
1 

 

Synthesis, Antiangiogenesis Evaluation and Molecular Docking Studies of 1-

Aryl-3-[(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas: Discovery of a New 

Substitution Pattern for type II VEGFR-2 Tyr Kinase Inhibitors  

  

Vera A. Machado
a,b

,
 
Daniela Peixoto

a
,
 
Raquel Costa

b
, Hugo J.C. Froufe

c
, Ricardo C. Calhelha

a,c
, Rui 

M.V. Abreu
c
, Isabel C.F.R. Ferreira

c
, Raquel Soares

b
, Maria-João R. P. Queiroz,

a
* 

 

a
Departamento/Centro de Química, Escola de Ciências, Universidade do Minho, Campus de 

Gualtar 4710-057 Braga, Portugal
  

b
Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, 

Portugal; I3S – Instituto de Investigação e Inovação em Saúde, Porto, Portugal 

c
CIMO-ESA, Instituto Politécnico de Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855 

Bragança, Portugal
 

 

 

*Corresponding author: E-mail address: mjrpq@quimica.uminho.pt (M.-J.R.P. Queiroz) Tel.: 

+351-253604378 

mailto:mjrpq@quimica.uminho.pt


2 

 

Abstract 

The synthesis and biological evaluation of novel 1-aryl-3-[2-, 3- or 4-(thieno[3,2-b]pyridin-7-

ylthio)phenyl]ureas 3, 4 and 5 as VEGFR-2 tyrosine kinase inhibitors, are reported. The 1-aryl-3-[3-

(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas 4a-4h, with the arylurea in the meta position to the 

thioether, showed the lowest IC50 values in enzymatic assays (10-206 nM), the most potent 

compounds 4d-4h (IC50 10-28 nM) bearing hydrophobic groups (Me, F, CF3 and Cl) in the terminal 

phenyl ring.  A convincing rationalization was achieved for the highest potent compounds 4 as type 

II VEGFR-2 inhibitors, based on the simultaneous presence of: (1) the thioether linker and (2) the 

arylurea moiety in the meta position. For compounds 4, significant inhibition of Human Umbilical 

Vein Endothelial Cells (HUVECs) proliferation (BrdU assay), migration (wound-healing assay) and 

tube formation were observed at low concentrations. These compounds have also shown to increase 

apoptosis using the TUNEL assay. Immunostaining for total and phosphorylated (active) VEGFR-2 

was performed by Western blotting. The phosphorylation of the receptor was significantly inhibited 

at 1.0 and 2.5 M for the most promising compounds. Altogether, these findings point to an 

antiangiogenic effect in HUVECs.  

 

Keywords: Thienopyridinethioether 1,3-diarylureas; VEGFR-2 tyrosine kinase inhibitors; Enzymatic 

assays; Molecular Docking; HUVECs; Antiangiogenesis assays, Western blotting 
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 1. Introduction 

The Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) is a class V Receptor Tyrosine 

Kinase (RTK), expressed primarily in endothelial cells, and is activated by the specific binding of 

Vascular Endothelial Growth Factor (VEGF), secreted by endothelial cells and various tumor cells, 

to the VEGFR-2 extracellular regulatory domain. Once activated, VEGFR-2 undergoes 

autophosphorylation, triggering signalling pathways leading to endothelial cell proliferation and 

subsequent tumor angiogenesis that promotes tumor growth and metastasis.
1
 Several small-molecule 

VEGFR-2 inhibitors have emerged as promising antiangiogenic agents for treatment against a wide 

variety of cancers and act by competing with adenosine triphosphate (ATP) for the ATP-binding site 

of the VEGFR-2 intracellular kinase domain, thereby preventing the intracellular signalling. This 

leads to angiogenesis,
2
 the sprouting of new capillaries from pre-existing blood vessels, which is a 

multistep process involving endothelial cell differentiation, proliferation, migration, permeability 

and tube formation. These assays are used to reproduce the angiogenesis process in vitro.
3
  

Most known kinase inhibitors are classified as type I kinase inhibitors, which bind in and around the 

region occupied by the adenine ring of ATP.
4 

Sunitinib is a classical example of a type I inhibitor and 

has been approved for the treatment of renal cell carcinomas and gastrointestinal stromal tumors.
5 

On the other hand, type II kinase inhibitors induce the inactive DFG-out conformation of the 

activation loop, enabling them to occupy the adenine binding site and an adjacent hydrophobic 

pocket created by this rearrangement. As the residues forming the hydrophobic pocket are less 

conserved than residues in the adenine pocket, type II inhibitors usually provide a better kinase 

selectivity when compared to type I inhibitors.
4, 6 

For VEGFR-2, several type II inhibitors have been reported. These inhibitors occupy the adenine 

pocket with a suitable ring or ring system that is able to promote 1 to 3 H-bonds with the kinase 

hinge region (Glu917-Cys919); while also occupying the hydrophobic pocket that is available in the 



4 

 

DFG-out conformation (Asp1046-Phe1047-Gly1048 for VEGFR-2), with a suitable ring or ring 

system. A pair of hydrogen bond donating and accepting groups, (usually an urea or a corresponding 

bioisosteric core) is also present to establish H-bonds with Asp1046 and Glu885. The ring systems 

occupying both the adenine and the hydrophobic pocket are usually linked via a central ring 

positioned in an intermediate linker region (Figure 1 and 2).  

A number of type II VEGFR-2 inhibitors, relevant for the discussion of the results are presented in 

figure 1. They present a typical pharmacophore model for these inhibitors where a central aryl ring, 

occupying the linker region, is bound to the ring occupying the adenine pocket via an ether linker 

(O-linker), while the ring in the hydrophobic pocket is bound to the central ring via an urea group in 

para position to the O-linker. In the course of molecular modelling studies performed in our group 

and following a previous study presenting thieno[3,2-d]pyrimidines as VEGFR-2 inhibitors,
 
several 

observations suggested that alternatives to the O-linker using different configuration patterns, could 

be explored in an attempt to synthesize original VEGFR-2 inhibitors.
10 

Specifically the use of a 

thioether linker (S-linker) instead of an ether linker (O-linker) could provide interesting compounds 

with potent VEGFR-2 inhibition capability and with an alternative profile to the existent type II 

VEGFR-2 inhibitor scaffolds. Sorafenib was used for comparison with compounds that present 

similar substituents in the terminal aryl ring located in the hydrophobic pocket. 
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Figure 1. VEGFR-2 type II inhibitors presenting an O-linker in the para position relative to the urea 

moiety: Sorafenib (Nexavar®, Bayer, Germany; IC50 = 90 nM),
7
 A (TSK/Tsukuba IC50 = 3.5 nM)

8
 

and B (pyrrolo[3,2-d]pyrimidine derivative; IC50 = 6.2 nM).
9
 

 

Herein, we describe an on-going effort to develop novel small-molecule VEGFR-2 inhibitors, based 

on the thieno[3,2-b]pyridine-7-thioether-1,3-diarylurea scaffold. The synthesis and the VEGFR-2 

enzymatic inhibition activity assays of a novel series of 1-aryl-3-[2-, 3- or 4-(thieno[3,2-b]pyridin-7-

ylthio)phenyl]ureas are presented. Docking simulations were performed to analyze the binding mode 

of the more potent synthetized compounds. The best compounds identified in enzymatic assays were 

then tested in VEGF-stimulated Human Umbilical Vein Endothelial Cells (HUVECs). Their 

proliferation, apoptosis, migration and tube formation, VEGFR-2 expression and activity were 

examined by BrdU, TUNEL, wound healing and matrigel assays, and by Western blot, respectively.   
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2. Results and Discussion 

2.1. Synthesis 

The 7-chlorothieno[3,2-b]pyridine 1,
11a,b

 obtained from the commercial 7-hydroxythieno[3,2-

b]pyridine and POCl3, reacted with 2- 3- or 4-aminothiophenol in stoichiometric amounts in DMF at 

140 ºC for 2h to give only the aminated di(hetero)arylthioethers 2a-c by nucleophilic aromatic 

substitution, in very good yields (Scheme 1). These were reacted with differently substituted 

arylisocyanates in THF/CH2Cl2 at room temperature for 12 h, to give the 1-aryl-3-[2-, 3- or 4-

(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas 3a-c, 4a-h and 5a-e in good yields (Scheme 1). The 

synthesis of compounds 4d-h bearing hydrophobic groups, was performed after the best results 

obtained in enzymatic assays (Table 1) for the substitution pattern of compounds 4a-4c. For the 

compounds 5, based also in the results of enzymatic assays (Table 1) that were not so good then for 

series 4, only compounds with substituents that are present in Sorafenib (Figure 1) CF3 and/or Cl, 

were prepared in order to evaluate their effects. 
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Scheme 1. Synthesis of the 2-, 3- or 4-(thieno[3,2-b]pyridin-7-ylthio)anilines 2a-c and of the 1-aryl-

3-[2-, 3- or 4-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas 3-5. 

 

2.2. Enzymatic Inhibition and Structure Activity-Relationship 

 

Compounds 3a-c, 4a-c and 5a-c were first synthetized and subsequently evaluated for their ability to 

interact with the VEGFR-2 kinase domain (Table 1), using an enzymatic FRET-based assay.
12

 The 

three series differ in the position of the arylurea scaffold; with compounds 3, 4 and 5 bearing it in 

the ortho, meta and para-position relative to the thioether linker, respectively. Compounds 4a-c 

displayed the highest enzyme inhibition potency with IC50 values of  94, 107 and 206 nM, 

respectively; whereas compounds 5a , 5b displayed either moderate, 1160 and 1390 nM, 

respectively, or 5c weak VEGFR-2 inhibition activity, 8360 nM; compounds 3a-c were inactive. 

