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A B S T R A C T

Background and objectives: Text mining and semantic analysis approaches can be applied to

the construction of biomedical domain-specific search engines and provide an attractive

alternative to create personalized and enhanced search experiences. Therefore, this work

introduces the new open-source BIOMedical Search Engine Framework for the fast and light-

weight development of domain-specific search engines.The rationale behind this framework

is to incorporate core features typically available in search engine frameworks with flex-

ible and extensible technologies to retrieve biomedical documents, annotate meaningful

domain concepts, and develop highly customized Web search interfaces.

Methods: The BIOMedical Search Engine Framework integrates taggers for major biomedi-

cal concepts, such as diseases, drugs, genes, proteins, compounds and organisms, and enables

the use of domain-specific controlled vocabulary. Technologies from the Typesafe Reactive

Platform, the AngularJS JavaScript framework and the Bootstrap HTML/CSS framework support

the customization of the domain-oriented search application. Moreover, the RESTful API of

the BIOMedical Search Engine Framework allows the integration of the search engine into

existing systems or a complete web interface personalization.

Results: The construction of the Smart Drug Search is described as proof-of-concept of the

BIOMedical Search Engine Framework. This public search engine catalogs scientific litera-

ture about antimicrobial resistance, microbial virulence and topics alike. The keyword-

based queries of the users are transformed into concepts and search results are presented

and ranked accordingly. The semantic graph view portraits all the concepts found in the

results, and the researcher may look into the relevance of different concepts, the strength

of direct relations, and non-trivial, indirect relations.The number of occurrences of the concept

shows its importance to the query, and the frequency of concept co-occurrence is indica-

tive of biological relations meaningful to that particular scope of research. Conversely, indirect

concept associations, i.e. concepts related by other intermediary concepts, can be useful to

integrate information from different studies and look into non-trivial relations.

Conclusions: The BIOMedical Search Engine Framework supports the development of domain-

specific search engines.The key strengths of the framework are modularity and extensibility
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in terms of software design, the use of open-source consolidated Web technologies, and the

ability to integrate any number of biomedical text mining tools and information resources.

Currently, the Smart Drug Search keeps over 1,186,000 documents, containing more than

11,854,000 annotations for 77,200 different concepts. The Smart Drug Search is publicly

accessible at http://sing.ei.uvigo.es/sds/. The BIOMedical Search Engine Framework is freely

available for non-commercial use at https://github.com/agjacome/biomsef.

© 2016 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

In Life Sciences, the wealth of knowledge in journal publica-
tions is of significant importance for researchers in making
scientific discoveries. However, the acquisition of such infor-
mation is becoming increasingly difficult due to the large
volume and heterogeneity of articles, and the intense rate of
publication in these fields.

The PubMed search engine is quite powerful in that its
keyword-based Boolean query interface is practical and easy
to use, and it lays on the millions of abstracts available in the
Medline database [1]. However, it can be difficult for research-
ers to explore and search such huge volume of data in an
efficient manner. Queries about general topics are likely to
return a large number of potentially relevant documents (hun-
dreds or thousands of documents) that require further manual
revision. Conversely, queries about very specific topics demand
that the researcher knows in advance the most relevant key-
words of the topic (which often vary over time).

It is much more intuitive for users to query about con-
cepts relevant to the domain and with which they are familiar
with. Within this context, domain-specific literature search is
currently of high demand by biomedical researchers [2]. Efforts
are being invested in the development of alternative ways to
query documents from the Medline database and offer topic-
driven search facilities. Alternatives are quite varied in purpose
and nature, but most of them take advantage of text mining
technologies and domain-specific semantics to offer a more
focused and contextualized search experience [3,4].

Today, major biological databases, such as UniProt protein
resources, BioCyc pathway knowledge bases and BRENDA
enzyme information system enable concept-driven searches
of the curated documents (abstracts or full-texts) [5–7]. Fur-
thermore, the annual report of the Nucleic Acids Research
journal about biomedical databases and Web services pres-
ents a wide variety of specialized literature search engines,
created to meet the information needs of particular research
communities [8].

