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Abstract

The task of automatically estimating the location of web resources is of cen-
tral importance in location-based services on the Web. Much attention has
been focused on Flickr photos and videos, for which it was found that language
modeling approaches are particularly suitable. In particular, state-of-the art
systems for georeferencing Flickr photos tend to cluster the locations on Earth
in a relatively small set of disjoint regions, apply feature selection to identify
location-relevant tags, then use a form of text classification to identify which
area is most likely to contain the true location of the resource, and finally at-
tempt to find an appropriate location within the identified area. In this paper,
we present a systematic discussion of each of the aforementioned components,
based on the lessons we have learned from participating in the 2010 and 2011
editions of MediaEval’s Placing Task. Extensive experimental results allow us
to analyze why certain methods work well on this task and show that a median
error of just over 1 kilometer can be achieved on a standard benchmark test set.

Keywords: Text mining, Metadata, Geographic Information Retrieval,
Classification, Semi-structured Data

1. Introduction

With the rising popularity of smartphones and tablet computers, location
plays an ever increasing role on the web. Many applictions, including search
engines, try to adapt the services they offer to the current location of the user.
This requires that resources (e.g. web pages in the case of search engines) be as-
sociated with a geographic scope. Such geographic information can be obtained
in various ways. One way of learning information about places is to encourage
users to explicitly share information about their whereabouts with their friends
and contacts. This is the case with Foursquare®, on which users can compete
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each other for points they earn for each “check-in” at a certain place, or Twit-
ter? where the user’s current location can be attached to the tweet. Secondly, a
gazetteer can be consulted as a source of geographical information. Gazetteers
(for example GeoNames? or Yahoo! Geoplanet?) are essentially lists or indexes
containing information about a large number of known places, described by dif-
ferent features such as geographical coordinates and semantic types. Creating
and maintaining such a gazetteer is mostly expert driven and a cumbersome
and time-consuming task. Gazetteers clearly provide a valuable source of geo-
information, if one is able to disambiguate between the possibly multiple entities
with the same name. For instance, if one needed details on an entity described as
“Paris”, a gazetteer would normally contain at least two entities: one for Paris,
France and one for Paris, Texas. In absence of any additional information, it
is hard to disambiguate between these two entities, although in this example
using a “default sense” heuristic (based on for instance the population count)
would in most cases return the correct meaning.

In our work, we focus on yet another way of gathering geographical infor-
mation. As the amount of user-contributed textual data on the Web is grow-
ing every day (e.g. by means of status updates on social networks, comments,
reviews, ratings, blog posts, tagged photo and video uploads), and as many of
those contributions also include geographical coordinates, there is a vast amount
of textual information available for automated mining of geographical knowl-
edge. More specifically, in this paper, we show how such automatically obtained
geographic knowledge allows us to estimate geographical coordinates for Flickr
photos and videos, using only the textual information from their Flickr tags.
To this end, we train a classifier from the tags of Flickr photos with known
coordinates (i.e. the location where the photo was taken), which is capable of
selecting the area in which a previously unseen photo or video has most likely
been taken. In a subsequent step, our system tries to find a precise location
within that area, by identifying the photos from the training data that are most
similar to the photo or video we want to localise.

Several approaches to this problem of georeferencing Flickr resources have
already been proposed in the literature [28, 27, 32, 36, 35, 34] . To facilitate the
comparison of different solutions, the Placing Task has been introduced in 2010
as part of the MediaEval® evaluation campaign. This task requires participants
to georeference Flickr videos based on the associated tags, visual features, and
user profile information. Both in 2010 and 2011, our system came out as the
best performing one. The research goal of this paper is to analyze the results of
our system and to perform an in-depth evaluation of the contributions of each
of the different steps in our approach to the overall results.

The remainder of this paper is organized as follows: Section 2 summarizes
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related work. A general overview of our approach to extracting implicit ge-
ographical information from Flickr is presented in Section 3, as well as the
description of the techniques used to employ this textual information in esti-
mating the location of Flickr photos and videos. Next, Section 4 provides an
in-depth analysis of different approaches of each individual component of the
georeferencing process along with experimental results. Finally, Section 5 states
the conclusions and discusses future work.

2. Related work

2.1. Finding locations of resources

The task of deriving geographic coordinates for photos has recently gained
in popularity; see e.g. [26]. [44] published a survey on recent research and appli-
cations on the topic of georeferencing resources. Most existing approaches are
based on clustering, in one way or another, to convert the task into a classifica-
tion problem. For instance, in [6] locations of unseen resources are determined
using mean shift clustering, a non-parametric clustering technique from the
field of image segmentation. The advantage of this clustering method is that
an optimal number of clusters is determined automatically, requiring only an
estimate of the scale of interest. Specifically, to find locations, the difference
is calculated between the density of photos at a given location and a weighted
mean of the densities in the area surrounding that location. To assign locations
to new images, both visual (keypoints) and textual (tags) features were used.
Experiments were carried out on a sample of over 30 million images, using both
Bayesian classifiers and linear support vector machines, with slightly better re-
sults for the latter. Two different resolutions were considered corresponding to
approximately 100 km (finding the correct metropolitan area) and 100 m (find-
ing the correct landmark). It was found that visual features, when combined
with textual features, substantially improve accuracy in the case of landmarks.
A similar conclusion follows from the multimodal approach demonstrated and
evaluated in [11]. In contrast, [24] discusses method using only visual infor-
mation. A novel high-level representation for videos, called bag-of-scenes, is
proposed. In this approach, each component of the representation has a self-
contained semantics that can be directly related to a specific place of interest.
Experiments were conducted in the context of the MediaEval 2011 Placing Task,
using the same dataset that we will use in this paper. In [15], another approach
is presented which is based purely on visual features. For each new photo, the
120 most similar photos with known coordinates are determined. This weighted
set of 120 locations is then interpreted as an estimate of a probability distribu-
tion, whose mode is determined using mean-shift clustering. The resulting value
is used as a prediction of the image’s location. Around 16% of the resources in
the test set can be estimated within 200 km of their actual location.

The idea that when georeferencing images, the spatial distribution of the
classes (areas) could be utilized to improve accuracy has been suggested in
[32]. Their starting point is that typically not only the correct area will receive



a high probability, but also the areas surrounding the correct area. Indeed,
the expected distribution of tags in these areas will typically be quite similar.
Hence, if some area a receives a high score, and all of the areas surrounding
a also receive a relatively high score, we can be more confident in a being
approximately correct than when all the areas surrounding a receive a low score.
Motivated by this intuition, [32] proposes a location-aware form of smoothing
when estimating probabilistic language models.

In addition to georeferencing Flickr photos, several authors have recently
focused on finding the location of other web resources such as Twitter posts or
Wikipedia pages. For instance, in [3], a probabilistic framework based on max-
imum likelihood estimation was used to estimate the location of users based
on the content of their tweets. In particular, a generative probabilistic model
proposed in [2] is used to determine words with a geographic scope within a
tweet, and a form of neighborhood smoothing is employed to refine the estima-
tions. For 51% of the users, a location was obtained that is within a 100 mile
radius of their true location. Next, [40] looked into georeferencing Wikipedia
articles as well as Twitter posts. After laying out a grid over the Earth’s sur-
face (in a way similar to [32]), for each grid cell a generative language model is
estimated. To assign a test item to a grid cell, its Kullback-Leibler divergence
with the language models of each of the cells is calculated. In [7], we have
shown how Wikipedia pages can be georeferenced using language models that
are trained from Flickr, taking the view that the relative sparsity of georefer-
enced Wikipedia pages does not allow for sufficiently accurate language models
to be trained, especially at finer levels of granularity.

Interestingly, some recent language modeling approaches have combined the
idea of topic models with location-dependent language models. For instance,
[9] proposes geographic topic models with the aim of simultaneously capturing
linguistic variation across different regions and different topics.