These findings are surprising as compounds 5 present similarities with known VEGFR-2 inhibitors 

with the arylurea moiety in the para position,
8-10, 13-15

 including the drug Sorafenib
 
(Figure 1).

7
 

Instead, compounds 4a-4c with the arylurea group in the meta position, were an order of magnitude 

more potent. The arylurea in the meta position is usually not considered as a promising feature and 

the studies using different scaffolds as potential VEGFR-2 inhibitors always explore the arylurea in 

the para position 
7-10, 13-15

 although presenting an O-linker instead of a S-linker.   

In fact, considering the number of scaffolds with VEGFR-2 inhibitory activity already published, it 

is surprising that a S-linker in meta position relative to the urea moiety was not explored before by 

others. The explanation is probably inherent to the rational of the drug design process where only 

one feature is explored at a time. We have found at least two studies performed by Hasegawa et al.
8 

and Oguro et al.
9
 where the importance of the O/S linker atom and the meta/para position relative to 

the urea moiety was analyzed in a series of benzimidazole and pyrrolo[3,2-d]pyrimidine derivatives, 
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respectively. These compounds explore the same VEGFR-2 binding mode with the best clinical 

candidate provided by each study presented as compound A (benzimidazole) and B (pyrrolo[3,2-

d]pyrimidine derivative) (Figure 1). In both studies the O/S-linker was investigated only in para 

position relative to the urea moiety, with the S-linker always providing less potent compounds and 

being discarded for further synthesis. In fact the presence of a S-linker, when compared to similar 

compounds with an O-linker, lowered the VEGFR-2 inhibition potency by 3-fold and 20-fold for the 

benzimidazole and pyrrolo[3,2-d]pyrimidine derivatives, respectively. Similarly, the meta/para 

position relative to the urea was only investigated using an O-linker, with the meta position always 

providing less potent compounds and thus also being discarded for further synthesis. Also 

compounds with the O-linker and urea in the meta position lowered the activity by 6-fold and 55-

fold for the benzimidazole and pyrrolo[3,2-d]pyrimidine derivatives, respectively, when compared to 

compounds with the O-linker in the para position relative to the urea. As far as our knowledge, this 

thieno[3,2-b]pyridine series is the first that presents compounds with a S-linker in the meta position 

relative to the urea moiety with potent inhibition activity against VEGFR-2. This study provides a 

new insight in the field as this substitution pattern was not previously investigated and has been 

thought to be of low potency. 

Typically, for type II VEGFR-2 inhibitors, the terminal aryl ring that occupies the hydrophobic 

pocket is functionalized with hydrophobic substituent groups, the most frequent being methyl 

groups or halogen atoms in meta or para position, although other substitution pattern is observed 

(Figure 1). Based on this information compounds 4d-h were synthetized in an attempt to obtain 

more potent VEGFR-2 inhibitors than compounds 4a-4c. Compounds 4d with a F atom in the para 

position or 4e with a F in the meta position, 4f with a methyl group, 4g with a CF3 both in the meta 

position and 4h with a CF3 in meta and a Cl in the para position, relative to the urea moiety, were 

the most potent VEGFR-2 inhibitors in enzymatic assays with IC50 values of 10, 28, 11, 15 and 16 
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nM, respectively (Table 1). These values are in line with the most potent VEGFR-2 inhibitor agents 

and pending further analysis, but compounds 4d-h can already be considered as potential leads as 

antiangiogenic compounds. This increase of potency in one order of magnitude with hydrophobic 

substituents in the terminal aryl ring provides evidence that the latter in fact occupies the 

hydrophobic pocket in a similar fashion to other known type II inhibitors. 

Although compounds 5 have given high IC50 values it was decided to prepare compounds in this 

series with substituents CF3 and/or Cl present in the Sorafenib, but the IC50 values did not 

significantly decreased (Table 1). 

 

                             Table 1. VEGFR-2 inhibition activity of compounds 3a-c, 4a-h and 5a-e 

Compound 
VEGFR-2; IC50 

a 

(using 10 µM of ATP) 

3a >100000 nM 

3b >100000 nM 

3c >100000 nM 

4a 94 nM  

4b 107 nM 

4c 206 nM 

4d 10 nM 

4e 28 nM 

4f 

4g 

4h 

11 nM 

               15 nM 

                16 nM 

5a 1160 nM 

5b 1390 nM 

5c 

5d 

5e 

8360 nM 

988 nM 

1947 nM 

Staurosporine
b 

6 nM
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(enzymatic
 
kit 

control) 
a
Each IC50 determination is a result of at least four separate determinations. 

b
Staurosporine experimental VEGFR-2 IC50 = 7 nM.

16 

 

In order to explain the VEGFR-2 inhibitory activity of compounds 4, we set out to investigate in 

detail the binding mode of compounds 4d and 4f and 5a by performing molecular docking studies. 

 

2.3. Molecular Docking Simulations 

To better understand the structural rational behind the VEGFR-2 inhibition potency observed for the 

synthesized compounds, molecular docking simulations were performed using AutoDock4 software. 

The VEGFR-2 kinase domain crystal structure with PDB code: 3VHE was selected because it 

presented a co-crystallized inhibitor (compound B, Figure 1) with the closest structure compared to 

the compounds prepared in this work. For a suitable comparison, compounds 5a and compounds 4d 

and 4f were docked against the selected structure and then superimposed with the experimental 

structure of compound B (Figure 2A and 2B). The other compounds of series 5 were also docked 

and the obtained docking poses were a near perfect superimposition of compound 5a docking pose.  

So for clearance of representation on figure 2A only compound 5a was used as it is the simplest, 

without substitution in the terminal aryl ring. 

For the less potent compound 5a a similar binding mode pattern to compound B was observed 

(Figure 2A). In both compounds the urea moiety forms two H-bonds with the Glu885 carboxyl 

group, and the C=O urea group forms a third H-bond with the backbone N–H of Asp1046. The 

thieno[3,2-b]pyridine moiety is docked in adenine pocket with a near perfect superimposition to the 

pyrrolo[3,2-d]pyrimidine ring of compound B, and both rings are positioned in order to form the 

critical H-bond with the Cys919 backbone N-H group. The central aryl group is docked on the linker 

region and the terminal aryl ring on the hydrophobic pocket (Figure 2A). However a more detailed 
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inspection of compound 5a docking pose gives us some insights on why the S-linker in the para 

position is probably less favored compared to the O-linker in the same position. In fact, in order to 

accommodate the network of critical H-bonds and allow a correct pocket occupation of the ring 

systems, the S-linker was stretched to a 109.5
o
 angle when the more stable value for a S-linker angle 

is approximately 90º (Figure 2A). The co-crystallized structure of compound B on the other hand 

presents a O-linker angle of 115.8º that is closer to the ideal 110º angle.
17 

This widening of the S-

linker is energetically unfavorable and probably explain the much lower potency of compound 5a 

(IC50 = 1166 nM) compared to compound B (IC50 = 6.2 nM). It is likely that there may be a protein 

shifting in the active site to relieve this very high energy situation and the docking presented in 

Figure 2A is likely to be an approximation of the actual interaction between compound 5a and the 

active site. 

For the most potent compounds 4d and 4f (IC50 of 10 and 11 nM, respectively) the same 

superimposition with compound B is also presented (figure 2B). A closer inspection of the docked 

poses shows that, due to the presence of the S-linker in the meta position relative to the urea group, 

the central aryl ring is placed deeper inside the linker region, when compared to compound B. The 

S-linker sharper angle (100.4º) is close to the ideal 90º angle and now appears to work in favor of 

increasing VEGFR-2 inhibitory potency by enabling a more favored occupation of the linker region 

by the central aryl ring. In fact this ring is superimposed with the F atom of compound B, further 

evidence that this linker region occupation pattern is possible and probably favored.  

The higher inhibition potency of compound 4d with an F atom in the para position and 4f with a 

methyl group in the meta position, relative to the urea moiety, when compared to compound 4a with 

no substitution, is also widely observed for other known type II inhibitors (Figure 1) and it is due to 

a better occupation of the hydrophobic pocket.
13-15

 This observation further demonstrates that the 

predicted docked poses are probably correct. 



12 

 

 

 

Figure 2. Docking pose superimposition of: (A) compound 5a (green) and (B) compounds 4d and 4f 

(green), with the co-crystallized structure of compound B (cyan).  A partial surface representation of 

the VEGFR-2 kinase binding site is depicted with the relevant residues presented (white). H-bonds 

are represented in dashed red lines (distances between 2.8 and 3.4 Å). Structures were prepared 

using PyMOL.
18
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2.4. Cell Culture Assays 

The best compounds in enzymatic assays (4a-h) against VEGFR-2 tyrosine kinase domain were 

examined in cell culture viability and proliferation assays using HUVECs stimulated by VEGF. Cell 

viability was first analyzed by MTS assay (Figure 3). The effects of compounds 4a-f at 0.1 to 10 µM 

on HUVECs viability are shown in Figure 3A. Cell viability was reduced by each compound at a 

dose-dependent manner, reaching statistical significance at the concentration of 5.0 µM or higher. 