Table 1 presents a summary of recent projects that devel-
oped domain-specific literature search systems. The purpose
is not to provide a complete list of available domain-specific
systems but rather to describe the technical standpoint of these
applications, most notably the support provided by domain-
specific semantics, the use of text mining technologies, and
the visual artifacts used to enable concept-driven knowledge
discovery. Text mining methods and tools are used to incor-
porate semantic functionality such as the automatic suggestion
of synonyms for user-submitted query terms, the assess-
ment of document relevance, the description of document
contents, or the inspection of documents in which concepts

are related in specific ways. Controlled vocabularies and on-
tologies, such as DrugBank [18], UMLS [19], MESH [1], and
SNOMEDCT [20], help define the knowledge domain to be cap-
tured by the search engine and offer the means to convert
keyword-based queries in domain concepts, and navigate within
domain semantics [21].

For example, the Protein Interaction information Extrac-
tion (PIE) system implements a machine learning approach to
provide a PubMed-like search interface that prioritizes docu-
ments mentioning protein–protein interactions [9] while
Alkemio Web tool uses a naïve Bayesian classifier to predict
the relatedness of chemicals to query topics [11]. In turn, the
PolySearch2 supports the discovery of associations between
human diseases, genes, drugs, metabolites and toxins in
MEDLINE abstracts, PubMed Central full-text articles, and text-
rich biological databases [13].

Typically, all search engines present results as a ranked list.
Semantic annotations are visually highlighted and some se-
mantic facets (based on concept types) may exist to narrow
down the list. Graph- or tree-based visualizations are pro-
vided as advanced means of navigation, namely, to find indirect
associations between concepts of interest.

From a technical standpoint, one obvious observation is that
most projects undertake the construction of the domain-
specific search engine from scratch, and that all these new
implementations include modules for document retrieval, text
mining, document indexing and scoring, and query execu-
tion. Typically, document retrieval relies on MEDLINE web
services and text mining relies on open solutions for linguis-
tic processing and biomedical entity recognition. Moreover,
document/concept scoring is often based on well-known al-
gorithms, such as the term frequency inverse document
frequency (TF-IDF) algorithm [22].

Understandably, domain requirements and goals of analy-
sis determine the practical choice of methods and tools used,
but many technologies and tools have the potential of being
applied across domains. In particular, the core infrastructural
components linking main operations and resources in most
biomedical semantic search engines could be generalized with
the help of a web development framework.

There are general purpose and open-source search engine
development frameworks, but they are hardly used in bioin-
formatics applications.These frameworks are typically equipped
to deal with distribution and scalability concerns, i.e. en-
abling the construction of large-scale engines, rather than
delivering generalized semantic functionality, i.e. enabling the
construction of domain-specific engines (Table 2). So, the learn-
ing curve associated with using these frameworks together with
the need to program additional biomedical semantic process-
ing and analysis modules discourages bioinformatics
application.
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Table 1 – Recently published domain-specific literature search systems.

Name Main goal Source documents NLP tools Controlled
vocabulary

Ranking Concept-driven
analysis

PIE (Protein Interaction information
Extraction) the search [9]

http://www.ncbi.nlm.nih.gov/IRET/PIE/

Web-based ranking
system for protein
interaction information

MEDLINE abstracts Dependency parsing,
gene mention tagging,
and term-based
features

Gene corpus PPI confidence scores No

Colil [10]
http://colil.dbcls.jp/fct/

Search service for
citation contexts

PMC-OAS papers Entity recognition (URI
lookup)

BIBO, DoCO, and
DCTERMS

Text match score and
entity-attribute-value
link coefficients

No

Alkemio [11]
http://cbdm.mdc-berlin.de/

~medlineranker/cms/alkemio

Understand or predict
roles of chemicals in
biological pathways and
diseases

MEDLINE abstracts Naïve Bayesian
classifier and ranker

MESH terms Precision and false
discovery rate

No

FACTA+ [12]
http://www.nactem.ac.uk/

software/facta/

Finding and visualizing
indirect associations
between biomedical
concepts

MEDLINE abstracts Dictionary-based entity
recognition

DrugBank UMLS,
UniProt, CAS, HMDB,
and several dbs such as
KEGG and DrugBank

Co-occurrence statistics Indirect concept
association based on
pivot-target strategy

