
SELF-ASSEMBLED LIPOSOME-LOADED MICROBUBBLES: THE 

MISSING LINK FOR SAFE AND EFFICIENT ULTRASOUND 

TRIGGERED DRUG-DELIVERY 

 

Bart Geers1, Ine Lentacker1, Niek N. Sanders2, Joseph Demeester1, Stephen 

Meairs3, Stefaan C. De Smedt1* 

1 Ghent Research Group on Nanomedicines, Lab of General Biochemistry and 

Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 

Harelbekestraat 72, 9000 Gent, Belgium 

2 Laboratory of Gene Therapy, Faculty of Veterinary Medicine, Ghent University, 

Heidestraat 19, 9820 Merelbeke, Belgium 

3Department of Neurology, Universitätsklinikum Mannheim, Heidelberg University, 

Theodor-Kutzer-Ufer 1-3, 66167 Mannheim, Germany 

 

 

 

 

*Corresponding author: Laboratory of General Biochemistry and Physical Pharmacy, 

Harelbekestraat 72, 9000 Gent, Belgium, Tel: +32 9 264 80 76, Fax: +32 9 264 81 89 

stefaan.desmedt@ugent.be 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55711482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 INTRODUCTION  

 Microbubbles are gas filled microspheres which are approved for diagnostic 

ultrasound contrast imaging by the FDA. Such bubbles, a few microns in size, are 

usually filled with an hydrophobic gas and are stabilized by a surfactant (lipid, protein 

or polymer) shell, to enhance their shelf life and circulation time in blood after 

injection. Because of the difference in density between the gas core of the 

microbubble and the surrounding fluid, microbubbles start to oscillate when subjected 

to high frequency (1-10 MHz) ultrasound. This “cavitation” of microbubbles has been 

intensively studied by means of high speed optical imaging [1-3] and can be divided 

into respectively stable and inertial cavitation. In an ultrasound field with a low 

acoustical pressure microbubbles are stably cavitating and will oscillate around a 

given diameter. Inertial cavitation on the other hand occurs at higher acoustical 

pressures, the movement of the microbubbles becomes more violent which leads to 

destruction of the microbubbles [4]. This microbubble destruction produces distinct 

nonlinear acoustic echoes which are very useful in contrast enhanced ultrasound 

imaging [5]. Cavitation of microbubbles may also induce biological and mechanical 

effects on the surrounding space which may be particularly useful for drug delivery 

[6]. 

When microbubble collapse occurs in the vicinity of cells it has been shown 

that plasma membranes are temporarily permeabilized through the formation of 

transient pores in the cellular membrane, induced by micro-jets and shockwaves 

produced after microbubble collapse [3,7]. This phenomenon is called sonoporation 

[6]. It is believed that sonoporation is strongly dependent on the acoustical properties 

of the applied ultrasound field [8,9]. Such transient pores also enhance the uptake of 

macromolecules in cells [10]. Recent studies show that sonoporation effects may last 



up to 24 hours after ultrasound treatment [11]. The use of microbubbles in 

combination with ultrasound may even induce openings in the blood-brain barrier 

which could be of interest to tackle drug delivery into the brain which currently 

remains a huge challenge [12,13]. 

 Only if the drug molecules are physically located in the vicinity of microbubbles 

subjected to ultrasound, it is expected that sonoporation will enhance drug uptake by 

cells. Moreover, as these effects will only occur where and when ultrasound is 

applied, drug delivery is expected only to happen in the insonated tissue. Hence, for 

ultrasound targeted drug delivery it is crucial to design microbubbles which can be 

loaded with drug molecules. Meanwhile a number of concepts for drug loaded 

microbubbles are under investigation [14-16]. Basically, microbubbles can be loaded 

with drugs in three ways: (a) the drug can be incorporated in the microbubble shell 

[17], (b) (lipophilic) drugs can be incorporated in an inner oil phase present in the 

microbubbles [18] or (c) “colloidally drug loaded microbubbles” can be obtained 

through the attachement of drug containing nanoparticles (like e.g. liposomes) on the 

microbubbles‟ surface as reviewed by Bohmer et al. and Lentacker et al [19,20]. 

Independent on the way the microbubbles become loaded with drugs, they should 

fulfill at least the following requirements: (a) the microbubbles should be loaded with 

a sufficient amount of drug; (b) the shelf-life of the drug-loaded microbubbles should 

be long enough and (c) the drug-loaded microbubbles should be designed without 

the incorporation of toxic or immunogenic substances. We believe that loading the 

surface of microbubbles with drug containing liposomes is a promising concept for 

ultrasound guided drug delivery as: (a)more drugs can be loaded on microbubbles 

compared with other loading strategies, (b) a plethora of knowledge is available on 

liposomes for drug delivery which can be perfectly used to develop the colloidally 



loaded microbubble concept and (c) importantly, certain liposomes are safe and even 

already used in clinical practice. 

