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Abstract

The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful
approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper
demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform
in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain
hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions,
indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates
were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable
hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have
demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on
hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these
aggregates.
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Introduction

Upon isolation of their native micro-environment, hepatocytes

rapidly lose their viability and metabolic functions. [1] This limits

or prevents their use for clinical, engineering and research

purposes. The prolonged maintenance of hepatocyte phenotype

could e.g. lead to the development of an engineered donor tissue,

bioartificial liver device, more efficient transplantation methods,

the development of more reliable in vitro models thereby

improving drug toxicity screening, liver disease research and

many more. [2,3]

To improve hepatocyte performance many strategies have been

addressed. One approach is the cultivation of hepatocytes as

aggregates, allowing enhanced cell-cell contacts in a three

dimensional context. Cell-aggregates can be considered as

micro-tissues and are more representative for liver tissue than

conventional two dimensional cell cultures. Different techniques

such as static cell culture on non-adherent surfaces or micro

patterned surfaces, hanging drop and rotary culture systems have

been used for creating hepatocyte aggregates with variable

dimensions. [4] These studies have demonstrated that the

cultivation of hepatocytes as aggregates improves many of their

metabolic functions such as cytochrome P450 activity, albumin

secretion, urea production, glutathione S-transferase activity, etc.

[5,6] [4,7]

Most living tissues, including the liver, are composed of

repeating cellular units on a scale of hundreds of microns.

Artificially generated three dimensional cell aggregates comprising

hepatocytes could potentially serve as functional building blocks

for the creation of larger constructs. [8] Assembly of these building

blocks into larger constructs with more relevant dimensions, can

be obtained by self-assembly or assembly in a more directed way

using biomaterials to guide this process. [9,10] In this context, the

immobilization and organization of the aggregates at high density,

while allowing mass transport of nutrients and metabolites for

hepatocyte survival and function, could be useful. [4],[8]

In this study, we used a microwell-based tissue culture platform

to generate large quantities of hepatocyte aggregates of predefined

dimensions and shapes. We observed that aggregate dimensions

affect the overall performance of the hepatocytes and selected the

most optimal aggregation parameters. Combining these well

defined primary hepatocyte aggregates with a gelatin methacry-

lamide hydrogel allows the encapsulated aggregates to maintain a

proper hepatocyte phenotype. The present work demonstrates the

generation of large amounts of relatively small aggregates that can
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be organized into larger constructs by encapsulation in a gelatin

hydrogel. [11,12]

Materials and Methods

The study protocol was approved by the Ethical committee for

Animal Care and Use of Ghent University (permit number ECD

12/42). Institutes of Health principles of laboratory animal care

(NIH) were followed.

2.1. Cell culture and isolation of primary hepatocytes
HepG2 cells were maintained in DMEM Glutamax supple-

mented with 10% v/v FBS, 50 U/ml penicillin and 50 mg/ml

streptomycin, all provided by Life Technologies.

Primary mouse hepatocytes were isolated from adult mouse

livers (ICR CD-1 mice, 8–14 weeks of age, Harlan Laboratories).

The animals were anaesthetized with ketamin/xylazin and died

during the perfusion procedure. The hepatocytes were isolated

from the liver using a two-step collagenase perfusion method,

followed by percoll gradient purification as described by Conçalves

et al [13]. After isolation, cells were immediately seeded in micro-

wells, or well plates coated with 0.1% collagen (BD Bioscienses), in

order to compare three dimensional with two-dimensional cell

culture.

Primary hepatocytes were cultured in William’s E medium (Life

Technologies), supplemented with L-glutamine (292 mg/ml) (Life

Technologies), glucagon (7 ng/ml) (sigma), insulin (0.5 mg/ml)

(sigma), hydrocortisone (25 mg/ml), EGF (10 ng/ml), 10% v/v

FBS (Life Technologies), 50 U/ml penicillin (Life Technologies)

and 50 mg/ml streptomycin (Life Technologies).

Both the HepG2 cells and the primary hepatocytes were

maintained in a humidified 5% CO2-containing atmosphere at

37uC.