PolySearch2 [13]
http://polysearch.ca

Discovering
associations between
human diseases, genes,
drugs, metabolites and
toxins

MEDLINE abstracts,
PubMed Central full-
text articles, Wikipedia
full-text articles and US
Patent application
abstracts

Dictionary-based entity
recognition

Gene ontology, MESH
terms, ICD-10 medical
codes, biological and
chemical taxonomies

Z score, R score Concept-based filter in
document view

G-Bean [14]
http://bioinformatics.clemson

.edu/G-Bean/index.php

Query documents in
MEDLINE database

MEDLINE abstracts Dictionary-based entity
recognition

UMLS, MeSH,
SNOMEDCT, CSP and
AOD vocabularies

TF-IDF weighting Graph-based
navigation, similar
document finding

SCAIView [15]
http://purl.bioontology.org/

ontology/MSO

Search of genes
associated with
sclerosis and pathways
targeted by approved
disease-modifying drug

MEDLINE abstracts Dictionary-based entity
recognition

Multiple sclerosis
ontology, DrugBank,
MESH

No Hierarchy tree, entity
view

OncoSearch [16]
http://oncosearch.biopathway.org

Search of gene
expression changes in
cancer

MEDLINE abstracts BANNER and Moara
systems, dictionary-
based recognizer, Turku
event extraction system

NCI thesaurus Weighted harmonic
mean of the confidence
scores

Filter by concept type

DigSee [17]
http://gcancer.org/digsee

Disease gene search
engine

MEDLINE abstracts ABNER, Turku event
extraction system

No Text evidence relevance
(machine learning
model)

Graph view
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These observations led us to consider building the new and
open-source BIOMedical Search Engine Framework.This frame-
work aims to provide a solution to bioinformatics applications
in demand of a small to medium size semantic search engine.
To meet this goal, the BIOMedical Search Engine Framework
integrates core features typically available in search engine
frameworks with a set of features useful to perform biomedi-
cal semantic analysis. Its architecture is modular and
component agnostic, and enables the interchange of differ-
ent components to build biomedical domain-specific search
engines at a reduced programming cost. Basic implementa-
tion covers well-established algorithms and state-of-the-art
open-source tools, namely, it incorporates modules for docu-
ment retrieval, text mining, document indexing and scoring,
query execution, and knowledge reasoning. Controlled vo-
cabulary is at the core of knowledge representation and
reasoning, and the graph data structure helps to scale query
and visualization abilities for large literature collections.

The rest of this paper aims to disclose the architecture and
application of the framework and is organized as follows.
Section 2 outlines the architecture of the BIOMedical Search
Engine Framework, and describes how each component con-
tributes to building a customized domain-specific literature
search engine. Section 3 discusses the development of the Smart
Drug Search (SDS) engine as proof-of-concept of the BIOMedical

Search Engine Framework. At the end, we provide some con-
clusions and identify areas of future work.

2. Methods

2.1. High level description

The BIOMedical Search Engine Framework has been de-
signed to support the construction of domain-specific and
highly customized search engines. To meet this purpose, the
framework is built on top of state-of-the-art open technolo-
gies and standards, and the architecture is completely
modularized, to facilitate the extension of features and methods
to meet new needs or integrate other technology.

The architecture of the server application has three layers
(see Fig. 1).The top layer provides a RESTful API to access data,
the middle layer provides all the application logic, and the
bottom layer is responsible for database management. These
modules are programmed in Scala [23] and integrate technolo-
gies from the Typesafe Reactive Platform (http://www.typesafe.
com/products/typesafe-reactive-platform). Most notably, the Play
Framework (https://www.playframework.com/) is used as a con-
tainer framework [24], the Slick database query and access
library facilitates the functional-relational mapping

Table 2 – Some general purpose open-source text search engine frameworks.

Tool Platform Semantic capacities Purpose

Elastic
https://www.elastic.co/

Java, Lucene. Simple text and document fields search.
Results ranking.

