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[1] Near-surface soil moisture observations from the active
microwave ASCAT and the passive microwave AMSR-E
satellite instruments are assimilated, both separately and
together, into the NASA Catchment land surface model
over 3.5 years using an ensemble Kalman filter. The impact
of each assimilation is evaluated using in situ soil moisture
observations from 85 sites in the US and Australia, in terms
of the anomaly time series correlation-coefficient, R. The
skill gained by assimilating either ASCAT or AMSR-E was
very similar, even when separated by land cover type. Over
all sites, the mean root-zone R was significantly increased
from 0.45 for an open-loop, to 0.55, 0.54, and 0.56 by the
assimilation of ASCAT, AMSR-E, and both, respectively.
Each assimilation also had a positive impact over each land
cover type sampled. For maximum accuracy and coverage
it is recommended that active and passive microwave
observations be assimilated together. Citation: Draper, C. S.,
R. H. Reichle, G. J. M. De Lannoy, and Q. Liu (2012), Assimilation
of passive and active microwave soil moisture retrievals, Geophys.
Res. Lett., 39, L04401, doi:10.1029/2011GL050655.

1. Introduction

[2] Root-zone soil moisture is an important control over
the partition of land surface energy and moisture, and the
assimilation of remotely sensed near-surface soil moisture
can improve model profile soil moisture [Bolten et al., 2010;
Liu et al., 2011]. To date, efforts to assimilate remotely
sensed near-surface soil moisture at large scales have focused
on soil moisture derived from the passive microwave
Advanced Microwave Scanning Radiometer for the Earth
Observing System (AMSR-E) and the active microwave
Advanced Scatterometer (ASCAT; together with its pre-
decessors on the European Remote Sensing satellites (ERS)).
[3] The assimilation of passive and active microwave soil

moisture data has not yet been directly compared, and so the
assimilation of ASCAT and AMSR-E soil moisture, both
separately and together, is compared here. The assimilation
is performed over 3.5 years with the NASA Catchment land
surface model, using an Ensemble Kalman Filter (EnKF).
Since the soil moisture retrieval skill from active and passive
microwave data is thought to differ according to surface

characteristics [Dorigo et al., 2010], the soil moisture skill
from each assimilation experiment is assessed according
to land cover type, by comparison to in situ soil moisture
observations from the US and Australia. The contribution of
the model and observation skill to the skill of the assimila-
tion output is also examined.

2. Data and Methods

2.1. Satellite Soil Moisture Data

[4] The ASCAT soil moisture data used here were pro-
vided by the Vienna University of Technology. Soil moisture
observations are obtained from ASCAT radar backscatter
coefficients using the semiempirical change detection
approach of Wagner et al. [1999, 2010]. This yields an
observation of the Surface Degree of Saturation (SDS),
which ranges between 0 and 100%, representing the driest
and wettest observations at each location, respectively. The
ASCAT SDS data relate to soil moisture over a �1 cm deep
surface layer, and have a resolution of approximately 25 km.
[5] For AMSR-E, soil moisture data retrieved by the Free

University of Amsterdam from X-band brightness tempera-
tures, using the Land Parameter Retrieval Model (LPRM)
[Owe et al., 2001; de Jeu and Owe, 2003], were used. The
X-band observations have a resolution of 38 km, and relate
to a surface layer depth slightly less than 1 cm. An antenna
problem has prevented AMSR-E from observing since October
2011, however the LPRM is now being applied to Coriolis
WindSat brightness temperatures, yielding similar accuracy
as was achieved from AMSR-E [Parinussa et al., 2012].
[6] The ASCAT and AMSR-E soil moisture data were

