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This paper is based on a workshop held in Oslo, Norway in November 2013, in which experts discussed how to
reach consensus on the healthiness of red and processed meat. Recent nutritional recommendations include
reducing intake of red and processed meat to reduce cancer risk, in particular colorectal cancer (CRC). Epidemi-
ological and mechanistic data on associations between red and processed meat intake and CRC are inconsistent
and underlyingmechanisms are unclear. There is a need for further studies on differences betweenwhite and red
meat, between processed and whole red meat and between different types of processed meats, as potential
health risks may not be the same for all products. Better biomarkers of meat intake and of cancer occurrence
and updated food composition databases are required for future studies. Modifyingmeat composition via animal
feeding and breeding, improving meat processing by alternative methods such as adding phytochemicals and
improving our diets in general are strategies that need to be followed up.

© 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

This perspective paper was synthesized during the workshop ‘How
can we approach consensus on the healthiness of red meat?’, held in
Oslo, Norway on 6 and 7 November 2013.
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2. Meat and health

Meat and poultry are the primary protein source in Western
omnivorous diets. Intake of beef, pork, lamb and poultry is around
220, 275, 240 and 140 g/day/person in the US and Australia, Spain,
and are listed alphabetically.
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UK and Norway, respectively (based on FAOSTAT protein intake data,
20% protein in lean meat). Trend analyses over the last decades indi-
cate that the consumption of meat products in most European coun-
tries is relatively constant and that consumers are becoming more
critical with regard to health and safety aspects of food in general, in-
cluding meat products (EU Fact Sheet, 2004; Walker, Rhubart-Berg,
McKenzie, Kelling, & Lawrence, 2005). As a consequence, the market
segment labeled as ‘light and healthy’ is indeed the main segment of
meat products that showed considerable growth during the last
10–15 years (in the US: USDA ERS, 2009; in Australia: Williams &
Droulez, 2010). Consumer perception is negatively influenced by
messages in themedia that unhealthy diets are (among other things)
characterized by high meat consumption (Schonfeldt & Hall, 2012).
This image of meat products is further influenced by reports on the
potential health risks associated with the addition of preservatives
such as nitrite and by the perception that meat may be associated
with cancer.

Indeed, the negative publicity on meat consumption was fuelled in
part by a report by the World Cancer Research Fund (World Cancer
Research Fund/American Institute for Cancer Research, 2007). This
expert panel report states that there is convincing scientific evidence
that the consumption of red and processed meat (Box 1) is associated
with an increased cancer risk, specifically colorectal cancer (CRC). The
conclusions from the report have been implemented into nutritional
recommendations, such as in the new Nordic Nutrition Recommenda-
tions (NNR, 2012), and the guidelines in France (Programme National
Nutrition Santé, 2009) and UK (Scientific Advisory Committee on
Nutrition, 2010). Such guidelines aim to optimize the intake and combi-
nation of nutrients in the general population, focusing on thewhole diet
with the goal of reducing non-communicable diseases such as cancer,
cardiovascular diseases, obesity, diabetes and osteoporosis. The Nordic
recommendation regarding processed and red meat is to switch from
high fat to lean meat and to limit processed and red meat consumption
to less than 500 g of cooked red meat or processed meat products
per week.

3.What are the types of studies used to investigate the links between
red and processed meat intake and CRC?

3.1. Evidence from human studies

CRC is the number one cause of cancer mortality in European non-
smokers (Ferlay et al., 2013). Preventability estimates in the USA sug-
gest that 50% of the cases of CRC could be avoided by improving the
diet (nutrition) and physical activity (World Cancer Research Fund,
2009). Yet, uncertainty exists regarding the supposed link between
meat consumption and CRC. For example, meat intake could explain a
major part of the variation in the incidence of CRC, and then CRC should
be less common among vegetarians than amongmeat eaters. However,
the findings on these associations are inconsistent: one study found a
lower incidence of CRC for vegetarians (Fraser, 1999), another found
no difference between meat eaters and vegetarians (Sanjoaquin,
Appleby, Thorogood, Mann, & Key, 2004), and yet another detected a
lower incidence in the meat eaters (Key et al., 2009). Hence, the rela-
tionship seems to be complex and not only depend on the meat intake
but also on the total composition of the diet. Associations may also de-
pend on genetic or environmental backgrounds: The Sami people of
Northern Europe, who are reindeer-herders and have high levels of
red meat intake, have lower levels of colon cancer than reference popu-
lations from the same regions (Hassler, Sjölander, Grönberg, Johansson,
& Damber, 2008), yet an opposite effect was found for Alaska Natives
(OBrown, Lanier, & Becker, 1998). Several observational studies relating
meat intake and CRC show no significant risk (Parnaud & Corpet, 1997;
Parr, Hjartaker, Lund, & Veierod, 2013; Truswell, 2009). Several good-
quality meta-analyses of cohort studies show, however, significant
but weak associations between incidence of CRC and intake of both
fresh red meat or processed meat (Alexander, Weed, Cushing, & Lowe,
2011; Aune et al., 2013; Chan et al., 2011; Larsson & Wolk 2006;
Norat, Lukanova, Ferrari, & Riboli, 2002; World Cancer Research Fund/
American Institute for Cancer Research, 2007)(Fig. 1). For example,
the study by Chan et al. (2011) showed a summary relative risk for
CRC of 1.17 for 100 g/day of fresh red meat (95% CI = 1.05–1.31, 8
studies, 4314 cases) and 1.18 for 50 g/day of processed meat (95% CI
= 1.10–1.28, 9 studies, 10863 cases). Another example is the study by
Aune et al. (2013) in connection with updating the evidence related
to theWorld Cancer Report Fund report of 2007,which found a summa-
ry relative risk for CRC of 1.27 (95% CI = 1.16–1.40) for 100 g-day of
fresh redmeat, and 1.29 (95%CI= 1.10–1.53) for 50 g/day of processed
meat. These associations are considered weak in epidemiological stud-
ies as the relative risk is below 2.0 and the non-linear dose response
curve that was observed does not support a causal claim. It should be
noted that such meta-analyses combine studies from different regions
in the world, from both genders, from fresh red meat and processed
meat with sometimes ambiguous classifications, from colon cancer
and rectal cancer incidence, and all levels of meat intake are included
in such studies. Added to these methodological problems are the fol-
lowing: the associations areweak inmagnitude andmay represent con-
founding by other dietary and lifestyle factors, there is heterogeneity
across studies, and there are inconsistent patterns of associations across
the sub-groups analyses. Indeed, evidence is available suggesting the
absence of a meat related CRC risk with populations at low levels of
meat intake and of general mortality (Key et al., 2009) as well as in
cohorts with high levels of general mortality and different ethnicities
(Ollberding, Nomura, Wilkens, Henderson, & Kolonel, 2011). Given
these uncertainties, the debate about the healthiness of red and
processed meat with respect to CRC will likely continue.

Observational studies of this topic cannot fully correct for all
confounding factors and are unlikely to establish a cause-and-effect
relationship between meat consumption and CRC by themselves.
Ideally, in order to investigate whether such a causal link exists,
randomized controlled prevention trials could be carried out. How-
ever, in practice it is not feasible to conduct trials using long-term in-
terventions with food, as participants may have problems complying
with the food protocol over a longer time. Because tumor develop-
ment in humans can easily take 10–20 years (Kelloff et al., 2004)
and human studies are costly, animal studies are conducted to examine
whether a causal relationship exists in these different species, to under-
stand mechanisms and to find potential chemopreventive agents that
can be relevant for human cancer development (Corpet & Pierre,
2005). A way forward in human studies would be to investigate
biomarkers of CRC incidence as early end points.

