 

emulsification material, which in turn affects the pore size distribution. Microchannels (Fig. 14(C)) 

are manmade uniform holes on a suitable material while a membrane (Fig. 14(B)) is a material 

where the production method is controlled in a way to reduce the polydispersity of the pores. In this 

review, the two techniques have been combined in the same section since they are basically the 

same. However, we kept the given names to indicate the difference, especially with regard to 

monodispersity and cost. Microchannels offer highly monodisperse particles but need to be custom-

made, which can be expensive and may require a lot of experience.   

 

 

Fig. 14. (A) Representation of membrane/microchannel emulsification process  [124]. The monomer 
phase (discontinuous phase) is pumped from the bottom through a microchannel network or a 
membrane towards the continuous phase. An agitator helps the droplets to pinch off. These 
monodisperse droplets are then polymerized to obtain particles . (B) SEM image of a SPG membrane 
with a mean pore size of 15 µm [112], (C) circular pore microchannel network [124]. Adapted from 
[112, 124] with permission. Copyright 2007 Elsevier; Copyright 2009 Elsevier.  

 

Particle production using membrane/microchannel emulsification is depicted in Fig. 14(A). A discrete 

monomer phase is pumped through the membrane towards the continuous phase to form uniform 

droplets to be polymerized. A representative case from a published report is as follows: The discrete 

phase consisted of GMA, DVB, benzoyl peroxide and a mixture of solvating and non-solvating 

porogens while the continuous phase was an aqueous solution of NaNO2  and emulsion stabilizers 

[125]. This recipe can be transferred exactly to a basic suspension polymerization reactor to obtain 

porous particles. A propeller helps the monomer droplets to pinch off from the membrane surface. 
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However, in literature many reactor designs are proposed that do not necessitate the usage of a 

propeller or a stirring bar [120]. Although thermal initiation is utilized in this report [125], 

photopolymerization is mostly applied [126] in continuous flow membrane/microchannel 

emulsification reactors.   

Most of the membranes and microchannels are hydrophilic such as SPG [123]. The nature 

(hydrophilic or hydrophobic) of the membrane/microchannel is quite important with regard to the 

quality of the emulsions in terms of their size dispersity. Emulsions prepared by SPG (hydrophilic) 

from styrenic monomers (hydrophobic) are more uniform compared to the ones prepared from 

more hydrophilic monomers such as acrylates, which will wet the membrane. This drawback has 

been overcome by an approach [127-128] that is very similar to Ugelstad’s seed swelling method 

[67] discussed in the previous section. Since the obtained emulsions from methacrylate monomers 

(hydrophilic) were not sufficiently monodisperse by using SPG (hydrophilic) alone, hydrophobic 

monodisperse seed droplets were prepared by SPG first [127]. In this report by Ma et al., uniform 

SPG emulsified seed droplets were composed of toluene, EGDMA, hexadecane and benzoyl peroxide 

while the non-uniform emulsion (prepared by ultrasonic emulsification) was a mixture of 2-

hydroxyethyl methacrylate (HEMA), EGDMA and hexanol (Fig. 15). Via the continuous water phase, 

these super-hydrophobic droplets absorbed hydrophilic methacrylate monomers (HEMA and 

porogen hexanol) in the swelling step. Finally, thermal treatment allowed them to obtain rather 

monodisperse poly(HEMA) beads with varying porous nature.  

 

 

Fig. 15. Seed emulsion swelling method proposed to prepare monodisperse beads containing HEMA 
monomer. Reproduced from [127] with permission. Copyright 2008 American Chemical Society. 

A report from Gong et al. [129] further demonstrated the importance of the hydrophobicity of the 

monomer phase by studying the effect of the porogen nature. In a study with 6 different porogens, it 

has been shown that the CV of DVB emulsions can be reduced from 23.7 to 8.8% when 

tetrahydrofuran (THF) and heptane were used respectively. It has also been shown in the same 

report that the total pore volumes can be doubled and specific surface areas can be significantly 

increased (from 481 to 987 m2/g) by hypercrosslinking the obtained beads via the Davankov 

approach, which was discussed earlier. In another paper by Ma et al. [130] the use of porogens such 

as heptane, paraffin oil, hexadecane and lauryl alcohol for DVB was reported: from these solvents, 

not only porous but also hollow particles were obtained.  
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2.6. Microfluidics: The Ultimate Control 
 

 

An ultimate control of droplet formation is achieved by the youngest particle production technique, 

called microfluidics. This technique can be considered as the miniaturized version of microchannel 

emulsification where flow plays a crucial role. Monomer droplets of uniform size are pinched off 

from an orifice that is generally located in the middle of a flowing continuous phase (see Fig. 16). 

Spherical particles with CV below 2% can readily be produced by various microfluidic setups [131-

135]. It is the elaborate chip design that allowed researchers not only to miniaturize microchannel 

emulsification reactors and prepare narrowly monodisperse spherical beads but also to achieve 

unprecedented control over structure and shape of particles. This unique capability of control 

resulted in the realization of perfectly controlled multiple emulsions [136-145], Janus particles [146-

156], regular nonspherical shapes [157-166] and even gas bubbles [167-171], almost all of which 

were impossible to achieve before.  

2.6.1. Types of Microfluidic Devices 

It was the introduction of a soft lithography technique for the design of PDMS devices by Whitesides  

in the late 90’s [172-173] that popularized the studying behavior of fluids at laminar flow in fine 

channel dimensions, which is referred to as microfluidics today. Since then, PDMS based chips 

became the most popular devices, also for microfluidic particle production. This technique is 

basically based on consecutive steps of molding, casting and curing steps, which is out of the scope 

of this review. Soft lithography allows an easy way to manufacture an unlimited number of 2D 

device designs including T-junction [174], co-flow [153] and flow-focusing [110, 175] geometries (Fig. 

16). Multiple emulsification points [137, 140] to obtain multiple emulsions can also be easily 

fabricated. However, PDMS is not compatible with several organic solvents, mainly due to swelling 

[176]. The most important alternative to PDMS based microfluidic devices is the assembled glass 

capillaries introduced by Weitz et al. [143, 177-178]. In this approach, chemical and solvent resistant 

glass capillary tubes are fitted in each other to form truly 3D microfluidic geometries including co-

flow [179] and flow-focusing [180] (Fig 16). Droplets, hence particles, smaller than the orifice can be 

fabricated in a flow-focusing glass capillary device compared to a flow-focusing PDMS device (Fig. 

16). However, Weitz-type glass capillary device preparation can be tedious and requires expertise. 

Recently, Weitz et al. proposed a route to coat inner walls of PDMS devices with glass [181-182], 

thereby merging the easiness of soft lithography with the inertness of glass. Other studies exist in 

which pure glass [183] or organic polymers [184-186] are used instead of PDMS for the chip 

manufacture.  
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Fig. 16. T-junction, co-flow and flow-focusing geometries for PDMS and glass capillary microfluidic 
devices for comparison. The lighter liquid is the monomer phase while the darker one is the 
continuous (cont.) phase. Both phases are pumped at constant rates by the use of syringe pumps. 
Largest arrows point the direction of total flow and droplets. Capillary device graphics are adapted 
from [178] with permission. Copyright 2007 Materials Research Society. 

 

In connection to these two mainstream microfluidic devices, a few other setups are also drawing the 

attention. The first one is the so called ‘simple’ microfluidic device [187-188] where the 

microchannel is as simple as a commercial transparent polymer tubing and the discrete phase orifice 

is a blunt needle punched into this tubing. Syringes, syringe pumps and a UV source are also needed 

like in the case of PDMS and glass capillary setups. In this device, chip preparation is avoided and 

even highly monodisperse double emulsions [189] can be prepared together with particles [190]. 

Later, Du Prez et al. reported [191] that the bending of the discrete phase needle transformed the 

device from a T-junction to a co-flow geometry (Fig. 17(A)) and more reproducible results are 

obtained for a viscous aqueous phase emulsified into an oil phase. This simple device can perform as 

good as the PDMS and capillary based setups as soon as the blunt needle is well placed in the middle 

of the tubing. For this simplified setup, two main drawbacks are present. First, commercially 

available tubing is generally hydrophobic, which can be problematic in terms of wettability (see 

upcoming section for details) in case that mainstream hydrophobic monomers are used. Second, the 

smallest needle available has an internal diameter of 110 µm (32G). The smallest porous beads that 

we were able to prepare with such needle in the aforementioned simple microfluidic system were 

about 150 µm in diameter, which seems to be the limit for such device. Nevertheless, such simple 

setup is very attractive and nearly costless for researchers wishing to step into this research field.  
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Fig. 17. (A) Tubing-needle based microfluidic co-flow device [9]. Note the bent needle in the droplet 
formation inset of the schematic drawing. Droplets are pinched off from the tip of the needle by the 
carrier continuous phase flow and photochemically polymerized downstream the tubing. (B) The 
latter developed tubing-needle/capillary device. The needle or capillary are fixed by using a 
commercially available tee [192]. Smaller particles are obtained in this way due to the usage of 
capillaries. Adapted from [9, 192] with permission. Copyright 2009 American Chemical Society; 
Copyright 2008 Elsevier. 

