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Abstract

Despite recent advances in mobile hardware, most mobile devices still fall
short to execute complex multimedia applications with real-time require-
ments such as augmented reality (AR). Because offloading the application to
the cloud is not always a solution due to the high and often unpredictable
WAN latencies, the concept of cloudlets has been introduced: nearby infras-
tructure offering virtual machines for remote execution.

In this paper we present a cloudlet platform, providing two important
contributions. First, the platform allows cloudlets to be formed in a dy-
namic way, including (fixed) virtualized infrastructure co-located with the
wireless access point, as well as any device in the LAN network support-
ing the platform. The approach can also be extended towards the cloud,
facilitating distribution of applications over three tiers (i.e. the device, the
cloudlet and the cloud). Second, instead of moving a complete virtual ma-
chine to the cloudlet, we propose a more fine-grained approach, by managing
and deploying applications on the component level. Application components
are declared by the developer, together with their real-time constraints and
configuration parameters, which are configured and distributed among the
cloudlet by the platform at runtime depending on the application context,
in order to meet the constraints and to optimize the user experience.

An OSGi-based prototype implementation on the Android platform is
highlighted and evaluated using a mobile AR use case, showing the need for
a component-based approach for the cloudlet.
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1. Introduction

As smartphones and tablets are gaining more and more capabilities (in
terms of CPU power, network connectivity and sensors), they are becom-
ing the preferred device for daily tasks such as browsing the web, e-mail,
etc. Although high-end smartphones are equipped with dual- or quadcore
processors, their processing capabilities remain an order of magnitude lower
than their desktop counterparts, due to the limited battery capacity, form
factor and passive cooling. Therefore, these mobile devices still fall short
to execute future resource intensive multimedia applications, that involve
real-time processing of video or audio, such as object recognition or mobile
augmented reality [1].

To enable such resource-intensive applications, the concept of cyber for-
aging was introduced by Satyanarayanan et al. [2], where parts of the ap-
plication are offloaded to nearby resources – called surrogates – connected
via a wireless network. Such surrogates are recently defined as “cloudlets”
[3], virtualized infrastructure co-located with the wireless access point, which
allows mobile devices to offload applications to nearby resources in the LAN
network.

Today many such cyber foraging systems exist, offloading applications
either on a VM [4][3], software component [5][6][7] or a method level [8][9].
Although a lot of research has been done on profiling and partitioning ap-
plications and decision algorithms to decide when to offload, two important
issues still remain.

First, almost all systems focus on the scenario where one mobile device
offloads to one surrogate, called the cloudlet. However, in a realistic scenario
multiple devices will be connected to the wireless network, some of them
requiring resources to offload to (i.e. mobile devices or tablets) and other
devices offering resources (i.e. servers or laptops). In this paper we present
a cloudlet management platform, that extends the cloudlet to all devices in
the network. This allows to take decisions optimizing behavior for all devices
in the network, taking into account shared resources such as the network
bandwidth, instead of optimizing on each device separately.

In addition to cloudlets consisting solely of fixed infrastructure (e.g. a
corporate cloudlet), also ad hoc cloudlets can be formed with all devices
available in the LAN network (e.g resources discovered in the home network
or within a railway carriage), as depicted in Figure 1. The platform can also
easily be extended towards the cloud, allowing application components to be
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Figure 1: Static cloudlets can be provided by a corporation in a corporate cloudlet, or by
a service provider in the mobile network. Ad hoc cloudlets can be formed in the home
network or within a railway carriage.

distributed in a 3-tier fashion: locally on the mobile device, nearby on the
cloudlet infrastructure or on a distant datacentre.

A second issue is that current cyber foraging systems aim to optimize a
performance goal from a user perspective, such as energy usage, processing
time or throughput. However, from a developer perspective, a more impor-
tant goal is to achieve good performance on a wide range of devices, in which
case “good” performance is an application specific metric. Such a metric
can often be formulated as a number of constraints (e.g. maximum allowed
execution time for a specific method call), especially in applications with
real-time requirements.

To address this issue, our cloudlet platform manages applications on the
component level, where the application developer declares application com-
ponents with their offered functionality, configurable parameters and perfor-
mance constraints. Application components are managed and configured at
runtime, and can be distributed among resources in the cloudlet depending
on the current context, in order to achieve the desired performance. In or-
der to ease development for such constraint aware applications, we provide
a programming model based on annotations, minimizing the burden put on
the application developer.