3.2. Animal model studies

Experimental animal models have been used for decades to test
the effects of different diets and diet-derived compounds on colon
carcinogenesis. While there are different models available, rodents
are among the most-used animals for tumor biology research. In
order to speed up results, animals are made more susceptible to
the development of tumors in response to environmental challenges,
including the diet. Increased susceptibility can be achieved through
administration of a carcinogen, or selection for genetic mutations
(Corpet & Pierre, 2005).

One of the rodent models with increased susceptibility due to
genetic mutations is the APCmin mouse. The tumor suppressor
gene adenomateous polyposis coli (APC) is often the first gene to
bemutated in the sequence of mutations leading to the development
of colorectal cancer, according to Vogelstein's scheme (Kinzler &
Vogelstein, 1996) (Box 2). Germline mutations of the APC gene
lead to familial adenomatous polyposis (FAP), characterized by the
development of multiple colorectal adenomas (Fodde, 2002; Half,
Bercovich, & Rozen, 2009). In addition, somatic mutations of the
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Fig. 1.Methods used to study the link betweenmeat consumption and CRC. Observational studies aim to find correlations between a potential risk factor, such as red or processed meat
intake, and a health outcome, such as tumor development. To investigate causal links between red and processed meat intake and CRC development, animal studies are typically
performed. Rodentmodels that aremademore susceptible to development of cancer, either by treatmentwith a carcinogenor through geneticmutations, are among themost used animal
models for this type of research. Alternative animalmodels, for exampleDrosophilamelanogaster and the zebrafish,may also be used. Cell culture studies are used to investigate underlying
molecular mechanisms of tumor progression. Recent advances in computer modeling and systems biology allow for more accurate prediction of tumor development based on
environmental and molecular factors, but it is likely that the full potential of such in silico approaches has not yet been reached.
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APC gene are found in more than 85% of the sporadic colorectal can-
cers (Fearnhead, Britton, & Bodmer, 2001). The APCmin mouse is a
FAP model, which mainly develops adenomas in the small intestine
(Fodde & Smits, 2001; Paulsen, 2000; Su et al., 1992; Van Es, Giles,
& Clevers, 2001) but depending on the strain may also have a high
incidence of adenomas in the colon as well. In FAP, murine FAP
models and the majority of human sporadic colorectal cancers,
tumor initiation seems to be dependent on somatic genetic events
that lead to the inactivation of both APC alleles. Tumor initiation oc-
curs when a stem cell loses its full-length APC protein (APC−/−),
transforms and gives rise to a lineage of dysplastic cells, which
consequently develop into early lesions (flat aberrant crypt foci,
flat ACF, and mucin depleted foci, MDF; Femia, Paulsen, Dolara,
Alexander, & Caderni, 2008) and eventually into tumors. Because of
its APC+/− status the APCmin mouse is an excellent model for
studying gene × environment interactions in Apc-driven colorectal
cancer, since themodel is vulnerable for environmental factors that dis-
rupt the Apc gene (dietary carcinogens), or factors that compensate for
the lost Apc function (protective factors) (Femia et al., 2008; Ølstørn,
2009; Paulsen, Namork, Steffensen, Eide, & Alexander, 2000; Paulsen
et al., 2001; Steffensen, Paulsen, Eide, & Alexander, 1997). APCmin
mice provide a close resemblance to human colon cancer pathobiology
(Preston et al., 2008) and tumorigenesis is observed within a few
weeks. However, screening a large number of diet-derived compounds
using this model is a labor intensive and expensive task to carry out.
Other genetically modifiedmodels are also available (Alexander, 2000).

Alternatively, cancer can be induced by injecting a colon-specific
carcinogen, usually dimethylhydrazine, to rats and mice. Other
chemicals may be used including N-nitrosamines and heterocyclic
amines. Promoting effects of food components such as meat can be
examined in these models, however, testing using tumor incidence
as an end-point requires groups of thirty animals for 2–300 days
before tumors are formed. More affordable studies use early stages
of tumorigenesis, scored in groups of ten rats given tested diet for
100 days (Caderni et al., 2003; Femia, Dolara, Luceri, Salvadori, &
Caderni, 2009). Carcinogen-treated rodents develop a large number
of aberrant crypts in the colon (Corpet & Pierre, 2005), but only a
small subgroup of these early lesions develop into adenomas and
carcinomas. Early lesions like MDF and flat ACF have been identified
in carcinogen-treated rodents, APCmin mice, as well as in colon
cancer patients (Caderni et al., 2003; Femia et al., 2008). As observed
during CRC development, the crypts of MDF and flat ACF are charac-
terized by severe dysplasia and altered APC function that leads to
increased Wnt-signaling into the cell, which results in rapid cell
division. In normally differentiated crypts cells the WNT-signal is
down-regulated by intact APC.



Box 1
Red and processed meats.

The definitions of red and white meat vary. Generally, the term
white refers tomeats pale before cooked (poultry, fish; sometimes
also pork, Williams, 2007), and red meats if red before cooked
(beef, lamb; sometimes also pork, McAfee et al., 2010).
Occasionally, red meat is said to be from mammals, white meat
from other animals, and game is considered a third category. Birds
with a high concentration of dark meat, such as ducks and geese,
are now and then categorized as red meat, even if their meat is
pale pre-cooking. Meats are sometimes divided into red or white
due to their flavor: white meats tend to be more bland (chicken,
pork), and red meats have a more intense flavor. Compared to
white meats, red meats are red due to higher content of the
protein myoglobin, creating the distinctive dark color, although
there is no objective threshold of the heme level that is used to
make the distinction between white and red meat. The above
described ambiguous categorization can become a problem for
consumers when they learn about the cancer risk associated with
red meat, as they may not know which specific products are
referred to. A similar problem exists for processed meats as
processed meats can contain different raw materials including
potential protective factors and there is a whole scale of
production methods that may pose a large or small risk for the
CRC. A recently suggested definition of processed meat includes
meat that undergoes various kinds of preservation, such as
curing, smoking or drying, but can also include meat that has
undergone treatment to alter the flavor or improve the quality
(Alexander et al., 2010). Meats processed by salting or smoking
and meats prepared by frying or grilling are particularly studied
for their alleged effects on cancer risk.

Box 2
What is colorectal cancer?

Colorectal cancer (CRC) is the third most common cancer
worldwide accounting for approximately 1.2 million new cases
and over 600 000 deaths in 2008. Sporadic CRC is more
commonly seen in developed regions, with the highest rates
found in Australia/New Zealand, North America and Western
Europe, and remains relatively uncommon in less developed
regions including most of Africa and South-Central Asia. CRC
incidence rates are markedly higher in men than in women,
and this cancer becomes increasingly more common with age
(American Cancer Society, 2011; Ferlay et al., 2013). CRC
develops as a result of multiple genetic and epigenetic changes
which cause normal intestinal epithelium to transform into
colon carcinoma via the activation of oncogenes and inactivation
of tumor suppressor genes, in a process known as the adenoma–
carcinoma sequence (Kinzler & Vogelstein, 1996; Leslie, Carey,
Pratt, & Steele, 2002). Most cases of colorectal cancer appear
to be caused by somatic mutations, but a small number of cases
are the result of germline mutations. The two most common
inherited colorectal cancer syndromes areHereditary Nonpolyposis
Colorectal Cancer (HNPCC), caused by germline mutations in DNA
mismatch repair (MMR) genes, and Familial Adenomatous
Polyposis (FAP), caused by germline mutations in the tumor-
suppressor gene adenomatous polyposis coli (APC) (Kinzler &
Vogelstein, 1996). Colorectal carcinogenesis is often explained
by three distinct pathways; chromosomal instability (CIN),
microsatellite instability (MSI), and CpG island methylator
phenotype (CIMP). The CIN pathway, also known as the
gatekeeper pathway, accounts for the majority of sporadic
and FAP colorectal cancers and is characterized by chromosomal
abnormalities and loss of heterozygosity. The MSI pathway, also
known as the caretaker pathway, is involved in 10–15% of
sporadic colorectal cancers, and inmostHNPCC, and is character-
ized by instability at the nucleotide level caused by abnormalities
in DNA mismatch repair genes. The third pathway, CIMP, is con-
sidered to be an epigenetic pathway, where tumor suppressor
genes are silenced by hypermethylation of CpG islands in the
promoter region (Kinzler & Vogelstein, 1997; Migliore, Migheli,
Spisni, & Coppede, 2011; Toyota et al., 1999).