 

Another co-flow device, similar to this simple setup, was reported by Serra et al. [192-193] utilizing a 

steel tee to fix the discrete phase needle (Fig. 17(B)). This design was important as it allowed further 

development by using  capillaries instead of the discrete phase needle [157, 160, 194-195]. 

Theoretically, monodisperse particles with few µmeters in diameter should be possible to achieve 

via this type of devices since down to 2 µm internal diameter capillaries are commercially available. 

Few other type of devices are also reported in the literature [196-198]. 

2.6.2. Droplet Formation in Microfluidic Channels 

The core of microfluidics is the droplet formation. To this extent, the dripping-jetting transition is of 

great importance for low CV particle production and satellite formation. The droplet formation 

mechanism in microfluidic emulsification will be discussed on a co-flow device (Fig. 16), which is the 

mostly utilized geometry in microfluidics. Dripping-jetting transition is generally explained by 

dimensionless numbers such as capillary, Weber and Reynolds numbers, for which we refer to other 

literature [179, 199-201]. In this review however, we would like to explain dripping-jetting transition 

by using parameters that are familiar to chemists, such as flow rates, polarity differences, viscosity, 

wettability and channel dimensions. In a co-flow microfluidic device (Fig. 16), the orifice of the 

dispersed phase is located in the middle of the surrounding continuous phase and the flow 

directions of either liquid phase are the same. As mentioned earlier, the continuous phase flows 

around the dispersed phase and provides the droplet breakup from the dispersed phase orifice. 

Droplet breakup can take place either in the dripping regime (Fig. 18 upper image) or jetting regime 

(Fig. 18 bottom image). The latter is characterized by the inner liquid forming a long thread before 



29 

 

breaking up into droplets. The dripping regime is desired for the formation of low CV spherical 

particles. However, the production of low CV [143] and smaller particles (compared to particles 

prepared in the dripping regime) is reported in the jetting regime and once the jet is stabilized [202], 

uniform fibers [158] and tubes [166] can be obtained. 

 

 

Fig. 18. Real time images of dripping (above) and jetting (below) regimes in a co-flow device [199]. 
The long thread of the inner phase is called the jet. Droplet break-up is often irregular in the jetting 
regime. Adapted from [199] with permission. Copyright 2004 Elsevier. 

 

In co-flow (Fig. 18) both the inner and the outer liquids are pressurized with constant flow rates, 

generally by the aid of syringe pumps. It is the immiscibility between the two liquids, hence the 

interfacial tension, that allows the discrete phase droplet to grow at the tip of the orifice. More inner 

liquid fills the droplet in the first stage, resulting in the growth of the droplet. Thus the growing 

droplet occupies more and more space from the available microchannel, hence the pressure of the 

surrounding outer liquid increases. By the time that a critical size for the droplet is reached, the 

pressure of the outer liquid overcomes the interfacial tension and forces the droplet to pinch off 

from the orifice, which is the second and the last stage of droplet formation in microfluidics.  

Flow rates are important in terms of the dripping-jetting transition. Indeed, when the flow rate of 

the outer liquid is too high (which means high pressure), it suppresses the proper droplet growth, so 

that the first stage is blocked. On the other hand, for too high flow rates of the inner liquid, this 

liquid adds more and more discrete phase into the forming jet and thus does not let the outer liquid 

to narrow the thread, resulting in the blockage of the second stage of the droplet formation. 

Consequently, there is a safe zone, the dripping regime, where both flow rates are low. Fischer et al. 

[199] showed this trend by plotting a graph (Fig. 18) showing the relationship between two flow 

rates and discussed about a ‘critical jetting velocity’ for the continuous phase where the jetting 

regime is reached above this velocity. It is important to note that the authors mentioned that this 

critical jetting velocity may slightly vary depending on the starting regime, which was also 

experienced by ourselves.   
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Fig. 19. Critical jetting velocity of the continuous phase as a function of the rate of discrete phase for 

an O/W emulsion in a co-flow microfluidic device. The plot is divided into 3 imaginary sections for 

this review. Optimum conditions are reached when both of the flow rates are low. Adapted from 

[199] with permission. Copyright 2004 Elsevier. 

 

As mentioned above, it is crucial to work in the dripping regime to form droplets with CV below 2%. 

However, low flow rates have certain issues that cannot be neglected. First of all, a low flow rate for 

the discrete phase logically means a lower droplet production rate, hence a lower particle 

production rate, which is the main drawback of microfluidics. On the other hand, an increase in the 

discrete phase flow rate will generally increase the size of the final particles, which may not be 

desired for the application. The continuous phase flow rate can be increased (without exceeding the 

critical jetting velocity) to keep the particle size lower, without decreasing the discrete phase flow 

rate. However, an increase in the continuous phase flow rate would result in a higher consumption 

of continuous phase liquid, and more importantly in a higher ratio of continuous phase over discrete 

phase droplets. This dilution is certainly problematic when more hydrophilic monomers are 

emulsified in water. This has been experienced in our research group with the observation of high 

losses of glycidyl methacrylate (GMA) into the continuous water phase. By taking these facts into 

consideration, the dripping-jetting transition figure from reference [199] was divided into 3 

imaginary parts for this review (Fig. 19): large droplets (red), optimum conditions (yellow) and a 

large amount of the continuous phase (red). 

Next to the flow rates, another important factor effecting dripping-jetting transition is the polarity of 

both phases. For an O/W emulsion, the effect of polarity can be very prominent for porous particles. 

Since it is the interfacial tension, hence the polarity difference between two phases, that allows 

droplet growth at the tip of the inner liquid orifice, an increase in polarity of the monomer phase will 

lead to smaller droplets and a smaller value of critical jetting velocity (undesired). We have often 
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observed that addition of non-solvating porogens, such as long-chain alcohols, to methacrylates 

significantly decreases the droplet size due to an increase in polarity. In other words, polar porogens 

narrow the polarity gap between the two phases, resulting in a drop of the critical jetting velocity. 

On the other hand, addition of a hydrophobic porogen such as hexadecane should increase the 

droplet size if desired. Finally, addition of salts to the continuous phase increases its ionic strength 

and thereby increases the polarity difference between the two phases, which then increases the 

droplet size and critical jetting velocity, i.e. salt-out effect [203].  

The last ‘internal’ factor affecting dripping-jetting transition discussed here will be the viscosity 

before switching to ‘external’ factors arising from the device itself. A highly viscous inner liquid 

would prefer jetting instead of dripping [199, 202] due to the viscous attraction of inner liquid 

molecules, thus suppressing the breakup. This behavior can also be explained by the stabilization of 

the interface between the two phases.  

As an example, stable jet pieces were formed by us instead of droplets due to the high viscosity of a 

discrete HIPE phase, when pressurized into the continuous carrier water phase [9]. The only solution 

to achieve spherical droplets in our case was found to be decreasing the viscosity of the HIPE phase. 

Some reports emphasized the effect of continuous phase viscosity on droplet formation [204], but 

others also figured out that it does not have a significant effect [205]. Viscosity is found to be playing 

a role [206] in the formation of undesired satellites too, which can be defined as the formation of 

much smaller droplets accompanying the larger monodisperse droplets [151, 153, 155, 207-209]. 

Kumacheva et al. reported for O/W emulsions that there are larger and narrower safe ranges (no 

satellite formation) of flow rate ratios for different viscosity values of oils emulsified [206]. It is also 

important to mention that the jetting regime is one of the main reasons of satellite formation [210]. 

However, a high viscosity of the jet can suppress satellite formation [211], again due to the viscous 

attraction. 

When considering the effect of the microfluidic device on droplet formation, two main factors will 

be encountered: channel dimensions and wettability. As in the case of membrane/microchannel 

emulsification, the continuous phase should preferably wet the channel walls for a proper droplet 

breakup. In the case of opposite wettability, the monomer phase may form a flowing thin layer on 

the channel walls and let the continuous phase flow in the middle. Since most monomers of interest 

are hydrophobic, O/W systems are considered and hydrophilic channels are needed.  