We present a detailed architecture of the cloudlet platform. To show the
need and effectiveness of the platform, we focus on an augmented reality use
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case. An OSGi based prototype implementation is presented and evaluated
on the Android mobile platform.

The remainder of this paper is structured as follows. In the next section
we present a mobile augmented reality use case that illustrates the need for
a component-based approach. This use case has been fully implemented to
evaluated the cloudlet platform. Section 3 gives an overview of related work
in the field of application offloading and cloudlets. In Section 4 we propose
a general architecture for a cloudlet framework, and in Section 5 we discuss
in more detail the implementation of a prototype based on OSGi, and the
integration with the Android OS. To ease component-based application devel-
opment supporting the platform, an annotation-based programming model
and corresponding developer tools are presented in Section 6. In Section 7 we
show the need and effectiveness of our approach for the mobile augmented
reality use case, while Section 8 concludes this paper and discusses future
work.

2. Use case: Mobile Augmented Reality

As a use case, we present a mobile augmented reality application featuring
markerless tracking as described by Klein et al. [10], combined with an object
recognition algorithm presented in [11]. The application is shown in Figure 2.
On the right a greyscale video frame is shown with the tracked feature points,
from which the camera position is estimated. The left shows the resulting
overlay with a 3D object, and a white border around the recognized book.

Figure 2: The augmented reality application tracks feature points in the video frames
(right) to enable overlaying of 3D objects (left).

We have split up the augmented reality algorithms of the application
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and redesigned them to arrive at the following components (also shown in
Figure 3):

VideoSource The VideoSource fetches video frames from the camera hard-
ware. These frames are analyzed by the Tracker, and rendered together
with an augmented reality overlay by the Renderer.

Renderer Each camera frame is rendered on screen together with an overlay
of 3D objects. These 3D objects are aligned according to the camera
pose as estimated by the Tracker.

Tracker The Tracker analyses video frames and calculates the camera pose
by matching a set of 2D image features to a known map of 3D feature
points. The map of 3D points is generated and updated by the Mapper.

Mapper From time to time the Tracker sends a video frame to the Mapper
for map generation and refinement. By matching 2D features in a
sparse set of so-called keyframes, the Mapper can estimate their 3D
location in the scene and generate a 3D map of feature points.

Relocalizer When no 2D image features are found in the video frame, the
Relocalizer tries to relocate the camera position until tracking resumes.

Object Recognizer In the keyframes of the Mapper the Object Recognizer
tries to locate known objects. When an object is found, its 3D location
is notified to the Renderer that produces an overlay.

These components are not only very CPU intensive, some of them also
have strict real-time constraints. The VideoSource and the Renderer have
to be executed on the mobile device, as they access device specific hardware.
In order to achieve an acceptable performance, the Tracker and the Relocal-
izer should be able to process frames within 30-50 ms, which translates into
a frame rate of 20-30 frames per second. As the Mapper runs as a back-
ground task, constantly refining and expanding the 3D map, this component
preferably runs on a device with considerable CPU resources. However the
Mapper does not impose strict real time requirements. The Object Recog-
nizer also has more relaxed requirements, as delays in the order of a second
before recognizing an object are still tolerable to achieve an acceptable user
experience.
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Figure 3: The component diagram of the AR application. The VideoSource and the
Renderer (dark grey) are fixed on the mobile device. The Relocalizer and Tracker (grey)
have real-time constraints (≤ 50 ms). The Mapper and the ObjectRecognizer (white) do
not have strict requirements.

The goal now is to run this application on a mobile device, while meeting
all the required constraints, which have to be declared by the application
developer. This use case shows that offloading the whole application to the
cloudlet on a VM level is not sufficient, as sending frames to the cloudlet for
processing and receiving rendered frames in return would require too much
bandwidth, which is a scarce resource in current wireless access networks.
Therefore we propose a cloudlet architecture that will manage the application
on a component level, being able to distribute application components within
the cloudlet or to other cloudlets.

In addition to component (re)distribution, QoS can also be assured by
dynamically reconfiguring components, as shown in [12]. By adopting a
component-based approach for the cloudlet, real-time constraints of appli-
cations can be achieved using combined dynamic reconfiguration and dis-
tribution. In our use case for example, the developer defined a parameter
configuring the number of tracked features, which influences the frame pro-
cessing rate and which can be adapted at runtime.

