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Abstract 

Textile fabric reinforced composites are increasingly used in structural applications in the 

aerospace, automotive and recreational industry. Since experimental testing is labour 

intensive and time consuming, numerical analysis using Representative Unit Cell (RUC) and 

Finite Element (FE) analyses for obtaining the elastic material constants have proven to be 

suitable. One of the drawbacks of the existing techniques is that one is obliged to have 

identical meshes on opposite faces for applying periodic boundary conditions (PBC), or that 

multiple part finite element meshes are not allowed. The new ORAS software discussed in 

this paper allows non-identical meshes at opposite faces and multiple part meshes. If a search 

is done in the ISI web of knowledge, no papers can be found of the meso-scale finite element 

modelling with periodic boundary conditions of spread tow fabric composites. With the 

existing techniques available on the market it is not possible, and therefore the method 

presented in this paper gives a solution. For the numerical meso-scale FE analysis in 

combination with macro homogenization for obtaining the macro elastic constants, a 

thermoplastic carbon-PPS (PolyPhenylene Sulfide) 5-harness satin weave composite 

(CETEX
®
) was used as an example. The results of the meso-scale FE analysis of the RUC 

using PBC with macro homogenization obtained with the new technique are in good 

agreement with those obtained using conventional techniques and experimental data. 
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1. Introduction 

The mechanical behaviour of textile fabric composites is complex because it is a multi-scale 

problem. The macroscopic behaviour is very dependent on the interactions of the yarns and 

the matrix at meso-scale (scale of the textile unit cell). Similarly, the behaviour of the unit cell 

at meso-scale is dependent on the interactions of fibres and fibres and matrix at the interface 

at micro-scale level.  Over the years numerous approaches were developed in order to predict 

the mechanical behaviour of textile reinforced composites. Depending on the complexity of 

the architecture of the reinforcement, more or less complicated methods were introduced 

starting from simple analytical equivalent laminate models to complex “cells” based models 

representing the 3D geometry of the textile architecture [1,2,3]. Another approach with 

approximate representation of the reinforcing geometry for obtaining the homogenized elastic 

properties of the composite RUC uses the averaged properties of differently oriented yarns in 

the architecture based on the transformation of the stiffness tensor with the reference 

coordinate system, with the inclusion-based model as a generalisation of this approach [1,3,4]. 

In order to capture the complex stress-strain fields throughout the RUC, many researches 

explored the possibility of using the FE calculations. Work from Kabelka (1984) [5], Woo 

and Whitcomb (1992) [6], Sankar and Marrey (1997) [7] presented solutions for 2D analyses 

of plain weave composites using the assumption of plain-strain state, but these models are not 

suitable for correctly modelling textile composites [3].  Yoshino and Ohtsuka (1982) [8], 

Whitcomb (1989) [9], Dasgupta et al. (1994) [10], Naik and Ganesh (1992) [11], Paumelle et 

al. (1991) [12], Blacketter et al. (1993) [13], Glaesgen et al. (1996) [14], MCilhagger and Hill 

et al. (1995) [15], Lomov et al. (2005) [16], Verpoest and Lomov (2005) [17] and Kurashiki 

et al. (2005) [18] developed 3D models in combination with homogenization theories viz. 

kinematic and periodic boundary conditions for the prediction of the macro homogenized 

elastic properties of textile reinforced RUC. One of the big issues when using any of the 3D 

models of the reinforcement is correctly defining and modelling the reinforcement 

architecture since all models use mathematically simplified representations of the cross 

sections of the yarns (circular, elliptical, lenticular or polygonal) [3]. This leads typically to an 
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underestimation of the fibre volume fractions. Another reason is that for existing PBC 

techniques either identical meshes at opposite faces are needed with a single part mesh [1,19], 

either non-identical meshes at opposite faces can be handled but a unique part mesh is needed 

or unique material is needed. This uniqueness of the parts mesh or material is the drawback of 

the methods defined in [20,21]. For example, if one tries to find papers concerning the unit 

cell modelling of spread tow composites in the ISI web of knowledge database, one will see 

that no reference can be found yet. A spread tow typically has a very high width to height 

ratio leading to very small matrix pockets at the cross over points of the spread tow fabric 

composite. The commercial finite element software packages creating meso-scale FE models 

of these spread tow fabric composites unit cell will lead to an assembly of multiple mesh parts 

(yarns and matrix). Such a complex unit cell with different mesh parts, often composed of 

different element types (tetrahedrons and hexahedrons), will consist of non-identical meshes 

at opposite faces of the unit cell, with interactions at the interfaces between the different parts. 

No available technique can handle these difficulties of such a unit cell in a meso-scale FE 

simulation with periodic boundary conditions. Therefore this paper will present a method 

allowing the FE meso-scale calculation using PBC with non-identical meshes at opposite 

faces and allowing multiple parts meshes and multiple materials. The new technique is 

benchmarked with state of the art techniques and experimental results [22] on a 5 harness 

satin weave composite and at the end the potential of the presented method is shown on a 

spread tow fabric composite model. 