Two mainstream microfluidic devices differ on such issue. While Weitz-type glass capillary based 

devices are inherently hydrophilic, Whitesides-type PDMS devices are hydrophobic and generally 

treated prior to use [212], with a plasma [213] for instance, to change its wettability. In the case of 

W/O emulsions, the glass capillary device needs to be adapted which can be easily done via chemical 

treatment by silanes [214]. In terms of channel dimensions, the rule of thumb is ‘the smaller the 

better’, provided that the wettability is adjusted. Less amount of continuous phase will be needed 

for the same flow rate if the channel is narrower, which is important for monomer transfer and cost 

issues as discussed earlier. Wettability will be more prominent when miniaturizing the channel since 

the inner liquid droplets will become closer to the channel walls.  

A last issue to be discussed in this sub-section is the effect of the initiation on porosity. Although few 

exceptions exist [153], microfluidic particle synthesis is almost completely based on fast UV curing, 
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whereas the other manufacturing techniques mostly employ thermal initiation. Thermal initiation is 

much slower in terms of monomer conversion. Temperature also has an effect on the porosity [215], 

i.e. due to the change in solvating power of the porogen. Polymerization in UV initiated droplets is so 

fast that the phase separation process should be different compared to a thermally initiated 

polymerization. Moreover, although the temperature locally increases in a UV initiated droplet due 

to the exothermic polymerization [216], this temperature should not reach 60-70 °C, which is 

typically the temperature used in suspension polymerization. This should theoretically influence the 

porous nature of the final particles since all the theory of porosity is mainly based on phase 

separation and solvating power of the porogen. To the best of our knowledge, the comparison 

between thermal and photo initiation in terms of porosity for a given system was not reported yet.  

2.6.3. Examples of Microfluidic Particle Production 

To start with the examples of porous particle production in microfluidics, we should state that the 

discussion on suspension polymerization in section 2.2. is the starting point to understand the pore 

formation in microfluidics. The reader will find out that most of the approaches mentioned in that 

section can be easily adopted to microfluidics since the latter can be considered as an advanced 

version of suspension polymerization. Moreover, microfluidics enables the formation of not only 

monodisperse particles but also of regular nonspherical porous particles, which is virtually 

impossible to achieve by suspension polymerization. Few approaches that are still not applied in a 

microfluidic channel will probably be exploited soon.   

To the best of our knowledge, the first porous polymer particles synthesized via microfluidics 

appeared in literature in 2005 [217]. By using a PDMS based flow-focusing device, Whitesides et al. 

prepared porous particles of ∼250 µm in diameter with a mean pore size of 0.90 µm. They 

photopolymerized tripropyleneglycol diacrylate mixed with 20% dioctyl phathalate (non-solvating 

porogen) in which the continuous carrier phase was 2% SDS in water. There were no further data 

about the surface area of the particles. Later, Kumacheva et al. studied the effect of 4 different 

phthalates as porogens for an EGDMA-GMA monomer mixture [218]. In the order from a solvating 

to a non-solvating phthalate, the pore size increased and the specific surface area decreased for the 

final particles (Table 1). CV values as low as 0.83 and particle diameters as low as 60 µm were 

reported. The authors also conducted suspension polymerization for the same mixtures and 

concluded that the particles prepared by microfluidics have a finer porous structure. In a following 

work, Kumacheva et al. [28] also reported that after scaling up, a skin layer was observed on a 

portion of beads when dioctyl phthalate and diisodecyl phthalate were used as porogens. The 

solution proposed was to change the continuous phase instead of the discrete phase, which has 

already been discussed in the suspension polymerization section of this review.  
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Table 1. Comparison of the effect of porogenic phthalates on EGDMA-GMA particles. From left to 

right, the alkyl chain of the phthalate increases, the solubility parameter decreases, so that the gap 

between solubility parameters of polymer and porogen increases. As a result, pores become larger 

but the total surface area decreases. The solubility parameter of the polymer was calculated to be 

24 (MPa)1/2 by the authors. Adapted from [218] with permission. Copyright 2008 American Chemical 

Society.    

Surface of 
the 
obtained 
bead 

    
Porogen Diethyl phthalate Diisobutyl 

phthalate 
Dioctyl phthalate Diisodecyl phthalate 

Solubility 
parameter 
(MPa)1/2 

 
20.5  

 
19.0 

 
16.2 

 
14.7 

 
Surface 
area m2/g 

 
28.7 

 
13.9 

 
6.6 

 
3.4 

 

In another study, Kumacheva et al. [216] reported the fabrication of beads with an acrylate-urethane 

interpenetrating network structure. The heat generated from the photopolymerization of the acrylic 

crosslinker triggered the formation of a urethane network. It has been shown that porous beads can 

be obtained when a lower amount of urethane precursors is used, thereby suggesting that the 

urethane chains act as a polymeric porogen for the acrylate. Zourob et al. [219] made use of a 

solvating porogen to obtain particles with the highest surface area prepared in a microfluidic 

reactor. A specific surface area of 201 m2/g with a mean pore size of 8.1 nm was realized upon 

addition of acetonitrile to the monomer mixture. A polycarbonate based chip was fabricated and 

different batches of beads in the size range from 10 to 120 µm with CV values below 2% were 

achieved. In another work [220] the effect of initiator on morphology of the beads was studied in a 

capillary device. While the continuous phase was water, the discrete phase was a mixture of HEMA 

and MMA monomers, as well as a porogen, 1-octanol. A macroporous morphology was only 

obtained when an oil soluble initiator is used. On the other hand, a water soluble UV initiator 

resulted in nonporous but hollow particles. The waterborne radicals started the polymerization from 

the periphery towards the core and 1-octanol stayed inside, forming the hollow core for the final 

beads.  

Very recently, Ravoo and Du Prez et al. also used 1-octanol as the porogen for preparing EGDMA-

GMA beads via tubing-needle based microfluidics. This porogen was found to be the most successful 

porogen among others in yielding skin-free macroporous particles [221]. More interestingly, these 

isotropic particles underwent a reactive “sandwich” microcontact printing procedure, which 

produced anisotropic beads with two different faces, referred to as Janus particles [222]. By using an 

epoxy-amine reaction, the authors managed to covalently print either two different fluorophores, or 

two different biomolecules, or a fluorophore and a batch of magnetic nanoparticles. In this 
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approach, monodispersity of the beads was crucial since sandwich microcontact printing 

necessitated a bead monolayer of uniform height. This type of porous Janus particles may have 

totally different applications [223-224] compared to the isotropic counterparts.  

In terms of using water instead of miscible porogens in microfluidics, we did not find a report using 

monomer soluble surfactants that capture water droplets from the continuous carrier phase (see 

section 2.2 for suspension polymerization example). Nevertheless, HIPE formulations were 

successfully pressurized in a tubing-needle microfluidic device and unique structures are obtained 

due to the uniformity of W/O/W double emulsions. Du Prez et al. [9] prepared W/O HIPE 

formulations and emulsified them once more in the second carrier aqueous phase via the simple 

microfluidic device in which the middle oil phase consisted of the monomers with an added photo 

initiator. Beads with a diameter of ∼400 µm were prepared (Fig. 20(A)), which are the smallest 

monodisperse poly(HIPE) beads reported so far. The obtained beads possess huge pores, as large as 

15 µm (Fig. 20(C)) reminiscent of the water droplets and a surface area of 16 m2/g suggesting the 

presence of mesopores. The authors also prepared a batch of "classical" macroporous beads from 

the same monomer mixture by using a cyclohexanol-dodecanol porogen mixture and obtained a 

surface area of 49 m2/g. Although exhibiting a three fold less surface area, poly(HIPE) beads 

surpassed the performance of classical beads in both steps of a "click"-"click" modification, which 

demonstrates the importance of huge pores (see section 4 for click chemistry).  

 

Fig. 20. Uniform poly(HIPE) beads and rods prepared via a tubing-needle microfluidic device. (A) 
Light microscopy image of beads showing monodispersity, (B) SEM image of a single poly(HIPE) 
bead, (C) SEM surface close-up of a poly(HIPE) bead. Pores are reaching up to 15 µm and all 
interconnected, (D) Poly(HIPE) rods prepared from a more viscous HIPE mixture. Adapted from [9] 
with permission. Copyright 2009 American Chemical Society. 

