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ABSTRACT 

Phenolic acids are present in our diet in different foods. In particular, mushrooms are a 

good source of these molecules. Due to their bioactive properties, phenolic acids are 

extensively studied and there is evidence of their role in disease prevention. 

Nevertheless, in vivo, these compounds are metabolized and circulate in the organism as 

glucuronated, sulfated and methylated metabolites, displaying higher or lower 

bioactivity. To clarify the importance of the metabolism of phenolic acids, the 

knowledge about the bioactivity of the metabolites is extremely important. 

In this review, chemical features, biosynthesis and bioavailability of phenolic acids are 

discussed as well as the chemical and enzymatic synthesis of their metabolites. Finally, 

the metabolites bioactive properties are compared with that of the corresponding 

parental compounds. 

 

Keywords: Mushrooms; phenolic acids; biosynthesis/bioavailability; metabolites; 

chemical/enzymatic synthesis; bioactivity   
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1. Introduction 

Mushrooms are rich sources of bioactive compounds with an enormous variety of 

chemical structures (Ferreira, Barros & Abreu, 2009). In particular, different bioactive 

properties have been attributed to phenolic acids from mushrooms, namely antitumor 

(Vaz, Almeida, Ferreira, Martins & Vasconcelos, 2012; Heleno, Ferreira, Calhelha, 

Esteves & Queiroz, 2014a), antimicrobial (Alves, Ferreira, Froufe, Abreu, Martins & 

Pintado, 2013), and antioxidant (Piazzon, Vrhovsek, Masuero, Mattivi, Mandoj & 

Nardini, 2012). 

However, very little is known about phenolic acids bioactive forms in vivo and the 

mechanisms by which they may contribute toward disease prevention. Moreover, 

several studies dealing with the biological effects of phenolic acids have ignored the 

question of their achievable concentrations in the circulation after ingestion as well as 

the possibility of metabolism (Rechner, Kuhnle, Bremner, Hubbard, Moore & Rice-

Evans, 2002). There is accumulating evidence suggesting that phenolic acids are rapidly 

metabolized in the human organism (Scalbert & Williamson, 2000; Rechner et al., 

2002; Nardini, Forte, Vrhovsek, Mattivi, Viola & Scaccini, 2009).  

After absorption from the gastrointestinal tract, these molecules suffer conjugation 

reactions and several changes in their initial structure and circulate in human plasma as 

conjugated forms, glucuronide, methylated and sulfated derivatives. These changes in 

their structures may increase or decrease the bioactivity of the initial phenolic acids 

(Rechner et al., 2002; Piazzon et al., 2012). 

Therefore, detailed knowledge concerning the conjugative and metabolic events and 

resulting plasma levels following the ingestion of a polyphenol-rich diet is crucial for 

the understanding of their bioactivity (Rechner et al., 2002). Despite the large data 

concerning the bioactivity of phenolic acids, only a few studies deal with the bioactive 
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properties of their metabolites, especially as most of those molecules are not 

commercially available (Piazzon et al., 2012). 

In this review, several features of the phenolic acids found in mushrooms will be 

discussed, namely the chemical characterization, biosynthesis pathways, the 

bioavailability and metabolism, as well as the chemical and enzymatic synthesis of 

glucuronated, sulphated and methylated metabolites of different phenolic acids. The 

antioxidant, antimicrobial and antitumor properties of the metabolites will be discussed 

and compared with the bioactivities of the corresponding parental phenolic acid. 

 

2. Chemical features and biosynthesis of phenolic acids usually found in 

mushrooms 

Mushrooms have been extensively studied during the last decades due to their bioactive 

potential (Ferreira et al., 2009) attributed to different molecules including phenolic 

acids. These compounds (Figure 1) have been identified in different mushroom species 

around the world (Valentão et al., 2005; Puttaraju, Venkateshaiah, Dharmesh, Urs & 

Somasundaram, 2006; Ribeiro, Valentão, Baptista, Seabra & Andrade, 2007; Kim et al., 

2008).  

Phenolic acids can be divided into two major groups, hydroxybenzoic acids and 

hydroxycinnamic acids, which are derived from non-phenolic molecules of benzoic and 

cinnamic acid, respectively. Chemically, these compounds have at least one aromatic 

ring in which at least one hydrogen is substituted by a hydroxyl group (Figure 1). 

Phenolic compounds, where phenolic acids are included, are secondary metabolites 

from plants and fungi. These compounds are produced for protection against lightning  

UV, insects, viruses and bacteria. There are even certain plant species that develop  

phenolic compounds to inhibit the growth of other plant competitors (allelopathy). 
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Examples of phenolic acids with allelopathic action are caffeic and ferulic acids. It is 

believed that phenolic compounds were fundamental for plants in the conquer of their 

terrestrial environment. This is the case of lignin which stimulates the development of 

the vascular system, giving stiffness to the vessels (Gross, 1985).  