2.2. Using locations of resources

When available, the coordinates of a photo may be used in various ways. In
[1], for instance, coordinates of tagged photos are used to find representative
textual descriptions of different areas of the world. These descriptions are then
put on a map to assist users in finding images that were taken in a given location
of interest. Their approach is based on spatially clustering a set of geotagged
Flickr images, using k-means, and then relying on (an adaptation of) tf-idf
weighting to find the most prominent tags of a given area. Similarly, [23] looks
at the problem of suggesting useful tags, based on available coordinates. The
relevance of a given tag is measured in terms of the number of users that have
used it to describe photos located within a certain radius of the current photo’s
coordinates. A refinement of this method only looks at tags that occur with
visually similar photos, which is shown to improve the quality of the proposed
tags. Along similar lines, our method could be used to suggest coordinates
when users are tagging their photos and videos, automating the process that



is now carried out manually using Suggestify®, a web application that enables
people to suggest a location for ungeotagged Flickr photos of someone else.
This could contribute to making a larger fraction of the photos and videos
on Flickr associated with an explicit location”. As a related use case, we can
consider the problem of making search engines aware of spatial constraints in
users’ queries. For example, to allow users to specify a geographic scope for
their query, Google introduced an option to search nearby® in February 2010.
Implementing such a method involves a correct interpretation of the spatial
constraint (e.g. based on a gazetteer in combination with location information
obtained from the user’s IP address for disambiguation) and a mechanism to
identify the geographic scope of a website [18]. This latter problem could be
solved using a combination of different methods. Web pages containing explicit
mentions of addresses could be localised using standard techniques for geocoding
(e.g. by comma group resolution [22]). In general, however, the textual content
of the web page needs to be used as evidence. While traditionally gazetteer-
based methods have been used to this end, initial results have shown that our
model for georeferencing based on language models trained from Flickr can
successfully be used to georeference resources such as Wikipedia pages [7].

Some authors have looked at using geographic information to help diver-
sify image retrieval results [19, 25]. Finally, in [16], GeoSR is presented as a
way of measuring the semantic relatedness of Wikipedia articles based on their
geographic context, allowing users to explore information in Wikipedia that is
relevant to a particular location. In [41], one would like to discover points of
interests based on geotagged photos by applying a form of spectral clustering.
The problem with this approach is that there is no unified way for determining
the appropriate parameters for the clustering algorithm. For that purpose, a
self-tuning clustering approach is proposed.

To conclude the discussion of related work, we describe a number of tech-
niques that also treat the problem of extracting knowledge about toponyms
from Flickr, but for the goal of learning geographic knowledge per se, e.g. as
a method of enriching existing gazetteers. In our approach, in addition to to-
ponyms, various other types of tags may provide useful evidence. For example,
the tag “pepsi” has no relevance when compiling or enriching gazetteers, but,
since it will occur more frequently in some countries or states than in others, it
may be helpful to disambiguate the meaning of other terms.

Geotagged photos are useful from a geographic perspective, to better under-
stand how people refer to places, and overcome the limitations and/or costs of
existing mapping techniques [12]. For instance, by analyzing the tags of georef-
erenced photos, [17] found that the city toponym was by far the most essential
reference type for specific locations. Moreover, evidence is provided suggesting
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that the average user has a rather distinct idea of specific places, their loca-
tion and extent. Despite this tagging behaviour, the conclusion was that the
data available in the Flickr database meets the requirements to generate spatial
footprints at a sub-city level. Finding such footprints for non-administrative
regions (i.e. regions without officially defined boundaries) using georeferenced
resources has also been adressed in [31] and [39]. Another problem of interest is
the automated discovery of which names (or tags) correspond to places. Espe-
cially for vernacular place names, which typically do not appear in gazetteers,
collaborative tagging-based systems may be a rich source of information. In
[28], methods based on burst-analysis are proposed for extracting place names
from Flickr. Finally, note that to some extent, ontologies, and in particular
ontologies of places may be derived from Flickr tags [30]. The approach differs
substantially from the one presented in this work, as the authors do not use
geographic coordinates for deriving the ontologies; these are induced from the
Flickr tags vocabulary using a subsumption-based model.

3. Georeferencing framework

3.1. Overview

In this paper we present our approach to georeferencing resources from the
Web purely based on textual meta-data. Given an unseen resource x described
by a certain set of tags 7, we estimate a location based on the information
contained in 7. In particular, we consider the scenario of estimating the location
(i.e. in actual latitude/longitude coordinates) of Flickr photos, based on the
tags associated with them. This approach is purely text based and no visual or
other features are used in the process, although existing approaches described
in literature do leverage these features, as described in Section 2.

A common approach to georeferencing is by resolving toponyms (place names)
in the given text with the help of gazetteers or named entity recognition (NER).
Although this may seem straightforward, it is complicated in practice due to
the ambiguity of toponyms. For full-text documents, named entity taggers can
be used to detect the words in a phrase that represent place names, while their
coordinates can be resolved from a gazetteer. In the case of Flickr tags however,
linguistic context and capitalization is missing, hence heuristics need to be used
to determine whether names such as “turkey” or “nice” refer to places or to the
common words in English.

To avoid explicitly disambiguating tags, we interpret the problem of geo-
referencing as a classification problem, by partitioning the locations on Earth
into a finite number of areas, of which the most likely area for a given resource,
represented as its set of tags 7, is determined. This method avoids seeking
specifically for toponyms and the need of any form of (explicit) disambiguation.
A first drawback, however, is that the result is an area, consisting of multiple
photos and their locations, rather than a single pair of coordinates. Another
drawback is that the partitioning of the training data into a finite set of areas
superimposes a certain factor of scale to the results: when the partitioning re-
sults in a relatively small number of areas, say 500, they are likely to cover a



larger area of the world’s surface. Depending on the textual information avail-
able, such a partitioning can be too coarse for one resource whereas it is too
fine-grained for another resource. Take the following example: consider a photo
with only one tag elbulli, referring to a restaurant in Spain. It is very unlikely
that starting from 500 areas, one would be able to pinpoint the location of the
restaurant within 1 kilometer of its actual location. On the other hand, for a
photo annotated with the tags germany, europe, one would rather think of a
larger area consisting of some of the 500 areas, actually requiring a coarser scale
for this kind of resource. There clearly is no single scale that will perform best
for all photos we would like to georeference. In our approach we present, in
Section 3.8, two different methods for converting the resulting area into a pair
of coordinates, resolving the first issue. The similarity based area refinement we
propose addresses the second issue in particular. It allows using a coarser scale
while still being able to accurately estimate locations by finding similar items
within this coarse clustering.

The general architecture of the georeferencing framework we propose is out-
lined below:

1. Starting from a (preprocessed) geotagged training set, i.e. a dataset that
contains the true location of the resources (where true location is to be
considered as the location provided by the owner of the resource), a clus-
tering algorithm is applied to cluster the locations of the resources into a
finite set of disjoint areas A.

2. Next, by applying feature selection, a vocabulary V consisting of dis-
criminative tags is compiled, i.e. tags that are likely to be indicative of
geographic location.

3. In a subsequent step, we train a language model. Given a unseen resource
x, identified by its set of tags 7 after feature selection, a classifier will rank
the areas A at a given scale and determine the area a that is considered
to be the most likely area to contain the resource zx.

4. To convert this area a into an actual location estimate, we search training
items contained in this area that are most similar based on their tags. The
location of these training items is then used to derive a location estimate.

We now discuss each of these steps in more detail.

3.2. Data preprocessing

The training sets we use consist of meta-data from Flickr photos. For each
photo that is uploaded to its website, Flickr maintains several types of meta-
data, which can be obtained via a publicly available API. In this paper, three
types of meta-data will be relevant: descriptive tags that have been provided by
the photo owners, the user’s location (as provided by the user in her profile as
free text, e.g. “Ghent, Belgium”), and information about where the photos were
taken. The location information includes a geographical coordinate (latitude
and longitude), and information about the accuracy of the location, encoded
as a number between 1 (world-level) and 16 (street-level). Starting from a raw
dataset, a number of preliminary filtering steps are carried out on this data:



1. Photos that do not contain any tags or have invalid coordinates are re-
moved from the collection.

2. In order to retain only those photos that provide meaningful information
w.r.t. within city or sub-city scale location, only photos whose location
accuracy is at least 12 (viz. city level accuracy) are retained.

