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Abstract

A new, simple pyrolysis model for charring materials is applied to several numerical and
experimental test cases, with variable externally imposed heat fluxes. The model is based
on enthalpy. A piecewise linear temperature field representation is adopted, in
combination with an estimate for the pyrolysis front position. Chemical kinetics are not
accounted for: the pyrolysis process takes place in an infinitely thin front, at the
‘pyrolysis temperature’. The evolution in time of pyrolysis gases mass flow rates and
surface temperatures are discussed. The presented model is able to reproduce numerical
reference results, which were obtained with the more complex moving mesh model. It
performs better than the integral model. We illustrate good agreement with numerical
reference results for variable thickness and boundary conditions. This reveals that the
model provides good results for the entire range of thermally thin and thermally thick
materials. It also shows that possible interruption of the pyrolysis process, due to
excessive heat losses, is automatically predicted with the present approach. Finally, an
experimental test case is considered.
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1 Introduction

In the early stages of a fire, flame spread always plays an important role. In numerical
simulations, this requires coupling of gas phase CFD (‘Computational Fluid Dynamics’)
simulations, including combustion and radiation, to pyrolysis simulations in the solid
material. To that purpose, it is advantageous to keep the pyrolysis model simple.

The real material behaviour is in general very complex. Phenomena like melting, surface
oxidation, smouldering etc can occur. In the present paper we deliberately avoid
discussion of these phenomena.

Depending on the residue left after pyrolysis, materials are called ‘charring’ (char is left
after pyrolysis) or non-charring. A widely used charring material in the construction of
buildings is wood. Although non-charring materials (e.g. PMMA) are also very important
and experimentally and theoretically studied in great detail (e.g. [1, 2]), we focus here on
dry charring materials for the basic application of our model. In [3, 4] we discuss the
theoretical background in more detail and illustrate applications for charring materials
with moisture content and for non-charring materials.

During the past two decades, several numerical models were developed for pyrolysis, of
charring materials with different levels of complexity, such as: Arrhenius-type models
[5]; ‘integral’ models [6-9]; an ‘extended’ integral model [10]; a moving mesh model
[11]; a dual mesh model [12]. Reviews on pyrolysis modelling have been provided in e.g.
[13, 14]. The motivation of the present paper, in which we describe a simplified pyrolysis
model, based on enthalpy, is the relative ease to couple the model to gas phase CFD

simulations for flame spread calculations.



The model, presented below, has compared to existing pyrolysis models as the most
important advantages that:

= Jtis simple to implement;

= [t is readily extended to more dimensions (in contrast to e.g. the integral model

and moving grid models).

We apply the model to the series of basic numerical test cases, described in [11]. As such,
the present paper can, to a certain extent, be regarded as a follow-up paper of [10]. In
addition to the mentioned advantages, we illustrate that, with respect to variable heat
fluxes in time, the present model performs very well. It performs better than integral type
models as in [10]. The influence of the solid thickness and boundary conditions is shown.
Finally, we discuss a comparison to experimental data and reveal the influence of
material properties and model parameters on the results. First of all, we provide a brief
model description. A more complete description and a sensitivity study with respect to
numerical aspects (grid size and physical time step) are found in [3, 4].
2 Model description
2.1 Assumptions
An enthalpy based model approach is applied in the simulations below. Pyrolysis is
modelled as an infinitely fast, irreversible, endothermic and isothermal process at the
‘pyrolysis temperature’ Tpyr, so that reaction kinetics are not considered and the pyrolysis
zone in principle becomes infinitely thin (‘pyrolysis front’). The endothermic transition
process from virgin material to char material requires a constant amount of enthalpy per

unit volume, equal to( P, - pC)AQ at temperature Tpyr. Note that Tpy and AQ are

pyr pyr

thus model parameters which are kept constant during the simulation. In [15], it is



described, based on energy and mass balances, how to find Ty such that the same
amount of energy is consumed to produce the same amount of mass if a finite rate
kinetics model is used for the entire charring process. Pyrolysis gases are assumed to
leave the solid as soon as they are generated (no accumulation of gases). They are
assumed in thermal equilibrium with the solid everywhere. Clearly, the mentioned
simplifications imply limitations on the validity range of the models as described. In [3,
4], we extend the model for application to charring materials with moisture and non-
charring materials. However, complex phenomena like melting, in depth radiation
absorption, surface oxidation, smoldering, etc are not modelled. Effects of e.g. cracking
could be incorporated by introduction of a transport model for pyrolysis gases in the solid,
in the model framework as described in [3]. Introduction of multiple fronts can allow
modelling of e.g. surface oxidation if the diffusion of oxygen is accounted for. All such
aspects are considered beyond the scope of the present paper. Figure 1 shows the relation
between enthalpy and temperature.