3. Related work

Offloading computation from mobile devices to remote surrogates, known
as cyber foraging [13] has been subject for over a decade. In recent work,
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Kristensen et al. [9] propose Scavenger, a cyber foraging system in Python
which outsources Python methods, and the scheduler orchestrating this out-
sourcing process uses history-based profiles. MAUI [8] offloads methods of
Microsoft .Net applications in order to save energy. At initialization time,
MAUI measures the energy characteristics of the device, and at runtime the
application and network characteristics are monitored. By solving an inte-
ger linear programming (ILP) problem a decision is made whether or not
to offload a method. Chun et al. present CloneCloud [4], where virtualized
clones of the mobile device are executed in the cloud. Different binaries of
the application are generated in an offline profiling stage, with dedicated VM
instructions added at migration points for selected methods. At runtime a
clone VM is instantiated at the server side, and the application transparently
switches between execution at the device or at the clone. Giurgiu et al. [5]
and Verbelen et al. [6] use OSGi components offloadable units. Monitoring
information is used to build a graph model of the software, from which graph
cutting algorithms calculate the optimal deployment. Odesssa [7] is a cyber
foraging system that focuses on data flow applications, trying to optimize
the makespan and throughput of the application by exploiting offloading
and data-parallelism.

These cyber foraging systems address the situation where the application
is distributed between one mobile device and the cloud. However, in a wire-
less network context, network bandwidth is a shared medium, and thus there
is need for a global management entity that optimizes the bandwidth for all
users. Also, it is often left undefined what should happen when no surrogate
is available. From the application developer viewpoint, one would prefer the
application to gracefully degrade when no remote resources are available, or
conversely, treat the situation when parts are offloaded as a quality enhance-
ment on top of a more basic application functionality. To achieve this, the
offloading framework should also be able to reconfigure the application at
runtime.

As surrogates for remote execution, Goyal et al. [14] propose the usage of
virtual machine technology. Because the deployment of virtual machines in a
cloud can lead to high WAN latencies, Su et al. present Slingshot [15], where
the VMs are co-located with the wireless access point. Satyanarayanan et al.
[3] proposed the concept a of cloudlet: a trusted, resource-rich computer or
a cluster of computers well connected to the Internet and available for use
by nearby mobile devices. Cloudlets offer their resources to mobile devices
by dynamic VM synthesis, where small VM overlays are sent to the cloudlet
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from which a complete VM is created running the mobile application.
An important challenge when using VM based offloading consists of the

fact that either the complete application has to be executed on the remote
VM using a thin client approach, or the developer himself is responsible
for managing which parts should be executed locally on the mobile device
and which on the remote VM. Also, the migration cost is rather high, as a
complete VM has to be started and configured.

To tackle these issues, we propose a more fine grained approach for the
cloudlet, where the problem is tackled at the component level through a
middleware approach. A cloudlet platform configures and distributes the
application components at runtime, alleviating the developer from the task to
decide which components to offload and how to configure the application for
the current context. To facilitate application development on our framework,
we present an intuitive programming model based on code annotations. The
framework also handles resource discovery, enabling the dynamic formation
of cloudlets, and has a global overview of all resources, which makes global
optimization possible.

4. Cloudlet architecture

We adopt a component-based cloudlet architecture as proposed in [16],
which is shown in Figure 4. As mentioned above, a cloudlet consists of a
collection of interconnected resources in each other’s vicinity. This archi-
tecture has three interrelated management levels: the component level, the
node level and the cloudlet level.

Components (units of deployment specified by their providing and re-
quired interfaces [17]) are managed by an Execution Environment (EE), that
can start and stop components, resolve component dependencies, expose pro-
vided interfaces, etc. To support distributed execution, dependencies can be
resolved with other (remote) Execution Environments. In that case, prox-
ies and stubs are generated and the components can communicate by remote
procedure calls (RPCs). Components can also define performance constraints
(e.g. the maximum execution time of a method), and expose configuration
parameters to the EE. By monitoring the resource usage of each component,
the EE can detect violations of the performance constraints and actions can
be taken such as calculating a new deployment (i.e. offloading some resource
intensive components) or adapting component configurations (i.e. lowering
component quality).
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Figure 4: The application components are distributed among nodes in two cloudlets. An
ad hoc cloudlet consisting of a mobile phone, a laptop and a desktop computer, and a
distant elastic cloudlet in a public cloud infrastructure. All components are managed and
monitored by an Execution Environment (EE). Different EEs on a node are managed by
a Node Agent (NA), which are managed by the Cloudlet Agent (CA).