The following six main sections will be addressed: i) material properties extraction using a 

micro-CT scan; ii) creation of the geometrical model of the RUC with commercial CAD 

software; iii) mesh generation of the CAD model in a commercial FE software; iv) applying 

local orthotropic material properties respecting the orientation of the yarns and the volume 

fractions (fibre, matrix) using developed software (C# code); v) PBC creation using 

developed software (C# code); vi) macro homogenization of the composite stiffness using the 

FE results. 
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Advantages of this new approach are: i) no restrictions for yarn shapes (cross section/ 

undulation) and matrix (voids); ii) use a micro-CT scan as input for CAD generation; iii) all 

different meshes (tetrahedral, hexahedral) can be handled using FE software; iv) interface 

layers (cohesive elements) can be implemented easily for the modelling of damage in between 

the yarns/matrix, yarns/yarns or in the matrix itself. 

All functionalities have been grouped in the in-house developed ORAS software (Object 

oriented, RVE, Assembly, Software). 

 

2. Unit cell modelling 

2.1. Material Properties 

For this research work, the example material used is a thermoplastic 5-harness satin weave 

composite (CETEX®) with T300JB carbon fibre as reinforcement and PPS (PolyPhenylene 

Sulfide) as matrix. The fabric geometrical parameters needed for the construction of the RUC 

geometry such as yarn spacing, yarn width and thickness of the yarns can be found in Table 1, 

and were extracted from a micro-CT analysis [22] (Figure 1), together with the parameters of 

the constituents (carbon fibre and PPS matrix). The material properties of the constituents of 

the textile composite, the T300JB carbon fibre (E11 = 231 GPa; E22 = 28 GPa; G12 = 24 

GPa; G23 = 10.7 GPa; ν12 = 0.26; ν23 = 0.3)  and the PPS resin (E = 3.8 GPa; G = 1.38 GPa; 

ν = 0.37), are used to calculate the impregnated carbon-PPS unidirectional composite material 

properties (E11 = 162.60 GPa; E22 = 13.70 GPa; G12 = 6.50 GPa; G23 = 5.07 GPa; ν12 = 

0.29; ν23 = 0.35) using the analytical Chamis micro-mechanical homogenization formulas 

[23] (Equations ((2-1)- (2-6)) with an intra-yarn fibre volume fraction Kf = 0.7. 

Longitudinal modulus:                 (2-1) 

Transverse modulus : 
    

  

  √     
  
    

 
      (2-2) 

Shear modulus : 
    

  

  √     
  
    

 
      (2-3) 
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Shear modulus : 
    

  

  √     
  
    

 
 (2-4) 

Poisson’s ratio:                      (2-5) 

Poisson’s ratio:     
    

     
   (2-6) 

where coordinate 1 represents the fibre direction 

2.2. Geometrical model 

Specialized geometric model pre-processors for building models of the internal structure of 

textile reinforcements can be found nowadays, with the most well-known being WiseTex and 

TexGen [17,24]. Numerous geometries of textile architectures (woven, braided, NCF, 

knitted...) can be created using those software products, but in most cases only ideal yarn 

shapes and architectures can be developed without taking into account real deformation and 

positioning of the yarns in a real composite structure. For many research purposes, one is 

interested in the impact of the deviation of the geometry compared to the ideal models [25]. 

The creation of the geometry using commercial CAD software allows having the freedom of 

creating any yarn shape in longitudinal and transverse directions and it allows the integration 

of defects in the matrix e.g. voids. The possibility to import ‘.stl’-files in the CAD software, 

opens possibilities to use a micro-CT analysis to build up the geometrical model of a real 

composite. A ‘.stl’ or standard tessellation language file is an ASCII or binary file in which 

the 3D shape of a geometry is described by a raw unstructured triangulation of the surface. 

The surface of the geometry is discretised in triangles. Two models (‘Model A’ with yarn 

height = 0.155 mm and ‘Model B’ with yarn height = 0.156 mm) of the RUC (Figure 2) are 

made in Catia V5 using the parameters of yarns and matrix as given in section 2.1, staying 

within the limits given in Table 1. The choice of these values was made in order to be able to 

compare the method developed in this paper to the state of the art technique, according to the 

fibre volume fractions after meshing. In Table 3 one can see that the obtained fibre volume 

fractions for the 3 models (WiseTex model, Model A and Model B) are close to each other. 

Additionally the difference between the yarn heights of ‘Model A’ and ‘Model B’ was 
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implemented in order to study the influence of a small increase of the thickness of the yarns 

on the global material behaviour. A yarn volume is obtained by two sequential steps. An 

elliptical shape was chosen as cross section (= sweep profile) after analysing the micro-CT 

scan (Figure 1 (c)), followed by a sweep operation along the heart line (= sweep path) of a 

yarn (Figure 3(b)). The yarn cross sectional shape, the yarn width, the yarn thickness and the 

inter yarn spacing will induce the shape of the heart line. Line segments perpendicular to 

these cross sections (Figure 3(a)) are created with the start point on the cross sections and 

with the end point at distance    
      

 
         , where tMatrix represents the thickness of 

the matrix layer in between the yarns (Figure 3(a)(c)).  At the cross over points, the spline 

point at the centre is defined by the midpoint between point 1 and point 2 of the cross section 

extremes in Figure 3(a). Since WiseTex/MeshTex does not allow changes in cross sections 

along the heart line and variations in the alignments of the yarns (Figure 1), it was chosen to 

keep a similar idealized model in this paper as can be obtained with WiseTex/MeshTex. The 

purpose is to validate the proposed method with an existing and widely used technique. The 

geometrical models created, were imported in a commercially available FE software and 

partitions were made at all boundary faces but top and bottom face (in direction 3) (see 

section 2.5.3.1) 