2.2. Micro-well synthesis and micro-aggregate formation
To produce the non-adherent agarose micro-wells, sterilized

powder Ultrapure Agarose (Life Technologies) was dissolved (3%

w/v) and heated in PBS. The liquid agarose solution was added to

a tailor-made, negative polydimethylsiloxane mold (PDMS, as

described previously [14,15]) and left to solidify at RT. After

cooling, the gels were separated from the moulds and subsequently

transferred into 12 well culture plates. Single cell suspensions of

various densities (detailed information in table 1 and table 2) were

seeded in the chip containing the micro-wells. After seeding,

formation of micro-aggregates was supported by centrifugation for

1 min at 1500 rpm to let the cells settle into the bottom of the

micro-wells. Culture medium was replenished 24 h after seeding

and cells were left in culture for 3 days to allow formation of stable

micro-aggregates. The aggregates were harvested at different time

points, as indicated in the results section.

Aggregate diameter, perimeter (p) and aggregate area (A) was

determined using Xcellence image software. Subsequently circu-

larity was calculated using the formula fcirc = (4pA)/p2.

Aggregate volume was determined based on the diameter and

the volume formula of a spherical object. The number of cells per

aggregates was estimated, based on the number of microwells per

chip and the amount of seeded cells per chips. All aggregate

characteristics and parameters are represented in table 1 and

table 2.

2.3. Aggregate encapsulation
Gelatin methacrylamide with a degree of substitution (DS) of

65% was used to encapsulate aggregates as described earlier.[16]

Briefly, aggregates (2300 aggregates/ml) were mixed in dissolved

gelatin (10% w/v in PBS) with 2 mol % Irgacure 2959 photo-

initiator, as calculated relative to the (photo-sensitive) methacry-

lamide side groups. The aggregate-gelatin mixture was transferred

(200 ml/well) into 48 well plates (Greiner Bio-one) and left for

physical gelation during 30 min. Photocross-linking was carried

out by exposure to UV-A light (365 nm, 2 mW/cm2, UVP Inc.)

for 10 min. After cross-linking, culture medium was added and

refreshed every 24 h.

2.4. Cell viability
To assess the cell viability, aggregates were washed twice with

PBS and incubated for 10 minutes with 2 mg/ml calcein-AM

(AnaSpec) and 2 mg/ml propidium iodide (PI) (Sigma). After

washing in PBS for 10 min, cell viability was evaluated by

determining the ratio of green (live) versus red (dead) cells using an

inverted fluorescence microscope (Olympus IX81) equipped with

Xcellence software (Olympus).

2.5. Histology
Samples were fixed (4% paraformaldehyde) and embedded in

paraffin. Five mm thick sections were stained with hematoxilin and

eosin (HE), Periodic acid Schiff (PAS) or immunostained (IHC), all

at room temperature.

For IHC staining, endogenous peroxidase was quenched using

3% v/v H202 for 1 h, and a 30 min treatment with blocking

reagent (1% w/v BSA, 0.2% v/v Tween 20 in PBS) was

performed. The samples were incubated with the primary

antibody (dilution 1:100) for 2 h and subsequently with the

Table 1. Overview of the applied parameters for HepG2 cells and primary hepatocytes and their characteristics.

Seeded number
of cells/chip

Mean aggregate
diameter (mm)

Mean number of
cells/aggregate

Mean aggregate
volume (mm3)

Diameter of micro-wells
in the chip

1000000 307613 629 15120449 400 mm

750 000 29769 472 13745009 400 mm

500 000 261615 314 9255967 400 mm

250 000 23167 157 6479261 400 mm

1 000 000 166611 87 2408105 200 mm

750 000 15769 175 2010823 200 mm

500 000 14267 262 1489732 200 mm

250 000 11669 349 810959 200 mm

doi:10.1371/journal.pone.0105171.t001
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secondary antibody (dilution 1:200) for 30 min. A goat anti-mouse

albumin antibody (p20, Santa Cruz) and a rabbit anti-mouse

HNF4a (H-171, Santa Cruz) was used as primary antibody for

albumin and HNF4a respectively. A 3,3-diaminobenzidine

tetrahydrochloride substrate was used to visualize the horse radish

peroxidase coupled secondary antibody. After hematoxylin

staining and mounting, the samples were visualized under the

microscope. For HNF4a the whole staining procedure was

preceded by antigen retrieval using citrate buffer (pH 6.00).