The effects of compounds 4g and 4h on HUVECs viability were analyzed. Given the similarity of 

the hydrophobic chemical pattern substitution of Sorafenib, this drug was used as a positive control 

for compounds 4g and 4h, these two compounds being used at 1.0 to 10 µM, the concentrations 

established for Sorafenib in cell culture assays (Figure 3B). Compound 4g significantly reduced the 

cell viability at 10 µM, while compound 4h did it at 2.5, 5.0 and 10 µM. Nevertheless, they only 

affected more than 50% cell viability (4g = 44%, 4h = 26%), revealing a cytotoxic effect on 

HUVECs for the highest concentration tested (10 µM), as Sorafenib (18%). Altogether, these 

findings reveal that every compound was able to decrease HUVECs viability. Though, compounds 

4g and 4h presented significant reductions at lower concentrations. 
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Figure 3. Evaluation of the HUVECs viability effects of compounds 4a-h and Sorafenib on VEGF-

stimulated HUVECs by MTS assay. (A) HUVECs viability upon treatment with compounds 4a-f at 

concentrations of 0.1 to 10 µM. (B) HUVECs viability upon treatment with compounds 4g, 4h and 

Sorafenib at 1.0 to 10 µM. Results were obtained after 24 h, and are expressed as percentage of 

control (0.1% DMSO with 60 ng/mL VEGF) as means ± SEM of at least three independent 

experiments, performed in triplicate. 
*
 p < 0.05 versus control.  

 

A proliferation assay was then assessed using the BrdU incorporation, a thymidine analogue which 

incorporates into DNA of dividing cells (Figure 4). Compounds 4a (R
1 

= H), 4c (R
1 

= CN), and 4f 

(R
2 

= Me) showed a statistical significant antiproliferative effect at 1.0 µM (Figure 4A) without 

significantly affecting cell viability (Figure 3A). Remarkably, compounds 4b (R
1 

= OMe), 4d (R
1 

= 

F) and 4e (R
2
 = F) showed a higher antiproliferative effect, revealing a statistical significant cell 

proliferation decrease at 0.5 µM (Figure 4A) without affecting cell viability (Figure 3A). 

Compounds 4g (R
2 

= CF3), 4h (R
1 

= Cl; R
2 

= CF3) significantly inhibited proliferation of HUVECs 
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at 2.5 and 5.0 µM, without high cytotoxic effect. Sorafenib is known to prevent cell growth in 

endothelial cells.
7
 Interestingly enough, compounds 4g and 4h exhibit, thus, a more noteworthy 

effect than Sorafenib, which only significantly affected proliferation of these cells at 5.0 M (Figure 

4B). 

These results showed that all the tested compounds considerably inhibit VEGF-stimulated HUVECs 

proliferation in a dose-dependent manner at low concentrations. 

 

  

Figure 4. Effect of compounds 4a-4h and Sorafenib on VEGF-induced HUVECs proliferation 

assessed by BrdU incorporation assay. (A) HUVECs proliferation upon treatment with compounds 

4a-4f at concentrations of 0.1 to 10 µM.  (B) HUVECs proliferation upon treatment with compounds 

4g, 4h and Sorafenib at concentrations of 1.0 to 10 µM. Results were obtained after 24 h incubation, 

and are expressed as percentage of control (0.1% DMSO with 60ng/mL VEGF) as means ± SEM of 

at least three independent experiments, performed in triplicate. 
*
 p < 0.05 versus control.  
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2.5. Effect on Apoptosis 

The induction of apoptosis is a therapeutic approach for cancer treatment. Several anticancer drugs, 

including some VEGFR-2 inhibitors can promote apoptosis.
19

 The effect of compounds 4a-h on cell 

apoptosis was then evaluated by TUNEL assay (Figure 5). Concentrations of 0.1 to 1.0 µM of 

compounds 4a-4f were used in the subsequent assays due to their antiproliferative effect without 

cytotoxic effect at these concentrations (Figure 5A). An increase in apoptosis was observed when 

HUVECs were incubated with increasing concentrations of the tested compounds for 24 h, reaching 

statistical significance only for 4b-4d at the highest concentration tested (1.0 µM) in comparison to 

control. These findings indicate that besides the effects of these three compounds in HUVECs 

proliferation, they also induce apoptosis. Compounds 4a, 4e and 4f increased apoptosis in a dose-

dependent manner, but not with statistical significance (Figure 5A). 

For compounds 4g and 4h, the concentrations selected for this and the following assays were 2.5 and 

5.0 µM since they are the lowest concentrations of these compounds that have shown an 

antiproliferative effect without being cytotoxic to HUVECs (Figure 3B and 4B). As shown in Figure 

5B, 4g and 4h significantly increase apoptosis at 5.0 µM. Many studies report that Sorafenib induces 

apoptosis.
19 

The findings in this study reveal that compounds 4g and 4h exhibited a higher effect 

than Sorafenib in apoptosis.
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Figure 5. Effect of compounds 4a-4h and Sorafenib on apoptosis assessed by TUNEL assay. (A) 

HUVEC apoptosis upon treatment with compounds 4a-4f at concentrations of 0.1 to 1.0 µM.  (B) 

HUVEC apoptosis upon treatment with compounds 4g, 4h and Sorafenib at concentrations of 2.5 

and 5.0 µM. Bars represent the percentage of apoptotic cells evaluated by ratio between TUNEL-

stained cells and DAPI-stained nuclei in every culture. Results were obtained after 24 h, and are 

expressed as mean ± SEM of at least three independent experiments. 
*
 p < 0.05 versus control.  

 

2.6. Effect on HUVECs migration  

Cell migration is an essential feature for endothelial cells in angiogenesis.
20

 Therefore, we next 

examined the effect on the HUVECs chemotactic motility of the most promising compounds 4d-4h, 

according to the previous results on HUVECs viability and proliferation, by wound-healing assay 

(Figure 6). The results show that compounds 4d-4f significantly inhibited VEGF-induced HUVECs 
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migration in a dose-dependent manner ranging from 0.1 µM to 5.0 µM (Figure 6A). Treatment with 

compounds 4g and 4h significantly inhibited HUVECs migration at concentrations of 2.5 µM and 

5.0 µM showing a similar effect to Sorafenib (Figure 6B). These findings regarding Sorafenib effect 

in endothelial cell migration were corroborated by previous studies in the literature.
21

 Nonetheless, 

incubation with compound 4h was more effective than Sorafenib, implying a better inhibitory role in 

this relevant angiogenic step. 

 

  

 

Figure 6. Effect of compounds 4d-4h on HUVECs migration (wound-healing assay) after 

incubation during 24 h. Representative fields were photographed, 100  magnification. The graphics 

shows the quantitative effect of compounds 4d-4f (A), 4g-4h and Sorafenib (B) on VEGF-induced 
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HUVECs motility. Data presented the percentage of control, as mean ± SEM of three independent 

experiments. 
*
 p < 0.001 versus control.  

 

2.7. Effect on HUVECs tube formation 

To elucidate the possible mechanisms of angiogenesis inhibition, tube formation ability of 

endothelial cells, which is also a critical step in the angiogenic process, was assessed in HUVECs. 

As shown in Figure 7, HUVECs plated on a Matrigel coated plate formed capillary-like structures in 

cells cultured in the absence of compounds (control). A significant decrease of these structures was 

observed whenever cells were incubated with compounds 4d-4f at concentrations of 0.5 to 5.0 µM, 

in a dose-dependent manner (Figure 7A). In the presence of compounds 4g, 4h or Sorafenib at 

concentrations of 2.5 and 5 µM, tube formation of HUVECs was significantly reduced (Figure 7B), 

except for 4g at 2.5 µM. This assay is a hallmark of angiogenesis evaluation in vitro. Interestingly, 

prevention of this process was also accomplished by every compound tested in the present study in a 

significant manner, implying thus, the important antiangiogenic role of these molecules. 
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Figure 7. Effect of compounds 4d-4h on VEGF-induced capillary-like tube formation of HUVEC 

through Matrigel in 24 h. Representative fields were photographed, 100  magnification. Bars show 

the quantitative effect of compounds 4d-4f (A), 4g-4h and Sorafenib (B) on VEGF-induced HUVEC 

tube formation. Data were presented as the percentage of control, as mean ± SEM of three 

independent experiments. 
*
 p < 0.001 versus control. 

 

2.8. Effect on VEGFR-2 phosphorylation  

The results presented herein were obtained in VEGF stimulated HUVECs cultures, implying that the 

compounds analyzed were able to exert their effects by interfering with VEGF signalling pathway. 

To confirm this hypothesis, a Western blotting assay for total and phosphorylated (active) VEGFR-2 

was performed. At 1.0 µM compounds 4a, 4b and 4d-4f significantly decreased the active form of 

VEGFR-2 (Figure 8A-D) (*p<0.05 vs. control). Moreover, compounds 4g and 4h, at concentrations 

of 2.5 and 5.0 µM, significantly decreased VEGFR-2 phosphorylation, presenting a better effect than 

Sorafenib (Figure 8E and F).  