3. Users on Flickr can upload content in bulk, i.e. uploading multiple photos
with the same information at once. In order to reduce the impact of these
bulk uploads, as pointed out in [32], for photos containing the same upload
date, an identical tag set and the same coordinates, only a single instance
is retained.

The photos that remains after these filtering steps are used for obtaining
clusters of locations, and for estimating language models.

3.3. Clustering the training data

In order to interpret the problem of georeferencing resources as a classifica-
tion problem, we cluster the locations of the training data into sets of disjoint
areas A over which language models can be trained.

Different approaches have been described in literature. In [6], a mean shift
procedure is used to find highly photographed locations based on the density
of photos. The authors found that this procedure was effective in determining
these places at different scales (a metropolitan scale of 100 km and a landmark-
level scale of 100 m). In contrast to most clustering approaches, mean shift does
not require the number of clusters to be predetermined, but rather relies on a
scale parameter to choose the number of clusters implicitly. In [32] a fixed grid
overlay is placed over to the Earth. In this work, the authors considered varying
grid sizes (and thus scales) comparing to location cells of roughly 1, 5, 10, 50
and 100 kilometers long over their sides. In [19], k-means clustering is used to
identify famous locations in collections of geo-tagged photos from Flickr. In our
previous work [36] we also used k-medoids (partitioning around medoids) clus-
tering to obtain areas of interest. An alternative to clustering would be to use
boundaries of administrative divisions such as cities, provinces, and countries.
However, such boundaries are not freely available for every country, and usually
no information about areas at the sub-city scale is available.

In what follows, we provide an overview of a number of techniques for ob-
taining a clustered representation of locations. An experimental comparison of
these techniques will be provided in Section 4.2.

8.8.1. k-medoids clustering

Partitioning Around Medoids (PAM) or k-medoids is a clustering technique
closely related to the well-known k-means algorithm; the algorithm partitions
the data into groups of data points while the objective is to minimize the squared
error, which is the sum of the distances between each individual point in a
cluster and the cluster center (the medoid). The k-medoids algorithm is more
robust to noise and outliers than k-means. Distances are calculated using the
geodesic (great-circle) distance measure. The algorithm is an iterative process.



Figure 1: Sample clustering of a part of the main training set using Partition
Around Medoids, & = 1000.

Also, increasing the number of data points results in a quadratically increasing
computing cost (O(n?)). We therefore apply sampling during the optimization
of each individual cluster. Per cluster, a maximum of 512 data points are
swapped with the medoid point m in every iteration. An example clustering of
our main training set using this algorithm (k = 1000) is shown in Figure 1. As
can be seen, metropolitan areas on both the Northeast and the West coast of
the US are covered by a large number of smaller clusters, in contrast to little
clusters covering large parts of northern South-America. This shows that the
granularity of the clusters is based on the amount of information available in
these regions.

8.8.2. Grid based clustering

A second possibility is to use a grid. Intuitively, the idea is to lay a grid of
square cells over the surface of the Earth. This clustering method is straight-
forward and computationally inexpensive (O(n)). A single run over all data
points is sufficient to assign them to their corresponding cluster based on the
geographical coordinates of the points. When clustering the data, only cells
that actually contain at least one image are considered as a cluster.

Note that, when a cell size of 1 degree in latitude and longitude is considered
for each of the sides of the grid cells, this roughly corresponds to a side of 111
km in latitude and 111 km in longitude near the equator. However, the length
of the longitude side converges to 0 km at the geographic poles, making it
impossible to map equally sized cells when using only one parameter value to
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Figure 2: Sample clustering of a part of the main training set using the grid clus-
tering approach. The side of each cell are 4.375 degrees latitude and longitude,
resulting in 1001 clusters.

simultaneously define the length of both sides of the grid cells.

An example clustering of our main training set using this algorithm is shown
in Figure 2. In this example, grid cells are considered using a cell size of 4.375
degrees of latitude and longitude, as this value resulted in a configuration of
1001 clusters, facilitating a comparison with Figure 1.

8.83.3. Mean shift clustering

A third and final clustering algorithm we discuss is mean shift clustering [5].
As opposed to k-medoids and grid-based clustering, which require specifying
the desired number of clusters beforehand, mean shift clustering requires a pa-
rameter h that is considered the scale of observation. The number of resulting
clusters emerges from the choice of this scale factor. Mean shift clustering is
again an iterative process.

For the approach outlined in this paper, we need clusterings at different levels
of granularity. The reason is that depending on the nature of the training data,
coarser or finer grained clusterings will lead to an optimal performance. Initial
experiments have revealed, however, that changing the scale parameter does not
substantially reduce the overall number of clusters. Figure 3 illustrates this: in
this example, there exist a number of small clusters located close to the West
and East coasts of Northern America. These clusters are outside the influence
range (defined by the scale parameter h) of other clusters. One possible solution
could be to increase the scale parameter, but due to these isolated clusters
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Figure 3: Sample clustering of a part of the main training set using the mean
shift algorithm, h = 150, resulting in 2349 clusters in total.

this parameter needs to be increased substantially, again resulting in a coarse
clustering.

To cope with this effect, we consider a variant of the mean shift algorithm.
Once the mean shift procedure finishes producing a set of clusters A, the fol-
lowing additional steps are taken:

Initialize a set of data points P to the empty set
for each cluster a in the set of clusters .4 do
if |a| < t then
Add all of the data points p of a to P
Remove a from A
end if
end for
for each data point p in P do
Assign p to the closest cluster a in A where closest is defined as the minimum
geodesic distance between p and the medoid of a
end for

In order to avoid introducing additional parameters we keep the value of ¢
fixed at 10 throughout the experiments; we thus only use the scale parameter
h to change the number of clusters. Figure 4 illustrates the clustering obtained
when merging smaller clusters with their closest neighbors.

The difference between Figures 3 and 4 is clear: the small clusters close to
the coasts of the North American contintent are merged with other clusters. In

11
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Figure 4: Sample clustering of a part of the main training set using the mean
shift algorithm with merges, h = 150, ¢t = 10, resulting in 965 clusters in total.

general, most of the isolated clusters are merged: of the 2349 original clusters the
standard mean shift algorithm produced, 1384 clusters with less than 10 photos
were merged with with their nearest neighbours. Of these 1384 clusters, more
than 1100 clusters contained even less than 5 photos. It is important for our
approach that each cluster represents a certain minimal amount of information
if one wants to train reliable language models based on that information.

3.4. Feature selection

In order to train a language model for a specific scale, a set of tags (vo-
cabulary V) is needed, consisting of tags that are likely to be indicative for
the geographic location. A comparative study on feature selection techniques
used in text classification in general can be found in [42]. To the best of our
knowledge, no similar comparison has been carried out in literature focused on
the effect of different feature selection approaches in georeferencing. These six
feature selection methods will be evaluated in Section 4.3.

3.4.1. x*

Let A be the set of areas that is obtained after clustering the data into k&
clusters. Then for each area a in A and each tag t assigned to photos in a, the
x? statistic is given by:

(Ora — Eta)? n (Oa — Eg)? " (07, — E,)? n (O — Bg)?

ta
FEy, Eg E; By

(1)

X2 (a7 t) =

a
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where Oy, is the number of photos in area a where tag t occurs, Oz is the
number of photos outside area a where tag t occurs, Oy, is the number of
photos in area a where tag ¢ does not occur, and Og; is the number of photos
outside area a where tag t does not occur. Furthermore, Fy, is the number of
occurrences of tag t in photos of area a that could be expected if occurrence
of ¢ were independent of the location in area a, i.e. By, = N - P(t) - P(a) with
N the total number of photos, P(t) the probability that a photo contains tag
t and P(a) the probability that a photo is located in area a, the latter two
probabilities being estimated using maximum likelihood:

ZaeA Ota

P(t) =
( ) Zt'ev ZaE.A Ota

(2)

P(a)= 14 3

Similarly, Fyz = N - P(t) - (1 — P(a)), E5, = N - (1 — P(t)) - P(a) and Ey =
N-(1=P(1)- (1~ P(a)).

The most relevant features for a given area can then be selected by choosing
the features with the highest value for the x? statistic. To select a vocabulary V
containing the v most discriminative features, we need to aggregate the rankings
obtained for every area a into a single ranking. This is accomplished by first
selecting the best tag from each of the rankings, then the tags at position 2, etc.