One or more Execution Environments run on top of an operating system
(OS), which in turn can run on either virtualized or real hardware. The (pos-
sibly virtualized) hardware together with the installed OS is called a node,
and is managed by a Node Agent (NA). The Node Agent manages all the EEs
running on the OS, and can also start or stop new Execution Environments,
for example for sandboxing components. The NA also monitors the resource
usage of the node as a whole, and has a view on the (maybe virtualized)
hardware it runs on (e.g. the number of processing cores, processing speed,
etc.).

Multiple nodes that are in the physical proximity of each other (i.e. low
latency) form a cloudlet. The cloudlet is managed by a Cloudlet Agent (CA),
that communicates with all underlying Node Agents. Cloudlet Agents of
different cloudlets can also communicate with each other, for example to
migrate components between cloudlets. Within a cloudlet, the node with the
most resources is chosen to host the Cloudlet Agent. The Cloudlet Agent
has a global overview of all available resources, and is able to calculate a
deployment, which should be globally optimal for all devices in the cloudlet.

There are two types of cloudlets, as shown in Figure 4: the ad hoc cloudlet
and the elastic cloudlet. The ad hoc cloudlet consists of dynamically discov-
ered nodes in the LAN network. These nodes run a Node Agent that can
spawn Execution Environments to deploy components in. When nodes join
or leave the cloudlet, the Cloudlet Agent will recalculate the deployments,
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migrating components if needed. The elastic cloudlet runs on virtualized in-
frastructure, where nodes run in virtual machines. Here, the Cloudlet Agent
can spawn new nodes when more resources are needed, or stop nodes when
too much resources are allocated. This type of cloudlet comes close to the
VM based cloudlet envisioned by Satyanarayanan [3], the main distinction
being the additional platform components running in the VM (i.e. the Node
Agent and the Execution Environment) managing the applications. An elas-
tic cloudlet could run on virtualized hardware co-located with the wireless
access point, or on a private cloud within the work environment.

By also deploying the cloudlet platform in the cloud, components can also
be outsourced to the public cloud, which allows applications to be outsourced
in a 3-tier fashion: hardware dependent components are deployed on the
mobile device, latency constrained components are distributed on a nearby
cloudlet and unconstrained components, exhibiting challenging CPU and/or
data storage requirements, can be deployed on EEs in the public cloud.

5. Cloudlet platform design and implementation

The prototype implementation of the cloudlet platform is realized in
OSGi [18], an industry standard module management system in Java. This
technology was selected as the OSGi standard already specifies the software
component concept, and the OSGi platform can run on multiple underlying
platforms. In addition, a substantial amount of middleware building blocks
(e.g. Configuration Admin, Declarative Services, ...) are standardized in
the OSGi Compendium Specification [19]. In this section, we describe in
detail the design and implementation of the Execution Environment and the
Node and Cloudlet Agent, together with their integration in the Android
platform. First the most important OSGi concepts are highlighted, on which
the cloudlet platform is based.

5.1. OSGi

The OSGi core specification defines a service oriented module manage-
ment system for Java, allowing to dynamically load and unload software
modules – called bundles – at runtime. OSGi bundles can expose a service
interface by registering an implementation of this interface with the OSGi
service registry. When a bundle needs to call another service, the service
registry is queried for available implementations. The portability of Java
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enables the execution of the same code on different platforms and architec-
tures, facilitating remote execution and code migration. Because OSGi was
first designed for embedded devices, the incurred overhead is limited.

The OSGi module management system constitutes the core of the Exe-
cution Environment of the cloudlet platform. In addition to the core spec-
ification, we also use four compendium specifications: Declarative Services,
the Configuration Admin Service, the Metatype Service and Remote Service
Admin.