586 M. Oostindjer et al. / Meat Science 97 (2014) 583–596
Experimental studies published before 2001 failed to showanexcess
of colon tumors in rodents given red meat compared with casein- or
soy-fed controls (Parnaud, Peiffer, Tache, & Corpet, 1998; Mutanen,
Pajari, & Oikarinen, 2000). More recent studies show, however, that
beef meat promotes colon carcinogenesis in carcinogen-treated rats,
which is consistent with epidemiological data (Chan et al., 2011),
provided that the animal feed contains little calcium. This effect of
meat is mimicked by an equivalent dose of heme iron, suggesting
heme iron alone explains cancer promotion by red meat (Pierre,
Freeman, Tache, Van der Meer, & Corpet, 2004). Heme inducible perox-
idation end products are cytotoxic to normal colonic cells, but APC-
mutated cells continue to grow. This path explains meat-induced
promotion of tumorigenesis, via selection of the mutated precancer
cells in the colon mucosa (Pierre et al., 2004). Several whole foods
promote carcinogenesis in rats: hot-dog, cooked ham, blood sausage
(not cured), and several workshop-cured meat products (Pierre et al.,
2004; Santarelli et al., 2010, 2013). The effect of meat on suspected
cancer initiators and promoters can be measured in the feces as
products of nitrosation and lipoperoxidation (Pierre, Santarelli, Tache,
Gueraud, & Corpet, 2008; Pierre, Tache, Petit, Van der Meer, & Corpet,
2003; Santarelli et al., 2013). The same biomarkers are raised in volun-
teers given cured meat (Joosen et al., 2009; Kuhnle et al., 2007; Pierre
et al., 2013). These studies show that meat and components of meat
can stimulate CRC development in sensitive animal models fed semi-
purified diets containing no vegetables or cereal fibers (Box 3).

3.3. Use of in vitro models

Animal models have an endpoint (cancer or mortality) but it is
difficult to track tumor progression while the animal is still alive.
In order to investigate the underlying molecular mechanisms of
tumor biology, established cancer cell lines such as the immortalized
mouse fibroblast cell lines and human HaCaT cell line are used
(for example Araújo, Gonçalves, & Martel, 2011; Dommels et al.,
2003; Glei et al., 2002; Hague, Butt, & Paraskeva, 1996; McCanna
et al., 2007). These cell lines are typically grown on practically flat
two-dimensional (2D) culture dishes. However, cells grown in such
a way lack many aspects of cells in whole body context. They often
differ in morphology and in cell–cell and cell-matrix contacts
which limit their ability to predict a compound's true effects on
tumorigenesis (Elamin et al., 2012; Tsunoda et al., 2010). Three-
dimensional (3D) cell line cultures offer a new exciting opportunity
to mimic conditions in vivo more closely than traditional 2D cell
cultures and thus bridge the gap between 2D cell culture and animal
models (Yamada & Cukierman, 2007). The advantage of 3D over 2D
cell cultures is that 3D provides information on tissue organization
and architecture and allows observation of changes in tissue organi-
zation which can be used as predictors for cancer development
(Carothers, Melstrom, Mueller, Weyant, & Bertagnolli, 2001; Hughes
et al., 2002; Kroboth et al., 2007; Watanabe et al., 2004; Wodarz &
Näthke, 2007). Compared to animal studies in vivo, experiments with
cell cultures provide results in a shorter time and are therefore more
suitable to carry out screening of large number of compounds and for
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investigating themechanisms underlying cancer development. Howev-
er, interactions between different tissues cannot be studied in cell cul-
tures, and there is no direct cancer-related endpoint such as tumor
development or mortality. Hence, in vitro models can currently only
support in vivomodels for determining the effect of food consumption
on health outcomes.

3.4. What is the ideal animal model for studying the link between red meat
intake and health?

There is not a single ideal animal model currently available. Howev-
er, available models can be useful depending on the question, after crit-
ical evaluation of how and what is being induced, and how the results
tell a story related to human health. In many cases the choice of
model is a compromise between biological and practical motivations.
Biological motivations include high sensitivity to the treatment, high
specificity and a similarity in digestive system and underlying
molecular mechanisms of tumor progression to humans. Practical
motivations for a model include being small, cheap, easy to handle,
easily available, genetically stable, having a short generation time
and a quick development of cancer. For these reasons, rodent models
with carcinogenic induction or genetic susceptibility to cancer
are most often used for tumor biology research. Humanized mice
(by introduction of human genes or microbiota), mouse genetic
reference populations, and inbred and outbred rodent strains all
could be useful in understanding mechanisms underlying diet
mediated gut health and cancer development. Other relevant but less
practical models include pigs (similar digestive system to humans, but
expensive) and primates (expensive and ethical issues). Drosophila,
C. elegans and zebra fish are easy to breed and low in maintenance
cost, but have a digestive system that is quite different from humans.
However, APC mutants are now available in Drosophila (Wang et al.,
2013) and zebrafish (Goessling et al., 2008), making it possible to
study the relationship between diet and cancer development that is rel-
evant for human APC-mediated tumorgenesis in these animals. Recent
advances in artificial intelligence, computer simulations and systemsbi-
ology have resulted in an increase in in silico studies of cancer develop-
ment, including predictions of tumor growth and regression based on
established knowledge about the chemical composition of the environ-
ment and metabolic processes in the gut (for examples of recent ad-
vances see Shin et al., 2013; Tian et al., 2013). This field develops
rapidly and it is likely that the full potential for such approaches has
not yet been reached. Until then, short-term feeding studies in humans
are preferred assuming that good biomarkers of health can be
measured.

4. How do we think meat consumption is related to CRC?

4.1. N-Nitroso compounds

Nitrate and nitrite have long been part of the human diet as
nutrients in vegetables and as part of food preservation systems.
Nitrate impurities in salt used in the drying of meat in ancient
times caused a pink color that signaled reduced spoilage during
storage and increased food safety for those items (Pegg & Shahidi,
2000a). We now understand that nitrite is the curative agent and
not nitrate. Nitrite limits growth of pathogenic microbes, controls
oxidation and rancidity when added above certain thresholds and
the pink color it causes is still preferred by consumers in modern
times (Pegg & Shahidi, 2000b).