 

More strikingly was the production of poly(HIPE) rods of the same composition, except for the molar 

mass of the surfactant used in the HIPE preparation.  A higher molecular weight (MW) surfactant 

increased the viscosity and the inner HIPE phase formed a jet instead of drops in the microfluidic 

setup. However, jet breakup was proper thanks to the bent needle and as a result poly(HIPE) rods 

(Fig. 20(D)) were fabricated. This viscosity driven nonspherical particle production is also unique of 

its kind since all the other approaches make use of confined channel geometries forbidding the 

formed droplets to relax into a spherical geometry [217]. It is also worth to mention that 
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monodisperse poly(HIPE) beads were also obtained before but with a size of 2 mm by using a 

technique called sedimentation polymerization [225].  

An approach realized exclusively by microfluidics is using gas bubbles instead of any liquid or solid 

porogen. Stone et al. [226] were able to capture a controlled number of gas bubbles in an aqueous 

monomer phase, which was then emulsified in the carrier oil phase, thus forming G/W/O double 

emulsions. Upon solidification of the monomer phase, ∼20 µm sized beads with uniform spherical 

cavities were formed. It is worth to mention that the interior of the obtained beads were in closed-

cell foam structure (Fig. 21(A)), which designates the absence of interconnectivity between the 

cavities.  

 

Fig. 21. Gas foamed particles prepared by PDMS chip based microfluidics. The number of internal 
cavities can be controlled in both cases; (A) Hydrophilic polyacrylamide particles prepared from a 
G/W/O emulsion. Scale bar represents 200 µm [226], (B) Hydrophobic particles made from a mixture 
of commercial thiol-ene resin and gas forming H2O2. Scale bars represent 50 µm [227]. Adapted from 
[226-227] with permission. Copyright 2008 Wiley-VCH Verlag GmbH & Co. KGaA; Copyright 2009 
American Chemical Society. 

 

Another unique approach made use of a gas forming reactive porogen. Small droplets containing 

H2O2 molecules were captured in bigger oil phase monomer droplets flowing in a carrier aqueous 

phase [227]. UV exposure not only solidified the oil phase but also decomposed H2O2 molecules 

exhausting gas species, similar to the blowing agent strategy discussed in section 2.2. A controlled 

number of voids is reported, however interconnectivity within the porous structure is poor (Fig. 

21(B)) in comparison to the poly(HIPE) structures (Fig. 4(A) and Fig. 20). Nevertheless, we believe 

that these two reports should inspire researchers to exploit the usage of bubble capture or gas 

forming porogens to obtain very light polymer particles with well interconnected pore structure. The 

combination of a liquid porogen with bubble capture/formation may lead to porous particles 

possessing ultra large voids connected to each other through smaller pores in the future. Moreover, 
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selective functionalization of those pores depending on their size (see section 4.2) may pave the way 

to novel particles with unique properties.  

It is important to mention that the solidification was not only based on vinyl polymerization but also 

on a commercial photo-curable thiol-ene adhesive in the latter report [227]. The addition of thiyl 

radicals to alkene or alkyne bonds (thiol-ene and thiol-yne reactions, respectively) has recently 

gained considerable interest as novel metal-free ‘click’ reactions among polymer scientists [228-

230]. We recently exploited thiol-ene/yne chemistries for producing functional porous beads via 

microfluidics [10]. A tetra-thiol was mixed with a di-yne or a multi-ene and the final functional 

groups of the particles were provided by adding amino, hydroxyl or carboxylic compounds 

possessing ene, yne or thiol groups. A maximum surface area of 35.6 m2/g was reached. Together 

with size monodispersity, very uniform inner globules were obtained in one case where xylene was 

utilized in a thiol-yne formulation. 

As previously mentioned, the fabrication of nonspherical particles is one of the distinctive 

capabilities of microfluidics devices. Next to the poly(HIPE) rods [9], porous Janus fibers [231] are 

formed from a photocurable polyurethane resin in a co-flow PDMS chip by making use of a stabilized 

jet. The inner jet, composed of the polyurethane resin, reacted with the continuous aqueous phase, 

thereby releasing CO2 and forming pores only on one side of the fiber. The effect of the water was 

proven by replacing it with glycerol, which led to the formation of nonporous fibers. Another 

approach was based on gas bubble capture in a stable aqueous monomer jet to form hydrophilic 

polymer threads with ordered, embedded uniform gas bubbles [232]. Although fibers are out of the 

scope of this review, these approaches may inspire particle synthesis since jets can break up into 

particles once the parameters such as flow rates are adjusted.  

Microfluidics has also been utilized to form monodisperse supraballs, consisting of an assembly of 

smaller particles to form larger aggregates. As early as 2002, Pine et al. [233-235] reported the 

assembly of nanoscale spherical polymer beads into monodisperse (∼5 µm) supraballs (Fig. 22) using 

a co-flow PDMS chip and a tubing/pipette tip device. Similar results were reported by Gu et al. later 

on [236]. In both cases, nano-sized seed particles in aqueous suspension droplets were emulsified in 

oil and the assembly was realized via the removal of water. These approaches are actually multistage 

heterophase polymerizations in which the second stage is microfluidics. The first stages, namely 

seed preparation, were either dispersion [234] or emulsifier-free emulsion [235-236] 

polymerizations.  
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Fig. 22. (A) Monodisperse supraballs (spherical colloidal crystals) achieved via assembly of uniform 
nano-seeds in microfluidics; (B) single supraball exhibiting its nature. Adapted from [235] with 
permission. Copyright 2003 Elsevier. 

 

 

2.7. Other Techniques 
 

In addition to all aforementioned mainstream production methods, few other techniques deserve to 

be included in this section which were not yet truly exploited for porous particle production. The 

first one is called aerosol polymerization [237], which utilizes a gas, for instance air, as the 

continuous phase instead of a liquid. The interfacial tension between monomer droplets and the 

surrounding gas also renders the former spherical, such as in the case of rain droplets. Although this 

seems to be a very efficient method, reports are scarce in the open literature [238-241]. For 

instance, Ray et al. [241] described the photopolymerization of a commercial multiacrylate resin via 

aerosol polymerization in a recent paper. The resin was dissolved in EtOH and atomized, also 

referred as nebulized, by an aerosol generator. EtOH was quickly removed thanks to the N2 current 

and droplets were rapidly cured by UV. The particle size varied from 14 to 22 µm with CV values 

below 1%. All particles were half the size of the orifice diameter due to the removal of EtOH. This 

kind of atomization is a very well known technique and is commonly used in industry in spray drying 

processes used for drying laundry detergent for instance. Another paper described the usage of a 

simple airbrush for atomization [242].  

A similar technique to the aerosol polymerization is the electrospray method, where a high voltage is 

applied between the aerosol generator and the collection substrate. It is extensively used for the 

synthesis of non-crosslinked particles via precipitation of polymers from their solutions [243-247], 

and a limited number of reports describe monomer polymerization [248-250], all of which being 

about nonporous particles. Loscertales et al. [248] successfully electrified a coaxial jet composed of 

two immiscible liquids, the outer one being a commercial photo-polymerizable resin. Jet breakup 

resulted in monodisperse compound droplets and UV curing gave uniform submicron capsules with 

a liquid core. Like in the previous case, addition of a porogen to make porous particles needs to be 

exploited.  
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Another technique waiting to be used for porous particle production is called selective withdrawal 

[251-255]. Reported initially by Nagel et al. [251], the bottom liquid, which is going to be the 

dispersed phase, is withdrawn just from the interface by a tube where the continuous phase liquid is 

on top (Fig. 23). The formed liquid cone breaks up into regular droplets inside the microchannel. The 

setup looks very similar to microfluidics, however it does not necessitate any tedious device 

preparation. Nevertheless, few parameters such as viscosity and tube distance to the lower phase 

are of importance.  

 

Fig. 23. Selective withdrawal for particle production. Water on the bottom is the source of the 
dispersed phase and oil on top is the continuous phase. Withdrawing from the right distance forms 
uniform droplets of the bottom phase. Reproduced from [251] with permission. Copyright 2001 
American Association for the Advancement of Science. 

 

Finally, flow lithography techniques pioneered by Doyle [256-259] have drawn attention as a 

potential technique for porous particle production. Although generally being considered as a 

microfluidic technique, there are distinct differences. First of all, there is no immiscible carrier phase. 