Complete framework on top of Apache
Lucene.
Real-time search.

Zend_Search_Lucene
http://framework.zend.com/manual/1.12/

en/zend.search.lucene.overview.html

PHP, Lucene. Simple text and document fields search.
Results ranking.

General purpose text search engine on
top of Apache Lucene.

Carrot2

http://project.carrot2.org/
Java Organization of documents into

categories, using text clustering
algorithms.

Integration of clustering capabilities into
existing search engines.

Fig. 1 – Schematic of the architecture of the BIOMedical Search Engine Framework.
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(http://slick.typesafe.com/), and the Akka toolkit (http://akka.io/)
supports the distribution and parallelization of different parts
of the system [25,26]. On the other hand, the client-side web
interface is developed using the AngularJS JavaScript frame-
work (https://angularjs.org/) and the Bootstrap HTML/CSS
framework (http://getbootstrap.com/).

The modules Provider, Indexer and Searcher encapsulate
the most common components of search engines, i.e. the com-
ponents responsible for document retrieval, document indexing
and user query execution. In turn, domain-specific semantic
analysis is enabled by the Annotator module. This module in-
cludes various text mining methods and tools to be used in
the semantic annotation of the documents, the conversion of
keyword-based queries in domain concepts, and domain-
specific knowledge reasoning over query results.The semantic
concept is regarded as the basic knowledge representation unit
of the BIOMedical Search Engine Framework, and the user in-
terface is designed to take advantage of concepts as best as
possible. Functionality such as query resolution, document rel-
evance assessment, document filtering and traverse, and the
discovery of indirect associations are based on the informa-
tion provided by domain concepts.

2.2. Provider module

The document provider module is responsible for incorporat-
ing new documents into the database. Currently, the framework
implements the PubMed document provider, which is based
on the eUtils tools [1], and automatically transforms the XML
responses into domain entities that can be easily manipu-
lated within the framework. The way to incorporate more
document providers into the system is to implement a new
document retrieval class and its respective controller. In future
versions, such document provider customization will be fa-

cilitated with a Scala trait, which may be refined to any given
provider. Similarly to the annotator and searcher modules, the
administrator will be able to toggle providers through the
system configuration file.

This module operates asynchronously with respect to the
rest of the system, i.e. the search engine can still operate flu-
ently while documents are being inserted in the database.

2.3. Annotation module

This module integrates text mining technologies, specifically
machine learning tools and dictionary-based recognizers based
on controlled vocabulary. On implementing a given domain
search engine, the system administrator can enable and disable
the implemented annotators in the server configuration file,
and this module will be responsible for articulating the an-
notation of the documents accordingly.

Technically speaking, the Annotator module incorporates
text mining methods and tools through an adapter interface
(a Scala trait). Each annotator is an Akka actor which is able
to recognize named entities in the documents and store this
semantic information in the database.

The operation of the various annotators is completely asyn-
chronous. All the annotators start to work at the same time,
and will respond to the supervisor once they finish. Once all
the annotators have finished, and stored all annotations and
concepts in the database, the document is marked as already
annotated. If any annotator returns an error state to its su-
pervisor, all the document annotations and concepts are
deleted, and its status remains as “not annotated” until the
system administrator issues a new annotation request.

Fig. 2 illustrates the implementation of an annotator, the
ExampleDrugAnnotator, which recognizes and normalizes
mentions to drug-related entities in a text. For any given

Fig. 2 – Code snippet of the ExternalDrugsAnnotator, an annotator trait for recognizing and normalizing mentions to drug-
related entities in a text.
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annotator, the developer should implement the method “an-
notate”, i.e. define which concepts are to be annotated and
the extent of information to be stored in the database. This
annotator may call any available tagger. Here, it calls the
ExternalDrugsAnnotator, which has its own method to
recognize and normalize mentions to drug-related
concepts, and obtains the annotations using the
ExternalDrugsAnnotator.getAnnotationsIn method.