The biochemical mechanisms of curing meat that involve chemical
reduction of nitrate to nitrite and nitric oxide (NO) and the formation
of nitroso heme pigments are now understood. A reaction between
nitrogen oxides (NO2, N2O3, N2O4 and others) and secondary amines
(e.g. the free amino acid proline is a secondary amine) in the stom-
ach results in N-nitroso Compounds (NOC) (Pegg & Shahidi, 2000c)
(Fig. 2). High temperatures during for example frying can enhance
the formation of NOC (Pegg & Shahidi, 2000b). NOC can be found in
normal human feces, urine and saliva, and it has been suggested
that this is due to in vivo nitrosation of ingested secondary and
tertiary amines (Kakizoe et al., 1979). This process may be further
catalyzed by the presence of heme iron, which is also present in
processed meat (Cross, Pollock, & Bingham, 2003; Vermeer, Pachen,
Dallinga, Kleinjans, & van Maanen, 1998). Recently, human studies
have demonstrated that indeed under normal dietary conditions
urinary markers of exposure to N-nitroso compounds are associated
with micronucleus frequencies, a validated marker of carcinogenic
risk, as well as with gene expression changes that are involved in
cancer development (Hebels, Jennen, et al., 2011). Similar gene
expression changes were also found in colonic biopsy material after
a human intervention study with red meat (Hebels, Sveje, et al.,
2011; Hebels et al., 2012).

Understanding the formation of nitrosamines after nitrite ingestion
sparked intense basic research into meat curing, nitrosamine formation
in cured meats and safety implications (Sindelar & Milkowski, 2012).
Meat processors have modified curing practices to reduce the use of
sodium nitrite by largely abandoning the use of sodium nitrate and
incorporating ascorbate or erythorbate into formulations to accelerate
curing. These curing accelerators also have the benefit of being effective
nitrosamine inhibitors (Tannenbaum, Wishnok, & Leaf, 1991). Regula-
tory reviews in the early 1980's also resulted in new limits on the
use of nitrite and nitrate in meat curing which are still in effect today
(EU Directive 2006/52/EC, 2006/52/EC). The ultimate result has been
an overall decrease in residual nitrite content in cured meat products
to approximately 10 mg/kg (10 ppm) for most products currently in
the market place (Nunez De Gonzalez et al., 2012).

The controversy around nitrite waned after regulations were
changed in the 1980s in the US and following a publication of the
National Toxicology Program study involving lifetime feeding of
multiple high levels of nitrite to rats and mice and examination of
all body tissues for histological abnormalities (NTP, 2001). That “gold
standard” toxicology study confirmed the safety of nitrite exposure at
levels found in cured meats. However, the issue has been revived
because of epidemiological reports (Cross et al., 2010) hypothesizing
that nitrite in cured processedmeats is an underlying reason for associ-
ations between processed meat consumption and cancer. Additionally,
in 2006 the International Agency for Research in Cancer (IARC), part
of the World Health Organization, convened a panel to evaluate nitrate
and nitrite safety with respect to carcinogenicity. The panel classified
“ingested nitrate or nitrite under conditions that result in endogenous
nitrosation is probably carcinogenic to humans (Group 2A)” (IARC,
2010). Meat processing is largely based on the use of nitrite and/or
nitrate. The recommendation in 2007 of the World Cancer Research
Fund to avoid processed meat intake because of the associated
epidemiological risk of CRC further added to the negative perceptions
about nitrite.

While there is no doubt that both NO metabolites and secondary
amines are available in thedigestive system, or that NOChave the ability
to promote cancer development, it is questioned whether direct forma-
tion of NOC occurs in the digestive system from eating nitrite and/or
nitrate containing foods, and if these resulting NOC induce carcino-
genesis. Nitrite and nitrate have important nutritional and biological
functions due to reduction to NO (Bryan & Loscalzo, 2011). NO has
important physiological functions as a cellular signaling molecule,
vasodilator and neurotransmitter (Bugiardini, Manfrini, Pizzi, Fontana,
& Morgagni, 2004; Halcox et al., 2002; Lerman & Zeiher, 2005;
Schächinger, Britten, & Zeihe, 2000). Levels of endogenous NO decline
with aging or due to metabolic dysfunctions and nitrite and nitrate
derived from food sources or when administered in a clinical setting
for specific diseases have been shown to restore NO homeostasis
(Bryan et al., 2007; Carlström et al., 2010; Celermajer et al., 1994;
Davignon & Ganz, 2004; Egashira et al., 1993; Gerhard, Roddy,
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Creager, & Creager, 1996; Lundberg, Weitzberg, & Gladwin, 2008;
Taddei, Virdis, Ghiadoni, Sudano, & Salvetti, 2001). Dietary nitrite and
nitrate have been shown to protect against ischemic heart injury,
prevent vascular inflammation and improve exercise performance and
could, within limits, be considered indispensable nutrients (Bryan
et al., 2007; Carlström et al., 2011; Kleinbongard et al., 2006; Rassaf
et al., 2007). While there are upper limits to nitrite and nitrate con-
sumption, there is a high endogenous production of nitrite (5.18 mg
nitrite per day, one hot dog of 50 g would provide 0.026 mg nitrite
and 4.88 mg nitrate; Milkowski, 2011). Vegetables such as celery,
radishes, beets and spinach, which have high levels of nitrate that can
be metabolized into nitrite by oral bacteria (Hord, Tang, & Bryan,
2009), can providemuchmore nitrite per portion thanmeat (a spinach
salad of 125 g can provide 881 mg nitrate). The risk regarding nitrite
added to meat compared to endogenous nitrite formed from nitrate
following vegetable consumption may thus be relatively small, al-
though interactions with compounds specifically associated with meat
such as heme iron need not to be forgotten. With some studies dem-
onstrating a protective effect of nitrite in animal models of colitis,
it becomes clear that there is a need to better understand nitrite
metabolism and its impact on health (Ohtake et al., 2010).

While these new discoveries concerning NO physiology and the
metabolic interrelationships among NO, nitrite and nitrate challenge
the hypotheses that nitrite has significant carcinogenic effects in
humans, the debate is still active. To address the remaining questions,
critical thinking that recognizes the strengths andweaknesses of the re-
search studies used to support opinions about the safety of cured proc-
essed meats is now needed.

4.2. Heme iron and reactive oxygen species

Heme iron has been implicated in intestinal cancer risk, either
in combination with nitrite or alone (Joosen et al., 2009). Red meat
generally contains both more heme iron and free iron than other fresh
meat or fish, and heme iron is largely responsible for the color of red
meat. Hememay catalyze the formation of carcinogenic N-nitroso com-
pounds in rat models (Bastide, Pierre, & Corpet, 2011). Heme iron also
promotes carcinogenesis through increased cell proliferation in the
mouse mucosa by inducing lipid oxidation (IJssennagger et al., 2013).
Hemin (protoporphyrin IXwith ferric ironbound to chloride) is normal-
ly absorbed in the digestive system through heme transporter proteins
(Latunde-Dada, Simpson, &McKie, 2006). However, not all of the hemin
is absorbedwhen hemin ingestion is high, which results in hemin being
present in the digestive system and the feces. Hemin is highly catalytic
and can stimulate formation of reactive oxygen species when polyun-
saturated fatty acids are present, such as those found in the cell mem-
branes below the mucus layer or those accompanying bile salts
(Ishikawa, Tamaki, Ohata, Arihara, & Itoh, 2010; Lee, Kim, Kang, &
Kim, 2006). The reactive oxygen species have been implicated in DNA
damage in many studies, and have the ability to disrupt normal cell
proliferation of the gut epithelial cells, resulting in an increased risk in
cancer when the damage is not repaired. Reactive oxygen species are
normally formed in vivo and endogenousmechanisms are in place to re-
duce and repair the damage (Perše, 2013). In addition, a balanced diet
including vegetables and fruits may contain enough antioxidants to
‘trap’ reactive oxygen species before they cause damage to the DNA
(Perše, 2013; Rodriguez-Ramiro, Martin, Ramos, Bravo, & Goya, 2011).
If the diet is unbalanced due to a high intake of meat, such protective
mechanisms may not be sufficient to protect the colon from DNA dam-
age caused by heme-related reactive oxygen species. The predominant
role of heme in the generation of damaging reactive oxygen species
as a basis for increasing the (processed) meat related risk increase of
CRC can be questioned, however. Indeed, the small differences between
pig and poultrymeat iron contents (see e.g. Lombardi-Boccia,Martinez-
Dominguez, & Aguzzi, 2002) do not seem large enough to account for
the consistent absence of a carcinogenic effect of chicken consumption
in contrast to beef and pork consumption. The cell surface sialic acid
N-glycolylneuraminic acid (Neu5Gc), a specific abundant component
of redmeat other than heme, low or absent in poultry and fish is anoth-
er candidate for induction of reactive oxygen species (Byres et al., 2008).
It has been suggested indeed that humans produce circulating anti-
Neu5Gc antibodies leading to local chronic inflammation and a propen-
sity to develop diet-related carcinomas (Hedlund, Padler-Karavani,
Varki, & Varki, 2008). The consistent absence of a carcinogenic effect
of poultry and fish consumption may thus relate to the near absence
of Neu5Gc in these foods.