The monomer mixture flows as a single homogenous phase in a PDMS channel and polymerization is 

done in seconds via UV light masked with a template (Fig. 24(A)). Polymerization near the PDMS 

channel is inhibited thanks to the high O2 permeability of PDMS [260], which avoids clogging of the 

channel. The non-polymerized monomer flow basically acts as the carrier phase for the polymerized 

particles. The shapes and resolution of particles (Fig. 24(B-D)) achieved with flow lithography 

techniques [259-266] are certainly unmatched by any other technique.  
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Fig. 24. (A) Schematic representation of the flow lithography technique. The device is composed of a 
single PDMS channel where monomer-photoinitiator solution flows. Particles are obtained by on-
flight fast curing. (B-D) The obtained non-spherical particles by using different UV masks. Each scale 
bar represents 10 µm. Adapted from [260] with permission. Copyright 2006 Nature Publishing 
Group. 

 

2.8. Final Comparison of Heterogeneous Polymerizations for Porous 

Particle Production 
 

In this section, we aim to give an overview of all the techniques that can be used for porous particle 

production. We explained the basics for each individual technique by giving recipes but tried not to 

exclude creative reports that deviated from the mainstream approaches within each technique. We 

suggest that one should consider several points to decide which technique to use for the 

manufacture of porous particles. First of all, depending on the type (i.e. size, size-dispersity, pore 

size) of the particle needed there should be an initial selection from the techniques. For instance, if 

nonspherical porous particles are targeted, one will probably be directed to microfluidic approaches. 

However, it does not mean that it is impossible to obtain nonspherical porous particles with other 

techniques, just because it has not been realized so far. For sure, scientists will continue to challenge 

the limits of techniques in the near future. 
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In Table 2 we compare the mainstream techniques discussed above. Monodispersity, average 

particle diameter, functionality, extent of porosity, shape and certainly the cost should be 

considered all together. For instance, if the final application does not require monodisperse 

particles, there may not be a need for membrane/microchannel emulsification or microfluidics. If a 

bimodal pore size distribution is aimed, using dispersion or precipitation polymerizations may be 

quite challenging for that purpose. From the economic viewpoint, suspension polymerization is 

probably the most attractive one but is limited for certain applications with regard to size and size 

dispersity.  

 

Table 2. Comparison of several heterogeneous polymerization techniques.  

 Disco-
very  

Diameter 
of beads 
(µm) 

Minimum CV 
of beads 
produced 

Ability to 
scale up 

Chemical 
functiona-
lity 

Shape 
variation 

Multiple 
emulsions/  
core-shell 
structures 

Easiness/ 
cost 

Reviews 
published 

Suspension 
polymerization 

 
20’s 

 
5-2000 

Generally 
very high ✓ ✓ X Only mult. 

emulsions 
Easy and 
cheap 

[1-3, 267-
270] 

Precipitation 
polymerizations 

 
Early 
90’s 

 
0.1-8 

 
2-3 % 

~ ✓ X Only 
core-
shell 

Easy but 
can be 
costly 

[1, 271-
272] 

Dispersion 
polymerization 

 
70’s 

 
0.1-20 

 
2-3 % 

~ ✓ X X Easy and 
cheap 

[1, 3, 63, 
273] 

Seeded 
suspension 
polymerization 

 
Early 
80’s 

 
0.5-200 

 
2-3 % ✓ ✓ X  ✓ 

Cheap but 
can be time 
consuming 

[1-2, 270] 

Membrane/ 
microchannel 
emulsification 

 
 

90’s 

 
10-1000 

10 % 
(membrane) 

2-3 % 
(µchannel) 

✓ ✓ X Only mult. 
emulsions 

Membrane
/ µchannel 
can be 
costly  

[4-5, 123, 
274-275] 

Microfluidics  
 2000’s 

 
10-1000 

 
<1 % 

~ ✓ ✓ ✓ 
Tedious/ 
coslty 
device 
preparation  

[4-6, 178, 
275-277] 

✓: Facile ~ : Possible but not easy   X : Not achieved so far 

 

 

3. Characterization 

3. 1. Size and Size Dispersity  
 

Perhaps the first ‘label’ to define a batch of spherical particles (also nonporous) will be the size and 

size dispersity. Size can be easily measured from microscopy images, especially in the case of 

monodisperse particles. Sieving and sedimentation are the methods still used in industry to 

fractionate particles and also to determine size range. There are several ways to determine a CV 

value for both monodisperse and polydisperse particles. One way is analyzing microscopy images via 
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various available software [218, 241], which will also calculate the average size. Light scattering 

[278-280] and electrical sensing zone (also called Coulter counter) [45, 281-282] are rather sensitive 

instrument-based methods to determine size and size distribution. Microscopy and image analysis 

combination can be considered as the easiest method.  

  

3. 2. Porosity: Surface area, Total Pore Volume and Pore Size 

Distribution   
 

Surface area, total pore volume and pore size distribution data define the porous nature. These 

characteristics can be measured by N2 sorption and Hg intrusion techniques, which both depend on 

penetration of the mentioned fluids into the pores. N2 sorption is more suitable for determining 

micro- and mesopores and gives less data about macropores. On the other hand, Hg intrusion is only 

able to provide data about macropores and mesopores but not about micropores [18]. This is 

attributed to the higher ability of N2 gas to penetrate into smaller pores compared to Hg [1]. 

Consequently, these methods are complimentary to each other and the proper one should be 

chosen depending on the type of the particle. The surface area is generally calculated from N2 

sorption isotherms by using the BET method. Commercial instruments measuring N2 sorption 

isotherms include the necessary software. The total pore volume in the dry state is measured by 

using both methods but again the size of the pores should be taken into consideration. It should be 

noted that both techniques require a minimum amount of 200-300 mg of particles, which could be 

difficult to collect via some low yielding manufacturing techniques such as microfluidics. Higher 

amounts of material give more reproducible results. In addition, N2 sorption is a nondestructive 

method while Hg intrusion is destructive.  

Besides N2 sorption and Hg intrusion, other techniques [283] exist for quantifying the pore size 

distribution such as thermoporometry, inverse size exclusion chromatography and analysis of 

microscopy imaging [284]. It is important to note that inverse size exclusion chromatography is 

performed intrinsically in a solvent, so that the data can be considered as swollen state porosity 

[285]. To our viewpoint, N2 sorption analysis stands as the most straightforward method since it 

gives quite reliable data for surface area, total pore volume and pore size distribution unless the 

pores are extremely large. We also would like to note that there are reports with equations to 

calculate several aspects of porosity by using density measurements as the only variable [286-287]. 

The effect of the washing solvent, used prior to drying, on dry state porosity is also important [288]. 

Indeed, a fraction of the pores can collapse if the particles are dried from a good solvent. However, 

these pores ‘reopen’ after drying from a poor solvent.  

 

3. 3. Surface Charge   
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The surface charge of particles becomes important when the particle size is below 10 µm. In this 

range, a high surface charge will help the formation of more stable dispersions of particles in a liquid 

medium. Oppositely, surface charge is not desired for self-assembly purposes [289]. Charged 

particles are generally obtained by using acid [50] or base [191] monomers, yielding negative or 

positive charge, respectively. pH of the medium is also important: a carboxylic acid particle will not 

be charged at low pH. Adding a salt to the medium also suppresses particle charge [289]. Finally, 

surface charge can be induced by adding anionic surfactants to the medium, forming a charged 

polymer layer around the particles.  

 The zeta (ζ) potential is generally used as the measure of surface charge. Zeta potential is 

theoretically defined as the electric potential between the dispersed phase and the boundary fluid 

layer that is permanently attached to the particle. Particles with a zeta potential higher than +30 mV 

or lower than -30 mV can be considered as highly charged [290]. Zeta potential is calculated from 

electrophoretic mobility that is measured by several commercial instruments, using methods such as 

laser Doppler electrophoresis or electrophoretic light scattering.    

 

3. 4. Swelling/Solvent Uptake 
 

Swelling is one of the important differences between porous and nonporous resins. Although 

swelling is crucial for nonporous resins, it may not be expected from porous (especially 

macroporous) resins. In the case of nonporous resins, reagents can only reach the inner reactive 

sites if they swell reasonably in the solvent used. For that reason, those resins are fabricated by 

using very low amount of crosslinkers, for instance 1% for the Merrifield resin (the word ‘resin’ is 

used interchangeably with the word ‘bead’ especially in the field of SPPS). On the other hand, a high 

amount of crosslinker is needed for producing a macroporous resin to facilitate the phase separation 

between the polymer and porogen during the synthesis, as discussed in section 2.2. High crosslinking 

densities limit the degree of swelling of porous resins. However in this case, the pores also 

‘accommodate’ some solvent, a process that is better referred to as ‘solvent uptake’. The presence 

of pores thereby greatly facilitates the diffusion of both reagents and solvents inside the particles, 

even though they are not swelling the particles. 