5.2. Execution Environment

An overview of the Execution Environment is shown in Figure 5. The EE
bundle proxies the components to gather monitoring information (e.g. time
spent executing a method) as well as to transparently forward method calls to
remote instances through the Remote Service Admin. The latter component
implements a remote procedure call protocol, such as R-OSGi [20]. Compo-
nents come with three descriptors: the metatype descriptor exposes the con-
figurable parameters, the service description declares the offered and required
service interfaces and the SLA descriptor defines imposed constraints. The
Declarative Services bundle ensures that component interfaces are registered
with the OSGi runtime, and the component is bound to all its dependencies.
The Metatype and Configuration Admin service allow the EE to discover the
available configuration options and to set these configurations dynamically
to meet the imposed constraints.

The Declarative Services specification presents a declarative model for
publishing, finding and binding OSGi services. Instead of registering and
looking up services programmatically in the source code, this is now done at
runtime by the OSGi framework using an XML description that is bundled
with the component, which describes the provided service interfaces, the
service dependencies and how these dependencies should be bound to the
component. For lifecycle management the developer can also define methods
to be called when a component is activated or deactivated. This provides
a simplified programming model to the developer, which has no more code
dependencies to the OSGi core APIs, and does not have to handle with
the complex dynamic service concept. An example of such a component
description XML is shown in Listing 1.

<component name=”ptam . t r a ck e r . Tracker ”>
<implementation class=”ptam . t r a ck e r . Tracker ”/>
<service>
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Figure 5: The Execution Environment proxies all component interfaces in order to monitor
all service method calls, which are forwarded to either a local instance or a remote instance
via R-OSGi. The Configuration Admin and Metatype service enable the EE to dynamically
configure components, which are defined using the Declarative Services specification, in
order to meet imposed constraints.

<provide interface=”ptam . t r a ck e r . api . TrackerServ i ce ”/>
<provide interface=”ptam . v ideo . api . V ideoL i s t ener ”/>

. . .
</ service>
<reference name=”mapper”

interface=”ptam . mapper . api . MapperService ”
. . .

bind=”setMapper ”
unbind=”unsetMapper ”/>

. . .
</component>

Listing 1: Example snippet of a component description, defining the Tracker component.
The Tracker component implements the TrackerService and VideoListener interfaces, and
needs a reference to the MapperService, which is injected by the framework using the
bind/unbind methods.

The ConfigurationAdmin (CA) decouples a component from its configu-
ration parameters. The CA maintains a persistent repository of configuration
data (a dictionary of key-value pairs) for all components. When a component
is started, the CA provides the necessary parameters to correctly configure
the component. When the configuration data is changed, components are
updated accordingly, allowing at runtime reconfiguration.
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Because the EE has to be able to adapt the component configuration at
runtime using the ConfigurationAdmin, it should also know which configu-
ration parameters are available and which values are allowed. This is where
the Metatype Service comes in, which allows developers to describe attribute
types in an XML format. An example metatype XML is shown in Listing 2.
The metadata consists of an Object Class Definition (OCD), which defines
a number of Attribute Definitions (ADs), and a Designate, which binds the
OCD to a component.

<MetaData>

<OCD description=”PTAM Tracker Conf igurat ion ”
name=”PTAM Tracker ”
id=”ptam . t r a ck e r . TrackerOCD”>

<AD name=”Fine Points ”
id=” t ra ck e r . f i n ePo i n t s ”
default=”1000”

min=”200”
max=”1000”>

</AD>
</OCD>
<Designate pid=”ptam . t r a ck e r . Tracker ”>

<Object ocdref=”ptam . t r a ck e r . TrackerOCD”/>
</Designate>

</MetaData>

Listing 2: Example metatype information for the Tracker component that marks the
number of tracked points as a configurable parameter.

To be able to distribute components among multiple resources in the
network, we use R-OSGi as provider for our Remote Service Admin, which
enables remote service binding and remote service calls.

In order to monitor all application components, the Execution Environ-
ment bundle creates a proxy for each service interface provided by a com-
ponent. Using the OSGi hooks API from the core specification, the original
service is hidden for other components, that can only bind to the proxied one.
This way, all service calls pass through the proxy, which is able to monitor all
service calls. The proxy forwards the call to an actual component interface,
either locally or remote via R-OSGi. Using the Metatype service, the EE
can discover the configurable parameters for each component, and modify
these using the Configuration Admin. The configuration is adapted in or-
der to meet constraints that are declared by the developer in the constraints
descriptor as shown in Listing 3.
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<sla>

<service name=”ptam . v ideo . api . V ideoL i s t ener ”>
<method name=”processFrame ”>

<constraint type=”maxTime”>50</constraint>
</method>

</ service>
</ sla>

Listing 3: Example constraint description for the Tracker component. A video frame
should be processed within 50 ms.