4.3. Mediating factors: abnormal gut functioning and the role of
gut bacteria

In a normal state, the gut (lower intestinal tract) functions as a
barrier between the body and external influences, allowing nutrients
to be absorbed by the body and keeping pathogens out of the blood
stream. To facilitate this balance, complex communication occurs
between the gut, the brain and the immune system (Cryan & Dinan,
2012). A large share of this communication is related to energy homeo-
stasis, and includes signals related to blood sugar, taste, gut stretching
and hormones excreted to initiate or terminate meals, extending to
other organs as well (Field, Chaudri, & Bloom, 2010). The communica-
tion between the brain and the gut is not just crucial for energy homeo-
stasis but also for general well-being. Disruptions of the system, such as
chronic stress, can result in an over-activation of the immune system,
which has effects on the gut barrier function, the bacteria in the gut
and through these peripheral effects even on mood (Cryan & Dinan,
2012). A key-player in the communication between the gut and the
brain, the vagal nerve has been implicated in the development of
cancers. In mouse models of gastric cancer induced by genetic muta-
tions or a carcinogenic (N-methyl-N-nitrosourea), vagotomy (disrup-
tion of the nervus vagus signaling by surgery) markedly reduced
tumor incidence and progression (Kodama et al., 2012). Vagotomy
was associated with inhibition of Wnt signaling and down-
regulation of stem/progenitor cell markers. Whether the vagal
nerve plays a role in the development of CRC in the presence or ab-
sence of red meat is currently unknown. It is likely that the vagal
nerve is of some importance as it plays a considerable role in chronic
pathological inflammation of the gut, which in turn increases the risk
for CRC.

Low level inflammation, in which there is a balance between pro-
and anti-inflammatory factors, is important for gut health, as it allows
the immune system to be activated when pathogens are present, Path-
ological inflammation on the other hand is categorized by a high activa-
tion of pro-inflammatory cytokines, which are pro-oxidants and can
damage tissue and DNA (Jaiswal, LaRusso, Burgart, & Gores, 2000),
as well as by activation of NF-κB and members of the TNF cytokine
family (Eigler, Sinha, Hartmann, & Endres, 1997; Tak & Firestein,
2001). Dimers of such cytokines can increase the transcription of
tumor growth promoting genes (Fantini & Pallone, 2008). Chronic
inflammation may also be related to imbalanced diets where the in-
take of omega−6 polyunsaturated fatty acids is much higher than the
intake of omega−3 polyunsaturated fatty acids. Both types of fatty
acids compete for the same enzymes; hence it is the ratio that is impli-
cated in determining whether there is a pro-inflammatory state (high
n−6, low n−3) or an anti-inflammatory state (low n−6, high
n−3). A high level of n−3 fatty acids has been linked to lower cell pro-
liferation, increased apoptosis and possible limited tumor angiogenesis
(Larsson, Kumlin, Ingelman-Sundberg, & Wolk, 2004). However, it
needs to be noted that a link between intake of n−3 fatty acids and re-
duced cancer risk is much clearer from short-term in vitro and in vivo
experimental studies than from epidemiological data (Riediger,
Othman, Suh, & Moghadasian, 2009).

The bacteria in the gut are an important mediator for the relation-
ship between food and (gut) health, and may play a role in both
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promotion of and protection against the CRC development in response
to red meat. Abnormal gut fermentation has been shown to be linked
to both dietary obesity and cancer (Nasser, Bibi, Alqahtani, Chaudhary,
Azhar, Kamal, & Yasir, 2013; Serban, 2013). There is new evidence
that uniquepatterns of gutmicrobiota communities and their fermenta-
tion products create either a toxic or a healthy gut environment
(Azcárate-Peril, Sikes, & Bruno-Bárcena, 2011; Magrone & Jirillo,
2013). Fecal analyses of colorectal cancer patients have shown shifts
in composition of the gut bacteria, with less bacteria that produce the
short chain fatty acid butyrate, and more potentially harmful bacte-
ria such as Fusobacterium nucleatum, Rhodopseudomonas faecalis,
Bacteroides vulgatus and Enterococcus faecalis, the latter being a su-
peroxide producer that may damage epithelial DNA (Vipperla &
O'Keefe, 2012). Such pathogenic bacteria can impair gut barrier func-
tion and negatively affect gut peptides and host metabolism. A recent
meta-analysis links Helicobacter pylori infection to a modest increased
risk for CRC (Rokkas et al., 2013), although the molecular mechanisms
responsible are unknown. It is interesting to note that obesity can
be a risk factor for H. pylori infection and it has been hypothesized
that this may provide a link for the higher incidence of certain can-
cers in the obese population (Arslan, Atilgan, & Yavaşoğlu, 2009).
In stressful situations the species diversity can decrease and the
abundance of pathogenic bacteria that produce cytotoxic and muta-
genic compounds such as hydrogen sulfide and secondary bile acids
increases.
An increase in abundance of hydrogen sulfide and secondary bile
acid producing bacteria is also associated with a high dietary fat intake
(Vipperla & O'Keefe, 2012). Red meat, depending on the cut and origin
of the meat, may contain more fat than white meat, and the fat content
in red meat is implicated as a possible risk factor for colorectal cancer
through a shift in microbiota composition. Sulfate producing bacteria
grow in response to a high fat diet and produce hydrogen sulfide,
which is considered harmful for the gut epithelium in general, and
specifically can damage the DNA through production of free radicals
(Hildebrandt et al., 2009). In addition, high intake of dietary fat can
increase the abundance of colonic primary bile acids and their transfor-
mation to cytotoxic, mutagenic and anti-apoptotic secondary bile acids.
The epithelial damage can result in an over activation of transcription
factors linked to inflammation such as NF-κB that may promote tumor
cell proliferation (Jia et al., 2013). The exact role of the gut microbiota
in the link between meat and health is not clear, but research
thus far shows that there are several pathways through which the
gut microbiota could play a role.