3.4.2. Mazimum x?

Mazimum x? (max x?) is similar to x? except that when constructing the
overall ranking, each tag is ranked according to its highest x? value over all
areas a. In other words, not only the ranking imposed by the x? statistic plays
a role here, but also the actual value. In principle, even the highest ranked tag
for a given area may not be selected if its x? value is too low (e.g. because the
area corresponds to a small cluster where none of the photos bears any tags
that are descriptive of the location).

3.4.3. Log-Likelihood
As an alternative to the x? statistic, we consider Dunning’s log-likelihood
statistic [8]. For each term t and area a € A, the log-likelihood is given by:

G*(a,t) = 2(Ogqlog Oty + Oz log Oz + Oy, log Oy, + Oz log Oz
+N log N (4)
—(Ota + O4@)log(Oyq + Ora) — (Ora + Og,)10g(Oya + Og,)
—(0tz + Og)log(O1g + Og) — (Og, + Ogz)log(Og, + O))

where Oiq, O, O, and O, are defined as in Section 3.4.1 and N is the total
number of photos in the training data. Similarly, the most relevant features for
a given area can then be selected by choosing the features with the highest value
for the G2 statistic. In order to obtain the vocabulary V, the same method as
described in Section 3.4.1 is used.
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8.4.4. Information Gain

Whereas the x? based methods are rooted in statistics, information gain
uses information theory to select informative terms. It measures the change in
entropy when learning about the presence or absence of the tag. The information
gain of the tag t is defined as:

G(t) = —2aeaP(a)logPla)
+P(t) Y oaca Plalt) log Palt)
+P(1) Xoqea Plalt)log P(alt)

with P(a), the probability for area a, is estimated by Equation (3). Similarly,
the probability for P(t) is estimated by dividing the number of occurrences
of the tag by the total number of tag occurrences (Equation (2)). P(a|t) is
estimated as the number of tag occurrences of tag t in area a, divided by the
total number of occurrences of tag t:

Ota
Za’ cA Ota

P(%) and P(a|t) are defined likewise, using the number of occurrences of all tags
but ¢.

Note that information gain immediately produces a single ranking, in con-
trast to the x? statistic, which produces a ranking per area. Hence, we can
simply choose the vocabulary V by selecting the v tags with the highest infor-
mation gain.

Plalt) =

3.4.5. Most frequently used (MFU)

A particularly simple term selection technique that is sometimes used con-
sists of selecting the terms that occur in the largest number of documents. De-
spite the simplicity of the method, it often performs remarkably well in practice

[42].

3.4.6. Geographical spread (geospread)

As a sixth and final feature selection method, we describe a geographic spread
filtering feature selection method presented in [13] and applied in [14]. In this
work, a score is proposed that captures to what extent the occurrences of a
tag are clustered around a small number of locations. The geographical spread
score is calculated as follows:

Place a grid over the world map with each cell having sides of 1 degree latitude
and longitude
for each unique tag ¢ in the training data do
for each 7, j do
For cell ¢; ;, determine |¢; ;|, the number of training items containing the
tag ¢
if |ti’j‘ > 0 then
for each Cyr 4 S {Ci—l,j7 Ci+1,5,Cij—1, Ci7j+1}, the neighbouring cells of
Ci,j, do
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Determine [t ;|
if |ti/ ;2| > 0 and ¢; ; and ¢y jo are not already connected then
Connect cells ¢; ; and ¢
end if
end for
end if
end for
count = number of remaining connected components
score(t) = count/max(|t; ;|), with maz(|t; ;|) over all original cells ¢; ;.
end for

In the algorithm, merging of neighbouring cells is necessary in order to avoid
penalizing geographic terms that cover a wider area.

Given the definition of the geographical spread score, a clear distinction
should come to light between terms that are quite location bound on the one
hand, and very general tags on the other hand. The smaller the resulting score
for a tag t, the more specific its geographic scope and thus the more it is coupled
to a specific location. We will refer to this method as geospread.

3.4.7. Qualitative evaluation of the feature selection methods

Table 1 presents an overview of the 10 highest ranking features according
to each of the term selection algorithms discussed in this section. The features
selected by x?, maz x2 and log-likelihood depend on a specific clustering of the
training data (in this case, k = 2500), while the other methods construct a
ranking over all the training data, independent a specific clustering.

Considering the features selected by x2, we observe that the list only consists
of toponyms: a country, cities and regions are mentioned, as well as a name of
a Russian conference center: igromir. Note that the top ranking tags in this
example are a random sample of the best ranking tags for each of the 2500 areas
used for creating the ranking. However, when analyzing the first 2500 terms (and
beyond) of the entire feature ranking, the behaviour witnessed persists.

The maz x? method returns a seemingly similar ranking, but this time,

the geographical entities are, all but two (bahiabrazil and bolodecasamento),
referring to islands. The top ranking tag, bolodecasamento, is in fact non-
geographical related and represents the Portuguese concept of a “wedding cake”.
This term immediately propagated to the top of the ranking because it occurred
only once in the training data, within a given area containing only a single photo
with this tag. By chance, the regular x? method could have also ranked this
term at the top, instead of at position 2372, if it started processing the areas
with the area specifically containing this tag. This behaviour can be explained
by the use of the x? measure (1) in general, which awards such a very specific
case with a maximum score.
In general, the ranking favors tags that frequently occur in a single cluster (cfr.
the islands) and rarely outside it over discriminative terms for certain areas that
also occur elsewhere: e.g. andorra, ranked in position 347, has 314 occurrences
in a single cluster, whereas canada is ranked in position 67 463 while it occurs
29 141 times, albeit spread out over many clusters.
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Table 1: Overview of the top 10 terms according to different feature selection

methods applied to the training data.

X2 max x> Log-likelihood
1 | gijén bolodecasamento roma
2 lhaviyani seychelles hsinchu
3 montauk vanuatu medellin
4 | wolfsburg elhierro korea
) igromir bahiabrazil nara
6 | saintebaume lanyu valdaosta
7 | hartford galapagos alps
8 bulgaria isleofman nef
9 rochester bermuda snowymountains
1 mendoza madagascar stalbans
Information Gain | Most frequently used | Geospread
1 california geotagged kaohsing
2 | australia 2008 haninge
3 | france 2009 greatermanchester
4 italy california hsinchu
5 japan 2007 antwerpen
6 canada nikon nikone3700
7 | germany beach algarve
8 | scotland nature sinpu
9 spain canon hsinpu
10 | taiwan travel oxfordshire

The list of features obtained by log-likelihood contains words that describe
admimistrative entities such as cities or countries, while the tags alps, valdaosta
and snowymountains describe mountains or valleys. The tag nef refers to the
raw file format for photos taken with Nikon cameras. It is included because
it occured 295 times in the training data, of which 210 occurrences are by the
same user in the same area. Methods to combat such problems would be to
only use tags that have been used by a sufficiently large number of users, or
only consider one occurrence per tag per user, for feature selecting purposes.
In practice, however, such methods tend to worsen results in the Placing Task
setting, as training and test data may contain resources by the same user. In
such a case user-specific tags are often helpful.

Inspecting the table further, we observe that information gain (IG), provides
a list of country names, whereas “most frequently used” (MFU) returns a list
of tags that rarely contain any reference to a place in particular (except for
california). However, while tags like beach or nature are not toponyms, they
might help in disambiguating cases where one needs to decide if a photo was
taken near the sea or in the city.

Finally, the geospread measure presents a list of terms that it considers to
have a very specific spatial scope. All but one tag in the list can indeed be
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easily located on a map. After analyzing the training data, the occurrence of
nikone3700 at position 6 out of more 1.13M in the list (details of the dataset
can be found in Section 4.1) can be explained by the fact that a single user
tagged 443 photos with the model of his camera in the same surroundings (the
greatermanchester area, a tag also occuring in the top 3). As the geospread
measure favors terms with a small geographical footprint, this term popped up
as it can be tied to a very small region.

A quantitative evaluation of the different methods presented here follows in
Section 4.3.