2.3. Mesh 

The geometrical models created in the previous step are meshed with the pre-processor of a 

commercial FE software (Abaqus™).  The yarns were meshed using an advancing front 

sweep mesh. A 3D 8-node (three translational degrees of freedom per node) linear structural 

solid element is used. The matrix has been meshed with 3D 4-node (three translational 

degrees of freedom per node) linear tetrahedral elements in order to catch the curvatures of 

the model (Figure 4 (a)(b)(c)(d)). Four  mesh models are built ‘A-M1’, ‘ B-M2’, ‘B-M3’ and 

‘B-M4’ out of the geometrical models ‘Model A‘ and ‘Model B’, with the mesh sizes for ‘A-

M1’ and ‘ B-M2’ (Figure 5) similar to the benchmarked model mesh obtained using the 

MeshTex software [16,18,22].  Since mesh convergence could have an impact on the fibre 
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volume fraction, on the FE results and thus on the homogenized elastic properties for the 

macro scale composite, model ‘B-M3’ with the same mesh for the matrix, but with an 

increased number of elements for the yarn’s mesh (Figure 5 and Figure 4(a)(c)(d)) is created 

in order to capture the influence of the mesh size of the yarns. Finally in the mesh model ‘B-

M4’ the same yarn mesh as for model ‘B-M3’ is used with a refined matrix mesh (Figure 5 

and Figure 4(b)(c)). 

2.4. Application of the local orthotropic material properties respecting the 

orientation of the yarns 

Each contour of a yarn is swept along a heart line in order to create a model of the yarns in 

section 2.2 using CAD software. Therefore one will use this heart line to create the different 

local transverse isotropic orientations of the carbon fibre yarns. The heart line is meshed in a 

user chosen FE software and the elements and nodes (wires) are extracted and written to a text 

file using a python script. A procedure written in a multithreaded C# code (Figure 6(a)) 

allows the user to choose the input files (nodes and elements) of the yarns mesh and of the 

heart line mesh. The first direction (along the fibre) corresponds to the direction defined by 

the 2 nodes (A and B) of a mesh element (h) of the heart line (Figure 6(a)). In the centre point 

of each element a plane normal to the first direction is created on which the fibre direction 2 

and 3 are created in order to create an orthogonal axis system. The centroid (C
n
) of each 

element n of the yarn mesh is projected on the centre points (C
h
) of all heart line mesh 

elements. If the distance |    | calculated between both centroids is minimal using equation 

(2-7), the orientation of that element is defined by the directions created at the corresponding 

mesh element of the heart line. 

   {  |    |  |   √                          } (2-7) 

The algorithm for the material orientation definition is applicable on all 3D meshes 

(tetrahedral, hexahedral, linear and quadratic). Resulting sets, orientations and sections are 

written to a text file with the user chosen material. 
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2.5. Boundary conditions 

2.5.1. Periodic boundary conditions 

The basic idea of using periodic boundary conditions is to assume that a part on macro level 

consists of a number of repeated RUC’s in which each basic mechanical element, the RUC, 

determines the global constitutive law of the material on macro level (Figure 2) [1,26,27]. 

This implies that continuity of the displacements at neighbouring faces of the RUC’s must be 

fulfilled and thus any displacement on one side of the RUC must be the same on the opposite 

side plus or minus some constant [1,27,28]. Not taking into account the rigid displacements 

and rotations of the RUC, the displacement field for a periodic structure is related to the strain 

field by the expression: 

   ̅     ̅̿   ̃  ̅  (2-8) 

where   ̿in the first term represents the macroscopic strain tensor and  ̅ the position vector of 

a material point in the RUC. The second term represents a volume periodic term with zero 

average value with  ̃ being the local displacement field in the RUC. A second condition that 

has to be met is the anti-periodicity of the traction distributions at the opposite boundaries of 

the RUC (∂V): 

 ̅   ̿ ̅ (2-9) 

Considering the RUC in Figure 2, when substituting the macroscopic displacement gradients 

of the unit cell [22] into the periodic equations, one obtains the nine periodic conditions 

(Table 2) using the axis system as given in Figure 2. The state of the art requires exactly 

identical meshes on opposite faces of the RUC [1,19]. The current approach offers a new 

solution in order to allow non-identical meshes and multiple part meshes to be used in PBC. 

Section 2.5.2 explains this procedure. 

2.5.2. New ORAS software for the implementation of PBC with non-identical 

meshes at opposite faces in a RUC 

If one considers the architecture of a RUC of a real textile fabric composite unit cell, the yarns 

in the matrix can have complex shapes with variations in thickness and undulations. Or the 
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amount of matrix in between the yarns can be very low with complex pockets in the cross 

over points of the yarns. When importing a CAD model of such a RUC into commercially 

available FE software, the model will consist of multiple parts in an assembly. Even if the 

cross sections of the yarns and thus the matrix at the opposite faces will be identical, the mesh 

generated of this assembly will automatically generate parts meshes with different amounts of 

nodes at the opposite faces due to the complexity of the matrix mesh. Often, for very complex 

models, the matrix will exist of tetrahedral meshes with non-identical amounts of nodes at 

opposite faces. In this section a solution will be given for allowing such meshes in PBC 

definitions making use of the following steps: 

1. Creation of a grid comprising all mesh nodes of the domain ∂V of the RUC 

2. Definition of reference points for each grid section 

3. Constraint definitions at the interfaces 

Steps 1 and 2 were implemented in the C# code ORAS in order to obtain the sections of the 

input files concerning the periodic boundary conditions automatically with minimal user 

inputs. 