4.4. Eating too much of an unbalanced diet

Obesity has increased dramatically in the world during the last
20 years both in developed and developing countries (WHO Obesity
and overweight fact sheet, 2013). The cause of obesity is due to changes
in the environment, including high food availability and energy density
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and reduced need for physical activity (Hill, Wyatt, Reed, & Peters,
2003), but also less obvious changes such as less time spent outside of
the thermo-neutral zone are implicated in the increase in obesity
(Moellering & Smith, 2012). From an evolutionary standpoint, having
a fat storage is advantageous for times of food scarcity and the body
tries to defend a high weight set point (Bellisari, 2008, but also
see Speakman, 2007, 2008). However, the increase in body weight
has serious consequences for health. Diabetes and heart disease are
among the highest prevalent and well-known disorders related to
obesity, but there is also strong support for a causal link between
being overweight and some forms of cancer, including colon cancer
(1.5–2.4 fold increase in risk, Moore et al., 2004). Chronic inflammation,
altered gut microbiota and high levels of adipokines and insulin-like
growth factor-1 are implicated in the mechanism underlying the link
between obesity and cancer (Calle & Kaaks, 2004; Musso et al. 2010).

The increase in obesity is partly accompanied by an increased intake
of an unbalanced diet. High sugar intake, particularly fructose from corn
syrup and sugary drinks, less fibers, less calcium, and fewer vegetables
are part of this unbalanced diet (NNR, 2012). Fat consumption is high
although it has reduced in recent years, while protein intake has been
quite stable for the past two decades (FAOSTAT, 2012). A high protein
intake, including meat and dairy protein, is associated with weight
loss or at least improved weight maintenance (Westerterp-Plantenga,
Nieuwenhuizen, Tome, Soenen, & Westerterp, 2009). Lean meat pro-
vides a high level of satiety (white bread satiety index: 100%, beef: 176%,
boiledwarmpotatoes: 323%; Holt,Miller, Petocz, & Farmakalidis, 1995),
and may thus contribute to prevention of obesity. Yet, the association
between red meat, obesity and cancer may be observed due to con-
founding dietary factors: individuals consuming a lot of red and proc-
essed meat may often also consume more energy rich food products
such as sugary drinks and sugar-rich condiments, drink more alcohol,
eat less vegetables, take less vitamins and are less physically active
(Alexander, 2013). In order to understand this complex interaction
between the different components of the diet, it is important that we
canmeasure the physiological consequences of the whole diet, through
advances in techniques such as metabolomics.

5. What may protect the colon from cancer?

5.1. Improving the bacteria in the gut

The identification of bacteria that confer a health benefit to humans
has proven difficult. The first and most obvious reason could be that
there is no such thing as beneficial bacteria. The most well-studied
host/bacteria interaction that rejects the idea that bacteria are not
beneficial for health, is the Aphid and Buchnera symbiosis. Buchnera
provides essential amino acids to the Aphid, which in return provides
nutrients to the bacterium (Lai, Baumann, & Baumann, 1994). For
humans evidence for positive host/bacterial interactions comes from
the development and evolution of the colon, which hosts a large bacte-
rial population (1 ∗ 1010–12 bacteria). The colonmay never have evolved
in this way if there was not some benefit for both the host (obtain more
energy and essential nutrients from food due to fermentation by bacte-
ria) and for the bacteria (nutrition for bacteria, Dethlefsen, McFall-Ngai,
& Relmen, 2007). The complexity, however, withmore than 1000 bacte-
rial species and 3000000 genes, makes this system tremendously
difficult to understand (Arumugam et al., 2011). Not only are there
large individual variations between humans; but also are there certain
developmental windows of opportunities for beneficial interactions
(Rudi, Storrø, Øien, & Johnsen, 2012). Furthermore, the potential
services provided by the bacteria are both complex and redundant.
Despite the complexity it has recently been proven that it is possible
to restore a normal gut immunological function by a mixture of 17 gut
bacteria (probiotics) (Atarashi et al., 2013).

Not only probiotics can modify the composition of the gut bacteria;
but also prebiotics (dietary fibers that can be fermented by the bacteria,
such as resistant starch) have the ability to change the type of bacteria
present in the colon, and the metabolites they produce. Improving gut
fermentation may improve gut barrier function and reduce chronic in-
flammation of the gut (Keenan et al., 2012) and may protect against
red meat-induced colonic DNA damage (Toden, Bird, Topping, &
Conlon, 2006). The enhancement of butyrate producing bacteria
has also been shown to reduce cancer risk in animal models
(Scharlau et al., 2009). While there has been an explosion of efforts
to characterize gut microbial population in healthy and disease
states, there is a need to look further than just the type of species
that is present in the gut, and instead focus on understanding func-
tional significance of microbiota changes. For example, increased
abundance of mucin-degrading bacteria is associated with health,
but the functional significance of this increase in mucin degradation
is unknown. It is suggested that while these bacteria degrade the
mucus layer for their nutrition, they are also considered probiotics
that may limit the abundance of pathogens at the mucus layer
through competition for binding sites and mucus flushing (Derrien
et al., 2010). In addition, there is a need for further application of
metabolomics to understand the role of gut bacteria and their fer-
mentation products on health, including the identification of novel
fermentation products and their bioactivity. Bioactivity measures
will require novel animal and cell models of gut fermentation and
host physiology markers that predict health outcomes. It is unlikely
that there is one optimal set of gut bacteria that will prevent every-
one from getting colon cancer, as there are large individual differ-
ences in current gut microbiota, genes, physiology and the external
environment. Yet, understanding the role of the gut microbiota in
maintaining gut health, including reducing CRC risk, may provide
the food industry with an opportunity to develop foods for optimal
gut fermentation for a healthier population, and academia to develop
targeted solutions for individuals having an increased risk for devel-
opment of CRC.

5.2. Phytochemicals for gut health and as nitrite replacers

Due to the debate regarding nitrite, the meat processing industry
should take a proactive role and explore innovative technological
solutions that allow for the reduction or replacement of nitrite without
hampering microbiological food safety and loss of sensory quality,
particularly taste and color. One example out of several initiatives is
the PHYTOME project, which aims to develop new meat processing
technologies that allow production of innovative meat products that
have low or no nitrite and that contribute to improved human health
(www.PHYTOME.eu). This will be achieved by introducing carefully
selected mixtures of biologically active compounds originating from
natural plant extracts. The active compounds, referred to as phytochem-
icals, are found in a wide range of vegetables and fruits and that are
known to have beneficial health effects (Akesson & Mercke, 2005).
These compounds also possess antimicrobial activity andmay therefore
contribute to microbiological safety of the product (de Oliveira,
Stamford, Neto, & de Souza, 2010). Most importantly, they are
known to reduce the formation of nitrosamines in the human body
when consumed simultaneously with meat products (Chung, Lim,
& Lee, 2013). Some phytochemicals are also known to protect the
gut from the induction of for instance oxidative genetic damage by
other dietary factors and thus adverse health effects (Bartsch &
Frank, 1996; De Kok, van Breda, & Briedé, 2012; de Kok, van Breda,
& Manson, 2008). Although many different mechanisms behind the
preventive action of various classes of phytochemicals have been
reported in the literature (Shu, Cheung, Khor, Chen, & Kong, 2010),
the most effective compounds in counteracting the damage induced
by nitrosamines have not yet been identified. Furthermore, different
types of phytochemicals can be more or less susceptible to degradation
during processing. This implies that the effect of different treatments
applied in the manufacturing of different meat products will have

http://www.PHYTOME.eu
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to be evaluated and optimized to have maximal recovery of the
phytochemicals in the final product. Eventually, these products will
be evaluated in a human dietary intervention study, by assessment
of the impact on the endogenous formation of N-nitroso compounds
and the induction of genetic damage and gene expression changes in
the colon.
Box 3
Whole food versus purified compound testing.