3.5. Language models

Given a previously unseen image x, we now attempt to determine in which
area x was most likely taken. In this paper, we use a (multinomial) Naive Bayes
classifier, which has the advantage of being simple, efficient, and robust. Initial
results in [32] have shown good results for this classifier. Specifically, we assume
that an image x is represented as its set of tags 7. Using Bayes’ rule, we know
that the probability P(a|x) that image x was taken in area a is given by

P(alz) =

Using the assumption that the probability P(z) of observing the tags associated
with image z is fixed among all areas a, we find

P(a|z) < P(a) - P(x|a)

Characteristic of Naive Bayes is the assumption that all features are indepen-
dent. Translated to our context, this means that the presence of a given tag
does not influence the presence or absence of other tags. Writing P(t|a) for the
probability of a tag ¢t being associated to an image in area a, we find

P(alz) x P(a) - H P(t|a) (5)

teT

After moving to log-space to avoid numerical underflow, this leads to identifying
the area a* where x was most likely taken by:

a* = argmax(log P(a) + Z log P(t|a))
acA teT

In this final equation, the prior probability P(a) and the probability P(t|a)
remain to be estimated. In general, the maximum likelihood estimation can
be used to obtain a good estimate of the prior probability but alternative ap-
proaches that include available meta-data are also possible, as we will show in
Section 3.6. When estimating P(t|a), a form of smoothing is needed to avoid
a zero probability when a certain tag ¢ does not occur in area a. We discuss
different forms of smoothing in Section 3.7.
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3.6. FEstimating the prior probability

In this section, we discuss four possible ways of estimating the prior proba-
bility for the language models. An experimental comparison of these methods
will be provided in Section 4.4.1.

3.6.1. Maximum likelihood and uniform prior
A common way of estimating the prior probability for the language models
is using the maximum likelihood estimation:

P =1 0

in which |a| represents the number of training items contained in area a, and N
represents the total number of training items as before.

A second, rather simple, way of estimating the prior probability might be to
assign a uniform probability to all areas in A.

Plo) = (7)

One could also think of incorporating information from recent uploads from
the same user, but this was not considered in this paper.

3.6.2. Using home location information from the user

The owner of a Flickr photo can provide a textual description of his home
location in his profile, which can be retrieved using the public API. Most of the
photo owners on Flickr have actually provided such a description, although it is
not always precise or accurate. For example, in the best cases, the description
looks like “San Francisco, CA, United States” or “Cava de’ Tirreni, Italia”,
pointing unambiguously to a known city whereas in the worst cases, the users
describe their home location as “to infinity and beyond” or “homeless, US”.

When the location information is present, we geocode this information (as
provided by the user) using the Google Geocoding API® to convert the textual
description to coordinates by extracting the location information returned from
the Google API. For the example of “Cava de’ Tirreni, Italia”, this returns

"location" : {
"lat" : 40.70205550,
"Ing" : 14.7065740
},

which indeed corresponds to the center of the town.

Although this example yields an interesting source of location information,
this is however not the case for a large part of the descriptions. It might be
clear that informal descriptions provided by the users present the Geocoding

9mttp://code.google.com/apis/maps/documentation/geocoding/
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API with an unresolvable task. As will be explained in Section 4.1, in the
case of the datasets considered in our experiments, the home location could be
geocoded for 65% to 85% of the photos.

For an unseen resource x, when available, the information about the home
location of the owner, lochome(2), can be used to estimate the prior probability
as follows:

1

Pla) o< (d(ma, lochome(x)) + 0.001

)" (8)

where mg(x) is the medoid of the area a and where d(z,y) is the geodesic
distance between the locations of points x and y. The parameter w allows
to vary the influence of the home location on the prior probability. In the
denominator a fixed value of 0.001 is introduced to avoid division by zero in
the case that locpome(x) and m, coincide. Using the home location of a user
in this way corresponds to an assumption that all things being equal, locations
within a reasonable distance from a user’s home are more likely than locations
at the other side of the world, even though we cannot exclude the latter case
altogether.

3.60.3. Gaussian mizture models

Another way of using the home location when estimating the prior probabil-
ity is to use a Gaussian mixture model (GMM) [29]. A Gaussian mixture model
is a parametric probability density function represented as a weighted sum of
Gaussian densities:

M
P(z|\) = Zwig(xluu i) 9)

M
A= Ui i 24
i=1
where = € R represents some numerical feature, w; = 1,..., M are the mix-
ture weights and g(x|u;, 3;),7 = 1,..., M are the component Gaussian densities.
The mixture weights are required to sum up to 1: Z£1 w; = 1. In our case,
the Gaussian mixture model is used to estimate the prior probability of an area
a, given the distance between a and the home location of the user. The feature
x then corresponds to a distance.
The underlying idea is that there may be several types of relations between
the home location of the user and the location of the photo:

1. With a certain probability wq, the photo is taken nearby the house of the
owner, in which case the prior probability of an area quickly decreases as
the distance from the home location of the user increases.

2. With a probability ws, the photo was taken on a day trip by the user.

3. With a probability w3, the photo was taken on a holiday.
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Using a Gaussian mixture model, we can jointly describe these scenarios,
using the probabilities wq,ws and ws as the mixture weights, and using one
Gaussian to describe each scenario. Of course, neither the mixture weights
nor the parameters of the Gaussians are known a priori. However, they can
be estimated from the training data using the expectation-maximization (EM)
procedure [29].

3.7. Smoothing methods

To avoid a zero probability when an unseen resource x contains a tag that
does not occur with any of the photos from area a in the training data, smoothing
is needed when estimating p(t|a) in (5). Let Oy, be the occurrence count of tag
t in area a. The total tag occurrence count O, of area a is then defined as
follows:

|Oa| = Zota (10)

teV

where V' is the vocabulary that was obtained after feature selection, as explained
in Section 3.4.
One possible smoothing method is Bayesian smoothing with Dirichlet priors,
in which case we have (> 0):
Ozq PtV
P(tla) = O+ p P(t]V) (11)
|Oal + 1
where the probabilistic model of the vocabulary P(¢|V) is defined using maxi-
mum likelihood:
ZaGA Ota

P@|V) = I SO (12)

Another possibility is to use Jelinek-Mercer smoothing, in which case (11) be-
comes (A € [0,1]):

Ota
|Oal

P(tla) = A +(1=X) P(t|V) (13)
with P(¢|V) defined as in (12). For more details on these smoothing methods for
language models, we refer to [43]. The performance of both smoothing methods
will be experimentally assessed in Section 4.4.1.

3.8. Finding a location within the chosen area

The previous steps result in the selection of an area a among those in A where
the photo (or video) = has been taken (recorded). The final step that remains
is converting this area a into an actual location, i.e. resolve the latitude and
longitude coordinates for the resource x. We discuss two ways of accomplishing
this: by determining the medoid of the area a, and by performing similarity
search. Both methods are evaluated in Section 4.2.
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3.8.1. Medoid based location estimation

The most straightforward way of converting an area a into actual coordinates
is to choose the location of the medoid m,, defined as:

me = arg min Z d(z,y) (14)
TEA yEAR

where d(x,y) is the geodesic distance between the locations of photos = and y.
Clearly, the location estimates that are obtained in this way will mainly be
useful when a sufficiently fine-grained clustering is used.

3.8.2. Similarity based location estimation

As an alternative, we explore the idea of using the location of the most similar
resources from the training set that are known to be located in the chosen area
a. Specifically, let yq, ..., y, be the n most similar photos from our training set.
We then propose to estimate the location of x as a weighted center-of-gravity
of the locations of y1, ..., Yn:

loc(z) = %Z sim(x,y;)* - loc(y;) (15)

where the parameter « €]0, 400 determines how strongly the result is influenced
by the most similar photos only. The similarity sim(z,y;) between resources x
and y; was quantified using the Jaccard measure:

_ Jznyl
lz Uyl

Sjacc (.’I}, y)

where we identify a resource with its set of tags without feature selection, to make
full use of all the originally associated tags. In principle, Jaccard similarity may
be combined with other types of similarity, e.g. based on visual features.

In (15), locations are assumed to be represented as Cartesian (z,y, z) coor-
dinates rather than as (lat,lon) pairs. In practice, we thus need to convert the
(lat;,lon;) coordinates of each photo y; to its Cartesian coordinates.