Recently we succeeded in preparing respectively doxorubicin (DOX)-liposome 

loaded microbubbles [21] and lipoplex-loaded microbubbles (containing pDNA or 

siRNA). We showed that in combination with ultrasound, such microbubbles strongly 

improved both doxorubicin (DOX) cytotoxicity and pDNA [16,22] and siRNA [23] 

delivery to cells in vitro. However, the complex microbubble preparation method, the 

immunogenic nature of the avidin-biotin chemistry used to link the 

liposomes/lipoplexes to the microbubbles and the successive washing steps, made 

this material not ideal for easy clinical use. It is clear that the concept of liposome-

/lipoplex-loaded microbubbles needs further development and improvement. In this 

work we faced the challenge to design DOX-liposome loaded lipid shelled 

microbubbles through the self-assembly of the involved compounds. Importantly, the 

method we propose involves just a single step and allows to make a sterile material. 

As illustrated in Figure 1 and further explained in the results section, to a mixture of 

phospholipids, so named “functionalized DOX-liposomes” (i.e. DOX-liposomes 

containing MALEIMIDE functionalized PEG-lipids) and a hydrophobic gas were 

added. We show that under appropriate conditions these compounds self-assemble 

into DOX-liposome loaded microbubbles which are responsive to ultrasound and 

efficiently kill cells.  

 

 

 



 

Figure 1: Schematic depiction of the preparation of liposome-loaded 

through self-assembly of the different constituents: Drug loaded liposomes 

containing DSPE-PEG-MALEIMIDE and perfluorobutane (C4F10) gas were added to 

vials containing: DPPC and DSPE-PEG-SPDP dissolved in a 

glycerin:propyleneglycol:H2O mixture (A) and were mechanically activated using a 

Capmix™ device. This mechanical activation gives rise to lipid-shelled microbubbles 

(B) loaded with liposomes. These microbubbles are filled with the hydrophobic C4F10 

gas (C). The liposomes become coupled to the microbubbles‟ surface through 

covalent thiol-maleimide linkages (D). Note that the microbubbles are a few microns 

in size while the liposomes are some hundreds of nanometers. 



2 MATERIALS AND METHODS 

2.1 Preparation and characterization of functionalized microbubbles 

“Functionalized microbubbles” (i.e. microbubbles containing thiol-functionalized 

PEG-lipids) were prepared starting from a lipid solution being a mixture of 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[PDP(polyethylene glycol)-2000] (DSPE-PEG-PDP) (Avanti 

polar lipids, Albaster, AL) in a 1:2:7 glycerine-propyleneglycol-H2O solvent (Sigma-

aldrich,Bornem,Belgium); the molar ratio of the lipids in the lipid solutions was 

respectively 97:3, 92:8 and 65:35. The lipid solution was prepared as follows. 

Aliquots of both lipids, dissolved in CHCL3, were transferred into a round bottom 

flask. After CHCl3 evaporation, the lipid film was dissolved in a 1:2:7 glycerine-

propyleneglycol-H2O mixture to obtain a clear solution with a final lipid concentration 

of 4 x 10-4 mmol/ml (or 2 x 10-4 mmol/ml for microbubbles used in the cell 

experiments). Aliquots of this lipid solution were transferred into 2.5 ml 

chromatography vials, which headspace was filled with C4F10 gas (F2 chemicals, 

Preston, UK). Finally, functionalized microbubbles (with an average size of 3µm) 

were obtained by high speed shaking of the lipid solution in a Capmix™ device (3M-

ESPE, Diegem, Belgium) during 15 sec. The size and the concentration of the 

microbubbles in the dispersion (i.e. number of microbubbles per mL) were 

determined with a Beckman-coulter Multisizer 4 (Beckman-coulter, Brea, CA) 

2.2 Preparation of non-functionalized microbubbles 

Preparation of so named “non-functionalized microbubbles” occurred as 

described above for the functionalized bubbles, however 1,2-distearoyl-sn-glycero-3-



phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000 (DSPE-MPEG) (Avanti 

polar lipids, Albaster, AL) was used as a PEG-lipid instead of DSPE-PEG-PDP.  