The swelling degree (solvent uptake) can be expressed either in volume or weight expansion [11]. In 

the former case, a weighed sample of dried resin is swollen by a solvent and the excess of the 

solvent is removed after the equilibrium swelling is reached. The swelling degree is the ratio of the 

swollen weight over dry weight. In the latter case, dry beads are packed into a volumetric syringe 

fitted with a frit at the tip, then swollen by a solvent and the volume difference is recorded as the 

swelling degree.  

  

3. 5. Mechanical Strength 
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Perhaps the weakest point of porous, especially macroporous resins is the lower mechanical 

strength compared to nonporous ones. For this reason, it is not advised to use a magnetic stir bar 

when a resin (even nonporous) is treated with reagents. Exposing particles to magnetic stirring and 

checking if particles preserve their shape is even used as a method to measure mechanical strength 

[291]. Several shakers are being used and rotary evaporation is useful when heating is also needed 

[12].  

Several methods are used to determine mechanical strength of particles. First of all, there are 

dedicated instruments measuring several mechanical parameters (tensile strength, elongation at 

break, D hardness) of particles according to ASTM standards [292]. Mercury intrusion porosimetry 

curves can also be used. A slope instead of a plateau for the second zone of the curves indicates low 

mechanical strength [13, 293]. In addition, combination of TGA and DSC is also proposed as a 

method of mechanical strength measurement [72-73]. These methods are suitable for particles of 

any shape, size and size distribution. 

Another common way to analyze mechanical strength of particles with sizes down to 2 µm in 

diameter is via compressing a single particle between two plates and measuring the deformation 

[294-297] by several ways such as microscopy [298] or weighing [299]. This technique is more 

suitable for monodisperse spherical particles since the measurement is generally performed on a 

single particle.  

The final way to understand mechanical stability of particles is utilizing them for the desired 

application and observe if any change in morphology takes place due to the stress generated for this 

specific application. Particles prepared for chromatography columns are packed into columns and 

back pressure is measured as an indication of mechanical strength for instance [300].  

 

3. 6. Chemical Analysis 
 

The chemical nature of the particles is of utmost importance for some applications where 

functionalization is needed. Analytical techniques used to characterize other materials (i.e. 

nonporous particles, bulk polymer materials and inorganic particles) are to some extent applicable 

to porous particles. Most suitable techniques for the analysis of porous particles are elemental 

analysis, IR and  color based essays, which are briefly described herein.  

Elemental analysis can provide information about functional groups that carry atoms different from 

the backbone. For instance, halogen, azide and thiol groups will be nicely detected for a C, H, O 

based particle but not C-C triple bonds. If the function to be monitored possesses elements that are 

also present in the backbone, derivatization can be a solution. –NH2 groups on a N based resin is 

such an example. Elemental analysis will give the total amount of N present in the resin. If free –NH2 

groups are completely capped (for instance) with a –Cl containing isocyanate, the amount of Cl 

atoms in the final resin will give the desired information about the accessible –NH2 groups of the 

initial batch. It is worth to be mentioned that the sample should obviously be totally free of any 

residual reagents or solvents. 
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Infrared (IR) analysis is probably the most facile instrument based method to detect functional 

groups (such as –OH, –NH2, C=O, C=C, C≡C, –SH and –N3) and monitor the evolution of reactions on 

particles [9, 218, 301]. IR spectrometers are abundant and analysis time is short. In addition, the 

decrease of a reagent due to the reaction with the present particles in a well sealed flask can also be 

followed by real-time IR measurement. As a complementary method to IR, Raman spectroscopy can 

reveal other functional groups (such as C-Cl and C≡N) that can be difficult to detect by IR [302-303]. 

Moreover, solid state [304-305], gel phase [306-307] and high-resolution magic angle spinning 

(HRMAS) NMR [308-311] techniques can be quite successfully applied to detect the functional 

groups and monitor reactions on particles. Availability of probes, operator experience and need of a 

suitable solvent for the analysis can be the parameters to tackle.  

Real time monitoring of reactions taking place on particles can be realized by several spectroscopy 

methods [312]. NMR, IR, UV-Vis and fluorescence spectroscopy techniques will give qualitative data 

on reaction kinetics in this way. Once the flask is well isolated, decrease of a reagent due to the 

reaction with the present particles will enable online monitoring. However, one should be careful 

not to conclude that all the functional groups on the polymer are consumed when the consumption 

of the followed reagent is stopped. Mostly there are inaccessible functionalities on the polymer, 

which will give a positive signal when analyzed. This is generally troublesome since it is very difficult 

to quantify remaining functional groups.  

It was the fact that reliable quantification of remaining functional groups on particles is rather 

difficult, stimulated solid phase peptide synthesizers to develop highly efficient coupling strategies 

[313]. These strategies will be further discussed in the next section. In solid phase synthesis, color 

tests [314-320] are the equivalence of thin layer chromatography for solution phase organic 

synthesis. Once a resin undergoes a chemical transformation with a reagent, a small portion of the 

resin is treated with a dye that is highly reactive for the chemical function that has to be consumed 

in the actual reaction. Lack of coloring of the resin judged by the naked eye designates the 

completeness of the main reaction. In the classical fluorenylmethyloxycarbonyl (Fmoc) based solid 

phase peptide synthesis (Scheme 1), a resin possessing –NH2 or –OH groups is treated with an Fmoc 

protected amino acid in the presence of some well known organic catalysts [321]. Here the 

completeness of the reaction is checked with a color test, i.e. ninhydrin. If the 

amidation/esterification is complete, the Fmoc group can be released by piperidine and 

quantitatively detected by a well established UV measurement [322]. This in turn will give reliable 

data for initial –NH2/–OH loading (amount of a functional group on a resin generally expressed as 

mmol/g) of the resin. Finally, titration [323-324] can also be used for quantitative analysis.  
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Scheme 1. Solid phase amino acid coupling and Fmoc test for chemical analysis of particles. 

 

 4. Functionalization 

4. 1. General Particle Functionalization  
 

This section will briefly discuss the strategies employed for particle functionalization. As in the case 

of characterization, strategies used for monoliths, nonporous gels, surfaces and so on can be applied 

to porous particles in many cases. Consequently, references given here will not strictly include 

porous particles. It should be known beforehand that reactions on solid phase are much slower and 

yields are generally lower in comparison to homogeneous reactions. In addition, quantitative 

detection of unreacted remaining groups may not be straightforward as already mentioned in the 

previous section. Moreover, in some cases it is not possible to use excess of an expensive reagent to 

drive the reaction to completion. These constraints necessitate the use of high yielding reactions on 

solid phase. "Click chemistry" [325] is the term coined almost a decade ago to describe reactions 

basically running with high yields in mild conditions and without any offensive by-products. Thus, 

click type reactions should be well appreciated for functionalization of particles. For this reason, this 

section will mainly discuss click type reactions. It is important to mention that by-products or excess 

of the reagents generally do not constitute a problem for solid phase functionalization since 

purification is done by some washing steps.  

From the several proposed click type reactions in the literature [326-327], two of them received 

much attention within the polymer society: Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) [328-

332] and the addition of a thiyl radical to olefins (thiol-ene and thiol-yne) [230, 333-334] (Scheme 2). 

There is a huge number of publications utilizing CuAAC since the first report in 2002 and thio-click 

reactions are recently becoming very popular. Obviously, one of the reactive groups should be 

present on the solid support and the complementary one(s) in solution for these click reactions to 
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take place. The presence of azide or thiol on the support and not in the solution should be 

considered for practical reasons. Low MW azide compounds can be seriously explosive [325, 335] 

while low MW thiol compounds generally have a deterring smell. Moreover, there are color tests to 

detect remaining amounts of both azide [320] and thiol [314] groups. As mentioned in the previous 

section, azide, alkyne, alkene and thiol groups can be easily followed by IR spectroscopy which 

makes these reactions further attractive on solid phase.   

 

 

Scheme 2. CuAAC and thiol-ene/yne click chemistries.  