Studies that aim to test the effects of food on health can be done
either using purified substances of the food, or using the whole
food product which consists of complex mixtures of compounds.
The different compounds in a food may have both beneficial and
adverse effects, depending on the dose provided. In addition,
the dose ranges will be limited in whole food testing to factors
such as bulkiness of the foods, their palatability to the individual,
and avoidance of nutritional imbalance. This also will have its
bearing on the sensitivity of themodel. The European Food Safety
Authority (EFSA) has developed guidance for whole food testing
of for example GM crops and irradiated foods in rodent models,
including the design of such studies, statistical power, animal
strain, housing and diet preparation among other things. While
there may be a risk associated with high consumption of red and
processed meat, there may also be protecting factors within the
meat depending on its composition and preparation, and whole
food testing may require more individuals and longer exposure
times before effects on the CRC development can be shown.
In contrast, use of purified compounds reflects a worst-case-
scenario thatmay be unrealistic but gives results fasterwith fewer
individuals. In rodent models both whole food testing and experi-
ments with purified compounds are conducted in order to investi-
gate health effects and the underlying mechanisms. The EFSA
guidelines for whole food testing are not expected to result in
studies that identify red meat as a carcinogen as they require that
the diet used for testing is nutritionally balanced. A major ques-
tion, however, in relation to meat in the diet that remains is how
the formation of carcinogenic compounds during the digestion of
meat is modulated by nutrients and compounds from other food
items in the meal.
5.3. It's not just meat on the plate

A meal is often more than just meat: fruit and vegetables, bread,
pasta, rice, potatoes, fish and dairy are typical food groups that are con-
sumed in addition to themeat. Some elements of these food groups are
thought to negate potentially harmful effects of red meat consumption
(but see also Box 4).

Calcium from, for example, dairy products is one compound that
may have protective effects against cytotoxicity and colon cancer, for
which variousmechanisms that can act in parallel have been postulated.
A mechanism that accounts for the protective action of calcium against
meat-consumption-related effects on the colon is that calcium salts can
chelate heme iron in vitro and in vivo (Allam et al., 2011; Pierre et al.,
2008), making it unreactive in the gut, and the chelated heme iron is
eventually excreted in the feces. Rats consuming calcium show full sup-
pression of the carcinogenesis promoting effects of meat and heme iron
diets (Pierre et al., 2003, 2008; Santarelli et al., 2013). In human volun-
teers calcium carbonate supplements can normalize fecal biomarkers of
nitrosation and lipoperoxidation (Pierre et al., 2013).

Fiber-rich fruit and vegetables, as well as whole grain bread, pasta
and rice, provide fibers that can be fermented in the gut and may
change the gut environment to a healthier environment (Keenan
et al., 2012). Fruits and vegetables also provide phytochemicals and
vitamins such as vitamin E, folate and isothiocyanate that may have
help to prevent the development of CRC by their function as antiox-
idants in prevention of peroxidation and/or nitrosation and by in-
duction of defense mechanisms in the human colon (Van Breda
et al., 2004). Resveratrol, found in red wine, is another phytochemi-
cal that is implicated to be protective, particularly in inhibition of
metastasis (Shu et al., 2010). Fish intake may also contribute to a
healthier colon by providing n−3 polyunsaturated fatty acids that
have anti-inflammatory effects (Larsson et al., 2004).

The preparation of the meat can also have an impact. Seasonings
such as garlic (containing selenium) or curcumin are implicated to
have cancer protective effects (El-Bayoumy, Sinha, Cooper, & Pinto,
2011; Shu et al., 2010). Frying and grilling of meat have been
associated with formation of carcinogenic heterocyclic amines and
polycyclic aromatic hydrocarbons that have been associated with
a higher relative risk for CRC development in humans, (RR 1.18,
Cross et al., 2010), but it must be noted that these compounds are
also formed when grilling or frying chicken or fish and are therefore
not specific to red meat (Moonen, Moonen, Maas, Kleinjans, &
de Kok, 2004).

Production and packaging of meat may also impact the risk for CRC.
Anaerobic processing and packaging of ham are associated with re-
duced carcinogenesis in rats (Santarelli et al., 2010). Addition of certain
phytochemicals to themeat may have both antimicrobial functions and
cancer protective effects (de Oliveira et al., 2010; Shu et al., 2010).
Beneficial changes may also be obtained by improved feeding of
pigs and cattle (Gobert et al., 2010; Habeanu et al., 2014; Haug,
Nyquist, Mosti, Andersen, & Høstmark, 2012; Meineri, Medana,
Giancotti, Visentin, & Peiretti, 2013; Olmedilla-Alonso, Jimenez-
Colmenero, & Sanchez-Muniz, 2013). The search for chemopreven-
tive agents should continue, and their efficacy demonstrated in
human volunteers. The best recipes and procedures can then be
included in normal meat processing. The meat industry would then
provide meat and meat products to consumers that minimize the
risk for CRC development (Corpet, 2011).
6. What should we do now?

As it becomes clear from this paper, the interactions between meat,
gut and health outcomes such as CRC are very complex and are not
clearly pointing in one direction. There is a need for further studies on
both the epidemiological relation between red meat and health and
the underlying physiological mechanisms.

6.1. Enhancing epidemiology studies with molecular markers

Epidemiological studies are currently one of the few options
available for studying the relation between red meat intake and CRC
incidence in humans, but meat intake is usually measured by self-
reporting, making it potentially inaccurate, particularly when done
over a long period. The negative reputation of red meat may also lead
to underreporting of intake among health-conscious individuals, there-
by skewing the risk analysis in the direction of higher risk for red meat
consumption. There is a lack of good objective markers of meat intake,
as well as markers of how the meat was prepared, that can be used to
accurately estimate intakes in relation to CRC development. It would
be very useful for further epidemiological studies to have access to
good biomarkers of intake for total protein, red meat, and white meat
which work in clear contrast with markers of other protein-rich foods
such as dairy products, fish or legumes. Moreover, biomarkers of proc-
essed and heated meat intake are needed. Preferably all these markers
should also exist in versions that tell how long ago and inwhat quantity
the meat was ingested. While this advanced biomarker identification
has not been achieved yet, some metabolites emerge as potential
markers. These may include total N2 and urea, 1- and 3-methyl-



Box 4
Why should we keep eating red meat?

Strong media coverage and ambiguous research results could
stimulate consumers to adapt a ‘safety first’ strategy that could
result in abolishment of red meat from the diet completely.
However, there are reasons to keep redmeat in the diet. Redmeat
(beef in particular) is a nutrient dense food and typically has a
better ratio of N6:N3-polyunsaturated fatty acids and significantly
more vitamin A, B6 and B12, zinc and iron than white meat
(compared values from the Dutch Food Composition Database
2013, raw meat). Iron deficiencies are still common in parts of
the populations in both developing and industrialized countries,
particularly pre-school children and women of childbearing age
(WHO). It is clear however that iron intakes below the WHO
recommended intakes (20 and 9 mg/d for women and men
respectively) far exceed the incidence of anemia (Stoltzfus,
2001) and are not associated with clear functional disabilities
(Millward & Garnett, 2010). The equivalent availability of Fe
from meat and from non-meat sources is now recognized asso-
ciated with a tightly and complex homeostatic mechanism,
controlled by hepcidin (Scientific Advisory Committee on Nutri-
tion, 2010). Red meat also contains high levels of carnitine,
coenzyme Q10, and creatine, which are bioactive compounds
that may have positive effects on health (Schmid, 2009). The
average consumer may not know how to correctly substitute
for missing nutrients, which increases the risk for malnutrition
in those consumers. In addition, many consumers would argue
that the immediate enjoyment of red meat may outweigh a
potential future health risk.
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histidines, creatine and creatinine, carnitine and trimethylamine
oxide (TMAO), and carnosine as overall markers of protein or meat
intake, trans-fats as markers of ruminant products, and heterocyclic
amines and advanced glycation endpoints (AGEs) as markers of
heated foods (Dragsted, 2010; Poulsen et al., 2013), although gener-
alization of the use of such markers across consumer segments need
to be verified and validated. It is notable that the first attempt to use
methylhistidines as markers of meat intake in a small cross-sectional
study on adenoma recurrence reported no association between these
markers and recurrence despite a significantly higher self-reporting
of meat consumption in the patients who had recurrences (Cross
et al., accepted for publication). Currently, use of stable isotopes
ratios of 13C and 15N, particularly in human feces and urine, is
being explored and validates as a marker of meat and fish intake
(Kuhnle, Joosen, Kneale, & O'Connell, 2013). In addition to the use
of such markers of exposure, future molecular epidemiological
studies should make advantage of the newest developments in
genomics markers of early effects. Markers of cancer development
at the level of gene expression changes and epigenetic mechanisms,
as well as markers for gut inflammation, and changes in metabolomic
profiles, will help to integrate epidemiological findings with underlying
mechanisms and improve epidemiology. Markers of cancer develop-
ment and gut inflammation, as well as advances in metabolomics, will
help to integrate epidemiologicalfindingswith underlyingmechanisms
and potential bias.