VEGF signalling pathway through the VEGFR-2 tyrosine kinase phosphorylation displays a crucial 

role in angiogenesis, namely, enhancing endothelial cell survival, proliferation and migration.
22 

Many other signalling pathways are involved in angiogenesis, nevertheless, VEGF signalling, an 

angiogenic surrogate pathway, which is involved in the whole multistep process, from cell 

proliferation, migration, invasiveness capacity, anastomosis, ending up in the assembly of newly 

formed vascular structures. Therefore, we believe that inhibiting this pathway is an effective 

approach against angiogenesis.  
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Figure 8: (A, C and E) Evaluation of phosphorylated and total VEGFR-2 expression in HUVECs 

after incubation with compounds 4a-4h, by Western blotting. Representative bands obtained after 

immunostaining are shown. (B, D and F) Quantification by densitometry and mean relative intensity 

by comparison of the relative intensity of activated VEGFR-2 after normalization with total 

VEGFR-2 intensity. Data presented as mean ± SEM of two independent experiments. 
*
 p < 0.05 

versus control.  
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3. Conclusion 

In conclusion the synthesis of new 1-aryl-3-[2-, 3- or 4-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas 

3, 4 and 5 in overall good yields is reported. Compounds 4, with the arylurea in the meta position 

relative to the S-linker, showed to be the most potent phosphorylation tyrosine kinase VEGFR-2 

inhibitors, presenting IC50 values between 10-206 µM in enzymatic assays, depending on the 

substituents on the terminal phenyl ring. To better understand these results, molecular docking 

simulations were performed. The predicted docked poses were analyzed in detail and a plausible 

explanation for compounds 4 and in particularly for 4d and 4f potency (10 and 11 nM) was obtained 

based on the simultaneous presence of a S-linker and the arylurea moiety in the meta position as a 

new substitution pattern for the type II VEGFR-2 inhibitors. The importance of hydrofobic 

substituents in 4d and 4f (F and Me, respectively) in the terminal phenyl ring is also highlighted. 

These chemical features place the thieno[3,2-b]pyridine and the terminal aryl ring in close 

superimposition to a pyrrolo[3,2-d]pyrimidine derivative, type II co-crystallized VEGFR-2 ligand. 

Compounds 4g an 4h with pattern substitution closer to Sorafenib showed also low IC50 values (15 

and 16 nM).  

Our results showed that compounds 4 affect various steps of angiogenesis including endothelial cell 

proliferation, apoptosis, migration and capillary structure formation in a dose dependent manner. 

In the present study we found that compounds 4 significantly block the tyrosine kinase 

phosphorylation of VEGFR-2, as observed by Western blotting in vitro, suggesting these compounds 

as potent VEGFR-2 inhibitors.  

As far as our knowledge the S-linker in the meta position relative to the urea moiety constitutes a 

new substitution pattern that has not been disclosed in other known type II VEGFR-2 inhibitors.  

This can thus be regarded as an interesting feature for the synthesis of new compounds with higher 

VEGFR-2 inhibitory activity and also for other scaffolds exploring the same VEGFR-2 binding 
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conformation. 

Although future studies, namely using animal models, are crucial, overall, our findings support the 

hypothesis that all these molecules are potent antiangiogenic agents.  

 

4. Experimental Section 

 

4.1. Synthesis 

Melting points (
o
C) were determined in a Stuart SMP3 and are uncorrected. 

1
H and 

13
C NMR 

spectra were recorded on a Varian Unity Plus at 300 and 75.4 MHz, respectively or on a Bruker 

Avance III at 400 and 100.6 MHz, respectively, and the chemical shifts were quoted in parts per 

million (ppm) referenced to the appropriate non-deuterated solvent peak relative to 0.0 ppm for 

tetramethylsilane. Two dimensional 
1
H-

13
C correlations were performed to attribute some signals. 

Mass spectra (MS) EI -TOF or ESI-TOF and HRMS on the M
+
 or on the [M+H]

+
 were performed by 

the mass spectrometry service of the University of Vigo, C.A.C.T.I., Spain and the low resolution 

MS ESI of compounds 4g, 4h, 5d and 5e were performed by direct injection on a ThermoFinigan 

spectrophotometer LC-MS. Elemental Analysis was performed on a LECO CHNS 932 Elemental 

Analyser. The compounds yielded data consistent with a purity of at least 95% as compared with the 

theoretical values. The reactions were monitored by thin layer chromatography (TLC) using 

Macherey-Nagel pre-coated aluminium silica gel 60 sheets (0.20 mm) with UV254 indicator. 

Column chromatography was performed on Panreac, Silica Gel 60, 230-400 mesh. Ether refers to 

diethylether. Petroleum ether refers to the boiling range 40-60 
o
C. Aminothiophenols were purchased 

from Sigma-Aldrich with purity ≥ 96%. 

 

4.1.1. General synthesis procedure for compounds 2a-c: In a flask with DMF (5 mL), compound 1, 
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the aminothiophenol (1equiv.) and K2CO3 (4equiv.) were heated at 140 ºC for 2h. After cooling 

water (5 mL) and ethyl acetate (5 mL) were added. The phases were separated and the aqueous 

phase was extracted with more ethyl acetate (2x5mL). The organic phase was dried (MgSO4) and 

filtered. The solvent was evaporated under reduced pressure giving an oil which was submitted to 

column chromatography. 

4.1.1.1. 2-(Thieno[3,2-b]pyridin-7-ylthio)aniline (2a): Compound 1 (150 mg, 0.880 mmol) and  2-

aminothiophenol (110 mg) and the general procedure was followed. Column chromatography using 

70% ether/petroleum ether gave compound 2a as an oil (180 mg, 80%). 
1
H NMR (DMSO-d6, 300 

MHz): δ 5.54 (br s, 2H, NH2), 6.57 (d, J = 5.2 Hz, 1H, 6’-H), 6.62-6.67 (m, 1H, 4-H), 6.87 (dd, J = 

8.4 and 1.5 Hz, 1H, 6-H), 7.25-7.30 (m, 1H, 5-H), 7.37 (dd, J = 8.4 and 1.5 Hz, 1H, 3-H), 7.57 (d, J 

= 5.6 Hz, 1H, HetArH), 8.14 (d, J = 5.6 Hz, 1H, HetArH), 8.42 (d, J = 5.2 Hz, 1H, 5’-H) ppm.
13

C 

NMR (DMSO-d6, 75.4 MHz,): δ 107.2 (C), 114.0 (6’-CH), 115.3 (6-CH), 116.9 (4-CH), 124.9 (CH), 

129.3 (C), 131.6 (CH), 132.3 (5-CH), 137.4 (3-CH), 142.5 (C), 147.2 (5’-CH), 151.1 (C), 155.7 (C) 

ppm. MS (EI- TOF) m/z (%): 258.03 (M
+
, 100). HRMS (EI-TOF): calcd for C13H10N2S2 [M

+
] 

258.0285, found 258.0284. 

4.1.1.2. 3-(Thieno[3,2-b]pyridin-7-ylthio)aniline (2b): Compound 1  (200 mg, 1.20 mmol) and  3-

aminothiophenol (125 mg) and the general procedure was followed. Column chromatography using 

45% ether/petroleum ether gave compound 2b as a yellow solid (280 mg, 90%). Mp 106-107 ºC. 
1
H 

NMR (DMSO-d6, 400 MHz): δ 5.40 (br s, 2H, NH2), 6.69-6.71 (m, 2H, 4 and 6-H), 6.75-6.76 (m, 

1H, 2-H), 6.87 (d, J = 4.8 Hz, 1H, 6’-H), 7.14 (apparent t, J = 8 Hz, 1H, 5-H), 7.58 (d, J = 5.6 Hz, 

1H, HetArH), 8.14 (d, J = 5.6 Hz, 1H, HetArH), 8.49 (d, J = 4.8 Hz, 1H, 5’-H) ppm. 
13

C MNR 

(DMSO-d6, 100.6 MHz): δ 115.2 (CH), 116.0 (6’-CH), 118.7 (2-CH), 121.0 (CH), 125.0 (CH), 

128.1 (C), 130.3 (C), 130.5 (5-CH), 131.8 (CH), 142.8 (C), 147.4 (5’-CH), 150.3 (C), 155.7 (C) 

ppm.  MS (ESI- TOF) m/z (%): 259.03 (M
+
+H, 100). HRMS (ESI-TOF): calcd for C13H11N2S2 
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[M
+
+H] 259.0358, found 259.0358. Anal. Cald. for C13H10N2S2: C 60.43, H 3.90, N 10.84, S 24.82 

%; found 60.57, H 4.01, N 11.02, S 24.42%. 

4.1.1.3. 4-(Thieno[3,2-b]pyridin-7-ylthio)aniline (2c): Compound 1 (150mg, 0.880mmol) and  4-

aminothiophenol (110 mg) was treated according to the general procedure. Column chromatography 

using 40% ether/petroleum ether gave compound 2c as a yellow solid (210 mg, 90%). Mp 215-216 

ºC. 
1
H NMR (CDCl3, 400 MHz): δ 3.85 (br s, 2H, NH2), 6.70 (d, J = 5.2 Hz, 1H, 6’-H), 6.76 (d, J = 

8.4 Hz, 2H, 2 and 6-H), 7.40 (d, J = 8.4 Hz, 2H, 3 and 5-H), 7.64 (d, J = 5.6 Hz, 1H, HetArH), 7.78 

(d, J = 5.6 Hz, 1H, HetArH), 8.39 (d, J = 5.2 Hz, 1H, 5’-H) ppm. 
13

C NMR (CDCl3,100.6 MHz): δ 

114.5 (6 ‘-CH), 116.0 (2 and 6-CH), 124.2 (CH), 130.2 (C), 131.1 (CH), 135.8 (C), 136.4 (C), 137.4 

(3 and 5-CH), 145.2 (5’-CH), 148.7 (C), 153.6 (C) ppm. MS (EI- TOF) m/z (%): 258.03 (M
+
, 100). 

HRMS (EI-TOF): calcd for C13H10N2S2 [M
+
] 258.0285, found 258.0289.  Anal. Cald. for 

C13H10N2S2: C 60.43, H 3.90, N 10.84, S 24.82 %; found 60.59, H 4.11, N 10.90, S 24.40%. 