2.3 Preparation and characterization of bodipy-labeled and DOX-liposomes 

Bodipy-labeled liposomes were prepared by transferring DPPC, DSPE-PEG-

MALEIMIDE) (Avanti polar lipids, Albaster, AL), cholesterol (Sigma-alldrich, Bornem, 

Belgium) and cholesteryl-bodipy (Invitrogen, Merelbeke, Belgium), all dissolved in 

CHCl3, in a 49:15:35:1 molar ratio to a round bottom flask. After CHCl3 evaporation, 

the remaining lipid film was rehydrated with HEPES buffer (50 mM, pH 7.4, Sigma-

alldrich, Bornem, Belgium) to obtain a liposomal dispersion with a final lipid 

concentration of 16 mg/ml. The liposomal dispersion was hereafter extruded through 

a 200 nm filter using a mini-extruder at 60 °C (Avanti polar lipids, Albaster, AL).  

DOX-liposomes were prepared as described by lentacker et al [21]. Briefly, 

DPPC, DSPE-PEG-MALEIMIDE and cholesterol dissolved in CHCl3 at a 

concentration of 20 mg/ml and 10 mg/ml respectively, were transferred in a round 

bottom flask in a 49:15:36 molar ratio. After evaporation the remaining lipid film was 

rehydrated with ammonium sulfate buffer (250 mM) to obtain a liposomal dispersion 

with a final lipid concentration of 16 mg/ml. The resulting liposome dispersion was 

extruded through a 200 nm filter using a mini-extruder at 60 °C. After extrusion the 

excess of ammonium sulfate was removed by overnight dialysis against distilled 

water (MWCO: 8000 Da, Spectra/Por Biotech, Compton, CA). Hereafter the 

liposomal dispersion was aliquoted into 450 µl aliquots and liposomes were loaded 

with DOX by adding 50 µl of a doxorubicin.HCl (Sigma-alldrich, Bornem, Belgium) 10 

mg/ml solution. Non-encapsulated DOX was removed in a second overnight dialysis 

against distilled water. Final DOX concentration was evaluated using absorbance 



spectrometry using an Envision plate-reader and reached between 0.5 and 0.8 mg/ml 

(Perkin-elmer, Waltham, MA) 

2.4 Preparation of liposome-loaded microbubbles 

Liposome-loaded microbubbles were prepared by adding a certain volume of 

the liposome dispersion to the lipid solution used for the preparation of microbubbles 

(see above, under 1.1 and 1.2). Liposome-loaded microbubbles were obtained by 

high-speed shaking of this liposome/lipid mixture in a Capmix™ device. The loading 

of the microbubbles with (bodipy-containing) liposomes was visualized using a Nikon 

EZC1 confocal microscope equipped with a 60x lens imaging using the 490 nm 

excitation light, while fluorescence was detected at 551 nm.  

2.5 Evaluation of the loading of the microbubbles with liposomes by flow 

cytometry 

How different parameters influence the loading of microbubbles with bodipy-

labeled liposomes was determined using a flow cytometer (BD FACScalibur, 

Erembodegem, Belgium). Herefore 300 µl of (bodipy-) liposome-loaded microbubbles 

were diluted in 300 µl of HEPES buffer. The 488 nm laser of the flow cytometer was 

used to excite the bubbles while the emitted fluorescence was detected in the 530 

nm channel FL1. Results were expressed as mean fluorescence per microbubble 

using unloaded microbubbles as a blank. For measurements on microbubbles in 

plasma, platelet poor plasma was obtained by centrifuging whole blood samples first 

at 300 g for 10 min and subsequently at 3200 g for 10 min. 20 µl of (bodipy-) 

liposome-loaded microbubbles were suspended in 150 µl of plasma and diluted with 

200 µl Hepes buffer. All the flow cytometry experiments were performed in triplicate 

and the presented data are the mean values. 



2.6 Evaluation of the loading of the microbubbles with liposomes by Coulter 

Counter measurements 

The loading of the microbubbles with liposomes was further studied by the 

electrical sensing zone method with a Beckman-Coulter Multisizer 4 Coulter Counter. 

For each Coulter Counter experiment 20 µl of (liposome-loaded) microbubbles were 

diluted in 10 ml of Phosphate Buffered Saline (PBS, GIBCO, Merelbele, Belgium); 50 

µl of this dilution was applied in the Multisizer 4 which was equipped with a 20 µm 

aperture tube. The liposome-loaded microbubbles used in the Coulter Counter 

experiments were obtained by transferring 1 ml of lipid solution (lipid concentration: 4 

x 10-4 mmol/ml) and respectively 0, 35, 100 and 200 µl bodipy liposomes into a 2.5 ml 

chromatography vial, followed by high-speed shaking in the Capmix™ device.  

 We determined respectively the number of (unloaded and liposome-loaded) 

microbubbles per mL and the volume of all bubbles present in 1 ml of dispersion (i.e. 

“total volume per ml”). The volume of a single microbubble could then be determined 

by equation (1).  