This makes the model appealing for coupling to gas phase combustion CFD simulations
(e.g. for flame spread simulations). Once the (high-temperature) pyrolysis process start,
the pyrolysis kinetics are indeed often not very important in this context. In CFD
simulations, the detailed pyrolysis gas composition is typically not taken into account.
Also, primarily the pyrolysis gases mass flow rate is an important input for the CFD and
kinetics time scales are typically smaller than the time scale, related to variations in the

pyrolysis gas mass flow rate.



For simplicity reasons, we only consider a one-dimensional configuration in the
present study (Figure 2). The model concept is applicable in three dimensions, though,
which is again interesting for general flame spread simulations.

2.2 Energy equation

As mentioned in the introduction, we use enthalpy per unit volume ‘E’ as the basic
variable'. The basic physical mechanisms that drive the changes in enthalpy in a fixed
volume ‘V’ are heat transfer by conduction in the solid material and by convective heat

transfer due to movement of hot pyrolysis gases through the char layer:
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S

We adopt a finite volume formulation to represent eq. (1) in a discrete manner:

e A (- (- ) ¥

In (2), At =t™'-t" is the physical time step size and Ax is the grid spacing. Using
Fourier’s law for conduction and assuming the specific heat Cpyr of the pyrolysis gases

constant (for simplicity) the fluxes are discretized as:
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' Note that, in (1), E is the energy density, rather than enthalpy density. In the solid
material, these terms can both be used (no effect from static pressure) and we use

‘enthalpy’ from now on.



The discretisation of the temperature gradient in (3) is shown in fig. 3. A piecewise linear
representation of the temperature field is necessary to provide acceptable results for the
mass flow rate [4].

The pyrolysis gases mass flow rate equals the variation in mass, caused by the front
motion. For each cell face, the expression depends on the relative position of the front (Xs)

with respect to the position of the face (Xi-1/2):
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as a

function of E""'. Also note that the value of ki”; depends on the position of the pyrolysis
/2
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2.3 Closure problem

Given the piecewise linear representation of the temperature field, a distinction is made
between virgin, char and ‘mushy’ cells. We use storage of temperature at the centres (i).
As such, given the temperatures at the cell centres and the pyrolysis front position, the
cell-face temperature gradients can be constructed (as shown in fig. 3), and the function

T(x) is known. The latter is used in the relationship between enthalpy and temperature:

- AT (X)=T,, ) if x>x
Ei:ij E(X)-dx with E(x)= (700 T f . (6)
AX xy, (8- 2.) AQy, + £.C. (T (X) =T, ) i X< X,



At this level, yet another equation/constant is needed to close the system. This extra
equation is derived by expressing a local mass and energy balance around the pyrolysis
front. Indeed, the energy balance provides a relation between the conductive fluxes at
both sides of the front and the possible motion of the front (thereby releasing pyrolysis
gases at T=Tpyr) [3]:

n+1 n
(" -x7)

At

(pv _pc)Aprr :_kc%_l £l +K, 5

vV OX

f,r (7)

Combination of (2) - (7) provides a solvable set of equations. In practice, (2) is integrated
using a pseudo-time stepping method, bearing in mind that, during the solution procedure,
the pyrolysis front must not move backwards. For the details on the exact iterative
solution procedure, we refer to [4].

3 Numerical reference results

3.1 Time dependent behaviour

Figure 2 is a schematic representation of the configuration under study. An external heat
flux is imposed at one side. In flame spread simulations, the incoming heat flux onto the
solid material stems from flames and their hot products (radiation and convection). We
work with imposed heat fluxes here, in order to avoid uncertainty with respect to heat
flux coming from flames. We consider the three most challenging cases of [11]. The
intention is to illustrate that the simplified model, with a limited number of computational
cells and relatively large time steps, reproduces the numerical reference results, obtained
with the more complex moving grid model. Therefore, we apply identical settings for the
boundary conditions, model parameters and material properties [16], as discussed next.
The properties correspond to filter paper. Note that the numbers of cells used in all the

simulations discussed in this work remain constant equal to 40 cells.