4.1.2. General procedure for the synthesis of 1,3-diarylureas 3-5: Compounds 2a-c and different 

arylisocyanates (1equiv.) in 6 mL CH2Cl2: THF (1:1) were left stirring at room temperature for 12 h. 

If a precipitate does not come out after this time, hexane (3-5 mL) was added to the mixture to 

precipitate the product. This was filtered under vacuum to give the corresponding 1,3-diarylureas. 

4.1.2.1. 1-Phenyl-3-[2-(thieno[3,2-b]pyridin-7-ylthio)phenyl]urea (3a): From compound 2a (100 

mg, 0.390 mmol) and phenylisocyanate (50.0 mg) compound 3a was isolated as a green solid (95.0 

mg, 65%). Mp 198-199 ºC. 
1
H NMR (DMSO-d6, 300MHz): δ 6.56 (d, 1H, J = 4.8 Hz), 6.92-6.98 

(m, 1H), 7.12-7.18 (m, 1H), 7.24-7.29 (m, 2H), 7.37-7.46 (m, 2H), 7.54-7.63 (m, 3H), 8.18 (d, 1H, J 

= 5.6 Hz), 8.28-8.31 (m, 1H), 8.45 (d, 1H,  J = 4.8 Hz), 8.49 (br s, 1H, NH), 9.36 (br s, 1H, NH) 

ppm. 
13

C NMR (DMSO-d6, 75.4MHz): δ 114.3 (CH), 115.3 (C), 118.2 (CH), 118.3 (2×CH), 121.3 

(CH), 122.1 (CH), 123.6 (CH), 125.0 (CH), 128.8 (2×CH), 129.5 (C), 131.9 (CH), 137.3 (CH), 

139.3 (C), 142.3 (C), 142.4 (C), 147.5 (CH), 152.2 (C), 155.8 (C) ppm. MS (ESI- TOF) m/z (%): 
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378.07 (M
+
+H, 100) HRMS (ESI-TOF): calcd for C20H16N3OS2 [M

+
+H] 378.0729, found 378.0723. 

Anal. Cald. for C20H15N3OS2: C 63.64, H 4.01, N 11.13, S 16.99%; found C 63.83, H 4.13, N 10.83, 

S 16.60%.  

4.1.2.2. 1-(4-Methoxyphenyl)-3-[2-(thieno[3,2-b]pyridin-7-ylthio)phenyl]urea (3b): From 

compound 2a (100 mg, 0.390 mmol) and 4-methoxyphenylisocyanate (83.0 mg), compound 3b was 

isolated as a green solid (100 mg, 63%). Mp 198-199 ºC. 
1
H NMR (DMSO-d6, 400 MHz): δ 3.68 (s, 

3H, OMe), 6.55 (d, J = 5.2 Hz, 1H), 6.82 (d, J = 9.2 Hz, 2H), 7.13 (m, 1H), 7.28 (d, J = 9.2 Hz, 2H), 

7.53-7.61 (m, 3H), 8.18 (d, J = 5.6 Hz, 1H), 8.31 (dd, J = 8.4 and 1.2 Hz, 1H), 8.38 (br s, 1H, NH), 

8.45 (d, J = 5.2 Hz, 1H), 9.17 (br s, 1H, NH) ppm. 
13

C NMR (DMSO-d6,100.6 MHz): δ 55.1 (OMe), 

114.0 (2xCH), 114.2 (CH), 114.9 (C), 120.1 (2xCH), 121.0 (CH), 123.3 (CH), 125.0 (CH), 129.4 

(C), 131.8 (CH), 131.9 (CH), 132.2 (C), 137.2 (CH), 142.3 (C), 142.5 (C), 147.5 (CH), 152.3 (C), 

154.6 (C), 155.8 (C) ppm. MS (ESI- TOF) m/z (%): 408.08 (M
+
+H, 100). HRMS (ESI-TOF): calcd 

for C21H18N3O2S2 [M
+
+H] 408.0835, found 408.0832. Anal. Cald. for C21H17N3O2S2: C 61.89, H 

4.20, N 10.31, S 15.74%; found C 62.01, H 4.05, N 11.00, S 15.33%. 

4.1.2.3. 1-(4-Cyanophenyl)-3-[2-(thieno[3,2-b]piridin-7-ylthio)phenyl]urea (3c): From compound 

2a (60.0 mg, 0.230 mmol) and 4-cyanophenylisocyanate (37.0 mg) compound 3c was isolated as a 

green solid (60.0 mg, 65%). Mp 208-209 ºC. 
1
H NMR (DMSO-d6, 300 MHz): δ 6.57 (d, J = 5.2 Hz, 

1H), 7.17-7.22 (m, 1H), 7.58-7.60 (m, 5H), 7.68 (d, J = 9.2 Hz, 2H), 8.17 (d, J = 5.6 Hz, 1H), 8.24 

(dd, J = 8.4 and 1.5 Hz, 1H), 8.45 (d, J = 5.2 Hz, 1H), 8.65 (br s, 1H, NH), 9.80 (br s, 1H, NH) ppm. 

13
C NMR (DMSO-d6, 75.4 MHz): δ 103.6 (C), 114.5 (CH), 116.3 (C), 118.1 (2xCH), 119.2 (C), 

121.7 (CH), 124.3 (CH), 125.0 (CH), 129.6 (C), 131.9 (CH), 131.9 (CH), 133.3 (2xCH), 137.2 

(CH), 141.7 (C), 142.1 (C), 143.8 (C), 147.5 (CH), 151.9 (C), 155.8 (C) ppm. MS (ESI- TOF) m/z 

(%): 403.07 (M
+
+H, 100). HRMS (ESI-TOF): calcd for C21H15N4OS2 [M

+
+H] 403.0682, found 

403.0689. Anal. Cald. for C21H14N4OS2: C 62.67, H 3.51, N 13.92, S 15.93%; found C 62.95, H 



27 

 

3.32, N 14.12, S 15.51%. 

4.1.2.4. 1-Phenyl-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]urea (4a): From compound 2b (80.0 

mg, 0.300 mmol) and phenylisocyanate (36.0mg) compound 4a was isolated as a yellow solid 

(70mg, 63%). Mp 94-95 ºC. 
1
H NMR (DMSO-d6, 400 MHz): δ 6.95 (d, J = 5.2 Hz, 1H), 6.96-6.98 

(m, 1H), 7.17-7.20 (m, 1H), 7.24-7.28 (m, 2H), 7.39-7.44 (m, 3H), 7.49-7.52 (m, 1H), 7.60 (d, J = 

5.6 Hz, 1H), 7.78-7.79 (m, 1H), 8.16 (d, J = 5.6 Hz, 1H), 8.52 (d, J = 5.2 Hz, 1H), 8.70 (br s, 1H, 

NH), 8.90 (br s, 1H, NH) ppm. 
13

C NMR (DMSO-d6, 100.6 MHz): δ 116.5 (CH), 118.4 (2xCH), 

119.3 (CH), 122.1 (CH), 122.8 (CH), 125.0 (CH), 127.0 (CH), 128.7 (2xCH), 128.8 (C), 130.5 

(CH), 130.8 (C), 132.0 (CH), 139.4 (C), 141.2 (C), 141.9 (C), 147.6 (CH), 152.4 (C), 155.9 (C) 

ppm. MS (ESI- TOF) m/z (%): 378.07 (M
+
+H, 100) HRMS (ESI-TOF): calcd for C20H16N3OS2 

[M
+
+H] 378.0729, found 378.0728. Anal. Cald. for C20H15N3OS2: C 63.64, H 4.01, N 11.13, S 

16.99%; found C 63.86, H 3.80, N 11.33, S 16.59%. 

4.1.2.5. 1-(4-Methoxyphenyl)-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]urea (4b): From 

compound 2b (100 mg, 0.390 mmol) and 4-methoxyphenylisocyanate (58.0 mg), compound 4b was 

isolated as a yellow solid (100 mg, 64%). Mp 132-133 ºC. 
1
H NMR (DMSO-d6, 400 MHz): δ 3.69 

(s, 3H, OMe), 6.84 (d, J = 8.8 Hz, 2H), 6.92 (d,  J = 4.8 Hz, 1H), 7.16-7.18 (m, 1H), 7.31 (d,  J = 8.8 

Hz, 2H), 7.30-7.33 (m, 1H), 7.48-7.51 (m, 1H), 7.60 (d, J = 5.6 Hz, 1H), 7.77-7.78 (m, 1H), 8.16 (d, 

J = 5.6 Hz, 1H), 8.50 (br s, 1H, NH), 8.52 (d, J = 4.8 Hz, 1H), 8.80 (br s, 1H, NH) ppm. 
13

C NMR 

(DMSO-d6, 100.6 MHz): δ 55.1 (OMe), 113.9 (2xCH), 116.5 (CH), 119.2 (CH), 120.3 (2xCH), 

122.7 (CH), 125.0 (CH), 126.9 (CH), 128.8 (C), 130.4 (CH), 130.7 (C), 132.0 (CH), 132.3 (C), 

141.4 (C), 141.9 (C), 147.6 (CH), 152.6 (C), 154.6 (C), 155.9 (C) ppm. MS (ESI- TOF) m/z (%): 