(1)                   
                   

                         
 

The volume increase of a microbubble upon loading with lipsosomes (i.e. “liposome 

volume per bubble”) could be calculated by equation (2) below.  

(2)l                          

                                                       ) 

Dividing this liposome volume per microbubble by the volume of a single 

(spherical) liposome (with an average diameter of approximately 200 nm as was 



determined by dynamic light scattering) gives an estimation of the amount of 

liposomes loaded on one microbubble (equation 3). 

(3)                                
                              

                       
 

All measurements were performed at least in triplicate and results are 

presented as the mean of three different measurements. 

2.7 Ultrasound induced DOX-release 

The release of doxorubicin from the liposomes was determined by fluorescence 

measurements. The following samples were prepared for the release experiments. 

One ml of lipid solution was mixed with 10 or 20 µl of DOX-liposomes with a DOX-

concentration of 0.1 mg/ml and C4F10 gas. After shaking the lipid/lipsome mixture in 

the Capmix™ device the mixture was diluted with PBS to a final volume of 10 ml and 

injected in an OpticellTM (Biocrystal, Westerville, OH) plate. This plate was 

submerged in a water bath (37°C) with an absorbing rubber and subjected to 

ultrasound during 15 s using the Sonitron device (Artison Corporation, Inola, OK, 

USA) equipped with a 2 cm ultrasound probe[22,24]. This probe was used with an 

ultrasound frequency of 1 MHz with 20 % duty cycle at an ultrasound intensity of 2 

W/cm2. Subsequently, the fluorescence of each sample was measured in a Wallac 

envision plate reader (λexc 500 nm, λem 550 nm). Each experiment was performed at 

least in triplicate. 

2.8 Cell culture and cytotoxicity tests 

BLM cells [24] (melanoma cells) were cultured in F12-supplemented Dulbecco‟s 

modified Eagles medium (DMEM-F12) which contained 1% Penicilin/Streptomycin, 

2mmol/l glutamine, 10 % Fetal bovine serum (FBS) (all purchased from Gibco, 



Merelbeke, Belgium) and 100 mmol/l HEPES pH 7.2. Cells were grown in an 

humidified incubator at 37°C in a 5 % CO2 atmosphere. 

BLM cells were seeded in Opticell™ plates  (1.3 x 106 cells per Opticell™) and 

were grown to 90 % confluency, which was reached two days after seeding. Before 

experiments were performed, cells were washed with PBS. Subsequently, DOX-

liposome loaded microbubbles were added to the cells. The following samples were 

prepared for the cytotoxicity experiments. To 500 µl of lipid solution (lipid 

concentration of 2 x 10-4 mmol/ml) respectively 10, 100, 250 or 500 µl of DOX 

liposomes (with a DOX concentration of 0.54 mg/ml) were added; HEPES-buffer (50 

mM, pH 7.4) was added until a final volume of 1 ml was reached. Before shaking 

vials were filled with C4F10 gas. After shaking in the Capmix™ device, the 1 ml 

microbubble dispersion was added to 10 ml of optimem and this mixture was added 

to the cells in Opticell™ plates. Subsequently, these plates were submerged in a 

warm water bath (37°C) with a bottom of ultrasound absorbing rubber. Ultrasound 

was delivered by moving the Sonitron ultrasound probe over the whole plate during 

10-15 sec. We used 1 MHz ultrasound with a 20 % duty cycle with an ultrasound 

intensity of 2 W/cm2. During ultrasound application cells were located on the top 

membrane of the Opticell™, in this way microbubbles are directly contacting the cells 

during sonication. After ultrasound application cell displacement was evaluated by 

means of microscopy and was always minimal with the microbubble concentrations 

used for these experiments. 

 After 4 hours of incubation, microbubbles were removed, cells were washed 

with PBS and incubated in fresh culture medium. After 24 hours cells were washed 

and the MTT reagent (Cell proliferation kit I, Roche diagnostics, Leuven, Belgium) 

was added for 4 hours. Subsequently, the sollubilization reagent was added and cells 



were incubated overnight to allow cell lysis at 37°C. The next day, the absorbance of 

each plate was measured in an absorbance plate reader at respectively 590 nm 

(OD590) to determine the formed formazan and at 690 nm (OD690) as a reference. The 

results of the cytotoxicity measurements are expressed as percentages; the viability 

of the cells which were only treated with optimem was considered to be 100 %, while 

the viability of cells exposed to phenol was considered to be 0 %. Experiments were 

performed at least in triplicate. 

2.9 Statistical analysis 

All data are presented as means +/- one standard deviation. A student‟s t-test 

was performed to determine whether datasets differed significantly. A p-value smaller 

than 0.05 was regarded significant. 