For PAS stain, the samples were treated with 1% v/v periodic

acid for 15 min. After washing with PBS, samples were exposed to

Schiff reagent (Sigma) for 30 minutes in the dark. After rinsing in

water, the slides were stained with hematoxylin and mounted.

For transmission electron microscopy, aggregates were fixed

with glutaraldehyde, postfixed with OsO4 and embedded in epoxy

resin. Sections (70 mm thick) were evaluated by a Jeol 1200 EX II

electron microscope.

2.6. Cytochrome activity
Cyp3A4 activity of the primary hepatocyte aggregates was

analyzed using a P450-Glo-CYP3A assay (Promega) according to

the manufacturer’s protocol for cell-based assays. After 72 h

culture in the micro-wells, aggregates were exposed for 1 h to

culture media containing luciferin-IPA (1:1000). After 1 h, an

equal volume of the liquid was transferred to a 96 well plate and

incubated with an equal volume of detection reagent. After

20 min, luciferase activity was detected using a Wallac 1420

Victor3 multilabel counter (Perkin Elmer). The detected lumines-

cence was normalized for the amount of cells (MTT assay).

Background subtraction was performed with culture medium

considered as negative control.

2.7. Albumin secretion
To assess albumin secretion, media samples were collected at

different time points. After omitting cross-reactivity for bovine

albumin, the amount of secreted albumin was determined using a

mouse albumin ELISA quantitation kit or a human albumin

ELISA quantitation kit (Bethyl laboratories, Inc., UK) and

normalized for the amount of cells using an MTT assay.

2.8. MTT assay
The hepatocytes were incubated with a 0.5 mg/ml solution of

MTT (Calbiochem) in culture medium for four hours in the dark

in a 5% CO2 incubator at 37uC. After discarding the MTT

solution, the formed formazan crystals were dissolved in isopro-

panol-0.04N HCl supplemented with 1% v/v Triton X100

(Sigma). Subsequently the absorbance was measured at 580 nm

using an EL800 Universal microplate reader (BioTek instruments

Inc.) and compared to a standard curve.

2.9. Real Time Polymerase chain reaction (RT-PCR)
Total RNA was extracted from hepatocyte aggregates using

TRI Reagent (Sigma-aldrich) and treated with DNAse digestion

kit (Invitrogen). RT Core Kit (Eurogentec) was used to synthesize

cDNA, according to the manufacturer’s protocol. A 7500 Fast

Real-Time PCR system (Applied Biosystems) and a SYBR Green

PCR kit (Eurogentec) were used according to the manufacturer’s

instructions and protocols. GAPDH expression was used as stable

housekeeping marker for reference. The relative gene fold changes

were determined by the 22DDCt method. For comparative gene

expression analysis of free floating aggregates gene expression was

compared to expression levels of freshly isolated hepatocytes.

Additionally, to assess the effect of hydrogel embedding, encap-

sulated hepatocyte aggregates were compared to aggregates before

encapsulation (day 3). Primer sequences are depicted in table S1

and S2.

2.10. Statistical Analysis
Differences between groups were explored by one-way

ANOVA, followed by a Student t-test using the statistical package

GraphPad Prism 4 (San Diego California, USA).

Results

3.1. Development of micro-aggregates with controlled
size

Tailor-made PDMS molds were used to generate agarose

microwell-containing chips. Briefly, liquid agarose was poured on

top of PDMS molds containing micro-sized cylindrical sticks. After

solidifying, the PDMS molds were removed from the agarose

resulting in agarose chips containing micro-sized wells. (illustrated

fig. S1) The fabrication of these micro-well-containing chips

resulted in micro-well array chips containing 2865 or 1585 wells

with a diameter of 0.2 or 0.4 mm respectively in agarose. After

fabrication, the chips were placed in a 12 well plate and used for

controlled hepatocyte aggregation.

First, the micro-aggregation procedure was optimized using

HepG2 cells. Although this human hepatocellular carcinoma cell

line is less representative of the in vivo situation, these cells are

user-friendly, robust and aggregate easily while maintaining some

hepatocyte specific functions. Subsequently the procedure was

adapted and performed using primary mouse hepatocytes. The

micro-aggregation behavior of and its effect on these cells was

evaluated and compared.