assimilated over the maximum available coincident data
record, from January 2007 to May 2010. Using a nearest
neighbor approach, the satellite observations were interpo-
lated from their native resolutions to the 25 km land mod-
eling grid used in this experiment (Section 2.3). The quality
control applied prior to the assimilation differed for each
data set, according to the particularities of passive and active
microwave observations, and the ancillary data provided
with each. The occurrence of dense vegetation was initially
screened using information provided with each data set. For
ASCAT the Estimated Soil Moisture Error (ESME) flag
includes a signal of dense vegetation, and an upper limit of
14% (in SDS units) for the ESME was applied (V. Naeimi,
personal communication, 2011). For AMSR-E a vegetation
optical depth upper limit of 0.8 was used [Owe et al., 2001].
Additionally, AMSR-E and ASCAT data were discarded
where MODIS land cover data from Boston University
[Friedl et al., 2002] indicated forests (> 60% trees or woody
vegetation).
[7] Topographic Complexity (TC), defined as the stan-
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12.5 km grid cell, normalized between 0 and 100%, is pro-
vided with the ASCAT data. ASCAT soil moisture obser-
vations in grid cells with TC >10% were discarded, as will be
discussed further in Section 3.2. Also, AMSR-E data flagged
by the LPRM as having moderate/strong radio frequency
interference were discarded. Information on water surfaces is
not provided with the LPRM data, and so both ASCAT and
AMSR-E were screened to remove grid cells with a wetland
fraction (provided with the ASCAT data) above 10%. A final
stage of quality control was applied within the assimilation,
by discarding all observations where the model indicated a
frozen surface, snow cover, or precipitation.

2.2. Evaluation With in Situ Soil Moisture

[8] The impact of assimilating each data set was evaluated
using in situ soil moisture data from the United States
Department of Agriculture’s Soil Climate Analysis Network
(SCAN) / Snowpack Telemetry (SNOTEL) [Schaefer et al.,
2007] network in the contiguous US, and from the Murrum-
bidgee Soil Moisture Monitoring Network (available at www.
oznet.org.au), operated by the University of Melbourne and
Monash University, in southeast Australia. The (modeled and
satellite) surface soil moisture was evaluated using in situ
observations at 5 cm depth from both networks, while the
(modeled) root-zone soil moisture was evaluated using SCAN/
SNOTEL observations at 20 cm, and Murrumbidgee obser-
vations at 30 cm; these depths were selected to give the best fit
to the model root-zone soil moisture temporal dynamics.
[9] For the SCAN/SNOTEL network there were 66 sites

with sufficient in situ, ASCAT, and AMSR-E soil moisture
data for use in this experiment (Figure 1a, dots), plus an addi-
tional 33 sites with in situ and AMSR-E data but no ASCAT
data due to high topographic complexity (Figure 1a, crosses).
Each of these sites was located in a different cell of the 25 km

modeling grid. In the Murrumbidgee basin, there were 19 grid
cells (Figure 1b) with in situ, ASCAT, and AMSR-E data,
four of which contained two or three in situ stations which
were averaged in to a single in situ time series per grid cell.
An initial comparison showed that the assimilation results for
the SCAN/SNOTEL and Murrumbidgee sites were very sim-
ilar, and so results from both networks are combined below.
[10] The skill of a given soil moisture estimate was mea-

sured using the anomaly time series correlation-coefficient
(R) with the in situ soil moisture. The anomalies were defined
as the difference of the data from the 31 day moving average,
with the moving averages based on data from all years for the
31 day period surrounding each day of year. R was calculated
using daily average soil moisture time series, excluding days
when the in situ observations indicate frozen conditions. For
each R estimate a 95% Confidence Interval (CI) was calcu-
lated using a Fisher Z transform. Soil moisture anomaly time
series are highly autocorrelated, reducing the number of
independent data in the time series and introducing a bias into
statistical inference. Hence the CIs were calculated using the
effective sample size of Dawdy and Matalas [1964]:

Neff ¼ N 1� rxry
� �

= 1þ rxry
� �

;

where N is the number of samples, and rx and ry are the lag-1
autocorrelation of the two time series being compared.
[11] Finally, a single skill value, together with its 95% CI,

was estimated for each land cover class, by averaging
the skill estimates within each land cover class, and dividing
the sum of the CIs by the square root of the number of
sites. The land cover classes were based on MODIS land
cover data from Boston University [Friedl et al., 2002].
MODIS land cover classes with 10–60% trees or woody
vegetation were combined into the ‘mixed cover’ class.