2.4. Indexer module

The indexer module is the core component of the search engine,
as it enables the construction of the search index. Docu-
ments have associated domain-specific semantic annotations,
i.e. domain concepts that have been detected in the text.These
annotations are used to index the documents in a meaning-
ful way to the domain.The relevance of individual documents
with respect to each concept is calculated using the TF-IDF al-
gorithm [22].

The indexer module is executed in a scheduled fashion, auto
spawning its process after a given time interval has passed since
last execution.The reason for generating the index in a sched-
uled fashion, instead of after each annotation is finished, is
efficiency-related. Creating the search index is very resource-
consuming and launching the indexer process after producing
each individual annotation would deteriorate significantly the
performance of the search engine.This scheduling may be con-
figured in the engine configuration file.

2.5. Searcher module

The searcher module uses NER tools to normalize queries to
a common concept-oriented representation (disambiguate terms
or find the stored synonyms in the database).A SearcherAdapter
trait is provided to perform any text processing operations nec-
essary to map the terms specified by the user to domain
concepts and look for synonyms. Although these searchers are
not essential to the correct operation of the search engine, their
use is recommended as an additional means of enhancing user
search experience. Like with annotators, searchers can be
enabled or disabled in the server configuration file. An example
of a searcher implementation with a NER tool is shown in Fig. 3.

Search queries are received by the system and further pro-
cessed to find which keywords and concepts relate to them.
Documents are scored based on those keywords and con-
cepts, and the top scores are returned to the user. If no matching
concepts are found, the system may be configured to run a
simple text search with partial matching of keywords over
annotations.

Finally, the retrieved documents are ranked by additively
aggregating the precomputed TF-IDF scores for the anno-
tated concepts.

2.6. User interface

As illustrated in Fig. 4, the AngularJS JavaScript Model-View-
View-Model (MVVM) framework, together with Bootstrap and
its complete suite of CSS components, supports the rapid de-
velopment of highly customizable web applications. Most
notably, this framework enables the communication with the
server-side RESTful API and the creation of a visually appeal-
ing interface.

The BIOMedical Search Engine Framework supports two
search interfaces—basic and advanced—that provide access to
the underlying TF-IDF index. The basic interface is similar to
most search engines where users enter a simple keyword-
based query and the relevant documents are returned. The
advanced search provides search fields for each searchable field
in the index. Along with the query interface, the framework
provides an administrative interface from which the admin-
istrator can launch new jobs and track the progress of previously
started jobs.

Overall, the interface is implemented with full responsive-
ness. Users may access the search engine using any Internet-
capable device, and the interface will resize and accommodate
its visual representation to the available screen size. More-
over, since the interface is not coupled with the server
application, it can be replaced by a completely new one as long
as it uses the existing RESTful API. In fact, the interface may
not be even web-based, as HTTP requests can be sent from
within a desktop application to any existing server.This allows
system administrators to create, refine or re-structure user in-
terface without affecting the search indices or the document
collection.

Fig. 3 – Example of a SearcherAdapter trait implementation. An ExternalDiseasesTagger service, capable of recognizing and
normalizing disease-related entities in a text.
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2.7. Web services

The RESTful service of the BIOMedical Search Engine Frame-
work is designed for programmatic access over the network.
For example, search queries can be performed from another
program and results displayed within it. Using common pro-
gramming languages, any programmer can connect to the
service using the different resource-oriented HTTP methods
and URLs defined in the route configuration, which follow the
common REST architecture practices. Queries and responses
will be just plain JSON content, and can be parsed by the
program to display whatever information is most relevant in
each case.

2.8. Software verification

The BIOMedical Search Engine Framework was verified with
automated tests covering a great percentage of the main
codebase. Unit tests, mostly programmed as property-based
tests, verify that the units of code work as intended for any
given input and integration tests guarantee that the different
components and modules of the framework can function to-
gether correctly, and the main workflow is correct. The tools
of choice for programming these tests have been the ScalaTest
suite, as the main unit- and integration-testing framework, and
the ScalaCheck as the property-based testing provider and test
case generator.

All these tests are accessible through the main code re-
pository of the software, and any skilled developer can execute
them locally with the Simple Build Tool (SBT) runner and its
“test” command. Refer to the Mode of availability section to
know how to access the code repository of the BIOMedical
Search Engine Framework.