2.5.2.1. Creation of a grid of ∂V 

Considering the volume V of a mesh, with two opposite boundary domains ∂Ω1 and ∂Ω2 (the 

respective faces ABCD and A*B*C*D* (Figure 6 (b))), a grid can be made using a user 

defined grid size for the x, respectively the y direction: 

                          
with    

     

   
      

     

   
 

                              

Using a uniform PBC grid size,        , all mesh nodes of ∂V can be distributed into n 

cells. Since the same grid is used for opposite domains ∂Ω1 and ∂Ω2, the corresponding cells 

at opposite faces will contain associated mesh nodes. The nodes of the corresponding cells at 

opposite faces will be given PBC with the technique explained in section 2.5.2.2. 

In order to investigate the influence of the PBC grid size, three different uniform PBC grid 

sizes are used in the FE calculations, with         , given in Figure 5. 
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2.5.2.2. Definition of the reference points 

In current PBC techniques with identical meshes at opposite faces, each node of one face is 

linked to the corresponding node at the opposite face using the PBC constraint as defined in 

section 2.5.1. If the number of nodes in cell k of domain ∂Ω1 (Figure 6(c)) of the new PBC 

technique differs from the number of nodes in the corresponding cell k* of domain ∂Ω2, the 

associated nodes cannot directly be linked to each other using the PBC constraint due to the 

overconstraint of the nodes. In the FE software products it is not allowed to have more than 

one PBC equation definition at one node of the FE mesh. To avoid this problem, cell k 

containing the mesh nodes pi with         will be linked to a reference node p. The spatial 

coordinates of the reference nodes are obtained by the Laplacian average: 

  
∑   

 
   

 
 (2-10) 

If the uniform grid size chosen is very small, with a     smaller than the smallest distance 

between 2 nodes of the same face, one could obtain a grid cell k in domain ∂Ω1 containing 

mesh nodes and an empty associated cell k* of domain ∂Ω2.  From the floating node pn(x1, y1) 

of cell k of ∂Ω1 (node without associated nodes in the associated cell k* of ∂Ω2) (Figure 6 (c)) 

a circular area Γ with a user chosen radius R (with R > 2     is created. The size of R has to 

be large enough compared to the FE mesh element size in order to find nodes inside the 

circular area Γ. For all nodes      , one calculates the following objective function 

(Equation (2-11)) in order to obtain the mesh node       the closest to pn: 

   { ( (     )   (       ))           |   √                 } (2-11) 

The larger R, the more nodes will be implemented in the search algorithm and equation 

(2-11), the higher the computational time for obtaining the closest point py. The node py is 

associated with cell j (Figure 6(c)) and node pn is implemented in the same cell. A new 

reference point using the Laplacian average method (Equation (2-10)) including pn in its 

calculation is obtained. All reference points are linked to the nodes of the corresponding cell 

using a tie constraint and are then linked to the equivalent reference points of the cells of the 

opposite domain using the PBC equation (section 2.5.1). The grid size used will have an 
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influence on the results, since the bigger the grid, the more nodes each cell will contain and 

the higher the leverage on the nodes associated to a reference point (Figure 7(i)). This 

technique can be implemented for the different parts meshes of an assembly, and moreover 

with meshes where nodes are not shared at the interfaces (viz. the interface between matrix 

and yarns) the technique can be applied to each individual part mesh. 

2.5.3. Constraints of the interface surfaces 

Since the new technique allows the configuration with multiple parts in an assembly, 

constraints need to be defined at the interfaces between those parts like: tie constraints, 

contact definitions, cohesive elements… In the case of a meso-scale FE model, a tie constraint 

will mostly be chosen as interaction between yarns and matrix parts. This leads to 

overconstraining the nodes of domain ∂V at the interface between matrix and yarns since a 

node at the interface will be implemented in a tie constraint, a Multiple Point Constraint 

(MPC) constraint and periodic boundary conditions. An error will be generated in the FE 

software (Abaqus™) since the software will not know which of both constraints has priority, 

and therefore the displacement of the overconstrained node cannot be calculated. Two 

methods can be used in order to avoid the overconstraints of the nodes viz. section 2.5.3.1 and 

section 2.5.3.2. 

2.5.3.1. Partitioning the parts 

A partition near the boundary faces is made using a datum plane with a small offset (0.010 

mm) starting from the boundary face creating a layer of very small elements at the boundaries 

(Figure 8 (a)). The nodes of the elements at the interface of the multiple parts (matrix and 

yarns) are linked together with a tie constraint (Figure 8 (a-1)) except for the nodes laying on 

the domain ∂V (Figure 8(a-2)). The nodes on the boundary (domain ∂V) will be linked with 

PBC equations to the nodes at the opposite face of the domain ∂V. This procedure has no 

consequence on the results (see section 3) since the displacements generated by the PBC 

acting on the nodes of domain ∂V are transferred through the elements, with respect of the 
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stiffness of the elements, to the rest of the model where tie constraints are acting between the 

multiple parts. 