2.3. The Modeling and Data Assimilation Systems

[12] The assimilation experiments were conducted with
the Catchment model [Koster et al., 2000], run at 25 km
resolution over the in situ monitoring networks and forced
with surface meteorological data from the NASA Modern-
Era Retrospective analysis for Research and Applications
(MERRA) [Rienecker et al., 2011]. A 1-D EnKF with 12
ensemble members and a 3 hour assimilation cycle was used
for the assimilation [Liu et al., 2011]. Prior to assimilation,
the ASCAT and AMSR-E data were rescaled to the Catch-
ment soil moisture climatology by matching their cumulative
distribution functions [Reichle and Koster, 2004].
[13] The ensemble was generated using the same pertur-

bations to the meteorological forcing and model states as
Liu et al. [2011]. The observation error standard deviations
(st-dev) were defined in the climatology of the observed
data sets, and then scaled (locally) into the Catchment
model climatology by the ratio of the model and observa-
tion time series st-devs. For AMSR-E a spatially and tem-
porally constant error st-dev of 0.08 m3m�3 (in the AMSR-E
climatology) was used following Liu et al. [2011], resulting
in a mean error st-dev of 0.03 m3m�3 in the model climatol-
ogy. The error st-dev is smaller in the Catchment space since
the temporal variability of the AMSR-E soil moisture is
much higher than that of Catchment. Since the two data sets
have similar overall skill [Dorigo et al., 2010], a (spatially/
temporally constant) error st-dev of 10% (SDS) was used for

Figure 1. Location of (a) SCAN/SNOTEL and (b) Murrum-
bidgee monitoring sites used to evaluate satellite and model
soil moisture estimates, overlaid with MODIS land cover clas-
ses (FORest, MIXed cover, GRAssland, CROpland, BARren,
and URBan). Sites with topographic complexity > 10% are
shown as crosses.
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ASCAT, to give the same mean error st-dev in the model
climatology as for AMSR-E.
[14] In Section 3.1 the impact of assimilating the ASCAT

and AMSR-E observations is compared over the 85 in situ soil
moisture sites with high quality observations from both satel-
lites (dots in Figure 1). For these experiments an average of
1197 AMSR-E and 822 ASCAT observations (over 3.5 years)
were assimilated at each SCAN/SNOTEL site, and an average
of 1624 AMSR-E and 1066 ASCAT observations were
assimilated at each Murrumbidgee site (where frozen con-
ditions rarely occur). Even though both sensors are in sun-
synchronous orbits, AMSR-E had higher temporal coverage
since it had a larger view area (one 1450 km wide swath)
than ASCAT (two 550 km wide swaths). In Section 3.2 the
skill improvement from assimilating near-surface soil mois-
ture is examined as a function of the skill of the assimilated
observations and of the model. To increase the range of obser-
vation skills sampled, the experimental domain was expanded
in Section 3.2 to include the assimilation of AMSR-E (but not
ASCAT) at the 33 sites with high TC (crosses in Figure 1)
at which the ASCAT observations have poor skill.

3. Results and Discussion

3.1. Assimilation Skill by Land Cover Class

[15] For the 85 sites with high quality satellite data,
Figure 2 shows the estimated R (anomaly-time series
correlation-coefficient with in situ data) and its 95% CI for
the surface and root-zone soil moisture, averaged across each
land cover class, and across all sites. Results for the open-
loop (ensemble mean, no assimilation) Catchment model,
and for the assimilation of ASCAT, AMSR-E, and both, are
plotted separately. Averaged across all 85 sites, the mean
surface soil moisture skill was increased from 0.47 for

the open-loop model, to 0.56 by the assimilation of ASCAT
or AMSR-E, and to 0.57 by the assimilation both. For the
root-zone, the mean skill was increased from 0.45 for the
open-loop model, to 0.55 for the assimilation of ASCAT,
0.54 for the assimilation of AMSR-E, and 0.56 for the
assimilation of both. In each case the mean skill increase
from assimilating the satellite soil moisture data was statis-
tically significant (at the 5% level).
[16] For each land cover class, assimilating the satellite soil