 

4.1.1. Cu(I) Catalyzed Azide-Alkyne Cycloaddition (CuAAC) 

Although there are numerous studies on CuAAC functionalization of nonporous polymers [280, 298, 

328, 336-351], silica [352-354] and metal particles [355], the amount of publications on porous 

polymer particles is limited. Finn et al. [356] described the click functionalization of a commercial 

porous agarose resin for affinity chromatography. In two parallel experiments, amino agarose beads 

were treated with azide and alkyne carrying activated esters respectively (Scheme 3). The interesting 

point of the approach was that the azide/alkyne carrying ester released the UV active p-nitrophenol 

group upon amidation, thus the azide/alkyne loading could be determined by online spectroscopic 

techniques in a similar way to the Fmoc test. Several compounds of interest were subsequently 

clicked on these agarose beads and the coupling efficiency was shown by clicking a fluorophore. 

More studies about clicking onto commercial agarose beads are reported [357-358] but information 

about the nature (porous or not) of the beads is missing.  
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Scheme 3. Monitoring the agarose functionalization by the released p-nitrophenol group. 

Reproduced from [356] with permission. Copyright 2005 American Chemical Society. 

The preparation of custom made porous azide and alkyne beads for chromatographic applications 

was later published by Fréchet et al. [12] utilizing a multistage seed swelling approach. Alkyne 

bearing beads were prepared in a straightforward fashion by using an alkyne monomer for the 

second swelling stage. For the azide bearing beads however, an epoxy monomer was used for the 

second swelling stage and azide introduction was realized in another step. Although the authors do 

not mention the reason for the need of another step instead of utilizing an azide monomer for 

swelling, we believe that it is due to the loss of azide groups during the polymerization of double 

bonds as recently reported by Perrier et al. [359]. We also experienced that azide groups are not 

only sensitive to temperature but also to UV. The UV triggered self crosslinking ability of azide 

groups is even used as a strategy to obtain networks [360]. Nevertheless, Chan et al. [339] recently 

reported a one-pot preparation of azide carrying nano-beads by a delayed addition of azide 

monomer into their inverse microemulsion polymerization batch.  

Another strategy to introduce azide groups on a porous resin was published by Oyelere et al. [361], 

i.e. NH2 groups on commercial Argopore resin have been converted to azides via diazo-transfer 

reaction by using triflyl azide and further clicked with nucleosides. Despite the handling difficulties of 

triflyl azide (explosive, needs to be freshly prepared each time), this method should be widely 

applicable since there are numerous amino resins available on the market. Finally, Du Prez et al. [9] 

compared the clicking of phenyl acetylene onto self-prepared macroporous and megaporous 

(micron sized pores) poly(HIPE) particles composed of the same monomers. The effect of the pore 

size was shown to be more important than the surface area, which was proven by a better 

performance of the poly(HIPE) beads.  

4.1.2. Thio-Click Modifications 

A combination of thiol-ene and CuAAC click reactions on nonporous polyDVB particles was published 

by Müller et al. [52]. Remaining double bonds of precipitation polymerized polyDVB particles first 

underwent thiol-ene click by treatment with 1-azidoundecan-11-thiol. In a second step, the azide 

functions have been treated with an alkyne terminated linear polymer. The same strategy was 

applied to metal doped nanoparticles by Hawker et al. [362]. The efficiency of the thio-click reaction 

was shown by the change in dispersing ability of the particles in THF after grafting thiol terminated 

PEG chains. Addition of thiol groups onto (meth)acrylate [363-364] or epoxy groups [365] of porous 

and nonporous particles has also been published. Our group also recently contributed to this field by 

preparing both thiol- and yne-functionalized nonporous beads by changing the ratio between the 

two building blocks: a tetra-thiol and a di-yne [366]. The yne bead was separately treated with a 
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thiol and an azide for comparison and it was found that thiol-yne is faster than CuAAC for specific 

conditions. Moreover, the thiol bead was treated with 9 different click reagents in parallel and the 

ranking is found as follows based on fastest conjugation kinetics: isocyanate > norbornene > acrylate 

≈ isothiocyanate > maleimide ≈ isolated ene > α-bromo ester > epoxide ≈ aziridine. Finally, another 

novel highly efficient functionalization reaction involving the catalysis and heat free grafting of PS 

chains onto precipitation polymerized porous DVB particles via hetero-Diels-Alder chemistry was 

developed by Barner-Kowollik et al. [367]. The microspheres were functionalized with 

cyclopentadiene and PS chains were furnished with thiocarbonyl moiety as dienophile. Very high PS 

couplings were reported for time scales as short as 2h without heat treatment.  

4.1.3. Coupling Strategies of Solid Phase Peptide Synthesis 

Strategies developed over decades for solid phase peptide synthesis [368] and solid phase organic 

synthesis [369] are generally very efficient. Coupling of an amino acid on a resin carrying –NH2 

groups (Scheme 1) can be completed in less than 1h at room temperature [370] thanks to various 

efficient catalysts [371] developed over decades. This chemistry is certainly as efficient as any well 

accepted click reaction. In addition to amidation, several highly efficient esterification strategies are 

also well established [372]. Various other peptide ligation strategies such as native chemical ligation 

[373] and Staudinger ligation [374] are well described in literature [375] but are kept out of the 

scope of this review.  

4.1.4. Epoxy Group as an Electrophile on Particles 

Finally, we conclude this functionalization section by mentioning further possibilities offered with 

epoxy carrier resins. The potential of spring loaded epoxy ring for effective transformations 

constitutes an important part in the review of Sharpless et al. [325] where ‘click chemistry’ was first 

defined. Opening the three-membered ring with an azide anion (acid catalyzed) or a thiol (base 

catalyzed) is already mentioned in this review. Amines (preferably primary) can also open the ring 

(Scheme 4) without the need of any catalyst or heat. Consequently epoxy groups are good starting 

points for several modifications. Moreover, the most commonly used epoxy carrying vinyl monomer 

GMA is stable in (neutral) water based emulsions. It should be noted however that opening of the 

epoxy ring with a nucleophile results in secondary –OH groups, which may interfere with some 

chemistries. 
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Scheme 4. Some of the effective modifications of epoxy particles. Only the attack to the less 

hindered carbon atom is considered. 

 

4. 2. Surface- and Pore-Size-Specific Functionalization 
 

Site-specific functionalization of particles and their usage in novel applications will gain more 

importance in the near future to our belief since very little work has been done so far, although the 

first papers appeared in early 90’s. Core-shell particles, for which there are well established 

preparation strategies [49, 376-377], provide an easy medium for site-specific functionalization since 

core and shell are made of different chemical nature. The difficult task is the site-selective 

functionalization of a uniform particle. To achieve this via wet methods, diffusion of the reagents to 

the core or smaller pores should be prevented. Limited reaction times, polymeric reagents and 

hydrophilic-hydrophobic contrast between particle and reagent/medium may prevent reagent 

penetration to the core or smaller pores.  

In this respect, Landry et. al. first blocked the pores of mesoporous silica particles with Fmoc 

protected silanes [378]. Pore blockage was proved by N2 sorption measurements. In the next step, a 

short treatment with a base cleaved only the surface Fmoc groups, which could be then labeled with 

a fluorophore. Location of the fluorophore was followed by confocal analysis. Using polymeric 

reagents for pore-size-specific functionalization of macroporous particles is developed by Svec and 

Fréchet [379-381]. When macroporous, epoxy-containing beads were treated with 

poly(styrenesulfonic acid), only the epoxy groups of the larger pores hydrolyzed, leaving the 

remaining epoxy groups of the smaller pores to be functionalized with small amines. Epoxy group 

titration showed that the amount of intact epoxy groups were increasing by the size of hydrolyzing 

reagent, which was used as a proof for pore-size-specific functionalization. Recently, the same 

chemistry was applied by Buchmeiser et. al. to monoliths [382]. After poly(styrenesulfonic acid) 

treatment, pores smaller than 7 nm remained unchanged, half of the ~80 nm pores were lost and 

the number of ~40 nm pores increased by 150%. This was followed by inverse size exclusion 

chromatography as a proof of pore-size-specific functionalization. An interesting extension of this 
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work is the functionalization of large pores by thermoresponsive polymers that act as temperature 

controlled gates [383-385].    

About the utilization of the hydrophobic-hydrophilic contrast, Gooding et. al. first formed a dense 

alkyl layer on mesoporous silica, which prevented water diffusion into the material [386]. Aqueous 

reagent solutions functionalized only the surface, followed by an organic solution that functionalized 

the pores. Functionalization was followed by reflectance spectra since the silica was engineered with 

a photonic band gap. The authors also reported that IR is only sensitive to the changes in the bulk of 

the material but not to the surface.  