Here a constraint is defined that a video frame should be processed by the
Tracker component within 50 ms. The Execution Environment implements
a feedback loop that will constantly monitor the time to process a video
frame. When the processing time exceeds 50 ms, the Tracker configuration
parameters are changed in order to lower the processing time. The EE also
notifies the Node Agent, which will ask the Cloudlet Agent whether also
components need to be offloaded to enhance the application quality.

In order to create an application that exploits the cloudlet platform, the
developer needs to design the application as a number of OSGi bundles. For
each bundle he has to define the component descriptor that describes the
provided and required services of the component. Optionally, the developer
can also declare the configurable parameters in a metatype descriptor, and
required constraints in a constraint descriptor. Because this can be a tedious
and error prone task, we propose an annotation based programming model
in Section 6 to alleviate development.

5.3. Node and Cloudlet Agent

The Node and Cloudlet agents are also implemented as OSGi bundles,
running on an OSGi runtime in a separate process, as shown in Figure 6.
When an EE is started, it registers with the Node Agent running on that
node via R-OSGi on localhost.

When first started on a device, both the Node Agent and the Cloudlet
Agent bundle are active. Other devices are discovered using JSLP, a Java
implementation of the SLP discovery protocol [21]. When another CA is
discovered in the LAN network, the CA on one of the two devices (the weakest
of the two) is stopped, and the remaining CA becomes the master of the
cloudlet. If the connection to the CA is lost, the Cloudlet Agent bundle
is started again locally. This way, a cloudlet can be formed in an ad hoc
manner, without the need for virtualized hardware. When the discovered
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Figure 6: The Node Agent and Cloudlet Agent bundles run on an OSGi runtime in a
separate process. The Cloudlet Agent bundle is only present when the current node is
also the master of the cloudlet.

Cloudlet Agent is not deployed nearby, both CAs communicate as peers,
allowing for inter-cloudlet component offloading.

5.4. OSGi and Android integration

To deploy our cloudlet platform on the Android platform, the platform
needs to strictly comply with Androids application model. Android appli-
cations are written in Java and compiled to Dalvik bytecode (which run on
the Dalvik Virtual Machine), and are composed of different components: Ac-
tivities, Services, Content Providers and Broadcast Receivers. An Activity
provides the basic interaction logic with the user, containing a user interface
and offering basic computing capabilities. An Android Service is a compo-
nent that runs in the background, mainly used for long-running background
processes (e.g. playing music) without blocking the user interface. Content
Providers are used for managing a shared set of application data, and Broad-
cast Receivers are small components that respond to system-wide broadcast
announcements (e.g. announcement when running low on power).

The OSGi runtime with the Node and Cloud Agent are embedded in a
separate Cloudlet Android application that starts an Android Service at boot
time, which allows the Node Agent to run in the background. The Execu-
tion Environment is embedded within an Android application as depicted in
Figure 7. Within the Android application, components are identified that
should be offloadable or that should be monitored and configured by the EE.
The Android application calls these components by looking up their services
with the OSGi runtime, and can also register services to enable callbacks
from the components. Because the offloadable components can be executed
both on the Android device as on a remote server, the code is compiled in
both the Dalvik bytecode format and the regular Java bytecode format.
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Figure 7: On the Android platform a separate application hosts the Node Agent and
the Cloudlet Agent bundles, that run in a background process using an Android Service.
Applications having offloadable and/or configurable components deploy these on an OSGi
runtime hosting the EE, which proxies the provided interfaces. Components requiring the
Android internals (e.g. drawing to screen) are embedded in the Android Activity and also
provide their interfaces through the EE.

Figure 7 also shows how the use case components are embedded in the An-
droid application. The Renderer and VideoSource component reside within
the Android activity, as they need to render to screen, or need access to the
Android internals to fetch video frames from the hardware. They expose
their interfaces to the other components through OSGi and the EE. The
other components such as the Tracker and the Mapper are packaged within
the .apk as separate jars, which allows these components to be offloaded at
runtime, and are deployed on the OSGi runtime.