moisture data improved the mean R, usually significantly.
The single-sensor assimilation experiments (of ASCAT or
AMSR-E) yielded very similar improvements to the mean R,
while the combined assimilation (ASCAT and AMSR-E)
generally matched or slightly exceeded the mean R from the
single-sensor assimilation experiments. Prior to assimilation,
the open-loop model had significantly higher skill for the
more vegetated mixed cover class than for the grassland or
cropland classes in Figure 2. The relatively low open-loop
skill for croplands is not surprising, since Catchment does not
account for cropping practices. In contrast, croplands are well
suited to soil moisture remote sensing and the satellite
observations performed well at these sites, so that each
assimilation significantly improved the mean R (by >0.1 in
most cases in Figure 2). Consequently, after assimilation the
cropland R was much closer to that of the mixed cover,
especially in the root-zone. While the assimilation did
improve the mean R for the grasslands (and significantly in
the surface layer), even after assimilation the mean grassland
R for both soil layers was below the other land cover classes
(significantly in many cases). The mean R for the mixed cover
sites improved significantly in all cases except for the root-
zone soil moisture after assimilating ASCAT. Consequently,
the mixed cover class had the highest mean assimilation skill.

3.2. Contribution of Observation Skill
to Assimilation Skill

[17] Figure 3 compares the skill of the ASCAT and
AMSR-E observations. To compare the satellite skill

Figure 2. Mean skill for (a) surface and (b) root-zone soil
moisture from the OPEN-loop model, and the data assimila-
tion (DA) of ASCAT, AMSR-E, and BOTH, averaged across
each land cover class, with 95% confidence intervals. The num-
ber of sites in each land cover class is given in the axis labels.
Skill is based on all nonfrozen days in the experiment period.

Figure 3. AMSR-E vs. ASCAT skill based only on days
with data available from both data sets. Dots (crosses) indi-
cate sites with topographic complexity (TC) below (above)
10%. Colors indicate land cover class according to Figure 1
legend. Six TC>10% data points with negative ASCAT skill
are not shown.
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estimates the R values in Figure 3 (and Figure 4) are based
only on days with both ASCAT and AMSR-E data. The
33 sites with topographic complexity >10% are plotted as
crosses, demonstrating the reduced ASCAT skill at these
sites. Averaged over the 24 grassland sites with TC >10%
the mean R for ASCAT was 0.23, significantly less
than the mean R of 0.43 for the 33 grassland sites with
TC ≤10%. By contrast, the mean AMSR-E R for the
grassland sites with TC >10% was 0.44, comparable to
0.48 for the grassland sites with TC ≤10%. ASCAT soil
moisture data have lower skill in arid locations [Dorigo
et al., 2010], which may have contributed to their reduced
R in mountainous regions, however comparing the ASCAT
R to various aridity indexes did not reveal a relationship.
For AMSR-E the lower skill over mountainous sites is
likely due to increased heterogeneity, and small amounts
of snow, rocks, and lakes, rather than a direct effect of
complex topography. Averaged over the nonmountainous
sites (TC ≤10%), ASCAT and AMSR-E had similar skill,
with a mean R of 0.50 for ASCAT and 0.51 for AMSR-E.
Also, in Figure 3 variations around the one-to-one line are at
best weakly related to land cover class (consistent with the
similar skill for each assimilation in Figure 2), contrary to the
evidence of Dorigo et al. [2010].
[18] Finally, Figure 4 shows the skill increase (DR)

relative to the open-loop model from the single-sensor
assimilation of ASCAT or AMSR-E, as a function of the
R of the open-loop model and of the assimilated (ASCAT or
AMSR-E) observations. Since the R and DR for the single-
sensor assimilation of ASCAT or AMSR-E were generally
similar, the results from the two experiments are combined
in Figure 4. Also the observation and open-loop R values are
binned into units of 0.05, giving an average of 2.2 in situ
sites per filled square in Figure 4.
[19] Figure 4 is analogous to Figures 2c and 2d of Reichle