2.5.3.2. Erasing the overconstrained nodes in the PBC equations and 

keeping the tie constraints 

For the meshes where partitioning is very complex and time consuming, the ORAS software 

offers the possibility to automatically erase the nodes, of the interface between yarns and 

matrix laying on the boundary domain ∂V,  from the PBC equation definitions (white and red 

dots in Figure 8(b)).  The surrounding nodes of the domain ∂V (Figure 8 (b)), not laying at the 

interface between the parts, are still used in the PBC equations and will drive the 

displacements of the released nodes through the tie constraints. There is no influence on the 

results, as long as the mesh size is very fine at these interfaces of the multiple parts. 

 

Both methods (section 2.5.3.1 and 2.5.3.2) allow the integration of layers, viz. cohesive zone 

models, at the interface of the multiple parts for the analysis of damage in the composite 

structure.  Only the first method (section 2.5.3.1) was used for the meso-scale FE calculations 

of the validations discussed in section 3. 

2.6. Macro-homogenization 

For the design and finite element calculation of composite parts of a structure at macro scale 

level, one needs to use homogenized mechanical properties. If one would build all models at 

meso-scale level, the calculation times needed for obtaining finite element responses for the 

behaviour of the composite components, would exceed the design time and the experimental 

testing time. Therefore at macro scale level, composite materials are considered as 

homogeneous. The relation between homogenized macro strains     
   and macro stresses 

(   
 ) is given by:    

       
    

   where      
  denotes the elasticity tensor at macro scale. 

Following volume averaging technique: 

〈 〉   
 

 
∑   

 

   

   (2-12) 
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describes the volume averaging of the stresses over all integration points of all elements, 

where    is the volume equivalent of the integration point. If the volume of the elements 

would be taken into account during the volume averaging of the stresses, the influence of a 

very big or very badly shaped element would be too big compared to other regular elements. 

In order to reduce the influence of these lower mesh quality elements on the stress results, the 

stresses are averaged by using the integration point volumes. To determine      
  starting from 

the FE model of the RUC using the periodic boundary conditions as described in section 2.5, 

six boundary value models                       have to be solved. Out of the FE 

results of the six meso-scale models one calculates the homogenized stiffness 

     
   

〈   〉

   
       

〈   〉

    
      |     | (2-13) 

After obtaining the compliance matrix      with a LU-decomposition [29], one calculates the 

elastic constants and Poisson ratio’s. 

3. Validation 

In this section the following will be shown: 

i) validation with experimental data 

ii) validation of the new approach for the implementation of PBC with non-identical 

meshes at opposite faces using a WiseTex/ MeshTex model by comparison with 

the existing PBC implementation technique 

iii) validation of the new technique for the construction of a FE model comprising 

multiple parts meshes using PBC constraints by comparison with the model 

obtained with WiseTex/ MeshTex 

iv) comparison of the local strain fields of the WiseTex / MeshTex model and the 

model using the new ORAS software with experimentally measured strain profiles 

v) implementation of periodic boundary conditions on a complex geometry, a spread 

tow reinforced composite, using the new technique 
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3.1. Validation with experimental data 

3.1.1. Test setup and test samples 

In order to obtain the in-plane elastic properties of the satin weave composite specimens 

experimentally, tensile tests were made according to ASTM D3039 standard with 

measurement of the local strain with longitudinally and transversely applied strain gauges 

(Figure 9 (a)) using a servo-hydraulic Instron machine (8801, test speed = 2mm/min) with a 

FastTrack 8800 digital controller and a load cell of ±100kN [30]. The loads, displacements 

and strains, given by the FastTrack controller, as well as the extra signals from strain gauges 

were sampled on the same time basis and registered using National Instruments DAQ. 

3.1.2. Experimental results 

The results for the longitudinal and transverse modulus can be found in Figure 10(a) 

respectively (b) whereas the graph for the in-plane shear modulus and Poisson’s ratio can be 

found in Figure 11(a) and (b). The summary of the obtained results are written in the last 

column of Table 4. It should be noted that catching all the anisotropic mechanical properties 

of a textile composite is a very labour intensive task and almost impossible to determine with 

the conventional experimental setups. 

 

3.2. Validation of the ORAS software for the implementation of PBC by 

comparison with the existing PBC implementation technique 

(WiseTex/MeshTex) on the same mesh. 

In order to validate the proposed PBC implementation, the new approach will first be 

benchmarked with the state of the art implementation. The model used for this validation is a 

5H-satin weave unit cell created with WiseTex with the same RUC sizes as given in section 

2.2, but with an overall yarn thickness of 0.1545mm. The original yarn thickness of the 