3 RESULTS 

3.1 Preparation of liposome-loaded microbubbles by self-assembly  

As schematically presented in Figure 1, to make liposome-loaded 

microbubbles, to a mixture of the (functionalized) lipids DPPC and DSPE-PEG-

SPDP, dissolved in a glycerine-propyleneglycol-water solvent at a concentration 

below their critical micellar concentration [25], liposomes containing DSPE-PEG-

MALEIMIDE were added. We observed that liposomes dispersed in the lipid solution 

are stable and can be stored during at least several weeks (data not shown). 

Therefore we stored the liposome/lipid dispersion at 4°C in chromatography vials. To 

“activate” the mixture, which refers to (as formation of liposome loaded microbubbles 

(Figure 1C), the vials‟ headspaces were filled with perfluorobutane gas and 

subsequently mixed with a high speed shaking-device (Capmix™ or Vialmix™). The 

Capmix™ disperses the lipophilic perfluorobutane in the lipid solution. Hence, the 



hydrophobic tales of the dissolved lipids interact with the dispersed gas and stabilize 

the gas bubbles formed. Because functionalized (SPDP-) PEG-lipids were used 

which can interact with the functionalized (MALEIMIDE-)PEG-lipids of the liposomes 

(Figure 1D), liposome-loaded microbubbles were spontaneously formed during this 

process as can be seen in the confocal image in Figure 2B and its corresponding 

transmission image (Figure 2A) clearly show bodipy-labeled liposomes at the surface 

of the microbubbles.  

 

Figure 2: microscopy and Coulter Counter studies of liposome-loaded 

microbubbles: Transmission image (A) and confocal image (B) of a (bodipy-labeled) 

liposome-loaded microbubble. Size distributions of unloaded and liposome loaded 

microbubbles as obtained by Coulter Counter measurements (C) show an increase in 

mean size when liposomes are bound to the microbubbles‟ surface. 

Subsequently we measured the size distribution and microbubble concentration 

of respectively unloaded and loaded microbubbles by Coulter Counter (Figure 2C). 



The unloaded microbubbles showed an average volume diameter of 3.6 µm while the 

diameter of liposome-loaded microbubbles equaled 4.0 µm. The microbubble 

dispersions contained respectively 1.23 x109 (unloaded) and 1.04 x 109 (loaded) 

microbubbles/ml. The 400 nm increase in average diameter of the bubbles upon 

loading with liposomes strongly indicates the formation of a single liposome layer at 

the microbubble surface as the hydrodynamic diameter of a single liposome is about 

200 nm.  

3.2 Improving the liposome-loading of the microbubbles  

 Clearly, the more liposomes could be loaded onto the microbubble shell, the 

more drug could be released when the microbubble collapses. In a next step we 

evaluated whether the microbubble loading could be increased by using higher 

amounts of DSPE-PEG-SPDP lipids in the microbubble shell. We evaluated the 

amount of liposomes loaded per bubble through the use of bodipy-labeled liposomes 

and quantifying the fluorescence of the bodipy-liposome-loaded microbubbles 

through flow cytometry. Figure 3A clearly shows that the mean fluorescence per 

bubble increases upon (a) adding more liposomes to the mixture and (b) using higher 

amounts of DSPE-PEG-SPDP in the lipid mixture. Figure 3B shows Coulter Counter 

measurements on the corresponding bubbles and clearly indicates that upon using 

35% DSPE-PEG-SPDP the microbubbles become substantially larger which explains 

the increased loading capacity of these microbubbles as more surface space per 

bubble is available. We noticed that it is possible to incorporate even higher amounts 

of DSPE-PEG-SPDP-lipids in the bubbles, however, the resulting microbubbles were 

unstable. Hence, we concluded that the use of a 35% molar ratio of DSPE-PEG-

SPDP-lipids is optimal for liposome loading.  



 

Figure 3: flow cytometry and coulter counter measurements of liposome-

loading with increased PEGylation: (A) Results of flow cytometry on bodipy-

liposome loaded microbubbles: mean fluorescence per bubble in function of the 

amount of bodipy-liposomes added to the lipid mixture. (B) Volume per microbubble, 

as measured by Coulter Counter, in function of the amount of DSPE-PEG-SPDP 

used in the lipid mixture. 

3.3 Behavior of liposome-loaded microbubbles in plasma  

Clearly, successful ultrasound triggered drug release assumes that the 

microbubbles keep the drug as long as ultrasound energy is not applied. To judge 

whether liposome-loaded microbubbles remain stable once injected in plasma and do 

not release drug due to interactions with plasma components, we performed flow 

cytometry measurements on microbubbles loaded with bodipy-liposomes dispersed 



in human platelet poor plasma (Figure 4). We could not observe significant 

differences in the fluorescence of liposome-loaded microbubbles dispersed in 

respectively plasma and buffer indicating that liposome-loaded microbubbles remain 

stable in plasma. Hence we predict that the liposomes will remain bound to the 

bubbles after injection in the bloodstream, at least as long as they are not exposed to 

ultrasound.  