4. Experimental results

In this section, we present a ground-truth based evaluation of each of the
individual components of our georeferencing framework presented before. In
general, after running an experiment using a given configuration, we will obtain
an estimated location for each of the test items. We then analyze the results
using two metrics:

1. Acc@X: number of location estimates within X km of the actual location,
as defined by the ground truth, divided by the total number of items in
the test set. The accuracy is determined for the following values of X: 1
km, 5 km, 10 km, 50 km, 100 km, 1000 km and 10 000 km.

21



2. Median error distance (MER): median over all test items of the dis-
tance between the estimated and the true location.

The first metric was used in the evaluation of the Placing Task initiative,
and provides a detailed view on the performance of a given method. However,
in most cases, we also use the second metric, as it summarizes the performance
of a method as a single value. A median error distance of for example 5 km
(which is equal to an Acc@5 of 50%), would indicate that half of the test set
could be georeferenced with an error distance smaller than 5 kilometers.

The methodology of the experiments is as follows:

1. Using a baseline configuration, we will examine the performance of the
different clustering approaches presented in Section 3.3. At the same time,
we evaluate both area refinement approaches discussed in Section 3.8.

2. Next, using the best outcome of the initial experiment, we investigate
the influence of the different feature selection algorithms, outlined in Sec-
tion 3.4, on the results of the georeferencing use case.

3. Again adopting the feature selection method yielding the best result, we
analyze the impact of applying different forms of smoothing (Section 3.7)
and different ways of calculating the prior probability (Section 3.6).

At the end of this multi-step, greedy, way of experimentation we provide an
overview of these different experiments and their potential improvements. Fi-
nally, in Section 4.6, we discuss the influence of adding more training data.

Before elaborating on the individual experiments, we provide a clear overview
of the datasets used in this paper.

4.1. Datasets

For all experiments in this paper, the collection of test items is the same.
This collection consists of the development and test data provided for the 2011
edition of the Placing Task, which is available with the Task organizers. The
data consists of Flickr videos and their meta-data (which is represented in the
same way as Flickr photos). Bearing in mind that some experiments need the
home location of the owner of the videos, we filtered out those videos for which
this information could not be retrieved. The final test set therefore contained
the data for 13 390 Flickr videos.

With respect to the training data, we have used the dataset that was avail-
able to the Placing Task participants for most of the experiments carried out
in this paper. This dataset constists of 3 185 343 georeferenced Flickr photos
and their meta-data. As mentioned in Section 3.2, we preprocessed this dataset
by removing photos with invalid coordinates, with missing tag information and
items originating from a batch upload. On this dataset, no particular accuracy
filtering was imposed, i.e. the accuracy level of the photos varies from 1 to 16,
where 1 corresponds to accurate at world-level, 12 at city-block level and 16 at
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street-level'®. This resulted in a dataset of 2 096 712 Flickr photos covering
more or less the entire world; it is referred to as the training set throughout
the remainder of this paper, unless specified otherwise (viz. in the case of the
experiments in Section 4.6). Figure 5 presents a geographical mapping of this
dataset.

As some experiments require additional data, we crawled Flickr for data in
April 2011 using the public API. The goal of the crawl was to fetch data about
as many geotagged photos as possible. We were able to retrieve the meta-data
of 105 118 157 photos being, at that time, over 70% of all geotagged photos.
Again, we preprocessed the data obtained by removing the photos containing no
valid coordinates or containing no tags, and we removed the bulk uploads. This
resulted in a collection of 43 711 679 photos. Among these photos, we extracted
those that reported an accuracy level of 16, which corresponds to a street level
accuracy. This final step resulted in a set of 17 169 341 photos. This dataset
was split into 16M and 1 169 341 photos. From the latter set, we randomly
selected 10 000 photos whose owners have no other photos in the training set.
This set of 10K photos is used as the development set, and will be used to
optimize the parameters for the prior and smoothing techniques, independent
of the actual test set. Of the remaining 16M photos, training sets of the first
1M, 2M, ..., 10M photos are extracted to provide the necessary training data
for the experiments in Section 4.6.

Table 2 provides information on the different datasets and the number photos
in each set, as well as information on the mean number of tags associated to the
photos and the standard deviation of the number of tags.

4.2. Clustering and area refinement

The goal of this first experiment is to find out which clustering approach
performs best and what is the optimal number of clusters, by comparing the
results of the different clustering algorithms discussed in Section 3.3. At the
same time, we compare both area refinement methods described in Section 3.8.
The setup of this experiment is as follows:

e We use the training set consisting of 2 096 712 training items and 13 390
test items respectively.

e We cluster the training dataset into a predefined number of clusters k,
varying from 500 to 20000 clusters.

e For the clustering algorithms that do not allow to fix the number of clusters
beforehand (i.e. grid clustering and mean shift clustering), we set their
respective parameters such that we can obtain a number of clusters that
is more or less comparable to the predefined value for the PAM algorithm.

10For details on the Flickr accuracy values, please refer to http://www.flickr.com/
services/api/flickr.photos.search.html
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Figure 5: A plot of the photo data, after preprocessing, in the main training
dataset from the Placing Task.

Table 2: Statistics of the considered datasets. Apart from the number of photos
N in each of the datasets, the mean number of tags u(|7]) associated with each
data item and the standard deviation o(|7]) of this value are reported.

Dataset N w(| T a(|T|) Type
General experiments

Training set 2 096 712 7.801 7.491 photos
Test set 13 390 9.514 8.348 videos

Parameter optimization

Development set 10 000 8.515 8.614 photos
Training experiments

Training set 1M 1 000 000 8.745 8.463 photos
Training set 2M 2 000 000 8.746 8.462 photos
Training set 3M 3 000 000 8.747 8.456 photos
Training set 4M 4 000 000 8.747 8.457 photos
Training set 5M 5 000 000 8.748 8.461 photos
Training set 6M 6 000 000 8.749 8.463 photos
Training set 7TM 7 000 000 8.749 8.465 photos
Training set 8M 8 000 000 8.750 8.464 photos
Training set 9M 9 000 000 8.750 8.465 photos
Training set 10M 10 000 000 8.751 8.466 photos
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Figure 6: Comparing the median error distance for 3 different clustering meth-
ods using a fixed number of features, v = 45 000.
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Figure 7: Comparing the resulting median error distance of 3 different clustering
methods using a fixed amount of memory (16 GB).

e In order to eliminate any side-effects introduced by the choice of the feature
selection method, the most frequently used feature selection method (as
introduced in Section 3.4.5) is used. This method is independent of the
underlying clustering.

e The baseline language model is applied with the maximum likelihood prior
(6) and Bayesian smoothing with Dirichlet priors (11), u = 1750.

Figures 6a and 6b present the results of the experiment for a fixed num-
ber of features, v = 45000, using a log scale on the Y-axis. Two interesting
conclusions can be drawn from this data. First, not surprisingly, using similar-
ity search (Figure 6b) to convert an area to a precise location clearly performs
better than returning the medoid of the areas (Figure 6a), especially when the
number of clusters is small. Second, mean shift clustering is most effective to
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reduce the median error over the test set when the number of areas used is
large (both Figures 6a and 6b). One should note that the results of this ex-
periment are somewhat misleading: when using more clusters, more memory is
required. Thus, when using a smaller number of clusters, we could include more
features. Therefore, in a second experiment, we keep the amount of memory
used fixed and choose the maximum number of features feasible for each cluster-
ing. When looking at Figures 7a and 7b, containing the results when using 16
GB of memory and maximizing the number of features per number of clusters,
we see that similarity search (Figure 7b) again outperforms the medoid based
location conversion (Figure 7a). However, here PAM outperforms both other
clustering algorithms substantially, and this at very low values for the number
of clusters (Figure 7b). The optimal value is k = 3000 (and comparable results
are found at k = {2500, 3000, . ..,4500}) with a median error distance of 10.89
km. Table 3 gives an idea of the total number of features we can include at
different clustering scales.
The conclusion of this experiment is two-fold:

1. In order to convert an area to a precise location, a similarity based con-
version (15) clearly outperforms a medoid based conversion.