3. Results

The BIOMedical Search Engine Framework supported the imple-
mentation of the Smart Drug Search (SDS), a publicly accessible
drug-related literature search application supporting re-
search on microbial virulence, antimicrobial resistance and
novel antimicrobial products (Fig. 5).

Currently, SDS indexes more than 1,186,000 article ab-
stracts and 772,000 concepts, containing an average of 9
annotations per document (see Table 3).

3.1. Index construction

In the private area of the SDS, the administrator manages, and
monitors, the processes of document retrieval and annota-
tion (Fig. 6). PubMed is the primary source of literature of SDS
and MEDLINE eUtils services are used to retrieve documents
[27]. Documents may be retrieved using keyword-based Boolean
expressions or by indicating a list of PubMed identifiers.

The administrator can also execute document annota-
tion, triggering as many annotator tools as specified in the
configuration file. The documents pending (or failing) anno-
tation are easily identified and can be re-issued.

Once the documents are stored in the database, the anno-
tation module is started. Currently, SDS addresses the
annotation of drugs and related substances, organisms, dis-
eases, genes and proteins.To perform that annotation, SDS uses
the following NER tool: ABNER, that provides information on
gene and protein mentions [28]; OSCAR4, that identifies chemi-
cal entities and is able to normalize textual mentions to the
IUPAC International Chemical Identifier (InChI) notation [29];
and Linnaeus, which is responsible for finding species

Fig. 4 – Architecture of the web application.
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mentions and normalize them to the scientific or formal name,
as specified in NCBI Taxonomy [30]. It also includes a dictionary-
based disease annotator based on the Disease Ontology [31]
and a dictionary-based drug annotator based on DrugBank con-
trolled vocabulary [18].

The population of the search index is a scheduled opera-
tion that will run in configurable intervals. At that point, the
indexer will retrieve all the annotated concepts and create a
TF-IDF ranked index. Index update does not condition the op-
eration of the search engine. That is, any queries issued while

Fig. 5 – The Smart Drug Search workflow developed with the BIOMedical Search Engine Framework. PubMed is the
document provider. OSCAR4, Linnaeus and ABNER tools and the dictionary-based disease and drug taggers carry out
document annotation and search query mapping.
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the index is being updated are resolved on the old index. Once
the update finishes, queries will be automatically directed
to the updated index.

3.2. Query execution

SDS query interface presents a simple and an advanced mode.
Keyword-based Boolean expressions are the most common way
of describing the query (Fig. 7-1). Users may also use concept-
based facets to narrow down the query. For example, the user
may be interested in documents that contain compound, gene
and drug annotations (Fig. 7-3). Likewise, documents may be
filtered by conventional searchable fields, such as publication
date (Fig. 7-4).

The retrieved documents are presented as a list (Fig. 7-2).
Each document is described in terms of the annotated con-
cepts and the resulting semantic score. Results list may be
further filtered by concept classes. For example, we may wish
to see only documents that mention DNA entities (Fig. 7-5).
Finally, the user may click on the document and read the se-
mantically annotated abstract or access the PubMed record for
additional information (Fig. 7-6).

Behind the scene, once the SDS receives a query, the engine
requests all the configured searchers in the searcher module
to extract the relevant concepts and retrieve their database rep-
resentation. SDS implements searchers for OSCAR4, Linnaeus
and our dictionary-based disease and drug annotators. The
ABNER tagger is not included as a searcher because it does not
support term normalization. As alternative, the engine uses a
common searcher that looks for the keywords directly in the
index. This operation is done concurrently, i.e. all configured
searchers work at the same time, and once all operations are
completed the results are aggregated (removing duplicate
terms).

The retrieved documents are ranked based on the aggre-
gated TF-IDF score of the included concepts. This operation is
done asynchronously with respect to the rest of the system,
allowing multiple queries to be processed at the same time and
without affecting the performance of any other operation on
the system.

3.3. Knowledge reasoning

The most immediate result of a user search will be a list of
documents, sorted by semantic relevance. However, given the
potentially large number of results that a query may return,
SDS relies on a semantic graph structure to provide im-
proved means of navigation and analysis (Fig. 8).