For both cell types, aggregate formation started from day 1

(fig. 1A). In addition, we observed that stable aggregates were

formed within 3 days, which was accompanied by an increase in

E-cadherin expression (fig. 1B). By varying parameters such as

micro-well diameter, cell number and cell type, aggregates with

different dimensions were obtained (fig. 1C–E). All applied

parameters in relation to and affecting aggregate dimension are

Table 2. Overview of the applied parameters for primary hepatocytes and their characteristics.

Seeded number
of cells/chip

Mean aggregate
diameter (mm)

Mean number
of cells/aggregate

Mean aggregate
volume (mm3)

Diameter of micro-wells
in the chip

150 000 185616 94 3336782 400 mm

75 000 90613 47 385917 400 mm

150 000 95613 52 452331 200 mm

75 000 6068 26 111241 200 mm

doi:10.1371/journal.pone.0105171.t002
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listed in tables 1 and 2. Aggregate diameters (Q) varied between

100 and 300 mm for HepG2 cells and between 50 to 200 mm for

primary hepatocytes. The linear relation between aggregate

volume and cell number observed in fig.1C–D, the constant

circularity values starting from day 2 (fig. 1F) and microscopic

observation indicate that the aggregates were spherical and

uniform in size.

3.2. Hepatocyte specific performance is enhanced and is
size dependent in micro-aggregates

For HepG2 aggregates, size dependent correlation of hepato-

cyte gene expression markers such as albumin, HNF4a and TTR

was observed (fig. S6) and albumin secretion (fig. S7) was clearly

enhanced for all conditions. It appeared that HepG2 cells are not

very sensitive for variations in aggregate size shortly after

aggregate formation (day 3, fig. S2), however 7 days after

aggregate formation the smaller aggregates (Q#23167 mm)

maintained higher hepatocyte-specific gene expression levels than

the larger aggregates (Q$261615 mm). At this time point a

substantial amount of dead cells was observed in the center of the

larger (Q$261615 mm diameter) aggregates (fig. S3).

The gene expression and protein secretion of albumin, an

important serum protein produced by the liver, was evaluated and

normalized using primary hepatocyte aggregates and compared to

primary hepatocytes plated on collagen 1 coated tissue culture

plates (TCP) 3 days after isolation (fig. 2 A–B). In some aggregates

both gene expression as well as protein secretion was significantly

(p,0.05) enhanced compared to the control culture. However,

clear differences in both secretion (fig. 2B) and gene expression

(fig. 2A) were observed between aggregates of different sizes with a

significant enhancement of both secretion (p,0.01) and gene

expression (p,0.001) for 95613 mm diameter aggregates. Analysis

of the albumin secretion at day 7 after isolation indicated a general

drop in albumin secretion for all conditions. However the

differences between aggregates of different sizes remained and

the 95613 mm aggregates maintained the highest albumin

secretion levels. (fig. S4)

A significant (p,0.05) improvement, compared to cells cultured

as monolayers, in both cyp3A enzyme activity (fig. 2D) and gene

expression (fig. 2C) was noticed for the 95.2612.5 mm and

Figure 1. Formation of hepatocyte micro-aggregates in agarose microwells. (A) Aggregate formation over time for both HepG2 cells and
primary hepatocytes. (B) E-cadherin gene expression in primary hepatocytes during aggregate formation (C–D) Correlation between number of cells,
aggregate diameter (squares) and volume (triangles) for the formation of HepG2 cell aggregates in 200 (C) and 400 mm (D) microwells, n = 3. (E)
Correlation between number of primary cells, aggregate diameter (solid line) and volume (dotted line) for the formation of primary hepatocyte
aggregates in 200 (white squares) and 400 mm (black squares) microwells, n = 3. (F) circularity of aggregates during culture for HepG2 cells (squares)
and primary hepatocytes (triangles), n = 3.
doi:10.1371/journal.pone.0105171.g001

High Throughput Generation of Hepatocyte Micro-Aggregates

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e105171



185616 mm aggregates, while this improvement is less clear for

the 6068 mm aggregate, 3 days after isolation. Different aggregate

sizes lead to different cyp3A performance with the medium sized

aggregates (Q 95613 mm, obtained by seeding 150 000 cells in the

200 mm micro-well) displaying the highest activity and the smallest

aggregates (Q 6068 mm) showing the lowest activity 3 days after

isolation. The cyp3A4 enzyme activity at day 7 (fig. S5) showed a

decrease for all conditions and for cells cultivated as monolayers

the activity was not detectable. For the aggregates, the 95613 mm

aggregates displayed the highest cyp3A4 activity when compared

to the 185616 mm and 6068 mm aggregates.