WiseTex geometrical model is 0.159 mm and is artificially reduced by MeshTex in order to 

be able to create a mesh for the matrix. Only in the cross over points, the original 0.159 mm 

thickness for the yarns remains (Figure 4(e)) and thus altering the yarn cross section shape 
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(Figure 4(f)). After meshing using MeshTex, the FE model consists of a single mesh part 

containing 53200 elements (37800 elements for the matrix) (Figure 4(e)). After transferring 

the models to a FE software, 8 node brick elements are assigned (C3D8) for the numerical 

simulation.  The assignment of the transversely isotropic material properties to the yarns using 

the Chamis homogenized elastic properties of the carbon-PPS UD and isotropic material 

properties to the resin is made. For both the State of the Art (SotA) PBC implementation and 

the new approach using a coarse uniform PBC grid size G2 of 0.040mm (Figure 5),  both 

applied on the same MeshTex FE mesh, the numerical results are compared and moreover a 

comparison with the experimental results (section 3.1) [22] is accomplished. The overall fibre 

volume fraction of the meshed unit cell calculated with the volume equivalent in all 

integration points (matrix and yarns) is equal to 47.2%. The very small difference in 

homogenized elastic properties between the two approaches (column 1 ‘PBC ORAS’ and 

column 2 ‘PBC SotA’of Table 4) is due to the coarse PBC grid and can be avoided if the PBC 

grid size < smallest element edge in the model. In this case, since the smallest edge is 

approximately 9.10
-5

 mm, the grid would be very dense and the calculation time for the 

implementation of the PBC would be very high for a negligible effective gain regarding the 

results in Table 4. The influence of the PBC grid size can be found in section 3.3. 

3.3. Validation of the new ORAS software for the construction of a FE model 

comprising multiple parts meshes using PBC constraints by comparison with 

the model obtained using WiseTex/ MeshTex. 

The nomenclature of the FE models used in this section with the ID’s can be found in Figure 

5, where ‘A-M1-G2’ stands for the FE mesh model ‘A-M1’ with a PBC grid size of ‘G2’. The 

difference in yarn thickness of ‘model A’ and ‘model B’ described in section 2.2 and the 

MeshTex model can be explained by the fact that the original yarn thickness of the WiseTex 

geometrical model is 0.159 mm and is artificially reduced by MeshTex (0.1545 mm) in order 

to be able to create a mesh for the matrix. In order to be able to validate the new methodology, 

thicknesses of the yarns as given in section 2.2 were taken for ‘model A’ and ‘model B’ 
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which correspond to equivalent fibre volume fractions as the one obtained using 

WiseTex/MeshTex (Table 3). 

The FE results of the models defined in Figure 5, including the material properties for matrix 

and yarns and boundary conditions implemented using the new approach, are compared with 

the results obtained with the models defined in section 3.2 and the experimental results 

(section 3.1). Models ‘A-M1-G2’ and model ‘B-M2-G2’ are compared in order to see the 

impact of a small difference in the yarn thicknesses on the global macro-scale homogenized 

elastic constants. The difference in the results for model ‘B-M2-G2’, model ‘B-M3-G2’ and 

model ‘B-M4-G2’ shows the influence of the mesh size on the results, whereas the difference 

in results due to the PBC grid size can be noticed by comparing models ‘B-M3-G1’, ‘B-M3-

G2’ and ‘B-M3-G3’. 

The overall fibre volume fraction of the meshed unit cell (new approach) in a commercial FE 

pre-processor calculated with the volume equivalent in all integration points can be found in 

Table 3. The slightly higher fibre volume fraction for the new models can be explained by the 

differences in volumes of the yarns and matrix due to not sharing the nodes at the interface 

between the matrix and yarns in the models ‘A-M1’, ‘B-M2’, ‘B-M3’ and ‘B-M4’, whereas 

there are common nodes at the interface for the ‘WiseTex/MeshTex’ model in column 2. Not 

sharing the nodes at the interface creates ‘empty spaces’ or small penetrations depending on 

the density of the meshes at the interface, which explains the difference between the 

analytically calculated total volume for the RUC (7.4 mm x 7.4 mm x 0.319 mm = 17.46844 

mm³) and those obtained with assembly meshed models ‘A-M1’, ‘B-M2’, ‘B-M3’ and ‘B-

M4’. Since the mesh of model ‘B-M3’ is finer concerning the yarns, with the same mesh for 

the matrix, than the one used for model ‘B-M2’, the volume obtained will be higher for the 

yarns. Model ‘B-M4’ with a very fine matrix mesh (1,078,427 elements) and same yarn 

meshes as model ‘B-M3’ approaches almost the analytically calculated volume. An infinitely 

small mesh would accurately correspond to the curve defined in the CAD model, but will lead 

to infinite calculation times. One can notice in Table 4 that the impact will be small for a 

mesh refinement of the FE model ‘B-M2-G2’ to model ‘B-M3-G2’ to model ‘B-M4-G2’, but 
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could have an effect on the local strain contours. By intuition one would think that a coarser 

mesh provides higher stiffness due to the reduced deformation modes. But refinement of the 

mesh leads to an increase in the fibre volume fractions (Figure 12) and thus in stiffer results. 

A good agreement between model ‘B-M4-G2’, the experimental results and the state of the art 

WiseTex /MeshTex model can be found (Table 4). The higher E11 of the WiseTex/MeshTex 

model (+0.3 GPa) in column 3, knowing that the overall yarn thickness is lower (0.1545 mm) 

compared to 0.156mm for the CAD model ‘B’ and thus a lower fibre volume fraction, can be 

explained as follows: 

 As explained in section 3.2, the mesh used in WiseTex/MeshTex has an overall yarn 

thickness of 0.1545 mm but in the cross over points of the yarns, these yarns have a 

thickness of 0.159 mm (Figure 4(e)(f)). The influence due to the decrease of the yarn 

thickness is not negligible as can be noticed by the increase of the stiffness E11 by 0.36 

GPa between model ‘A-M1-G2’ and ‘B-M2-G2’ with an increase of only 0.001 mm. 