At first, the graph view renders the concepts in the re-
trieved documents, linked by direct co-reference in text. Color
denotes concept class type, and the size of nodes and the width
of edges indicate the frequency of occurrence (Fig. 8-1). By tog-
gling the concept class facets, the user may look into sub-
graphs (Fig. 8-2). Likewise, by clicking in the edge connecting two
nodes, the user gets the documents supporting the reference
or association (Fig. 8-3). Finally, the user may investigate the direct
associations of a given node (Fig. 8-4), i.e. its neighbors, and the
indirect associations between any given concepts (shortest path),
i.e. look for concepts that do not have a direct link but are related
by intermediary nodes (Fig. 8-5). Notably, the tool calculates the

Table 3 – General statistics about the documents
indexed by the SDS system.

Number of documents 1,186,270
Number of concepts 772,356

Compounds: 31,755
Drugs: 2,165
Genes, DNA and RNA: 141,873
Proteins: 448,661
Species: 18,086
Diseases: 3,333

Number of annotations 11,854,377
Minimum number of annotations

per document
1

Maximum number of annotations
per document

90

Average number of annotations
per document

9.993

Fig. 6 – SDS administrative perspective. Documents can be retrieved from PubMed or specified by the administrator. The
administrator can easily manage document annotation and monitor the status of the documents.
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shortest path between the selected nodes, assuming that an as-
sociation with fewer intermediary nodes is stronger.

3.4. Application verification

The different modules that compose the BIOMedical Search
Engine Framework were tested for their respective execution

times within the scope of the SDS application.These tests were
performed with SDS running on a personal computer with a
four-core Intel Core i7 processor, 8 GB of RAM, a Linux distri-
bution executing the kernel’s version 4.3.3 and the OpenJDK
distribution of the Java Runtime Environment on version 8.u60.

The execution of the PubMed provider module was tested
by keeping track of the download times of the documents

Fig. 7 – SDS search interface and simple results presentation. Users can issue keyword-based Boolean queries (here
“antimicrobial peptide” is used as example) and/or use concept-based (e.g. only containing compounds, proteins and
drugs) and document-based filters (e.g. publication date). Keywords are mapped to concepts and documents are ranked by
semantic score. The list of retrieved documents can be narrowed by concepts of interest.
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currently stored in the database. The average execution time
is 24 ms per document considering a variation in time between
6 ms per document (the minimum execution time observed)
and 40 ms per document (the maximum execution time ob-
served). As illustrated in Fig. 9, the execution time throughout
the database population process, i.e. the download and storage
of the 1,182,670 documents in the current SDS database, was
mostly constant, with little deviations from the average time.

The population of the SDS database was performed by re-
questing page sizes of 200 abstracts from PubMed. While the

average time to download a single document does not vary
greatly with respect to page size, the aggregated time can be
significantly affected. Although choosing the right page size
depends mostly on network capacity, a very small page size
(e.g. 1 document or a couple of documents) or a very large page
size (e.g. 1000 documents) becomes ultimately slower than page
sizes on the order of a few hundreds (e.g. 200 or 300 docu-
ments per page).

Next, we verified the annotation process in SDS. The an-
notation of the more than one million documents in the

Fig. 8 – Exploring results in SDS. The graph representation enables a visually appealing presentation of the concepts in
results. Concept-driven filters may be used to get specialized views as well as help find indirect associations.
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database led to an average annotation time of 374 ms per docu-
ment. As illustrated in Fig. 10, the annotation time was quite
variable, and while most of the documents took less than 50 ms
to be annotated, a non-neglected fraction of the documents
took from 100 ms to 350 ms to be annotated. This variability
in the annotation time was expected, because this process
depends mostly on the contents of the document being an-
notated and very little on the state of the actual system.

It is also noteworthy that the annotation execution time dis-
cussed here does not include the insertion of the annotations

in the database, only the automatic recognition of the bio-
medical entities. The insertion of records in the database can
impose some additional delays depending on how the data-
base is configured to handle the insertion and retrieval of
annotations in bulk.