408.08 (M
+
+H, 100). HRMS (ESI-TOF): calcd for C21H18N3O2S2 [M

+
+H] 408.0835, found 

408.0833. Anal. Cald. for C21H17N3O2S2: C 61.89, H 4.20, N 10.31, S 15.74%; found C 62.20, H 

4.45, N 10.02, S 15.35%. 
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4.1.2.6. 1-(4-Cyanophenyl)-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]urea (4c): From compound 

2b (60.0 mg, 0.230 mmol) and 4-cyanophenylisocyanate (35.0 mg), compound 4c was isolated as a 

yellow solid (65.0 mg, 65%). Mp 168-169 ºC. 
1
H NMR (DMSO-d6, 400  MHz): δ 6.95 (d,  J = 5.2 

Hz, 1H), 7.21-7.24 (m, 1H), 7.42-7.46 (m, 1H), 7.52-7.55 (m, 1H), 7.59 (d, J = 5.6 Hz, 1H), 7.60 (d, 

J = 8.8 Hz, 2H), 7.71 (d, J = 8.8 Hz, 2H), 7.76-7.77 (m, 1H), 8.16 (d, J = 5.6 Hz, 1H), 8.53 (d,  J = 

5.2 Hz, 1H), 9.07 (br s, 1H, NH), 9.23 (br s, 1H, NH) ppm. 
13

C NMR (DMSO-d6, 100.6 MHz): δ 

103.5 (C), 116.7 (CH), 118.2 (2xCH), 119.2 (C), 119.6 (CH), 123.0 (CH), 125.0 (CH), 127.5 (CH), 

129.0 (C), 130.5 (CH), 130.9 (C), 132.0 (CH), 133.2 (2xCH), 140.7 (C), 141.6 (C), 143.9 (C), 147.6 

(CH), 152.0 (C), 155.9 (C) ppm. MS (ESI- TOF) m/z (%): 403.07 (M
+
+H, 100) HRMS (ESI-TOF): 

calcd for C21H15N4OS2 [M
+
+H] 403.0682, found 403.0680. Anal. Cald. for C21H14N4OS2: C 62.67, 

H 3.51, N 13.92, S 15.93%; found C 62.37, H 3.80, N 14.13, S 15.52%. 

4.1.2.7. 1-(4-Fluorophenyl)-3-[3-(thieno[3,2-b]pyridin-7-ylthio]phenyl)urea (4d): From compound 

2b (60.0 mg, 0.230 mmol) and 4-fluorophenylisocyanate (35.0 mg), compound 4d was isolated as a 

white solid (65.0 mg, 71%). Mp 140-141 ºC. 
1
H NMR (DMSO-d6, 400 MHz): δ 6.93 (1H, d, J = 5.2 

Hz), 7.07-7.12 (m, 2H), 7.18-7.20 (m, 1H), 7.39-7.44 (m, 3H), 7.50-7.52 (m, 1H), 7.60 (d, J= 5.6 

Hz, 1H), 7.76-7.77 (m, 1H), 8.16 (d, J = 5.6 Hz, 1H), 8.52 (d, J = 5.2Hz, 1H), 8.73 (br s, 1H, NH), 

8.89 (br s, 1H, NH) ppm. 
13

C NMR (DMSO-d6, 100.6 MHz): δ 115.3 (d, J = 22 Hz, 2×CH), 116.6 

(CH), 119.4 (CH), 120.2 (d, J = 7.0 Hz, 2×CH), 122.8 (CH), 125.1 (CH), 127.1 (CH), 128.9 (C), 

130.5 (CH), 130.8 (C), 132.0 (CH), 135.7 (C), 141.2 (C), 141.9 (C), 147.6 (CH), 152.5 (C), 155.9 

(C), 157.5 (d, J = 238 Hz, CF) ppm. MS (ESI- TOF) m/z (%): 396.06 (M
+
+H, 100). HRMS (ESI-

TOF): calcd for C20H15FN3OS2 [M
+
+H] 396.0635, found 396.0634. Anal. Cald. for C20H14FN3OS2: 

C 60.74, H 3.57, N 10.63, S 16.22%; found C 61.01, H 3.28, N 10.35, S 15.81%. 

4.1.2.8. 1-(3-Fluorophenyl)-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]urea (4e): From compound 

2b (60.0 mg, 0.230 mmol) and 3-fluorophenylisocyanate (35.0 mg) compound 4e was isolated as a 
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white solid (63.0 mg, 69%). Mp 104-105 ºC. 
1
H NMR (DMSO-d6, 400 MHz,): δ 6.77-6.78 (m, 1H), 

6.93 (d, 1H, J = 5.2 Hz), 7.09-7.11 (m, 2H), 7.19-7.20 (m, 1H), 7.21-7.29 (m, 1H), 7.41-7.52 (m, 

2H), 7.53-7.54 (m, 1H), 7.60 (d, 1H, J = 5.6 Hz), 7.7-7.7 (m, 1H,), 8.16 (d, 1H, J = 5.6 Hz), 8.52 (d, 

1H, J = 5.2 Hz), 8.94 (br s, 1H, NH), 8.96 (br s, 1H, NH) ppm. 
13

C NMR (DMSO-d6, 100.6 MHz): δ 

105.0 (d, J = 26 Hz, CH), 108.4 (d, J = 21 Hz, CH), 114.1 (d, J = 2 Hz, CH), 116.6 (CH), 119.5 

(CH), 122.9 (CH), 125.0 (CH), 127.3 (CH), 128.9 (C), 130.3 (d, J = 9.6 Hz, CH), 130.5 (CH), 130.8 

(C), 132.0 (CH), 140.9 (C), 141.3 (d, J = 11.5 Hz, C), 141.8 (C), 147.6 (CH), 152.2 (C), 155.9 (C), 

162.3 (d, J = 240 Hz, CF) ppm. MS (ESI- TOF) m/z (%): 396.06 (M
+
+H, 100). HRMS (ESI-TOF): 

calcd for C20H15FN3OS2 [M
+
+H] 396.0635, found 396.0627. Anal. Cald. for C20H14FN3OS2: C 

60.74, H 3.57, N 10.63, S 16.22%; found C 61.03, H 3.33, N 10.30, S 15.82%. 

4.1.2.9. 1-[3-(Thieno[3,2-b]pyridin-7-ylthio)phenyl]-3-m-tolylurea (4f): From compound 2b (60.0 

mg, 0.230 mmol) and m-tolylisocyanate (35.0 mg) compound 4f was isolated as a white solid (65.0 

mg, 72%). Mp 157-158 ºC. 
1
H NMR (DMSO-d6, 400 MHz): δ 2.25 (s, 3H, CH3), 6.77-6.79 (m, 1H), 

6.93 (d, 1H, J = 4.8 Hz), 7.11-7.20 (m, 3H), 7.26-7.29 (m, 1H), 7.39-7.44 (m, 1H), 7.49-7.51 (m, 

1H), 7.60 (d, 1H, J = 5.6 Hz), 7.79-7.80 (m, 1H), 8.16 (d, 1H, J = 5.6 Hz), 8.52 (d, 1H, J = 4.8Hz), 

8.61 (br s, 1H, NH), 8.87 (br s 1H, NH) ppm. 
13

C NMR (DMSO-d6, 100.6 MHz): δ 21.2 (CH3), 

115.5 (CH), 116.5 (CH), 118.9 (CH), 119.3 (CH), 122.8 (CH), 122.8 (CH), 125.0 (CH), 127.0 (CH), 

128.6 (CH), 128.8 (C), 130.5 (CH), 132.0 (CH), 137.9 (C), 139.3 (C), 139.6 (C), 141.2 (C), 141.9 

(C), 147.6 (CH), 152.3 (C), 155.9 (C) ppm. MS (ESI- TOF) m/z (%): 392.09 (M
+
+H, 100). HRMS 

(ESI-TOF): calcd for C21H18N3OS2 [M
+
+H] 392.0886, found 392.0894. Anal. Cald. for 

C21H17N3OS2: C 64.42, H 4.38, N 10.73, S 16.38%; found C 64.24, H 4.26, N 11.03, S 15.97%. 

4.1.2.10. 1-[3-(Trifluoromethyl)phenyl]-3-[3-(thieno[3,2b]pyridin-7-ylthio)phenyl]urea (4g): From 

3-(thieno[3,2-b]pyridine-7-ylthio)aniline (100 mg, 0.387 mmol) and 3-

(trifluoromethyl)phenylisocyanate (72.4 mg, 53.4 µL, 0.387 mmol ) compound 4g was isolated as a 
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beige solid (86.0 mg, 50%) Mp 138-140ºC. 
1
H NMR (DMSO-d6, 400 MHz): 6.93 (d, J = 4.8 Hz, 

6’’’-H), 7.23 (br d, 1H), 7.30 (br d, 1H), 7.42-7.57 (m, 4H), 7.60 (d, J = 5.6 Hz, 1H), 7.80 (br s, 1H,), 

7.96 (br s, 1H,), 8.16 (d, J = 5.6 Hz, 1H), 8.53 (d, J = 4.8 Hz, 5’’’-H), 9.03 (s, NH), 9.09 (s, NH). 
13

C 

NMR (DMSO-d6, 100.6 MHz): 114.30 (q, J = 3.9 Hz, 2’-CH), 116.53 (6’’’-CH), 118.30 (q, J = 3.9 

Hz, 4’-CH), 119.66 (CH), 122.00 (CH), 123.10 (CH), 123.8 (q, J = 273.0 Hz, CF3), 125.0 (CH), 

127.4 (CH), 128.86 (C), 129.5 (q, J = 31 Hz, CCF3), 130.0 (CH), 130.5 (CH), 130.78 (C), 132.1 

(CH), 140.30 (C), 140.90 (C), 142.00 (C), 147.50 (5’’’-CH), 152.39 (C), 155.79 (C) ppm. MS (ESI): 

446.25 (M
+
+H, 100). Anal. Cald. for C21H14F3N3OS2: C 56.62, H 3.17, N 9.43, S 14.40%; found C 

56.31, H 3.28, N 9.70, S 14.80%. 