 Since the volume of the elements in the cross over points in the WiseTex/MeshTex 

model is higher than the overall thickness of the yarns, the total volume of these 

elements in the volume averaging technique will have an impact on the homogenized 

material property results for the stiffness in the main directions E11 and E22. 

The mesh convergence between model ‘B-M2-G2’ and ‘B-M4-G2’ shows a decrease of the 

E33 of 0.09 GPa due to the lower interpenetration of the mesh elements of the yarns and 

matrix.  By comparing columns 6, 7 and 8 in Table 4, one notices that the homogenized 

macro elastic constants can be overestimated if the chosen PBC grid size is too coarse (‘B-

M3-G3’). This is due to the higher leverage on the nodes in a PBC grid cell, because of the 

higher distance between the reference node on which the PBC constraint is put and the FE 

mesh node (Figure 7(i)). 

Additionally a small study on the influence of the heart line mesh has been implemented on 

model ‘B-M4-G2’ (Figure 5). The mesh size of the heart line of the yarns could have an 

influence on the numerical properties if the directions of the yarns vary a lot, e.g. high crimp 

at the cross over points of the yarns. However this highly depends on the change in direction 
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of the geometry of the yarn.  A study was made implementing two distinct mesh sizes for the 

heart lines, mesh size heart1 = 0.05mm (149 elements) corresponding to the mesh size of the 

yarns, and mesh size heart2 = 1mm (7 elements). Mesh size heart2 will lead to a bigger 

amount of elements in a same section with identical material orientation than with mesh size 

heart1 (Figure 13(b) and Figure 13(a) respectively). Since no high variations can be noticed in 

the yarns geometry (small crimp), the results on the global mechanical properties (Figure 

13(c)) (E11 = 56.335 GPa; E22 = 56.333 GPa; E33 = 10.657 GPa;   G12 = 4.403 GPa; G13 = 

3.216 GPa; G23 = 3.216 GPa; ν12 = 0.074; ν13 = 0.42; ν23 = 0.42) do not change much 

compared to column ‘B-M4-G2’ of Table 4. 

 

3.4. Comparison of the local strain field profiles 

In publications [22,31,32] the importance of the prediction and evaluation of the local strain 

profiles and gradients is underlined, since it could contribute to a reliable prediction of 

damage initiation and strength of the material. The development of a FE unit cell model 

which is able to predict the strain fields as observed experimentally can be a challenging task.  

Especially obtaining corresponding values of the strains obtained numerically and 

experimentally is very difficult. In order to be able to check the order of magnitude of the FE 

results obtained using both methods (ORAS and WisTex/MeshTex), an optical fibre Bragg  

sensor with a resolution of 5με was embedded in the CETEX material with a total measuring 

length of 8mm which overlaps the total length of a RUC (Figure 9 (b)). For a global applied 

average strain of 0.2%, a maximum local measured strain was observed of 0.25% with a 

minimum of 0.16%. These values of the strains are averaged values over a certain length 

(induced by the precision of the Bragg sensor) but the exact value of this length cannot be 

determined. Therefore a sensitivity analysis regarding the path over which the local strains are 

taken in the FE models is added in this section. The complete experimental process and 

results can be found in [22]. An overview of the results over multiple paths in the width of the 

RUC for the model using the new ORAS software, the state of the art approach WiseTex 

/MeshTex and a comparison between both models for a same chosen path of the RUC can be 
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found in Figure 14 respectively Figure 15 and Figure 16. Figure 14 and Figure 16 show that 

the maximal local strain calculated using ORAS (0.36%) is higher than the one obtained with 

the WiseTex/MeshTex model (0.28%).  A reason for this can be: i) the coarser mesh in the 

MeshTex model (37800 elements for the matrix and 15400 elements for the yarns) compared 

to the ORAS matrix mesh (1,078,427 elements for the matrix and 133,266 elements for the 

yarns) and in order to capture the rotations of the solid elements of the yarns correctly, a 

sufficient amount of elements through the thickness of the yarns should be used since the 

solid elements have no rotational degrees of freedom (Figure 4), ii) the difference in thickness 

at the cross over points of the yarns of the WiseTex/MeshTex model (Figure 4(e)(f)). The 

minimal local strain obtained with the ORAS model (0.16%) is also slightly higher than the 

one obtained with the MeshTex model (0.14%) and corresponds to the value obtained 

experimentally (0.16%). If one compares the maximum and minimum local strains of the FE 

models with the experimentally obtained values, one can see that the order of magnitude is 

correct for both methods, but the maximum obtained with the ORAS model is higher. But 

when averaging the value over 1mm around the peak values, the local strain of the ORAS 

model equals 0.25% and the same value is obtained for the MeshTex model and both 

correspond to the value seen by the Bragg sensor. Additionally, since the position of the path 

on which the strains are extracted in the FE models influences highly the minimum and 

maximum local strain values, and the exact position of the Bragg sensor in the RUC could not 

be extracted (undulation of the Bragg sensor, parallelism of the sensor with the yarns in the Y-

direction...), only the order of magnitude can be predicted. In order to be able to validate both 

FE models, the WiseTex/MeshTex model and the ORAS model, with an embedded fibre 

Bragg sensor, this sensor should explicitly be implemented, with a correct position in the 