The resulting application acts as a regular Android application, and no
additional SDK is needed. When the application starts, the EE is created
which registers with the Node Agent running on the device in the background.
However, a huge burden is put on the application developer when he wants to
develop such a component-based application. Necessary steps to take include:
identifying the components, implementing these separately as OSGi-bundles
together with the accompanying descriptors, embedding an OSGI runtime
together with the EE, and building and packaging the components as an
Android application. To simplify this process, a lightweight programming
model is presented in the following section.
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6. Programming model

To ease the development of cloudlet enabled Android applications, we
present a straightforward programming model based on Java annotations.
These annotations are analyzed in a preprocessing step in the build process,
from which the required XML descriptions are generated. In the case of an
Android application, the build system will also generate the code necessary
to embed the OSGi runtime and the cloudlet platform, and create the desired
components.

Listing 4 shows the annotated source code of the Tracker class, from which
the Tracker component is generated, as well as the descriptors as described
in Section 5.

package ptam . t r a ck e r ;

@Component
public class Tracker implements TrackerServ ice , V ideoL i s t ener {

@Property (min=200 , max=1000)
private int f i n ePo i n t s = 1000 ;

@Reference ( po l i c y=dynamic )
private MapperService mapper ;

@Constraint (maxTime=50)
public void processFrame (byte [ ] data ) {

// proces s frame
. . .

}

. . .

}

Listing 4: Example annotated Java source file from which a component is generated,
together with the required XML descriptors.

Classes annotated by @Component are handled as component implemen-
tation classes, providing all implemented interfaces. A reference to another
service is created by declaring a variable of the desired type and annotate it
with the @Reference annotation. This will generate a set and unset method
to inject a reference to the required service at runtime, and create the refer-
ence attribute in the XML description. Configurable properties are annotated
by @Property, from which the metatype description is generated. To declare
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constraints on service methods, they can be annotated with the @Constraint
annotation, describing the type constraint and the imposed threshold.

 

annotated

source code 

preprocessing

+

source code 

+ XML descriptors

build application

components
build android .apk

OSGi

Execution Environment

+ middleware components

OSGi

Components

Figure 8: Overview of the steps done by the build system. First, the annotated source
code is preprocessed and the required XML descriptors for the components are generated.
Second, the component jars are built from the source code and the generated XML files.
Finally the application components are bundled with the middleware components to create
the resulting Android .apk which can be deployed on the Android OS.

The resulting build process is shown in Figure 8. First the source files
are preprocessed and XML descriptors are generated from the detected an-
notations. In the second step, the source code of the components is compiled
and packaged together with the XML descriptors. Finally the build system
combines the application components with the middleware components and
packages the resulting Android .apk.

7. Evaluation

To show the need for a cloudlet platform presented in this paper, we
implemented the augmented reality use case presented in Section 2 using the
proposed component model. The AR code was executed on an ad hoc cloudlet
consisting of a mobile device and a laptop connected via WiFi. The laptop
is equiped with an Intel Core 2 Duo CPU clocked at 2.26GHz. As mobile
device we use a HTC Desire, with a single core Qualcomm 1 GHz Scorpion
CPU, and an LG Optimus 2x powered by a dual core Nvidia Tegra 2 CPU,
also clocked at 1GHz. Both devices capture camera frames at a 800x480
resolution, which is the same size as their screen resolution. The results
show both the need for dynamically configurable components in the case
of the Tracker, and the benefits of offloading resource intensive components
such as the Mapper and Object Recognizer.
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7.1. The need for dynamic configuration

The performance of the Tracker component, which has to process all video
frames, is critical to the user experience, as too few frames processed per
second deteriorates the application quality. However, in this case offloading
is not an option, as not enough bandwidth is available to send and receive
the video frames in a timely manner. The Tracker exposes one configuration
parameter representing the maximum number of feature points that can be
tracked. A high number of points will increase the tracking accuracy, making
the Tracker more resilient to fast camera movements or motion blur, at the
cost of more processing power.