2. In configurations that only allow a small number of features to be retained,
mean shift clustering delivers the best performance. As soon as a suffi-
ciently large number of features can be used, PAM outperforms both grid
based and mean shift clustering algorithms, although we were unable to
compare the algorithms in cases where a large number of clusters can be
constructed using all features.

For the remainder of the paper, we will only consider PAM based clusterings
combined with similarity based area refinement. To give an idea of the physical
dimensions of the clusters generated by PAM, we included an overview of the
(average) cluster size in kilometers (size) and standard deviation of the cluster
size (o) for a number of different values of k in Table 4. The average size of a
cluster is defined as the sum of the distances between each datapoint and the
medoid, divided by the number of datapoints.

4.8. Quantitative evaluation of the feature selection methods

In a second series of experiments, we evaluate the feature selection methods
described in Section 3.4. Because of the outcome of the clustering experiment
(Section 4.2), the clusterings are created using the PAM algorithm and similarity
search will be used to convert the selected areas to a precise location, while the
number of features is determined with respect to a fixed amount of memory (i.e.
use as many features as possible for the experiment, given 16 GB of memory.
For details, see Table 3). Also, as Figure 7 showed the optimal results to be
obtained for a lower number of clusters, we will vary the cluster size from 500
to 10000.

Figure 8 depicts the results from this experiment. It is clear that for a large
number of choices for the number of clusters, the geospread method outperforms
all others and also results in the best performance overall, when the number
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Table 3: Number of features |V| that can be retained when using & clusters in
the fixed memory configuration of our framework (16 GB of memory).

k V] k 14
500 1 500 000 5500 275 000
1000 1 500 000 6000 250 000
1500 1 000 000 6500 225 000
2000 750 000 7000 200 000
2500 625 000 7500 200 000
3000 525 000 8000 200 000
3500 450 000 8500 175 000
4000 400 000 9000 175 000
4500 350 000 9500 150 000
5000 300 000 10000 150 000

Table 4: Statistics regarding the physical dimensions of clusters generated by
the PAM algorithm.

k | size (km) | o (km)
500 100.00 92.04
5000 20.76 20.21
10000 12.94 | 12.89
15000 9.47 9.50
20000 7.56 7.68
20 _
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Figure 8: Median error distance over the test collection when estimating loca-
tions using different feature selection methods.
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of clusters is 2500. Somewhat surprisingly, the most frequently used method
behaves similarly to the Information Gain (IG) approach. Both perform sub-
stantially worse than the other methods. Note that all three aforementioned
techniques are independent of the number of clusters k used, in constrast to
x2, max x? and log-likelihood. Also, x? is surpassed in performance by the
max Y2 variant when the number of clusters is sufficiently small. Overall, the
x? based methods yield better results than IG or most frequently used. The
log-likelihood measure mainly differs from y? in the treatment of terms with
only few occurrences, which leads to worse results in this scenario. The overall
results deteriorate for an increasing number of areas k, while the best results,
with the exception of x? and log-likelihood, can be found around k = 2500.
We conclude by noticing that the geospread feature selection technique achieves

a median error distance for the test set of 5.75 km. Applying a good feature
selection technique thus improves the best results from the first experiment
(9.23 km) by over 35%. Henceforth, we will apply geospread feature selection.

4.4. Language models

In the following experiment, we investigate two possible improvements to the
baseline language modeling step. First, we investigate how different smoothing
methods influence the results. In a subsequent experiment, we hope to find out
which of the different implementations of the prior probability P(a) outlined in
Section 3.6 performs best.

4.4.1. Smoothing methods

Before we start, let us outline the configuration used for the smoothing
experiment. When optimizing the parameters, the regular test set of 13 390 test
items is replaced by the development set introduced in Section 4.1, containing 10
000 previously unseen test photos. This avoids taking advantage of information
in the regular test set when determining optimal parameter values.

Figures 9 and 10 present the median error distance of the evaluation over
the development set. When using Jelinek-Mercer smoothing, we can see that
varying parameter A only has a limited impact on the results. We also observe
that for each individual clustering scale k, the optimal parameter value differs.
In these results, these values are 0.6, 0.3 and 0.3 for k equal to 2500, 5000 and
7500 respectively.

The results in Figure 10 reveal that the choice of the parameter p has a
stronger influence on the performance of Dirichlet smoothing. The main con-
clusion that we can draw from these results is that the optimal value for p
decreases when the number of clusters increases. Indeed, when the number of
clusters increases, there are fewer tag occurrences per cluster, so intuitively we
need a smaller value of p for the same amount of smoothing.

Overall, when comparing the results from the Jelinek-Mercer smoothing
method and Bayesian smoothing with Dirichlet priors, we see that the results
are quite similar. In the best cases, just under 7 km of median error is mea-
sured, with a slightly better result for the Bayesian smoothing with Dirichlet
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9: Median error distance over the development set when estimating

locations with 2500, 5000 and 7500 clusters using different \ values for the
Jelinek-Mercer smoothing method.
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10: Median error distance over the development set when estimating

locations with 2500, 5000 and 7500 clusters using different p values for the
Bayesian smoothing method with Dirichlet priors.
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Table 5: Optimal p values for Bayesian smoothing with Dirichlet priors for
different values of clusters k, obtained after evaluation of a separate development
set.

k " k I
500 15000 5500 1000
1000 15000 6000 3000
1500 15000 6500 3000
2000 10000 7000 1500
2500 12500 7500 750
3000 5000 8000 750
3500 12500 8500 1000
4000 3000 9000 1000
4500 3000 9500 1000
5000 1750 10000 500

Table 6: Median error distance over the test collection when estimating locations
with 500, 2500, 5000 and 7500 clusters, using different priors in the language
models.

k H Uniform ‘ ML ‘ Home ‘ ML+Home ‘ GMM4 ‘ ML+GMM4
500 9.21 8.74 | 5.92 5.79 5.73 5.61
2500 || 5.38 5.34 | 3.33 3.34 3.96 3.65
5000 || 6.31 6.28 | 2.92 | 3.12 4.19 3.80
7500 || 7.23 6.75 | 3.10 3.21 4.88 3.63

priors. For A = 0.6, Jelinek-Mercer smoothing produces a median error distance
of 6.77 km, whereas Bayesian smoothing with Dirichlet priors results in 6.74 km
at u© = 5000. These findings confirm experimental results in other areas of in-
formation retrieval [43, 33], and to earlier work on georeferencing Flickr photos
[32].

As our goal is to improve the overall performance of the framework, we will
adopt the Bayesian smoothing method with Dirichlet priors for the remainder
of our experiments, using optimized parameter values p for each individual
clustering level. These optimal parameter values are reported in Table 5.

4.4.2. Prior probability

Next, we determine the most suitable way of estimating the prior probability.
In particular, we are interested in the results of the georeferencing process when
using a maximum likelihood prior (ML), a uniform prior, the prior in (8), a prior
based on Gaussian mixture models (GMM) with 1 to 5 component densities
(GMM1 to GMMS5), a combination of the ML and Home prior (ML+Home)
and a combination of the ML and GMM1-5 priors (ML+GMMXx).

Note that for this experiment, the regular test set (13 390 items) was used.

Table 6 presents the results of several of these configurations. The results of
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Figure 11: Median error distance over the test collection when estimating loca-
tions with 500, 2500, 5000 and 7500 clusters, using different weight values w for
the home prior in the language models.

GMM1 to GMM3 are not presented, as these are all situated between the ML
results and the GMM4 results. The results of GMM4 and GMMS5 are identical
and we therefore omitted GMMS5 from this table. In the case of the Home prior,
we set the parameter w = 0.65, a value that was experimentally found to be
optimal. A discussion on this parameter value will follow shortly hereafter.

The optimal result can be found at k¥ = 5000 when using a Home prior,
resulting a median error distance of 2.92 km. The improvement over the baseline
ML prior is clearly noticeable. When combined with the ML prior, the results
of the Gaussian mixture model based prior are further improved. Interesting
to note is that even though combining ML with the mixture models improves
the overall performance, combining the Home prior with ML does not lead to
a similar result. We can conclude that the Home prior, as defined in (8), is the
best choice for optimizing the performance of our language modeling approach.