RUC and similar cross section, in the FE models, with the correct position of the Bragg sensor 

and yarns obtained through a micro-CT scan. This could be achieved with the ORAS software 

and is future work. 
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3.5. Implementation of periodic boundary conditions on a complex geometry, a 

spread tow reinforced composite, using the new technique 

The aim of this section is to show the possibilities of the new PBC implementation technique 

with the construction of a RUC of a spread tow plain weave fabric reinforced composite and 

the FE calculation of the model. A wide spread (15-20 mm) and thin (0.05 – 0.1 mm) yarn, 

also called spread tow, is woven into a plain weave fabric with one of the big advantages that 

the mechanical properties compared to regular tows are increased because of the reduced 

crimp of the tow. A RUC of a carbon fibre spread tow plain weave reinforced composite is 

built in a CAD software and after meshing in a commercial FE software, the PBC were 

applied using the new technique. The big difficulty for the existing meso-scale software 

products is to achieve the fibre volume fractions as obtained experimentally [33]. For example 

an average of 50.5% fibre volume fraction in a spread tow (width = 20mm, height = 0.05mm) 

with an overall composite fibre volume fraction of 50.4% has to be obtained. This requires a 

very small amount of matrix in between the spread tows. Using the new technique described 

in this paper, one obtains an overall composite fibre volume fraction of 50.27% (with 50.5% 

of fibre volume fraction in the spread tows) with very small pockets of the matrix (Figure 

17(a)) and the results of a FE calculation shown in Figure 17(b). 

4. Conclusions 

A method for the construction of meso-scale FE models of textile reinforced composites using 

periodic boundary conditions on multiple part meshes (ORAS) has been developed and 

defined. The technique has been validated by comparison to experimental results and to the 

state of the art validated models (WisTex/MeshTex) for a 5H-satin weave unit cell. This new 

technique opens new paths for the research of complex meso-scale architectures of textile 

composites. 
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Tables captions 
Table 1: Material properties of the 5H-Satin weave carbon fibre-PPS composite obtained 

through a micro-CT scan and from the Tencate Datasheet for the CF/PPS 5H-Satin weave 

composite 

http://texgen.sourceforge.net/index.php/Main_Page
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Table 2: Periodic boundary conditions for the RUC 

Table 3: Fibre volume fractions for the FE RUC models 

Table 4: Validation of the FE calculation of the elastic constants of a 5H-satin Weave carbon-

PPS composite 

Figures captions 

Figure 1: Micro-CT analysis of a 5H-satin weave composite CF/PPS composite 

Figure 2: Geometric model of the 5H-satin weave RUC created with a CAD software. 

Figure 3: CAD model creation of a yarn starting from a cross section and a heart line 

Figure 4: (a) and (b) 3D FE mesh of the matrix for ‘Model A’ and ‘Model B’;  (c) 3D fine FE 

mesh of the yarns with thickness 0.156mm; (d) 3D coarse FE mesh of the yarn with thickness 

0.155mm and 0.156mm; (e) 3D FE mesh in MeshTex of a WiseTex generated model; (f) 

influence of the MeshTex algorithm on the thickness variation of a yarn with the local 

influence on the yarn cross sectional shape 

Figure 5: Schematic tree explaining the nomenclature of the different models used, going 

from the CAD model to the FE mesh model to the calculated FE model + PBC Grid size. 

Figure 6: (a) Presentation of the C# code for the creation of the local material orientation of 

the yarn; (b) Grid creation of a domain; (c) Redistribution of a floating node 

Figure 7: (a)(b)(c) FE results for the calculations using the MeshTex model with PBC 

implementation using the new methodology (a) (b) and using the state of the art 

implementation (c);  (d)(e)(f)(g) FE results for the calculations using the models created using 

a CAD software with PBC implementation using the new methodology and with same PBC 

grid size (G2) with coarse mesh (d)(f) and fine mesh (e)(f);   (h)(i) ) FE results for the 

calculations using the models created using a CAD software with PBC implementation using 

the new methodology with fine mesh and PBC grid size = 0.01mm (h) and PBC grid size = 

0.2mm (i) 

Figure 8: (a) Partitioning of a model with release of the tie constraints; (b) Erasing 

overconstrained nodes in the PBC equations and keeping the tie constraints 

Figure 9: Experimental test samples with (a) strain gauges and (b) an embedded fibre Bragg 

sensor 

Figure 10: Experimental results for the stress - strain curves for (a) the longitudinal strain (εxx) 

and (b) the transverse strain (εyy) 

Figure 11: Experimental results for (a) the in-plane shear strain (τxy) stress - strain curve and 

(b) the Poisson’s ratio (ν12) as function of the longitudinal strain (εxx) 

Figure 12: Influence of the mesh size on the fibre volume fraction 

Figure 13: Influence of the mesh size of the heart lines on the homogenized elastic properties 

of the 5H-satin weave CF/PPS composite 

Figure 14: Analysis of the local strain contours with additional position sensitivity analysis 

for the ORAS model 
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Figure 15: Analysis of the local strain contours with additional position sensitivity analysis 

for the WiseTex/MeshTex model 

Figure 16: Comparative analysis of the local strain contours of the ORAS model and the 

WiseTex/MeshTex model over the same path of the RUC 

Figure 17: (a) CAD model of a spread tow woven fabric reinforced RUC; (b) FE mesh and 

calculation of a spread tow woven fabric reinforced RUC with PBC 
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