 

Figure 4: flow cytometry assessment of the stability of liposome-loading 

in plasma: Results of flow cytometry on bodipy-liposome-loaded microbubbles: 

mean fluorescence per bubble in function of the amount of bodipy-liposomes added 

to the lipid mixture. 

3.4  Aspecific interactions between the liposomes and the microbubbles  

Subsequently we evaluated whether liposomes can stick (i.e. become 

aspecifically bound) to the microbubbles. Therefore we prepared microbubbles with 

DSPE-MPEG lipids without functional end groups, thereby avoiding covalent binding. 

Figure 5A shows the fluorescence of non-functionalized microbubbles exposed to 

bodipy-liposomes, as measured through flow cytometry. Clearly, liposomes bind 

aspecifically to the microbubbles. However, as could be expected, liposome loading 



of the microbubbles through covalent interactions enables significantly higher 

loading, which is of interest for use in drug delivery. One could speculate about the 

nature of the aspecific interactions between the liposomes and microbubbles. As 

schematically illustrated in Figure 5B, entanglements between PEG-chains on the 

liposomes and microbubbles may contribute to this phenomenon.  

 

Figure 5: flow cytometry assessment of aspecific liposome-loading: (A) Results 

of flow cytometry on bodipy-liposome loaded microbubbles: mean fluorescence per 

bubble in function of the amount of bodipy-liposomes added to the lipid mixture. The 

micobubbles contained 35 mol% DSPE-PEG-SPDP, the liposomes contained 

respectively 35% DSPE-mPEG or DSPE-PEG-MALEIMIDE. (B) Schematical 

depiction of specific (a) and aspecific (b) binding of the liposomes to the 

microbubbles through PEG-entanglements. 



3.5 Coulter Counter measurements gain further insight in the amount of 

liposomes loaded 

Although flow cytometry experiments revealed clear information on the loading 

of the microbubbles with liposomes, it remained impossible to estimate the number of 

liposomes loaded per microbubble. This information is of interest as it defines the 

drug dose which can be loaded on the microbubbles‟ surface. We reasoned that 

measuring the increase in volume of a microbubble upon loading it with liposomes 

(defined as “liposome volume per bubble”) in equation (2)) could give us valuable 

information. Dividing this “liposome volume per bubble” by the volume of one 

liposome allows us to estimate this number. Figure 6 shows the results of these 

experiments. For microbubbles with covalently attached liposomes we estimated that 

between 600 and 1300 liposomes can be loaded on the microbubbles‟ surface, which 

is significantly higher than the number which can be loaded through aspecific 

interactions. These data confirm the results obtained by Klibanov et al. [26] where is 

claimed that approximately 2000 liposomes with a diameter of 0.1µm can be bound 

to one bubble with a diameter of 2.5µm. However the number of 600-1300 liposomes 

per bubble is based on a volumetric measurement with the Coulter Counter. 

Interestingly, the results obtained through Coulter Counter measurements confirm the 

data observed in Figure 5A which were obtained through flow cytometry.  



 

Figure 6: Estimation of the number of liposomes per bubble: Estimated number 

of liposomes per microbubble (containing 35 mol% DSPE-PEG-SPDP) as measured 

by Coulter Counter. 

 

3.6 Ultrasound induced DOX release from DOX-liposome-loaded 

microbubbles  

 Next we evaluated whether applying ultrasound on the DOX-liposome 

microbubble results in the release of DOX from the liposomes. As DOX encapsulated 

in liposomes has a lower fluorescence intensity than the corresponding amount of 

freely dissolved DOX, an increase in fluorescence could be expected upon applying 

ultrasound to the DOX-liposome loaded microbubbles. Figure 7 shows a significant 

increase in fluorescence when liposome-loaded microbubbles are subjected to 

ultrasound, which indicates that free doxorubicin is released from the liposomes after 

insonation.  



 

Figure 7: Fluorimetric analysis of ultrasound induced free DOX release: 

Fluorescence intensity of DOX (expressed as relative light units (RLU)) significantly 

increases when liposome loaded microbubbles are subjected to ultrasound, 

indicating that DOX leaks out of destroyed liposomes after ultrasound treatment. 