External heat loss from the exposed surface, by convection and re-radiation, is taken

into account: ¢, =d,, - h(TS Tamb)-g o (Tsﬁrf -Ta‘r‘nb), while the back surface is perfectly

urf ~

insulated and impervious. The heat flux ¢ varies in time, as described below. The
convection coefficient is set toh =15W / (mzK) , while the emissivity equals¢ =1.0. The
pyrolysis temperature is set to T, =573K and the heat of pyrolysis

equalsAQ,, = 7.54-10° J/kg . Obviously, the choice of parameters is very important and

results can be sensitive to this choice (see below). However, in the present section, focus
is on the representation of the mentioned reference results. Therefore, we stick to the
exact same settings as in [11]. As initial condition, there is only virgin material at
temperature T = Tamp = 300K. The solid has a thickness of 0.03m and the material
properties are [16]:

p£,=650kg/m’, ¢, =c =1257)/ (kg K), k, =k.=0.1257W/ (mK) , 0, =350kg/m’ Cpyr =1040)/ (kg K)
We use 40 cells and a physical time step equal to 0.5s.

Case 1: Sudden increase of heat flux at start of pyrolysis

The initially imposed external heat flux is 30kW/m®. After 12.0s, reported as the onset of
pyrolysis in [7], there is a sudden increase to 50kW/m”. This sudden rise represents the
additional heat flux due to combustion of the volatiles in the gas phase as they leave the
solid. Figure 4 (top) reveals good agreement.

Case 2: Sudden increase of heat flux at fixed time

In this case, the initially imposed external heat flux of 30kW/m? is suddenly increased to
50kW/m” at t = 60s. This resembles e.g. additional heat flux due to a distant object
catching fire or due to flashover. Figure 4 (middle) reveals that there is again good

agreement of the present model with the moving grid results. In particular, the unphysical



drop in the mass flow rate, as observed with the integral model of e.g. [17], is not seen
here. Also, the second peak in the mass flow rate is predicted quite accurately. There is
no overshoot as in the integral model.

Case 3: Sudden increase and fall of external heat flux

The initially imposed external heat flux is 30kW/m”. At t = 12.0s, there is a sudden
increase to S0kW/m” At t = 41s, the external heat flux is suddenly decreased again to
30kW/m®. This models e.g. variable exposure to flames. Figure 4 (bottom) shows again
good agreement of the present model with the moving grid reference results. The
unphysical rise in mass flow rate with the integral model (at t = 41s) is again not
encountered with the present enthalpy based model and the drop in the mass flow rate is
well captured (no undershoot).

3.2. Influence of solid thickness

We now discuss the effect of the solid thickness, as in [10]. The thickness of the solid is
varied from 2mm (thermally thin material) to 50mm (thermally thick). The boundary
conditions are fixed: the front surface is exposed to a constant externally imposed heat
flux of 50kW/m® and the back surface is perfectly insulated. The thermo-physical
properties are now chosen exactly the same as in [10] (corresponding to particle board)

again in order to illustrate representation of the numerical reference results:

£,=600kg/nr’, p,=60kg/m’, ¢, =¢,=2500)/(kgK), k,=0.36 W/(m.K) k. =0.23 W/(mK),
Cpr =0/ (kg.K),Aprr =8.710° Jkg,T,,=648K, £=1.0, h=15W/m’K.
Figure 5 confirms the good agreement with the moving grid results over the entire range

of thicknesses. Clearly, onset of pyrolysis occurs earlier for the smaller thickness, due to

more rapid heating of the material up to the pyrolysis temperature. For thickness larger



than 10 mm, the start of pyrolysis remains practically unchanged. The heating process is
then as if the solid were of infinite thickness.
For the thermally thin materials (L<10 mm), a single peak is observed in the mass flow
rate. The peak is higher for the smaller thicknesses, due to the more rapid heating and
thus faster pyrolysis front motion.
For the thermally thick materials, two peaks are observed. The second peak is due to the
so called ‘back effect’ [8]. Note that the first peak is quasi-identical for all thermally thick
materials, as they behave as infinitely thick materials during that stage. The duration of
the pyrolysis obviously depends on the total mass of the solid and thus directly on the
solid thickness.
3.3. Effect of boundary condition on the back side
As final numerical test, we vary the back side boundary condition, describing the
convective heat loss as follows:

qbs = Py (T = T (3)
Unless mentioned otherwise, we use the same model parameters and material properties
as in the previous section. We set the emissivity at the back surface equal to zero, as
typically the temperature Ty is not high.
Before discussing the results, we perform a steady state analysis of the equilibrium
situation. In that case, the net incoming heat flux at the front surface equals conduction
through the solid material, as well as (convective) heat losses at the back surface. In the
assumption that the steady state situation is complete charring of the material, this reads:

qut -&0 (T T ) = kc @ = hbs (Tbs,eq -Tamb) (9)

s,eq amb

)- h, (Ts’eq T

amb
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These are two equations for two unknown variables (Tseq and Tpseq). The last identity
shows that, in the relation between the two surface temperatures, the Biot number appears,

based on the back surface convection coefficient:
Ts,eq = Tbs,eq + k_(Tbs,eq -Tamb ) (10)

Elimination of Tseq in (9) yields a single equation for Tpseq. The solution of this equation
depends on hs, hps and &. Figure 6 shows the result for £= 1 and fixed hs (left) or fixed hps
(right). Obviously, if Thseq < Tpyr, the assumption of complete charring of the material is
incorrect.