Phenolic acids are synthesized from the shikimate pathway from L-phenylalanine or L- 

tyrosine (Rice-Evans, Miller & Paganga, 1996) (Figure 2, Table 1). Phenylalanine and 

tyrosine are very important amino acids in this pathway since these amino acids are the 

common precursors of the majority of the natural phenolic products (Figure 2, Table 

1).  

Firstly, it occurs a deamination of the phenylalanine and/or the tyrosine giving cinnamic 

and/or p-coumaric acids as results of these steps, respectively. Cinnamic and p- 

coumaric acid aromatic rings are then hydroxylated and methylated to form its 

derivatives e.g., ferulic and caffeic acids, being deamination, hydroxylation and 

methylation the main three reactions involved in the formation of phenolic acids 

(Figure 2, Table 1) (Gross, 1985). Benzoic acid formation can result from the 

degradation of the side chain of cinnamic acid. As mentioned for cinnamic and p-

coumaric acids, the same reactions of hydroxilation and methylation can occur in the 

aromatic ring of benzoic acid giving the correspondent derivatives e.g., protocatechuic 

and p-hydroxybenzoic acids (Gross, 1985). 	
  

	
  

3. In vivo human metabolism of phenolic acids 

3.1. Bioavailability of phenolic acids 

Despite the extensive literature describing the biological effects of phenolic acids, little 

is known about how they are absorbed from diet. 
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Phenolic acids are present in almost all the plant-derived foods, representing a 

significant portion of the human diet. The average phenolic acid intake in humans has 

been reported to be in the order of 200 mg/day depending on the diet habits and 

preferences (Clifford & Scalbert, 2000). The most frequently encountered and studied 

phenolic acids are caffeic and ferulic acids. Caffeic acid is also found in the form of 

esters being chlorogenic acid the most frequently encountered (Clifford & Scalbert, 

2000). Coffee is normally the matrix studied for the absorption of these molecules since 

this matrix is a good source of bound phenolic acids such as caffeic, ferulic and p-

coumaric acids (Nardini, Cirillo, Natella & Scaccini, 2002). In patients that ingested a 

specific quantity of coffee, Marmet, Actis-Goretta, Renouf & Giuffrida, (2014) several 

methylated, glucuronated and sulfated metabolites of phenolic acids circulating in 

plasma, were identified. In another study, Fumeaux et al. (2010) described that after a 

specific dose of coffee consumption, several hydroxycinnamic acid sulphate and 

glucuronide conjugates were present in human biological fluids. Nardini et al. (2009) 

studied the absorption of phenolic acids from white wine and reported that after the 

consumption of a single wine drink, hydroxycinnamic acids are absorbed from the 

gastrointestinal tract and circulate in the blood after being largely metabolized to 

glucuronide and sulfate conjugates. 

In the past decades, mushrooms have received special attention because they are 

described as being rich sources of phenolic acids that are amongst the major 

contributors to their medicinal properties (Ferreira et al., 2009).  The extensive 

knowledge of the phenolic acids bioavailability is essential to understand their 

conjugations and bioactivities in the organism. Phenolic acids are a considerable group 

inside the polyphenols family and there is evidence that when they are absorbed in the 

free form as they are mostly found in mushrooms, their absorption and conjugation, 
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specially glucuronation, follow the same pathways that the absorption and conjugation 

of flavonoids and other polyphenols (Cremin, Kasim-Karakas & Waterhouse, 2001). 

Thus, during the absorption, polyphenols are conjugated in the small intestine and later 

in the liver, occurring methylation, sulfation and glucuronidation as the main 

conjugation reactions (Manach, Scalbert, Morand, Rémésy & Jiménez, 2004). This is a 

very important process of detoxication to avoid potential toxic effects and also because 

increasing their hydrophilicity they can easily be eliminated by the biliary or the urinary 

route. These conjugation mechanisms are very efficient and aglycones are present in the 

blood in very low concentrations after the consumption of polyphenols. 

Circulating polyphenols are conjugated derivatives that are extensively bound to 

albumin. Generally polyphenols are secreted by the biliary pathway into the duodenum, 

in the distal segments of the intestine where they are under the action of bacterial 

enzymes, particularly β- glucuronidase and, after this step, they can be reabsorbed what 

may lead to a longer presence of polyphenols within the body (Manach et al., 2004).  

The bioavailability of polyphenols is crucial to their biological properties. To study the 

bioavailability of these molecules, different authors measured their concentrations in the 

plasma and urine after the ingestion of a known content as pure compounds or 

incorporated in food (Pérez-Jiménez et al., 2010).  

When ingested in the free form phenolic acids are rapidly absorbed by the small 

intestine and are later conjugated (Scalbert & Williamson, 2000). Nevertheless, the 

chemical structures of the compounds can also influence the conjugation reactions as 

well as the amounts of metabolites formed by the gut microflora in the colon (Scalbert 

& Williamson, 2000). For example, in chlorogenic acid (a caffeic acid ester linked to 

quinic acid), the ester bound can change its biological properties. In human tissues there 
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are no esterases able to release caffeic acid from chlorogenic acid (Plumb et al., 1999). 