6.2. Improving food composition databases

In addition to reliablemeasures of meat intake, it is also vital to have
an up-to-date and accurate overview of the composition of different red
meats. Most countries track the composition of their food, but often at
frequencies defined by their accessibility to direct funding or indirect
food industry funding; typically within ~10 years intervals. Few nation-
al authorities have the resources to keep up-to-date with all the devel-
opments and advances in the current food supply. Europe has its food
compositional analysis in the EuroFIR database (http://www.eurofir.
org), which contains national data from 26 countries (New Zealand
and Canada being the only countries outside Europe). In order to deter-
mine how red meat or processed meat is related to health or disease
risk, it is crucial to have access to updated data on the composition of
the consumedmeat. However, there may be a large variability between
different pieces of red meat, due to breed/genetics, trimming, animal
feed processing and choices, geographic feed origin, age at slaughtering
and others, but also sampling procedures and analytical differences. For
comparisons it is important to use a representative part of the carcass,
such as the minced beef trimming standardized to 14–16% fat: this
covers a large share of the edible part of the carcass (in Norway
~40%). It is also important to know whether the samples measured
are representative for the entire country. Nutritional databases current-
ly lack information about minimum and maximum values, or standard
deviations of the measurements. Regarding the components measured,
there is a lack of information on some nutrients in meat that may have
health implications. Differentiation into inorganic iron and heme
iron seems scarce (see http://nevo-online.rivm.nl/Default.aspx for an
exception). Plant components (chlorophyll and polyphenols) or their
metabolites are typically not included; neither are possible toxins
produced for example during a suboptimal fermentation of harvested
forage (see Versilovskis & De Saeger, 2010, for an example of such a
discussion). It is important that levels of present and emerging
compounds suggestively linked to human diseases are all quantified
and included in databases. This will make it more efficient to identify
causal relationships.
6.3. Explore improvements and alternatives within meat composition
and processing

Finally, there are windows of opportunity to improve meat com-
position and processing that need to be explored. When the most
common nutrients are compared between countries, the fraction of
polyunsaturated fatty acids, vitamins B1, B6, B9 (folate), B12, D
and E and selenium show the largest variation (with the maximum
average value being more than twice the minimum average value,
http://www.eurofir.org). If the variability is large there is an oppor-
tunity for strategies that improve the composition, assuming the
source of the variation is identified. The potential for such changes
is seen in studies in which the meat composition was changed to
benefit human health, for example by changing plant oils in the
feed to obtain an n6/n3 ratio in chicken meat to be 2:1 instead of
10:1 in conventional chicken meat (Haug et al., 2012). Meat product
composition can also be improved by changes in meat processing.
Epidemiological studies group all processed meats into one catego-
ry, but there are many different methods of meat processing, using
many different ingredients and ratios of macronutrients. This may
obscure underlying relationship with one or more meat associated
factors being associated with CRC risk while other factors are not.
It is unlikely that all processed meats have the same effect on health
(Alexander, Miller, Cushing, & Lowe, 2010). There is a need to iden-
tify the health risks associated with different methods of processing
and different recipes in order to ascertain where there is a need for
improvement. Healthier alternatives need to be investigated once
meat products that could benefit strongly from changes in process-
ing methods have been identified. Replacing nitrite with phyto-
chemicals, as currently is being explored in the PHYTOME project,
is just one example of a possible improvement. Collaboration with
the meat industry and public health authorities is vital for a success-
ful implementation of research results into the food supply chain, in
order to minimize the health risks of red meat consumption.

http://www.eurofir.org
http://www.eurofir.org
http://nevo-online.rivm.nl/Default.aspx
http://www.eurofir.org
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7. Conclusions

Meat consumption may be associated with an increased risk of CRC
in ‘Western’ food cultures. This may be due to a real cause-and-effect
relationship but it should be kept in mind that associations may suffer
from confounding effects. Meat contains a number of compounds of
nutritional benefit and may not be carcinogenic as such but rather,
when consumed in very high amounts, may result in an imbalanced
diet and thereby increase the risk of developing CRC. These imbalances
may likely result from lack of antagonistic agents, such as calcium or
phytochemicals, to counteract cytotoxic and mutagenic products that
result from interactions of heme with an unfavorable gut environment.
Products formed in cured or heated meats may further enhance such
damage. There is a need for further studies largely related to the un-
derlying mechanisms as long as CRC remains a big burden of disease.
Integrating epidemiology with relevant information such as bio-
markers of meat intake, inflammation markers, gene expression
changes or other predictors of cancer development, individual varia-
tion on genetic predisposition, stress and obesity parameters and gut
microbiota would be a huge advantage. All tools available need to be
used, including in vitro studies, in silico studies, in vivo animal studies
and human intervention studies, depending on the specific hypotheses
that are tested.

Heme iron and lipid oxidation products are established to have
effects on CRC development in sensitive animal models fed with a
semi-purified diet containing no vegetables or cereal fibers. Endoge-
nous nitrite, particularly in combination with heme iron and fatty
acids, is still linked to red meat and CRC based on weak
associations from epidemiological studies. There is a need for further
studies on the differences between red meat from mammals that is
associated with CRC versus poultry meat that is not, differences
between processed and fresh red meat and between different
types of red meat products, as the health risks may not be the
same. In addition, there may be other hypotheses related to red
meat and CRC that have been studied little thus far, including a
potential role for the gut-brain axis and the gut microbiome.

There arewindows of opportunity for strategies thatmay reduce the
risk of CRC. Modifying meat composition via animal feeding and breed-
ing, improving meat processing by alternative methods such as adding
phytochemicals and improving our diets andmeals in general are strat-
egies that need to be followed up. This may not just reduce the risk of
CRC butmay also be beneficial for reduction of obesity and cardiovascu-
lar diseases. In order to achieve this, researchers need to collaborate
with the meat industry and public health authorities.

Another argument refers to the growing demand for food.
Animals used for production of meat often eat soy and grain that
could be used to feed directly. However, not all land is suitable for
growing soy, grain or other corps, but may instead be suitable for
grazing by cows, sheep and goats. As the human population is grow-
ing significantly and the demand for food is increasing (Parfitt,
Barthel, & Macnaughton, 2010), it is important to utilize the land
available for the optimal purpose, which includes grazing onmargin-
al lands and consequent consumption of red meat. In the future, our
diet may be more determined by food availability than by how it
affects health.
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