It was clear that hepatocyte phenotype depends on aggregate

parameters and increasing aggregate dimensions did not neces-

sarily lead to better performance. Live/dead staining of the

different aggregates indicated excellent cell viability in the

aggregates, however more dead cells were observed in the largest

aggregates (Q$185616 mm, fig. 2E) when compared to the other

aggregates (fig. 2F). This observation could indicate nutritional/

waste diffusion limitations and explain why no clear relation

between hepatocyte performance and aggregate size was observed.

3.3. Long term hepatocyte function is affected by
aggregate dimensions

Since aforementioned results indicated that 95613 mm diam-

eter primary hepatocyte aggregates performed most optimal, these

were further evaluated. The hepatocyte specific function (fig. 3A)

of two-dimensional cultured hepatocytes and hepatocyte aggre-

gates were compared to freshly isolated non-cultured hepatocytes

over time. At day 10 and 15, no expression of the genes of interest

was detected for two-dimensional cultured cells (fig. 3A, TCP

N.D.). For all examined genes, aggregates displayed a clear and

significant upregulation of albumin, connexin32 (Cx32), hepato-

cyte nuclear factor 4a (HNF4a), E-cadherin, cyp3A, cytochrome

Figure 2. Evaluation of hepatocyte phenotype for different micro-aggregate sizes. (A) Gene expression of albumin. Gene expression levels
of albumin were determined for different micro-aggregation conditions and compared to cells cultured on tissue culture plastic (TCP). (B) Albumin
secretion at day 3 after isolation for different micro-aggregation conditions. Data are mean 6 SD, n = 3, **p,0,01; compared to cells cultivated as
monolayers (TCP). (C) Gene expression of CypA3. Gene expression levels of Cyp3A for different aggregate dimensions compared to cells cultured on
tissue culture plates (TCP). Gene expression of Cyp3A was determined after 72 hours of cultivation in the micro-wells. Data are mean RQ 6 SD, n = 3.
*p,0.05; **p,0.01 (D) Induced cytochrome 3A4 activity in aggregates of different diameter versus cells cultured on tissue culture plastic. Cyp3A4
activity was quantified after treatment with an inducing agent (hydrocortisone) using a luciferase based assay after 3 days of isolation. Data are mean
6 SEM, n = 3. *p,0,05; **p,0,01; ***p,0,001 compared to cells cultured as monolayers (TCP). (E–F) Live/dead stain of micro-aggregates with diameters
of 200 mm (E) and 100 mm (F). Dead cells are stained red, while viable cells are stained green. scale bar = 50 mm.
doi:10.1371/journal.pone.0105171.g002
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1A2 (cyp1A2) compared to cells in monolayers. The gene

expression of HNF4a, an important transcription factor for the

expression of hepatocyte specific genes, was maintained at a

similar level in the aggregate as in freshly isolated hepatocytes, and

increased over time. Gene expression of Cx32, indicative of gap

junctions between cells, and cyp3A, indicative of active phase I

metabolism, had decreased. Gene expression of E-cadherin,

important for cell-cell adhesion and required for aggregate

formation and stability, was upregulated in aggregates when

compared to freshly isolated cells and remained stable during 15

days of culture.

The synthesis of albumin and HNF4a protein in the 100 mm

aggregate was visualized using IHC staining and storage of

glycogen was determined by PAS staining. Albumin secretion was

significantly enhanced (2-fold increase) as compared to the plated

cells at all time points.

Transmission electron microscopy (fig. S8) showed the presence

of narrow contacts (desmosomes and gap junctions) between the

cells and normal cell morphology with numerous mitochondria,

abundant RER within the cytoplasm of hepatocytes cultured for

10 days in aggregates.