Figure 6 confirms that, when hys = 0W/(m2K), i.e. perfect insulation at the back surface,
the steady state situation yields Tseq = Thseq. The higher the convection coefficient hs, the
lower the equilibrium temperature due to the lower net incoming heat flux. The left
picture further reveals that the difference between the back surface temperature and the
front surface temperature increases as the heat losses at the back surface increase (higher
hps). The dashed line at T = Ty, = 648K reveals that the assumption of complete charring
is no longer fulfilled for large values of hys (e.g. hps > 10.2W/(m°K) for hs = 0OW/(m’K)).
The right picture of fig. 6 shows that complete charring is only possible for sufficiently
low values of hps. For hys = 10W/(m°K), curve c, it is seen that complete charring only
happens when hs < 1W/(m’K).

We now discuss the results as obtained with the present pyrolysis model. Note that no
case dependent adjustments are made to the model whatsoever. This is a particularly
appealing model feature. First, the convective heat transfer coefficient hys is varied from 0

(perfect insulation as in section 3.2) to 20W/m’K, while at the front surface hs = 0W/m’K
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and ¢ = 1 [10]. The material properties are the same as in the previous section. The solid
thickness equals 20mm. A constant heat flux of 50kW/m? is imposed.

Figure 7 (top left) confirms the agreement with the moving grid model results. When the
pyrolysis front approaches the back boundary, the second peak (back effect) is only seen
for sufficiently low values of the back boundary convective heat transfer coefficient.
Indeed, there is no ‘piling up’ of heat when heat losses through the back surface are too
high.

In [10], it is discussed that the integral model suffers the deficiency that mass flow rate
curves cross each other when ‘hy’ is varied. This unphysical feature is not observed with
the present model, as illustrated in the zoom (figure 7, top right).

The bottom picture (left) shows the effect of hps on the front and back surface
temperatures (Ts and Tys). Obviously, there is little effect on Ts. Note the onset of
pyrolysis at t = 27s, in agreement with the top left picture of fig. 7. As hys increases, Tps
increases less and less rapidly, due to relatively higher heat losses through the back
surface. Interestingly, differences become visible for t > 250s, which is also the period
where differences become visible in the pyrolysis gases mass flow rates (top right figure).
In other words, from t = 250s onwards, the back surface boundary condition affects the
pyrolysis process.

Note here, that for hps<10.2 W/mZK, where complete charring of the material should
happen (see above), the steady state temperature of fig. 6 are indeed predicted. For higher
values of hps, the steady state analysis is no longer applicable and indeed other steady-

state temperatures are predicted as well as the ending of the pyrolysis process (see blow).
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The bottom right picture of fig. 7 reveals the position of the pyrolysis front as function of
time. Obviously, the higher hys, the lower the pyrolysis mass flow rate (see above) and,
correspondingly, the slower X increases in time. Interestingly, for hys = 20W/m’K, the
pyrolysis process stops after a while: X; does not increase any more for t > 10000s. In
other words, an equilibrium situation is met. The situation is then as follows: Tseq = 946K,
Xteqg = 0.0134m and Tpseq = 555K. Thus, the net heat flux into the solid material equals:
(50000 — 1 x 5.67 x 10 (946" — 300%)) ~ 5100W/m?). This indeed corresponds to the
conduction through the char material (approx. equal to 0.23 x (946 - 648)/(0.0134 - 0)),
the conduction through the virgin material (approx. equal to 0.36 x (648 - 555)/(0.02 —
0.0134)) and the convective heat losses at the back surface (20 x (555 - 300)). It is a very
appealing model feature that the stopping of the pyrolysis process is automatically
predicted when there is insufficient net incoming heat flux.