4.1.2.11. 1-[4-Chloro-3-(trifluoromethyl)phenyl]-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]urea 

(4h): From 3-(thieno[3,2-b]pyridine-7-ylthio)aniline (78.6 mg, 0.304 mmol) and 4-chloro-3-

(trifluoromethyl)isocyanate (67.4 mg, 0.304 mmol) compound 4h was isolated as a beige solid (87.6 

mg, 60%). Mp 196-198ºC. 
1
H NMR (DMSO-d6, 400 MHz): 6.93 (d, J = 4.8 Hz, 6’’’-H), 7.23 (br d, 

1H), 7.43 (apparent t, J = 8.0 Hz, 4’’-H), 7.54-7.64 (4H, m), 7.77 (apparent t, J = 2.0 Hz, 2’’-H), 

8.06 (d, J = 2.4 Hz, 2’-H), 8.16 (d, J = 5.2 Hz, 1H), 8.52 (d, J = 4.8 Hz, 5’’’-H), 9.07 (s, NH), 9.20 

(s, NH). 
13

C NMR (DMSO-d6, 100.6 MHz): 116.6 (6’’’-CH), 116.9 (q, J = 6.0 Hz, 2’-CH), 119.7 

(CH), 122.5 (C), 122.8 (q, J = 272.6 Hz, CF3), 123.2 (CH), 123.3 (CH), 125.0 (CH), 126.7 (q, J = 

30.0 Hz, CCF3), 127.5 (CH), 128.9 (C), 130.50 (4’’-CH), 130.8 (C), 132.0 (CH), 132.1 (CH), 139.1 

(C), 140.8 (C), 141.9 (C), 147.6 (5’’’-CH), 152.3 (C), 155.9 (C) ppm. MS (ESI): m/z (%) 480.17 

(M
+ 35

Cl+H, 100), 482.17 (M
+ 37

Cl+H, 30)Anal. Cald. for C21H13ClF3N3OS2: C 52.55, H 2.73, N 

8.76, S 13.36%; found C 52.24, H 2.74, N 8.62, S 13.27%. 

4.1.2.12. 1-Phenyl-3-[4-(thieno[3,2-b]pyridin-7-ylthio)phenyl]urea (5a): From compound 2c (100 

mg, 0.370 mmol) and phenylisocyanate (44.0 mg) compound 5a was isolated as a yellow solid (90.0 

mg, 65%). Mp 92-93 ºC. 
1
H NMR (DMSO-d6, 300 MHz): δ 6.73 (d, J = 5.2 Hz, 1H), 6.96-7.01 (m, 
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1H), 7.26-7.29 (m, 2H), 7.44-7.47 (m, 2H), 7.55-7.62 (m, 5H), 8.15 (d, J = 5.4 Hz, 1H), 8.51 (br s, 

1H), 8.77 (br s, 1H, NH), 9.02 (br s, NH) ppm. 
13

C NMR (DMSO-d6, 75.4 MHz): δ 115.1 (CH), 

118.4 (2×CH), 118.8 (C), 119.3 (2×CH), 122.2 (CH), 125.0 (CH), 128.8 (2×CH), 131.7 (CH), 136.2 

(2×CH), 139.4 (C), 141.9 (C), 143.8 (C), 147.4 (CH), 152.3 (C), 155.6 (C) ppm. MS (ESI- TOF) 

m/z (%): 378.07 (M
+
+H, 100). HRMS (ESI-TOF): calcd for C20H16N3OS2 [M

+
+H] 378.0729, found 

378.0720. Anal. Cald. for C20H15N3OS2: C 63.64, H 4.01, N 11.13, S 16.99%; found C 63.82, H 

4.15, N 10.92, S 16.59%. 

4.1.2.13. 1-(4-Methoxyphenyl)-3-[4-(thieno[3,2-b]pyridin-7-ylthio)phenyl]urea (5b): From 

compound 2c (60.0 mg, 0.230 mmol) and 4-methoxyphenylisocyanate (35.0 mg,) compound 5b was 

isolated as a yellow solid (65.0 mg, 70%). Mp.195-196ºC. 
1
H NMR (DMSO-d6, 400 MHz): δ 3.71 

(s, 3H, OMe), 6.72 (d, J = 5.2Hz, 1H), 6.87 (d, J = 8.8 Hz, 2H), 7.36 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 

8.8 Hz, 2H), 7.58 (d, J = 5.6 Hz), 7.61 (d, J = 8.8 Hz, 2H), 8.14 (d, J = 5.6 Hz, 1H), 8.46 (d, J = 5.2 

Hz, 1H), 8.57 (br s, 1H, NH), 8.93 (br s, 1H, NH) ppm. 
13

 C NMR (DMSO-d6, 100.6 MHz): δ 55.2 

(OMe), 114.1 (2×CH), 114.9 (CH), 118.5 (C), 119.2 (2×CH), 120.2 (2×CH), 124.9 (CH), 129.4 (C), 

131.7 (CH), 132.3 (C), 136.2 (2×CH), 142.1 (C), 143.9 (C), 147.4 (CH), 152.5 (C), 154.7 (C), 155.7 

(C) ppm. MS (ESI- TOF) m/z (%): 408.08 (M
+
+H, 100). HRMS (ESI-TOF): calcd for C21H18N3O2S2 

[M
+
+H] 408.0835, found 408.0833. Anal. Cald. for C21H17N3O2S2: C 61.89, H 4.20, N 10.31, S 

15.74%; found C 62.01, H 3.94, N 10.60, S 15.32%. 

4.1.2.14. 1-(4-Cyanophenyl)-3-[4-(thieno[3,2-b]pyridin-7-ylthio)phenyl]urea (5c): From 

compound 2c (120 mg, 0.460 mmol) and 4-cyanophenylisocyanate (66.0 mg), compound 5c was 

isolated as a yellow solid (120 mg, 65%). Mp 154-155 ºC. 
1
H NMR (DMSO-d6, 400 MHz): δ 6.74 

(d, J = 5.2 Hz, 1H), 7.57 (d, J = 5.6 Hz, 1H), 7.58 (d, J = 8.8 Hz, 2H), 7.63-7.65 (m, 4H), 7.74 (d, J 

= 8.8 Hz, 2H), 8.15 (d, J = 5.6 Hz, 1H), 8.47 (d, J = 5.2 Hz, 1H), 9.20 (br s, 1H, NH), 9.29 (br s, 1H, 

NH) ppm. 
13

C NMR (DMSO-d6, 100.6 MHz): δ 103.6 (C), 115.1 (CH), 118.2 (2×CH), 118.4 (C), 
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119.2 (C), 119.6 (2×CH), 125.0 (CH), 129.5 (C), 131.8 (CH), 133.3 (2×CH), 136.1 (2×CH), 141.2 

(C), 143.6 (C), 143.9 (C), 147.5 (CH), 151.9 (C), 155.7 (C) ppm. MS (ESI- TOF) m/z (%): 403.07 

(M
+
+H, 100) HRMS (ESI-TOF): calcd for C21H15N4OS2 [M

+
+H] 403.0682, found 403.0681. Anal. 

Cald. for C21H14N4OS2: C 62.67, H 3.51, N 13.92, S 15.93%; found C 62.85, H 3.73, N 13.57, S 

15.55%. 

4.1.2.15. 1-[3-(Trifluoromethyl)phenyl]-3-[4-(thieno[3,2b]pyridin-7-ylthio)phenyl]urea (5d): From 

4-(thieno[3,2-b]pyridine-7-ylthio)aniline (90.8 mg, 0.351 mmol) and 3-(trifluoromethyl)phenyl-

isocyanate (65.8 mg, 0.351 mmol, 48.4 µL) compound 5d was isolated as a colourless solid (86.0 

mg, 55%). Mp.162-164ºC. 
1
H NMR (DMSO-d6, 400 MHz): 6.74 (d, J = 4.8 Hz, 6’’’-H), 7.33 (br d, 

4’-H), 7.52 (apparent t, J = 8.0 Hz, 5’-H), 7.56-7.61 (m, 4H), 7,65 (d, J = 9.0 Hz, 2H), 8.01 (br s, 2’-

H), 8.15 (d, J = 5.6 Hz, 1H), 8.47 (d, J = 4.8 Hz, 5’’’-H), 9.13 (s, NH), 9.14 (s, NH). 
13

C NMR 

(DMSO-d6, 100.6 MHz): 114.3 (q, J = 4.0 Hz, 2’-CH), 115.1 (6’’’-CH), 118.4 (q, J = 4.0 Hz, 5’-

CH), 119.36 (C), 119.63 (2 CH), 122.0 (CH), 122.83 (C), 124.2 (q, J = 271.6 Hz, CF3), 125.0 (CH), 

129.5 (q, J = 31.2 Hz, CCF3), 129.6 (C), 130.0 (4’-CH), 131.8 (CH), 136.1 (2 CH), 140.3 (C), 141.5 

(C), 143.7 (C), 147.5 (5’’’-CH), 152.3 (C), 155.7 (C) ppm. MS (ESI) m/z (%): 446.25 (M
+
+H, 100). 