3.4. Micro-aggregates remain viable and functional upon
encapsulation in gelatin

For tissue engineering purposes, the creation of larger constructs

might be desirable (i.e. for the creation of bio-artificial liver

devices, incorporation in a bioreactor). To organize these micro-

aggregates at a larger scale, encapsulation and immobilization in a

hydrogel could be a useful approach.

Therefore aggregates (Q 95613 mm) were encapsulated and

cultured in a methacrylamide-gelatin hydrogel and gene expres-

sion and cell metabolism were compared with non-encapsulated

aggregates. The viability of the immobilized aggregates compared

to the non-encapsulated aggregates indicated that primary

hepatocytes were not affected by the encapsulation procedure.

Most of the aggregates maintained their rounded morphology

while some cellular outgrowth was observed at day 10 of culture

(fig. 4A and B).

Similar gene expression profiles (fig 4D) between encapsulated

and non-encapsulated aggregates were found, suggesting that

gelatin encapsulation did not affect hepatocyte functions.

Immunohistochemistry on encapsulated aggregates demonstrate

that expression of albumin and HNF4a protein was maintained

during 10 days of culture. Fig. 4C depicts the cumulative albumin

Figure 3. Evaluation of hepatocyte phenotype maintenance in micro-aggregates. (A) Gene expression analysis using real-time PCR. Gene
expression of HNF4a, Cyp3A, Cyp1A2, E-cadherin and connexin 32 (Cx32) were determined for cells cultured on tissue culture plastic (white bars, TCP)
and aggregates (black bars, AGG) at day 3, 6, 10 and 15 after isolation. The gene expression was normalized using GAPDH as stable housekeeping
gene and related to freshly isolated hepatocytes (value = 1). Data are mean RQ 6 SD, compared to freshly isolated, non cultured hepatocytes, n = 3. *p,
0.05; **p,0.01. (B) Albumin, HNF4a, and PAS staining to visualize glycogen storage day 3 and day 10. scale bar = 50 mm. (C) Albumin secretion of
plated cells and microaggregates determined by ELISA. Albumin secretion during 24 hours at day 3, 10 and 15 was evaluated for cells cultured on
tissue culture plastic (white bars, TCP) and aggregates (black bars, AGG). * p,0.05, ***p,0.001
doi:10.1371/journal.pone.0105171.g003
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secretion profile of the immobilized aggregates and suggests that

albumin is secreted 21 days during cell culture.

Discussion

Currently, several cell aggregation methods have been described

in literature e.g. static cell culture on non-adherent surfaces,

hanging drop and rotary culture systems leading to variable

aggregate dimensions mostly involving cumbersome technical

handling of cells and culture media.[5,6] The creation of large

amounts of aggregates with predefined, controlled and uniform

sizes in a reproducible and accurate manner is hard to control with

the above-mentioned culture techniques and limits further

development of aggregate based, or modular tissue engineered

constructs. In this study, the potential of an agarose micro-well

system has been investigated which allows controlled aggregation

of primary hepatocytes into a large number of uniform cell

aggregates with predefined dimensions (650–100–180 mm) within

3 days after cell seeding and isolation from mouse livers. In

addition, we confirm that HepG2 cells, a commonly used

hepatocyte cell line, benefit from aggregation and three dimen-

sional cell culture and that their function is increased in the larger

aggregates used in this study. This is in line and complementary

with studies reporting differentiation and increased expression of

several hepatocyte specific markers (such as increased albumin

secretion, urea, …) in HepG2 spheroids.[7,17]

For the practice of aggregate based tissue engineering (e.g. the

directed assembly of aggregates into larger constructs using

bioprinting applications), aggregate uniformity might be impor-

tant. In these approaches, the use of aggregates with predefined

sizes might be desirable as well. Some papers report the improved

functional performance of uniform hepatocyte aggregates, formed

in PDMS or polystyrene micro-wells. However, the success of

these systems was dependent on rotary culture systems and in both

papers only aggregates with variable dimensions (ranging from

100–300 mm) have been used for further functional evaluation,

assuming that all aggregates perform in the same way.[4,18]