Figure 8 shows the results when the front boundary condition is varied, while keeping the
back boundary condition fixed (hps= 10W/m’K). The bottom picture (left) shows the
effect of hys on the front and back surface temperatures (Ts and Tps). Obviously, the effect
of the lower net incoming heat flux (due to relatively higher convective heat losses at the
front surface for higher hs values), is that T; rises less rapidly. Consequently, the onset of
pyrolysis occurs later for higher values of hs. Also, the pyrolysis gases mass flow rate in
general decreases, as the front moves less rapidly (see bottom right picture). This effect
becomes negligible after a relatively long time. The bottom right picture, showing the
position of the pyrolysis front as function of time, confirms that, with hys = 10W/(m’K),
charring is only complete for the lowest hs values. When pyrolysis is incomplete, a

similar energy balance is confirmed as described above for fig. 7.
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4. Experimental test case

We now discuss the cone calorimeter experiments of [18]. The experiments were
conducted on a 2.54cm thick plywood sample. The imposed external heat flux equals
50kW/m®. The sample was placed in an inert nitrogen atmosphere, which prevents the
ignition of the pyrolysis gases in the gas phase, so that there is no additional heat flux.
We use 40 cells and a physical time step equal to 1.0s. The material properties are taken
asin [19]:

p,=462kgt, p,=60kg/n?’, ¢, =4000J/ (kg K),¢,=2000J/ (kg K), k,=0.60W/(mK),
k=045W/(mK), ¢, ~0J/(kgK).

Figure 9 below shows the result of the mass flow rate, compared to the experiments. As

in [19] we use AQ,_ =4.0x10° J /kg,T., =623K,&=1.0 at the front surface and £=0.0

pyr pyr
at the back surface. We discuss the sensitivity of the results on these parameters below.
As mentioned in [16], the back side boundary condition in the experiments was not fully
described in [14]. For simplicity, we first assume perfect insulation. Afterwards, we
illustrate the effect of a non-zero convection coefficient hys.

The model cannot capture the immediate onset of pyrolysis, as it needs to heat up to Tpyr
at the front surface. Yet, the peak around 100s is very well captured. The subsequent
decrease is also very well reproduced as the pyrolysis front moves inside the solid and the
char layer develops. Also the second peak seen around 1200s is well captured.

We now discuss the effect of the model choices Tpyr and AQ . (fig. 10). Obviously the

pyr
higher the pyrolysis temperature, the longer it takes for pyrolysis to begin. Also, the peak
becomes lower, due to slower pyrolysis front motion: more heat is conducted away from

the front to the virgin material in (2), due to steeper temperature gradients (as the
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pyrolysis front temperature is higher). The influence of the heat of pyrolysis is less

important. Obviously, the mass flow rate increases as AQ,, is lower, as less heat is

pyr

required for the pyrolysis process. The onset of pyrolysis is independent of AQ,, as this

only depends on the heating up stage up to Tpyr.

Finally, we discuss the effect of the front surface emissivity and the back surface
convective heat transfer coefficient. As expected, figure 11 (top) reveals that the mass
flow rate is lower for higher ¢, as the net heat flux into the material decreases. Obviously,
this also reduces the front and back surface temperatures (fig. 11, bottom).

6 Conclusions

A simplified enthalpy based pyrolysis model for charring materials, has been applied to a
series of test cases. We first illustrated that numerical reference results, obtained with the
more complex moving mesh method, are well reproduced: the transient behaviour of the
present model is good (no unphysical drops or peaks in the mass flow rates) and the
effect of variable solid thickness and back surface boundary condition is well captured. In
particular, the model performs well for the entire range of thermally thin through
thermally thick materials. Also, possible interruption of the pyrolysis process due to
insufficient incoming net heat fluxes, is automatically predicted.

Finally, plywood cone calorimeter experiments, carried out in inert atmosphere, were
discussed. Good agreement was again illustrated for the pyrolysis gases mass flow rate
evolution in time. The effect of model parameters (pyrolysis temperature and heat of
pyrolysis) and boundary conditions (emissivity and back surface convective heat transfer
coefficient) on the mass flow rate, front and back surface temperatures and pyrolysis

front position, was explained.
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Nomenclature:

c specific heat(J/(kg.K))
E enthalpy density(]/m3)
h convective heat transfer coefficient (W/ (m2 K ))
h,.  enthalpy of pyrolysis gases(J/kg)
k thermalConductivity(W/(m.K))
m’ mass flux (kg/ (mz.s))
AQ,, pyrolysisheat (J/kg)
q heat flux (W/mz)
S surface area (m2 )
t time(s)
T temperature (K)
Volume(m3)
AX cellsize (m)
Subscripts Superscripts
i cellnumber n physicaltime level
i+ facebetweencelliandcelli+1 n+1 physical time level
pyr pyrolysis
c char
Vv virgin
amb  ambient
cond conduction
conv  convection
surf  surface
ext external
bs back surface
r right
I left
f front
eq equilibrium

16



Greek symbols

yo)

&

o

density (kg/m3 )
emissivity

Stefan-Boltzmann constant (W/ (rnzK4 ))
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