et al. [2008] and uses satellite data to confirm their main
findings (which were based on synthetic experiments). In
general, for a given combination of open-loop and obser-
vation skill, the skill gained through assimilation was
slightly higher for the root-zone (Figure 4b) than for the
surface soil moisture (Figure 4a). For both soil layers,
assimilating observations with R no more than 0.2 below the

open-loop R (below the dashed line in Figure 4) generally
increased the soil moisture skill (i.e., DR > 0), with the
improvements increasing up to DR ≈ 0.4 as the observation
R increased relative to the open-loop R.
[20] Unlike in the work by Reichle et al. [2008], Figure 4b

did not benefit from adaptive tuning of the model and
observation error covariances, or from averaging over a
large domain. Future work will test whether refining the
assimilation error covariances to account for spatial variation
in the relative observation and open-loop skill can improve
upon our results. However, the consistently positive impact
of our assimilation experiments, as well as the similarity
between Figure 4 and Reichle et al. [2008] indicate that our
current error specifications are reasonable, and sufficient to
test the benefit of assimilating the ASCAT and AMSR-E
data sets. Finally, the similarity between our results and the
synthetic experiments of Reichle et al. [2008] suggests that
our R value metric (based on in situ observations) is pro-
viding an accurate measure of soil moisture skill.

4. Summary and Conclusions

[21] Near-surface soil moisture observations derived from
the active microwave ASCAT scatterometer and the passive
microwave AMSR-E radiometer were assimilated into
NASA’s Catchment land surface model, both separately and
together. The impact of assimilating each data set on the
modeled soil moisture skill was evaluated using in situ soil
moisture observations from 85 sites in the SCAN/SNOTEL
network in the US and the Murrumbidgee Soil Moisture
Monitoring Network in southeast Australia. With careful
quality control of the satellite data, assimilating either
ASCAT or AMSR-E data improved the modeled soil mois-
ture skill (anomaly correlation with in situ data) at nearly
every site, and the surface and root-zone soil moisture skill
averaged across all 85 sites was significantly improved by
assimilating either (or both) data sets.
[22] Where the satellite soil moisture skill was no more

than 0.2 less than the open-loop skill, the assimilation
improved the soil moisture skill, with the improvements
increasing (up to 0.4) as the observation skill increased
relative to that of the open-loop model. The model and

Figure 4. Skill improvement (DR) from assimilating either ASCAT or AMSR-E for (a) surface and (b) root-zone soil
moisture, as a function of the open-loop and observation skill. Skill improvement is defined as the skill of the assimilation
product minus the open-loop skill, with skill based only on days with data available from both satellites.
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observation skill differed between land cover classes, high-
lighting that land cover information should be provided
when evaluating soil moisture estimates. Assimilating either
ASCAT or AMSR-E improved the mean skill for each land
cover class considered here, with significant improvements
for root-zone soil moisture over croplands and mixed cover
(10–60% trees or wooded vegetation), and for surface soil
moisture over croplands, grasslands, and mixed cover. At
the frequencies observed by AMSR-E and ASCAT, dense
vegetation limits the accuracy of soil moisture observations,
and so the improvements obtained over the moderately
vegetated mixed cover sites are very encouraging.
[23] The improvement in skill from assimilating either

ASCAT or AMSR-E was very similar, even when consid-
ered by land cover class. Following the recent malfunction
of the AMSR-E instrument, applications currently assimi-
lating AMSR-E should thus be able to switch to ASCAT
data without loss of accuracy. In our experiments, assimi-
lating both data sets consistently matched or exceeded the
best results from the single-sensor assimilation experiments.
Also, the ASCAT soil moisture retrieval skill was signifi-
cantly lower over complex terrain, while assimilating the
AMSR-E data generated small improvements at these loca-
tions. Consequently, for maximum accuracy and spatial
coverage it is recommended that passive (AMSR-E or
WindSat) and active (ASCAT) near-surface soil moisture be
assimilated together if possible.
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