Figure 4. Evaluation of micro-aggregates after encapsulation in a gelatin hydrogel. (A) Live/dead stain of aggregates encapsulated in
gelatin hydrogel at day 10. scale bar = 50 mm (B) Stainings of the immobilized micro-aggregates at day 10 after isolation. The pictures represent
stainings for albumin and HNF4a and PAS staining to visualize glycogen storage. Pictures were recorded at 20 x magnification at day 10, scale
bar = 50 mm. (C) Cummulative albumin secretion deterimend by ELISA. Albumin secretion of the immobilized cells was evaluated during 21 days of
cultivation by ELISA. Data are mean 6 SD, n = 3. (D) Real-time PCR for gene expression analysis after immobilization in the hydrogel. Gene expression
levels of HNF4a, Cyp3A4, Cyp1A2, E-cadherin and connexin 32 (Cx32) were determined for not immobilized (white bars, not encapsulated) and
immobilized micro-aggregates (black bars, encapsulated) at day 3, 6, 10 and 15 after isolation. The expression values were normalized using GAPDH
as stable housekeeping gene and compared to aggregate values before encapsulation (day 3, value = 1). Data are mean RQ 6 SD, n = 3. *p,0.05;
**p,0.01
doi:10.1371/journal.pone.0105171.g004
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In contrast to the aforementioned studies we demonstrate that

hepatocyte performance is directly affected by aggregate size and

the number of cells/aggregate. While aggregates of about 200 mm

diameter showed enhanced expression of hepatocyte specific

markers as compared to cells cultured in monolayers, we found

that hepatocyte function was further improved in 95613 mm

diameter aggregates. We observed more dead cells in the centre of

the 185616 mm diameter aggregates, as compared to the

95613 mm aggregates. This is in contrast to others who observed

no cell death in 180 mm diameter aggregates.[4] HepG2 cells were

found to be less prone to cell viability effects related to the

aggregate size. However, a substantial amount of dead cells was

observed in aggregates with diameters exceeding 200 mm. This is

in line with the knowledge that spheroids above 200 mm become

hypoxic at the core. [19] For HepG2 cells, a substantial amount of

dead cells was observed in the centre of the largest aggregates and

this was more pronounced at day 7 as compared to day 3.

Nevertheless no significant increase in aggregate diameter was

observed between these time points (fig. S2). This made us suggest

that the HepG2 cells did not proliferate, however we can not

completely exclude this possibility since the aggregates might

experience a further compactation between day 3 and day 7 while

proliferating. The observation that more dead cells were present at

day 7 when compared to day 3 for the larger aggregates can be

explained as follows: It takes 48–72 hours to form stable

aggregates, during that time the cells are more exposed to

nutrients and oxygen than after compactation of the spheroid

(taking place at 48–72 hours). During the next few days the oxygen

and nutrient limitations become more important/limited in the

larger spheroids, as a consequence more cells die within the larger

aggregates at the later time point.

We postulate that differences in functional performance

between 100 mm and 200 mm aggregates can be attributed to an

impaired nutrient and oxygen diffusion in the largest aggregates.

Our findings are in line with studies modeling mass transfer in

hepatocytes indicating 100 mm diameter aggregates as ‘ide-

al’.[20,21] Further decreasing the aggregate diameter to 50 mm

did not improve the functional performance of hepatocytes. The

dimensions of these aggregates might be too limited to create a

functional three dimensional organization with sufficient cells in

close contact with each other.

Gene expression of the 95613 mm aggregate was further

evaluated and compared to the gene expression of freshly isolated

hepatocytes, reflecting the gene expression in vivo. The expression

of HNF4a, an important hepatocyte specific transcription factor,

remained unchanged and increased at day 10 and 15 after

isolation. The expression of Cx32 and Cyp3A had decreased to

50–75%, indicating some loss of function, but significantly less

than in two-dimensional cultured cells. A clear upregulation of E-

cadherin, a cell adhesion molecule, expression was observed in the

aggregates. This enabled cell aggregation by increasing cell-cell

contacts and allowing compactation and is in line with data in

literature reporting this increase as necessary for cell aggrega-

tion.[22] [23]

To use aggregates as building blocks for modular tissue

engineering one needs to organize and immobilize these small

aggregate structures into a larger construct while cells remain

viable and maintain their appropriate function. Others have

described directed assembly of cell-laden microgels for the creation

of larger functional pseudo-tissues. [24,25] Here we demonstrate

that aggregates can be efficiently encapsulated in cross-linked

methacrylamide-gelatin hydrogel, without interfering with cell

viability and hepatocyte specific function. We found that

encapsulating multiple well defined primary hepatocyte aggregates

into methacrylamide gelatin hydrogel in bulk can already lead to a

viable and functional construct without the need for microencap-

sulating each individual aggregate to form a large functional tissue.