In addition, there are directional methods that are being used to form chemical patches on surface 

of particles such as microcontact printing [387-388], etching [389], laser- [390] or UV-induced 

deposition [391], projection lithography [392], metal deposition [393-394] and temporary masking 

one side of particles while modifying the other [395-396]. Most of these methods are waiting to be 

explored for porous particles.  

 5. Applications 
 

5.1. Ion-exchange, Catalysis and Scavenging 

  
Ion-exchange has been the first area where porous resins resulted in commercialization [397]. These 

resins possess ionic groups such as –SO3
-, -CO2

- and –NH3
+, together with a complementary anion or 

cation such as H+, Na+, Cl- or OH- [398]. In the classical example, a PS-sulphonic acid based ion-

exchange column can soften water by exchanging Ca++ and Mg++ with Na+. Toxic heavy metals can 

also be removed from water thanks to their high affinity to polar groups such as carboxylates. Later, 

it has been discovered that this metal complexing ability of ion-exchange resins can be used in 

heterogeneous catalysis [399]. Once the resin is loaded with the desired metal, the organic 

transformation can be realized either in batch [400] or in a continuous process. Moreover, H+ 

carrying cation-exchange resins can be used for acid catalyzed organic reactions [401-402]. On the 

other hand, non-ionic porous resins are also used in catalysis [403-404]. The catalyst is either a 

covalently attached organic molecule [405] or a metal that is chelated to the resin thanks to the 

electron donating ligands [406-410]. Simple precipitation of the metal to the pores is also reported 

[411-412].  

Physical absorption, electrochemical absorption and covalent absorption abilities of porous resins 

lead to several applications. As discussed in the sub-section on multistage polymerizations, particles 

can swell to a great extent by absorbing hydrophobic species. This can be used for removing 

undesired species either from water [413-416] or from organic media [417]. Moreover, gaseous 

species can also be absorbed by particles [418-420]. Scavenging is another field for which porous 

polymers are effectively used [421-424]. Scavenger resins ideally possess chemical groups that 

selectively react and therefore remove undesired compounds from a mixture. 
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The size, polydispersity and even the shape are not the most important issues for the applications 

mentioned so far; on the other hand the surface area is a crucial parameter. In this respect, for ion-

exchange, catalysis, absorption and scavenging applications, suspension polymerization can be the 

first technique to be considered for particle preparation. Sieving can be utilized if particles are going 

to be packed into a column. 

 

5.2. SPE and Chromatography 
 

Another absorption based application area is solid phase extraction (SPE) [425]. Small particles 

packed in a cartridge absorb (generally hydrophobic) solutes from an analyte. Solutes are removed 

from the sorbent by washing with an organic liquid in the second stage. In this way, solutes are 

enriched and ready for analysis. Since the interaction time is relatively short, a high performance of 

absorption is requested from particles (=sorbent). In that respect, hypercrosslinked particles are 

suitable due to their extremely high surface area. Seed preparation accompanied by 

hypercrosslinking in the second stage seems to be a suitable approach to produce such sorbents. 

Chromatography [2, 270] is perhaps the most delicate of all the mainstream applications of porous 

polymer particles. In the range of 2-5 µm, highly spherical and narrowly monodisperse beads are 

necessary to obtain reproducible results from a packed chromatographic column. Whereas silica 

packed columns are preferred over polymer packed columns in HPLC, polymer particles are mainly 

used in size exclusion chromatography (SEC) due to their ‘configurable’ pore size and pore size 

distribution. In SEC, smaller polymer chains spend more time in pores of packed beads compared to 

the larger chains, which is the basis for the separation [426]. For a batch of higher MW polymer to 

be analyzed, beads with a higher pore size are necessary for better separation. On the other hand, a 

lower average pore size is needed for the separation of a lower MW polymer. Seeded 

polymerizations seem to be suitable for production of SEC beads [427] since the pore size and pore 

size distribution can be easily controlled in the second swelling step. For HPLC columns, aerosol and 

precipitation [51, 281] polymerizations are also available, together with seeded polymerizations [12, 

68-69, 428-429].     

 

5.3. Solid Supported Synthesis 
 

A final mainstream application area of porous particles is solid phase peptide (SPPS) and organic 

(SPOS) syntheses [430-431]. Porous particles are used to some extent for SPPS and SPOS [432-433], 

however gel-type nonporous particles are preferred over porous ones. Thanks to their very lightly 

crosslinked nature (1% in general) nonporous gels can swell to a great extent when immersed in a 

good solvent, such as toluene for styrene-DVB based resins. However, if a nonsolvent is necessary 

for transformation, especially in the case of SPOS, permanently porous resins can perform better. It 

is also worth to mention that by the growth of the desired molecule (such as peptide), space 

restrictions become more prominent. Porous (especially macroporous) resins can offer room to 
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accommodate such large molecules and prevent ‘saturation of resin’. Too small resins are not easy 

to handle as supports for solid phase synthesis due to clogging of the filters and loss of visibility by 

naked eye. Therefore beads with sizes ranging from 100 to 500 µm are used for this purpose. In 

addition, shape and monodispersity are not the highest priorities. Suspension polymerization [434] 

accompanied by sieving, multistage polymerizations, microfluidics and also 

membrane/microchannel emulsification methods are all appropriate.    

 

5.4 Future Applications 
 

The previously described applications in this chapter are already known for decades. In the close 

future, novel applications of porous particles are expected to emerge, providing solutions to the 

current problems of our society such as energy, health-care, microreactors and sensing. In the field 

of energy, H2 is believed to replace fossil fuels as a greener alternative soon [435]. An enormous 

amount of research is currently being devoted to metal-organic frameworks as H2 storage materials 

[436]. Microporous polymer particles may also play a role in this field [437]. Carbon capture and 

sequestration is also one the energy related applications for which porous polymer particles can be 

useful. There are suggestions to capture CO2 from air by using base immobilized particles [438-439]. 

Porous hydrogel particles are already being utilized as tissue engineering scaffolds and drug delivery 

systems in the field of biology and medicine [440]. Advances in the life sciences will require novel 

polymer particles. Porous particles will also likely to play an increasing role in microsensors [441-

443]. Finally, microreactors are receiving increasing attention because of the ability to reduce costs 

and environmental effects by reaction miniaturization [444-446]. It is well-known that polymer 

particles can absorb organic species. This ability can be used to capture toxic chemicals (i.e. from 

wastewater) and transform them into harmless substances via immobilized catalysts or enzymes.   

We believe that more interesting applications may emerge if porous particles are designed with 

stimuli-responsive characteristics in the future [447]. A trigger can be a temperature increase [448], 

pH change [449], added chemicals [191], external electric [450] and magnetic [223] fields, 

microwave radiation [451] or light [452]. The response of these smart materials can be controlled in 

an automated way to obtain novel devices.  

6. Conclusions and Outlook 
 

This review is intended to be written in such a way that any researcher who has little knowledge 

about polymer particles can design the path to synthesize, characterize and also functionalize 

custom made porous particles according to the targeted applications. We believe that researchers 

planning to prepare nonporous particles will benefit as well from this manuscript since this is the 

first one to compare classical heterophase polymerizations (suspension, precipitation, dispersion 

and multistage) with the newest ones (membrane/microchannel and microfluidics) in detail. Size, 

size dispersity, functionality, porous nature and also shape of the particles have been addressed for 
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each synthetic method and compared in a summary table. Characterization and functionalization 

strategies of particles have been covered too, including site-specific functionalization. The 

functionalization section includes a discussion about effective strategies including well accepted click 

chemistries. Finally, the applications section not only put the accent on bringing interests towards 

the development of new technologies, but also aims at building a correlation between the choice of 

synthetic method and the type of application. 

For the future, complexity and simplicity will continue to be the two driving forces. On one hand, 

novelties are generally connected with complex structures. On the other hand, simplicity makes it 

easily reachable, which is very important for industrialization. Breakthroughs come out when the 

two are combined: complex in nature but simple in design. Microfluidics was revolutionary for 

paving the way to unprecedented control over size dispersity, shape anisotropy and structure 

complexity of particles. A novel or improved technique [453-455] inheriting abilities of microfluidics 

but overcoming its problems such as tedious device preparation and scalability would be another 

renaissance for particle production. Finally, unique mechanical, packing and assembly properties of 

nonspherical particles are already drawing attention [6, 85, 161, 453-454, 456-468] but the effect of 

porosity on such regular nonspherical particles is still waiting to be further exploited.  
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