We investigated the robustness of the parameter w, controlling the influence
of the distance between the suggested area and the home location of the photo
owner. Figure 11 shows the results, confirming that our default parameter choice
of w = 0.65 (based on initial experiments) turned out to be more or less in the
middle of a range of good results. The figure also confirms that the infuence
of the parameter w is rather limited, except for a small number of areas (e.g.
k = 500).
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Table 7: Summarizing the results of optimal configurations of the framework in
terms of accuracy at certain error distances and median error distance (in km)
over the test collection of 13 390 items.

Configuration Acc@Ql  Acc@l10 Acc@l100 Acc@1000 | MER
clustering 22.15 46.3 59.24 69.02 15.16
+ similarity search 34.59  50.61 60.69 69.81 9.23
+ geospread 35.06  53.91 65.15 72.65 5.75
+ smoothing 4+ home | 38.21 65.58  83.24 92.05 2.92
prior

Table 8: Comparison of the optimal configuration of this paper and the submis-
sions to the 2011 Placing Task, evaluated over the 5347 test videos for 2011.

1 km 10 km 100 km 1000 km 10000 km
Li et al. [21] 0.21% 1.12% 2.711% 12.16% 79.45%
Krippner et al. [20] 9.86% 21.49%  29.79%  43.26% 84.16%
Ferres et al. [10] 14.61%  42.66%  56.65%  68.64% 94.93%
Choi et al. [4] 20.00%  38.20%  52.60% 66.30% 94.20%
Hauff et al. [13] 17.20%  50.76% 70.77% 82.61% 97.21%
Van Laere et al.[37] | 24.20% 51.49% 63.27% 85.62%  97.85%
This work 25.04% 53.53% 75.16% 87.21% 99.01%

4.5. Summarizing improvements and results

Table 7 summarizes the result of optimizing the various components of the
georeferencing framework and presents detailed accuracies for each of the con-
figurations. Each transition to a better configuration is statistically significant!!
with a p-value < 2.2 x 10716, The first substantial improvement is witnessed
when using a similarity based area refinement instead of returning the loca-
tion of the medoid of an area (Section 3.8.2). Although accuracies improve
overall, the difference is most pronounced at smaller error distances. When the
geospread method is used instead of choosing the most frequently occurring tags,
the median error distance is further reduced. Finally, using Dirichlet smoothing
with optimized values of the parameter u and taking the home location of the
photo owner into account if available, yields another significant improvement in
accuracies and median error, which further decreases from 5.75 km to 2.92 km.

The optimal configuration presented here is an improved version of the base-
line system that we used in the Placing Task benchmark that already outper-
formed other systems. The results presented in this paper show further im-
provements over the alternative approaches. Table 8 compares the optimal
configuration of this paper to all the participants of the 2011 Placing Task.

1To evaluate the statistical significance, we used the sign test as the Wilcoxon signed-rank
test is unreliable in this situation due to its sensitivity to outliers.
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Figure 12: Median error distance of the 13 390 test items when estimating their
locations at the 500, 2500, 5000, 7500 and 10 000 scales using an optimally
tuned framework and a varying amount of training data.

4.6. The influence of training data

For this final experiment, we use the optimal configuration of the framework
discovered so far. We start with a training set of 1M photos, and gradually
increase the size of the training set in steps of 1M photos, establishing a trade-
off between the amount of training data used by the system and the results it
achieves with it. The difference in results between each pair of configurations is
statistically significant with a p-value < 2.2 x 10716,

Figure 12 presents the results of this experiment in terms of median error
distance. Similar to the conclusion in Section 4.5, the best result is achieved
at a scale of k = 2500 areas. In this case, making use of the full 10M training
items results in a median error distance of 1.06 km. It is interesting to note that
the coarsest scale k = 500 performs equally well, with a median error of only
1.08 km. More generally, we can notice that adding more training data has a
larger effect when the number of clusters is smaller. Due to the large amount of
training data available, the similarity search within an area performs very well.

It is important to understand why a two-step approach to georeferencing is
necessary. Using only a (global) search for similar images, we will soon run into
trouble. If there is no training photo available that has a tag set that is almost
equal to the one we are looking for, there is no way for the similarity search
to differentiate among the tags (some tags provide strong geographical clues),
treating them all equally important. By starting the similarity search from the
area that was obtained after classification, which implicitely resolves ambiguity
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Table 9: Detailed results in terms of accuracy at certain error distances and
median error distance (in km) for the optimal results when using 10M training
items, using the optimal configuration of the framework.

Acc@l Acc@l0 Acc@l100 Acc@l1000 | MER
1M 36.33 62.23 84.41 92.46 3.52
2M 38.40 63.81 84.71 93.23 3.13
3M 40.13 64.16 84.85 92.74 2.74
4M 41.78 65.29 84.93 92.78 2.48
5M 43.31 66.00 84.81 93.02 2.22
6M 45.18 66.42 85.22 92.86 1.86
™ 45.97 67.48 85.32 93.09 1.59
8M 46.80 67.50 84.73 92.67 1.48
IM 48.71 69.37 85.29 93.07 1.14
10M | 49.63 68.96 85.08 93.22 | 1.06

among terms, this problem will likely be resolved in many cases.

As the amount of training data increases, it becomes more likely that a
training photo will be present that largely resembles the tag set we are looking
for, improving the effectiveness of a (global) similarity search. This effect is
clearly visible in Figure 12 for the configuration using 500 clusters.

Also, as can be concluded from Table 9, a larger amount of training data
enables the framework to improve the location estimations within the sub 10
kilometer range. If a developer is satisfied with an error distance of for example
maximum 100 kilometer for an application, the results are largely independent
of the amount of training data used.

5. Conclusions and future work

Converting the problem of georeferencing Flickr resources based on textual
meta-data into a classification problem is a popular approach in literature. Af-
ter this initial classification step, a similarity search is performed in the area
identified by the classifier. After a thorough experimental evaluation of this
approach, we conclude the following:

e To achieve good results at sub-city scales (i.e. less than 10 kilometer of
error distance), a similarity search component is essential.

e Information about the (home) location of the user is useful evidence for
georeferencing Flickr resources.

e Among the clustering algorithms we have tested, k-medoids clustering
performs best, due to its tendency to produce smaller scale clusters in
areas of the world for which more training data is available.

e Applying a feature selection technique that is able to exploit the geograph-
ical aspect of the underlying data outperforms traditional methods.
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e If we increase the amount of training data, the optimal number of clusters
decreases due to an improved similarity search. Also, using more training
data substanially improves accuracy in locating items within 10 km from
their true location, while the results at an error margin of 100 km or 1000
km remain rather constant.

We see a number of opportunities for future work. Current approaches to
georeferencing train models on the same type of data as the resources for which
a location needs to be found. We believe that the language models trained
from Flickr can be successfully used to estimate locations for other types of
textual resources, without the need for a gazetteer. Initial experiments in [7]
show promising results to this end. Second, as has been demonstrated in the
experiments in Section 4.3, using an appropriate feature selection method is
essential. Although the geographical spread filtering method introduced in [13]
is a good example of a method that takes the spatial distribution of the tags into
account, we believe that there is still scope for improvement in this aspect. Next,
in our current approach, all features are weighted equally in the similarity search
step. It is clear that not all available features associated with a Flickr photo have
an equal importance. Research should be carried out to find similarity measures
that better reflect this than the Jaccard measure. Further, there may be other
sources of information that could provide additional evidence for georeferencing
Flickr resources. For example, intuitively it seems clear that in one way or
another, gazetteers may help to improve the results, although a good way for
disambiguating tags would be needed. Another idea is to use the timestamp of a
photo in combination with some visual features to find out during what moment
of the day a photo was taken (e.g. night, midday, or in between) may help us to
narrow the possible locations down to a number of time zones. Finally, current
georeferencing approaches focus on returning a specific location for each query,
although this is not meaningful in all cases. If the only tag available for a photo
is “France”, it makes more sense to return the boundaries of the country instead
of a pre-defined geographical coordinate in the city centre of Paris. As a partial
solution to this problem, [38] introduces a method to automatically identify
what is the most appropriate level of granularity at which a photo should be
localized.
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