For both mobile devices, the average processing time (and standard de-
viation) to track one video frame as a function of the number of tracked
features is shown in Figure 9. For this case, we implemented a simple neg-
ative feedback loop that tries to keep the time needed for the Tracker to
process one frame close to the imposed threshold of 50 ms by tuning the
defined parameter. Of course, a more complex and more general adaptation
strategy could be implemented. At runtime, the framework adapts the con-
figuration parameter depending on the mobile device capabilities, resulting
in a number of tracked features between 200 and 250 for the HTC Desire,
and a value between 450 and 500 for the LG Optimus 2x.

Figure 9: The time needed to track a frame as a function of the number of feature points.
Depending on the device, the framework will choose a different parameter setting in order
to meet the maximum processing time constraint.
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Figure 10: The framework dynamically adapts the configuration parameter in order to
meet the constraint of 50 ms to process a frame.

The processing time per frame as well as the value of the configurable
parameter (= maximum number of feature points tracked) while running the
application on the LG Optimus 2x are shown in Figure 10.

The initialization of the map (1) results in high processing times, and
thus the value of the parameter is reduced to the minimum. When tracking
is started, the parameter value is increased to have the best tracking accuracy
possible within the 50 ms imposed.

When the tracking is lost due to a too quick camera movement, no fea-
ture points are found, and the applications starts relocalizing (2). As no
feature points are found, the processing time lowers the parameter value is
increased. When tracking resumes (3), the processing time is too high due to
the increased parameter, and the parameter value is adapted again to meet
the imposed constraint.

7.2. The benefits of offloading

The goal of the cloudlet is of course to offload application components
from the device to discovered resources nearby. In this experiment, an ad hoc
cloudlet is formed between the laptop and the mobile devices. The Cloudlet
Agent then selects resource intensive components suitable for offload, and
migrates those to the laptop. In the case of the AR application presented in
Section 2, the Mapper and Object Recognizer are selected for outsourcing.

When a new keyframe is added, all positions of the points in the map
are optimized. This optimization problem scales with the total number of
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Figure 11: The time to refine the map when a new keyframe is added, as a function of
the total number of keyframes in the map. Offloading the Mapper component results in a
speedup factor of 10.

keyframes in the map. Figure 11 shows the time needed for this map refine-
ment as a function of the keyframes in the map for one run, both executed
locally on the LG Optimus 2x, and remote when the Mapper component
is outsourced to the laptop. As the number of keyframes increases, the re-
finement process takes up to 10 seconds on the mobile device, while remote
execution takes less then a second. Overall we witness a speed up of a factor
10 when outsourcing the the laptop.

For the Object Recognizer, larger differences are perceived. When per-
forming an object search on a videoframe, this takes up to 30 seconds on the
HTC Desire, and around 18 seconds on the LG Optimus 2x. When outsourc-
ing the Object Recognizer to the laptop, the processing time is reduced to
on average 1.5 seconds.

To decide automatically at runtime which components should be out-
sourced and which should be executed on the mobile device, partitioning
algorithms could be used based on the monitoring information gathered by
the ExecutionEnvironment [22].
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8. Conclusions and future work

In this paper, we present a cloudlet architecture that not only provides
fixed infrastructure co-located with the WiFi access point, but also enables ad
hoc discovery of devices in the vicinity to share resources among each other.
Instead of providing infrastructure on a virtual machine level, a more fine-
grained approach is presented, where the cloudlet framework manages ap-
plications on a component level. By adaptively configuring and outsourcing
application components, the platform optimizes the application depending
on the mobile device capabilities and the available resources in the cloudlet.

A prototype implementation of the framework based on the OSGi in-
dustry standard is presented, together with an annotation-based program-
ming model which enables easy application development. We evaluated the
cloudlet platform using an AR use case, showing the need for both adaptive
configuration and component offloading to improve the application quality.

As future work, we plan to tackle new challenges with respect to deploy-
ment calculation and scheduling. In comparison with existing cyber foraging
frameworks, a lot more decision options are generated by allowing different
configurations of components. Moreover, instead of a fixed surrogate infras-
tructure, now multiple places for remote execution have to be considered in
the cloudlet, that can dynamically join and leave. The hierarchical architec-
ture also allows for decision taking for all users to reach a global optimum,
instead of possibly conflicting local optima for each user individual.

9. Acknowledgement

Tim Verbelen is funded by Ph.D grant of the Fund for Scientific Research,
Flanders (FWO-V).

This project was partly funded by the UGent BOF-GOA project “Auto-
nomic Networked Multimedia Systems”.

References
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