3.7 Biological efficacy of DOX-loaded liposome bubbles treated with 

ultrasound 

In a next step we evaluated the tumor cell killing efficacy of DOX-liposome 

loaded microbubbles. Figure 8B shows the results of an in vitro cytotoxicity assay 

using different cell killing strategies. Clearly, ultrasound treatment of DOX-liposome 

loaded microbubbles (white bars) results in a significantly stronger killing of the cells. 

The x-axes in Figure 8B indicates the concentration of DOX in the Opticells™. Note 

that a higher DOX concentration was obtained through the use of microbubbles 

which were more loaded with DOX-liposomes (i.e. the number of DOX-liposome 

loaded microbubbles per Opticell™ was constant). Clearly, the „heavier‟ the 

microbubbles are loaded with DOX-liposomes the more cytotoxic they are. 

Importantly, without ultrasound DOX-liposome loaded microbubbles do not kill cells 

(dark gray bars in Figure 8B). As the DOX-liposome loaded microbubbles are not 



cytotoxic as long as they are not subjected to ultrasound, we suggest that such 

bubbles in combination with ultrasound may allow targeted release of DOX. We 

would like to note that, as the cytotoxicity experiments were done on a cell 

monolayer, cells were occasionally (physically) removed from this layer due to the 

ultrasound energy or the microbubbles treatment itself. This could induce false 

positive results in the cytotoxity experiments, although microbubble concentrations 

are used that induced a minimal cell displacement as verified microscopy (data not 

shown). The bars in Figure 8A show that at microbubble concentrations used in the 

experiments there was no significant killing of the cells due to the microbubble 

destruction itself; the observed cytotoxicity was similar to that observed with the blank 

(optimem).  

 

Figure 8: Viability measurements on melanoma cells: (A) Effect of microbubbles 

alone in presence of ultrasound on melanoma cell viability compared to no treatment 

(optimem). (B) Viability of melanoma cells after treatment with DOX-liposome loaded 

microbubbles, with ultrasound treatment (light gray bars), DOX-liposome loaded 

microbubbles without ultrasound treatment (dark gray bars) and DOX-liposomes 



alone, were measured using augmenting amounts of DOX-liposomes in an Opticell™ 

plate.  

 

3.8 Can dose reduction be achieved with DOX-liposome loaded 

microbubbles? 

 In the experiments in Figure 8 the DOX-liposome loaded microbubble 

dispersions did still contain an amount of free DOX-liposomes as it was 

experimentally difficult to separate free liposomes from the microbubbles. We were 

especially interested in the cell killing properties of the DOX-lipsosome loaded 

microbubbles themselves. We described above that between 600 and 1300 

liposomes can be bound per microbubble. Therefore we prepared a DOX-liposome 

microbubble dispersion using an amount of DOX-liposomes which is expected to 

become fully loaded on the microbubbles. One can calculate that, when the 

microbubbles are loaded with this amount of liposomes, approximately 5 µg of DOX 

is loaded on the microbbubbles present in a 1 mL dispersion. Under these conditions 

we performed the cytotoxicity measurements, which results in a DOX-concentration 

of 0.5 µg/ml in the Opticells™ after applying the DOX-liposome microbubble 

dispersion to the cells. Figure 9 compares the cell killing at a DOX concentration of 

0.5 µg/ml in the Opticells™, respectively when free DOX and DOX-liposome 

microbubble dispersion (without free DOX-liposomes) were applied. Despite the very 

low DOX-concentration in the Opticells™, DOX-liposome loaded microbubbles were 

clearly cytotoxic (in case ultrasound was applied). In contrast, free DOX did not 

cause any significant tumor cell death. Our results indicate that very low amounts of 

doxorubicin can become significantly effective when loaded onto microbubbles and 



exposed to ultrasound. An interesting observation towards the delivery of DOX as a 

lower dose may become sufficient in the treatment of patients.  

 

Figure 9: Viability measurements on melanoma cells with reduced dose: 

Viability of melanoma cells after exposure to respectively DOX-liposome loaded 

microbubbles (with and without ultrasound (US) treatment) and free DOX. The DOX- 

concentration in the wells was 0.5 µg/ml. Note that in these experiments we did not 

expect free DOX-liposomes to be present in the DOX-liposome loaded microbubble 

dispersion.  