Anal. Cald. for C21H14F3N3OS2: C 56.62, H 3.17, N 9.43, S 14.40%; found C 56.30, H 3.26, N 9.73, 

S 14.78%. 

4.1.2.16. 1-(4-Chloro-3-(trifluoromethyl)phenyl)-3-[4-(thieno[3,2-b]pyridin-7-ylthio)phenyl]urea 

(5e): From 4-(thieno[3,2-b]pyridine-7-ylthio)aniline (101.8mg, 0.394mmol) and 4-chloro-3-

(trifluoromethyl)phenyl-isocyanate (87.3mg, 0.394mmol) compound 5e was isolated as a light 

yellow solid (136 mg, 72%). Mp 224-226ºC. 
1
H NMR (DMSO-d6, 400 MHz): 6.74 (d, J = 4.8 Hz, 

6’’’-H), 7.56-7.66 (m, 7H), 8.1 (d, J = 2.4 Hz, 2’-H),  8.15 (d, J = 5.2 Hz, 1H), 8.47 (d, J = 4.8 Hz, 

5’’’-H), 9.18 (s, NH), 9.25 (s, NH). 
13

C NMR (DMSO-d6, 100.6 MHz): 115.1 (6’’’-CH), 117.0 (q, J 

= 6.0 Hz, 2’-CH), 119.7 (2×CH), 122.5 (C) 122.6 (C) 122.8 (q, J = 272.6 Hz, CF3), 123.3 (CH), 



33 

 

125.0 (CH), 126.7 (q, J = 30.2 Hz, CCF3), 129.5 (C), 131.8 (CH), 132.0 (CH), 136.1 (2×CH) 139.1 

(C), 141.3 (C), 143.6 (C), 147.4 (5’’’-CH), 152.2 (C), 155.7 (C) ppm. MS (ESI) m/z (%): 480.17 

(M
+ 35

Cl+H, 100), 482.17 (M
+ 37

Cl+H, 29). Anal. Cald. for C21H13ClF3N3OS2: C 52.55, H 2.73, N 

8.76, S 13.36%; found C 52.25, H 2.75, N 8.66, S 13.46%.  

 

4.2. VEGFR-2 kinase inhibition assay 

The compounds were assessed for VEGFR-2 inhibitory activity using the Z'-LYTE-Tyr1 Peptide 

assay kit (Invitrogen, Cat. PV3190) and according to the procedures recommended by the 

manufacturer.
12

 Briefly, assays were performed in a total of 20 µL in 384-well plates using 

fluorescence resonance energy transfer technology. A Tyr1 substrate (coumarin-fluorescein double-

labeled peptide) at 1 µM was incubated for 1 h with 4 µg/mL VEGFR-2, 10 μM ATP, and inhibitors 

at room temperature in 50 mM Hepes/NaOH (pH 7.5), 10 mM MgCl2, 2 mM MnCl2, 2.5mM DTT, 

0.10 mM orthovanadate, and 0.01% bovine serum albumin (BSA). Inhibitors were added to the 

wells with 4% DMSO added as solvent. The wells were incubated at 25 ºC for 1 h and 5 µL of 

development reagent was added to each well. After a second incubation of 1 h the stop reagent was 

added to each well. Using a Biotek FLX800 micro-plate the fluorescence was read at 445 nm and 

520 nm (excitation 400 nm), and Gen5™ Software was used for data analysis. The validation assay 

was performed using Staurosporine that present an IC50 value 6 nM that compares to the one 

reported in the literature.
16

 

 

4.3. Molecular docking protocol 

VEGFR-2 crystal structure (PDB: 3VHE) was extracted from the Protein Data Bank (PDB) 

(http://www.rcsb.org). The co-crystallized ligand was extracted from the PDB file, and 

AutoDockTools was used to assign polar hydrogens and Gasteiger charges. AutoGrid4 was used to 

http://www.rcsb.org/
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create affinity grid maps for all atom types. The affinity grids enclosed a volumetric space of 100 Å 

by 100 Å by 100 Å, with 0.375 Å spacing, centered on the coordinates x = 86.3, y = 51.2, z = 48.3. 

AutoDock4 (version 4.1) with the Lamarckian genetic algorithm was used with the following 

docking parameters: 100 docking runs, population size of 200, random starting position and 

conformation, translation step ranges of 2.0 Å, mutation rate of 0.02, crossover rate of 0.8, local 

search rate of 0.06, 2.5 and 25 million energy evaluations.
23

 Docked conformations were clustered 

using a tolerance of 2.0 Å RMSD. The entire virtual experiment was performed on a cluster of 64 

AMD 2.0 GHz processor, using software MOLA.
24 

The 3D compound-protein docking poses were 

analyzed manually using AutoDockTools, and Figure 1 was prepared using the software PyMOL.
18

 

 

4.4. Biological assays 

 

4.4.1. HUVECs Culture 

HUVECs were obtained from the Science Cell Research Labs (San Diego, CA, USA). HUVECs 

were harvested in gelatin-coated culture plates in M199 medium (Sigma-Aldrich, Sintra, Portugal) 

supplemented with 20% fetal bovine serum (FBS), 1% penicillin/ streptomycin (Invitrogen Life 

Technologies, Scotland, UK), 0.01% heparin (Sigma-Aldrich), and 30 mg/mL endothelial cell 

growth supplement (Biomedical Technologies Inc., MA, USA) and maintained at 37°C in a 

humidified atmosphere containing 5% CO2. The tested compounds were dissolved in DMSO and 

added to cell cultures at a concentration of 0.1-10 µM. Treatments were performed during 24 h in 

medium supplemented with 2% FBS, 1% penicillin/ streptomycin, and 60 ng/mL of the vascular 

endothelial growth factor (VEGF) (Sigma-Aldrich, Portugal). Control cells were treated with vehicle 

(0.1% DMSO). 
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4.4.2. HUVECs viability assay 

 HUVECs were seeded (2x10
5
 cells/mL) in 96-well plate, allowed to grow for 24 h and then 

incubated with different dilutions of tested compounds at a range concentration between 0.1 and 10 

µM or control (0.1% DMSO), in the presence of VEGF, for 24 h. After the incubation period, cells 

were washed with PBS and their viability was assessed using Cell Titer 96 Aqueous ONE Solution 

Reagent MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium] colorimetric assay (Promega, Madison, USA), according to the instructions provided by 

the manufacturer and as previously described.
25

 Optical density was measured at 492 nm.  

4.4.3. HUVECs Proliferation assay 

 HUVECs (6x10
4
 cells/mL) were grown during 24 h and then incubated with compounds at 0.1-10 

µM or control (0.1% DMSO), in the presence of VEGF, for 24 h. Cells were also incubated with 5’-

bromodeoxyuridine (BrdU) solution at a final concentration of 0.01 mM during the treatment period. 

Optical density of proliferating cells (positive for BrdU) after ELISA assay using anti-BrdU-specific 

antibodies (Roche Diagnostics, Mannheim, Germany) was evaluated at the microplate reader 

according to the manufacturer’s instructions and as previously reported.
26

 Results were expressed as 

percentage of control (100%). 

4.4.4. HUVECs Migration assay: Wound-healing  

HUVECs were seeded in a 24-well plates pre-coated with 0.1% gelatin and were allowed to grow to 

100% confluence. Cell culture were injured by a 10 µL tip, cells were washed twice with PBS, and 

then incubated with fresh medium containing VEGF with or without the compounds in study at 

different concentrations for 24 h.  Cell migration to the damaged area was then visualized and 

photographed on a phase contrast microscope (Nikon) at a magnification of 100 .
25

 Inhibition 

percentage was expressed as percentage of the control (100%).  
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4.4.5 HUVECs Capillary-like Tube Formation assay 

Matrigel
®
 basement membrane matrix (growth factor reduced) (Corning, USA) was thawed at 4ºC, 

pipetted into pre-chilled 24-well plates (200µL matrigel/well) and incubated at 37ºC for 30 min. 

Then HUVECs (8x10
4
 cells/mL) were added to matrigel coated plates, followed by addition of 

various concentrations of compounds in study with VEGF (60ng/mL). After 24 h of incubation with 

5% CO2 at 37ºC, the number of capillary-like tube formation of each well was photographed using a 

phase-contrast microscope (Nikon, UK) at 100 x magnifications. Tube formation was quantitated by 

manual counting the number of branch points.
25

 All experiments were done in triplicate. Inhibition 

percentage was expressed as percentage of control (100%).  

4.4.6. Western Blotting Analysis 

 In brief, proteins were isolated from HUVEC lysates using RIPA (Chemicon International, CA, 

USA) and 20 µg of protein were separated by 8% SDS-PAGE and transferred to Hybond 

nitrocellulose membrane (Amersham, Arlington, VA, USA). Membranes were then incubated with 

primary antibodies including phosphorylated (activated) VEGFR-2 (Santa Cruz Biotechnology, CA, 

USA), total VEGFR-2 (Cell Signalling, MA, USA) and β-actin (Abcam, Cambridge, UK). After 

overnight incubation at 4°C, membranes were washed with TBST and incubated with secondary 

antibodies at room temperature for 1 h. Immunoreactive bands were then visualized by the enhanced 

chemiluminescence detection system (ECL kit, Amersham, Arlington, USA).
26

    

4.4.7. Statistical Analyses 

 All experiments were performed at least in three independent experiments. Data are expressed as 

mean ± SEM. The significance of the differences between the means observed was evaluated using 

the one-way ANOVA followed by Bonferroni test. p < 0.05 was considered statistically significant. 
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