Arguably, the indexer module is the most time-consuming
of all the modules in the BIOMedical Search Engine Frame-
work. Considering the current volume of documents and
annotations managed by SDS, the indexation process took a
total time of 8 hours. Under this scenario, it is highly

Fig. 9 – Execution of the PubMed provider module in the SDS application. Statistics are calculated for every hundred
thousand documents downloaded and inserted in the database.

Fig. 10 – Execution of the annotation module in the SDS application. The execution time was calculated per document for
the overall amount of documents currently in the database.
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recommended that medium to large-scale applications, such
as SDS, will be executed on a machine with high computing
power. Conversely, if the data volume to be handled is rela-
tively small, the application could be easily executed on a
personal computer. For example, in an earlier version of SDS,
the indexation of 30,000 documents and 360,000 annotations
took only 40 minutes.

Finally, we tested the searcher module in order to deter-
mine the average response time to a search query. For this
purpose, we executed 20 search queries with varying com-
plexity (with respect to the total of articles retrieved, ranging
from very few results to almost half the database) over various
search indexes: 250,000 indexed documents, 500,000 indexed
documents, 750,000 indexed documents and the complete SDS
database of more than 1 million documents (Table 4).The docu-
ments included in each search index were selected randomly
from the current SDS database.

As illustrated in Fig. 11, those queries that return a greater
number of results (i.e. are more generic) tend to take longer
to execute than those with less matching documents (i.e. are
more specific). At the same time, one can observe that the
volume of the search index is a key factor in the execution time,
i.e. most of the execution time is spent on the retrieval of
records from the database, and the translation of search terms
into domain concepts is negligible.

In our worst scenario, i.e. a query that returns almost 500,000
records from the complete SDS index (Q9), the execution time
is of 13 seconds approximately. We consider this time accept-
able, in particular considering that a query that returns so many
results is necessarily very generic, and it is unlikely that SDS
users will issue such broad scope queries. Moreover, it is im-
portant to note that the query execution tests have been
performed without memorization of query results, which will
improve the execution time for subsequent equivalent queries
in a real-world scenario. For example, if the user issues the
query “human” and then searches for “homo sapiens”, the
second query will complete almost instantaneously, because
the results for the former query will be already cached in
memory.

The performance of the searcher module is the most no-
ticeable to the end users of SDS. Therefore, the next releases
of the BIOMedical Search Engine Framework and the SDS ap-
plication will address the optimization of this module and, in
particular, the mitigation of the time spent on the retrieval of
records from the database.

4. Conclusions

This paper introduces the BIOMedical Search Engine Frame-
work, which supports the construction of domain-specific
literature search engines for biomedical applications. This
framework integrates consolidated search engine technolo-
gies and state-of-the-art text mining methods and tools. Its
primary aim is to take advantage of semantic analysis to
enhance domain-specific search experience while minimiz-
ing the programming costs of elementary document retrieval
and processing. Its modular architecture enables the
customization and interchange of components to meet the
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requirements of a particular domain of application. It also pro-
vides a RESTful API that enables the integration of the engine
in existing systems and the complete personalization of the
web interface.

The Smart Drug Search system was built on top of this
framework and aims to assist researchers in the study of al-
ternative and novel antimicrobial products. This engine uses
NER tools to automatically recognize textual mentions to drugs/
compounds, diseases, species, proteins and genes in the articles,
and construct an efficient search index with those domain-
specific concepts.

Administrator and user experience with SDS provided valu-
able insight on how to keep developing the framework. Future
versions of the framework will provide an easier mechanism
to include different document sources (e.g. patents or full-
text collections) in the same way that different annotators and
searchers can be already included. At the same time, the web-
based interface is being enhanced to deliver a richer and more
visually appealing experience to the end users.The graph view
of search results is being explored in that direction, but more
web-interface capabilities are already being planned.

5. Mode of availability

The code of the BIOMedical Search Engine Framework and its
documentation are accessible at https://github.com/agjacome/
biomsef and freely available under MIT License.The Smart Drug
Search engine can be accessed at http://sing.ei.uvigo.es/sds/.
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