4 DISCUSSION 

 In this paper we show that it is possible to design a safe and simple system for 

ultrasound guided drug delivery and we show that this system is very efficient in vitro, 

even when low amounts of model drug (DOX) are used. However, these in vitro 

experiments were performed in an ideal setting, because microbubbles were 

contacting the melanoma cells while sonicated, which probably leads to a more 

efficient sonoporation. In this respect, one could speculate on how to apply this 

system in an in vivo setting. Since microbubbles are relatively large particles, they will 



not pass the endothelial barrier in the tumor tissue, hence drug release has to occur 

in the blood vessels. The possible future clinical application of this system, will 

depend on how efficient the drug will penetrate the tissue under ultrasound 

application. Fortunately it has been recently shown that ultrasound and microbubbles 

can lead to a permeabilization of the endothelial barrier in (tumor) tissue which 

causes extravasation of coinjected molecules/drugs [27], other studies prove that 

ultrasound and microbubbles can even cause a local opening of the Blood Brain 

Barrier (BBB) [28]. In our measurements we have clearly shown that active 

compound is released out of the liposomes after implosion of the microbubbles, this 

release of free DOX can diffuse into the tissue after disruption of the endothelial 

barrier and can have a fast effect on the tumor cells. Furthermore, it is likely that not 

every liposome is destructed after ultrasound insonation, but is released in the 

surrounding environment. These liposomes can also be delivered into the tissue after 

endothelial barrier disruption. Another mechanism of tumor killing in vivo can be the 

specific killing of the endothelial cell layer directly contacting the microbubbles that 

are affected by the ultrasound. This mechanism is directly comparable with the in 

vitro experiments performed in this paper. The specific killing of endothelial cells will 

impair blood flow in the tumor and induce necrosis of the tumor. To even improve 

contact between these endothelial cells and the liposome-loaded microbubble a 

targeting ligand might be introduced in the system. The use of liposome-loaded 

microbubbles will in the end allow killing of tumor cells using less drug, because the 

drug will only be delivered where and when ultrasound is applied. Furthermore, future 

in vivo experiments with this system will have to answer the question whether the 

efficiency of the therapy will be improved too, if sonoporation allows direct delivery of 

the drug in endothelial cells and increased uptake in tumor cells. 



 Another issue which is still prone to discussion is the drug dose which can be 

maximally loaded on and thus delivered by the microbubbles. A microbubble is 

relatively small, which limits the space for drug loading. We believe that binding (drug 

containing) vesicles (like liposomes) on the surface of the bubbles maximizes the 

amount of drug that can be loaded. From this point of view this strategy may be an 

advantage when compared with other approaches reported to load microbubbles with 

drugs, like e.g. ones which load the drug into an inner oil layer or in the bubble shell 

itself [17,18]. Though we showed that approximately 600 to 1300 liposomes can be 

bound per single microbubble the amount of DOX which becomes loaded in this way 

still remains rather limited. The loading may be further improved by applying multiple 

layers of liposomes around the microbubbles. The materials reported here can only 

be further clinically evaluated provided one can overcome the low drug loading 

obstacle. Nowadays cancer patients are treated with a relatively high dose of 

DOXYL™, i.e. 40-50 mg DOX per injection. Designing drug-loaded microbubbles 

which would allow such a high DOX dosing is highly likely impossible unless really 

high amounts of bubbles (in the order of 1 x 1013 bubbles/ml) could be injected. 

However, considering the targeted and more efficient delivery of DOX when 

ultrasound and DOX-liposome loaded bubbles are used, we believe that such high 

DOX-doses might be no longer necessary, which may also reduce the severe side-

effects of DOX-therapy in particular and chemotherapy in general.  

Since apparati suitable for in vivo ultrasound assisted drug delivery that are able to 

deliver ultrasound into a focal spot deep into the tissue are allready under full 

development [29], the clinical evaluation of the drug-loaded microbubbles reported in 

this paper will smoothly move on and hopefully make it from bench to bedside. 



5 CONCLUSIONS 

This paper showed that that DOX-liposome loaded microbubbles can be obtainbed 

through self-assembly of (functionalized) phospholipids, drug-loaded liposomes and 

perfluorobutane gas. Importantly, this single step process results in a material which 

meets all criteria for clinical applicability: (a) no immunogenic compounds are used; 

(b) sterilization can easily be achieved through straightforward techniques and (c) 

adequate amounts of liposomes can be stabily loaded on the surface of the bubbles. 

Through flow cytometry and Coulter Counter measurements we showed a maximal 

loading of the microbubbles with liposomes when the lipid shell of the microbubbles 

was composed of 35 mol% of DSPE-PEG-SPDP, resulting in approximately 600 to 

1300 liposomes bound per single microbubble. Importantly, the liposomes remained 

bound to the mirobubbles' surface upon incubation in plasma, being a clear 

requirement for clinical application. Ultrasound induced microbubble collapse clearly 

induced the release of DOX. When compared with free DOX and DOX-liposomes, we 

observed that DOX-liposome loaded microbubbles in combination with ultrasound 

showed a significantly stronger killing of cancer cells. It is our opinion that the DOX-

liposome loaded microbubbles described in this paper provide an opportunity for 

ultrasound targeted cancer therapy. 
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