Another more practical application of predefined and controlled

cell aggregation could be the use of organ specific aggregates for

cell printing of large tissue constructs. Our group and others

showed that by using gelatin to print hepatocytes such tissue

engineered scaffolds can be made without impeding cell viability

and function. Printing, or plotting, of hepatocyte aggregates as

building blocks in predefined structures with high accuracy,

resolution and control over pore dimensions leads to further

improvement in mass transport of nutrients and metabo-

lites.[26,27] Our results clearly show that aggregate dimensions

need to be carefully considered since aggregate size and cell

number affect cell function and survival in a direct manner and

that primary hepatocytes seem to function best in aggregates

between 90–120 micrometer diameter.

In conclusion our findings show that the suggested agarose

microwells are well suited for the large scale production of uniform

hepatocyte aggregates. Moreover the results suggest that a

selection of aggregate parameters might influence the outcome

of the experiment. Our results also demonstrate that a modified

gelatin hydrogel might be well suited for the (directed) immobi-

lization of these aggregates in order to generate larger scale

constructs for a tissue engineering approach.

Supporting Information

Figure S1 Schematic overview of microwell fabrication.

(DOCX)

Figure S2 live/dead fluorescence staining of aggregates
in the 400 mm agarose chip. Pictures, recorded at 10x

magnification, represent HepG2 aggregates after 3 days (a–d)

and 7 days (e–h) of cultivation in the 400 mm agarose chip at

variable cell densities yielding aggregates with a diameter of

231 mm (a,e), 261 mm (b,f), 297 mm (c,g) and 307 mm (d,h).

(DOCX)

Figure S3 live/dead fluorescence staining of aggregates
in the 200 mm agarose chip. Pictures, recorded at 20x

magnification, represent HepG2 aggregates after 3 days (a–d)

and 7 days (e–h) of cultivation in the 200 mm agarose chip at

variable cell densities yielding aggregates with diameters of

116 mm (a,e), 142 mm (b,f), 157 mm (c,g) and 166 mm (d,h).

(DOCX)

Figure S4 Albumin secretion of primary hepatocyte
aggregates with diverse dimensions 7 days after isola-
tion. Albumin secretion in the cultivation medium during

24 hours is determined by ELISA and normalized using MTT

assay. Data are means 6 SD (n = 2).

(DOCX)

Figure S5 Induced cytochrome 3A4 activity in aggre-
gates of different diameter versus cells cultured on
tissue culture plastic. Cyp3A4 activity was quantified after

treatment with an inducing agent (hydrocortisone) using a

luciferase based assay after 7 days of isolation. Data are mean 6

SD, n = 2.

(DOCX)

Figure S6 Real-time PCR analysis of HepG2 cell
aggregates with diverse dimensions. Gene expression levels

of albumin, TTR and HNF4a determined after 3 or 7 days of

cultivation in the agarose chip. RNA levels were normalized using

GAPDH as a stable housekeeping marker and the relative gene
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fold changes, compared to the gene expression of the control

culture (TCP plated cells), were determined using the 22DDCt

method. Data are mean RQ 6 SD, n = 3.

(DOCX)

Figure S7 Albumin secretion of HepG2 cell aggregates
with diverse dimensions. Albumin secretion in the cultivation

medium during 24 hours is determined by ELISA and normalized

using MTT assay. Data are means 6 SEM (n = 3).

(DOCX)

Figure S8 Transmission electron micrographs of pri-
mary hepatocytes cultured for 10 days as aggregates.
The cytoplasm of the cells displays numerous mitochondria and an

abundant RER (A). Adjoining cells show narrow contacts between

the cells and the presence of junctional structures as desmosomes

(B) and gap junctions (C).

(DOCX)

Table S1 Primer sequences for isolated mouse hepato-
cytes.
(DOCX)

Table S2 Primer sequences for HepG2 cells.
(DOCX)
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