Thus, the only local possible for chlorogenic acid metabolism is the colon. 

In agreement with this, ferulic or other hydroxycinnamic acids bound to cell walls are 

also not released from human endogenous enzymes and require release by enzymes 

such as xylanases and esterases of the colonic microflora (Kroon, Faulds, Ryden, 

Robertson & Williamson, 1997). When these molecules are hydrolyzed by the colonic 

flora, the efficiency of their absorption is reduced because flora can degrade the 

aglycones releasing simple aromatic acids (Scalbert & Williamson, 2000), meaning that 

the efficiency of absorption of phenolic acids is markedly reduced when they are 

present in the esterified form rather than in the free forms (Azuma et al., 2000; Olthof, 

Hollman & Katan, 2001). Olthof et al. (2001) reported that in patients with colonic 

ablation, caffeic acid was better absorbed than chlorogenic acid. In another report, 

where chlorogenic acid was given to rats, no intact compound was detected in plasma in 

the following 6h, and the maximum concentrations of metabolites obtained after 

administration of caffeic acid in the same conditions, were much higher than those of 

the metabolites obtained after chlorogenic acid administration (glucuronated and 

sulfated derivatives of caffeic and ferulic acids) (Azuma et al., 2000). Glucuronated 

metabolites, for example acyl glucuronides can react with sulfhydryl and hydroxyl 

groups and can be hydrolyzed back to the aglycone (Spahn-Langguth & Benet, 1992). 

These molecules can go through covalent binding to plasma proteins (Zhou et al., 

2001), and react with glutathione and transacylate cellular macromolecules (Faed, 

1984). Moreover, acyl glucuronides go through rearrangements due to intramolecular 

acyl migration from –OH to the adjacent −OH, giving different positional isomers.  

The rearrangement of glucuronides through the biosynthetic C-1 isomers to other 

positional isomers is very important because only 1-O-substituted acyl glucuronides are 
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substrates of β-glucuronidase, an enzyme commonly used to identify these conjugates 

that are very important (Sinclair & Cardwell, 1982) when measuring the concentrations 

of phenolic acids present in biological fluids as glucuronic acid esters. The migration of 

acyl groups occurs in plasma, bile and urine (Faed, 1984). Additionally, if β-

glucuronidase hydrolysis is used to liberate the aglycones in the sample containing the 

rearranged isomers, the concentrations of glucuronic acid conjugates of carboxylic acid 

might be underestimated (Faed, 1984). 

 

3.2. Conjugation reactions for metabolites formation 

After the ingestion and once absorbed, phenolic acids are conjugated by methylation, 

sulfation and glucuronidation reactions that are controlled by specific enzymes that 

catalyze these steps (Figure 3).  

Catechol-O-methyl transferase catalyses the transfer of a methyl group from S-

adenosyl-L-methionine to polyphenols that have an o-diphenolic moiety (Wu, Cao & 

Prior, 2002). The methylation generally occurs in the 3´position of the polyphenol with 

a minor proportion of 4´-O-methylated product also formed. These enzymes showed the 

highest activity in the liver and kidneys (Piskuta & Terrao, 1998). 

Sulfotransferases catalyze the transfer of a sulfate moiety from 3´-phosphoadenosine-5´-

phosphosulfate to a hydroxyl group on polyphenols and this conjugation reaction occurs 

in the liver (Piskuta & Terrao, 1998).  

The membrane-bound enzymes UDP-glucuronosyltransferases that are located in the 

endoplasmatic reticulum in many tissues catalyze the transfer of a glucuronic acid from 

UDP-glucuronic acid to polyphenols. The presence of glucuronidated metabolites in the 

mesenteric or portal blood after perfusion of polyphenols in the small intestine of rats 
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shows that glucuronidation of polyphenols first occurs in the enterocytes before 

conjugation in the liver (Crespy et al., 2001).  

Conjugation reactions appear to vary according to the nature of the polyphenol and the 

dose ingested. Sulfation has generally a higher-affinity, lower-capacity pathway than 

glucuronidation, so that when the ingested dose is increased, a rise from sulfation 

toward glucuronidation occurs (Koster, Halsema, Scholtens, Knippers & Mulder, 1981).  

Identification of circulating metabolites has been undertaken for only a few 

polyphenols. Further investigation is needed to know not only the nature and number of 

the conjugating groups but also the positions of these groups on the polyphenol 

structure, because these positions can affect the biological properties of the conjugates 

(Day, Bao, Morgan & Williamson, 2000). There are only a few studies describing the 

proportions of the various conjugates and the percentages of free forms in plasma but 

the main circulating compounds are generally glucuronides (Zhang et al., 2003).  

To be eliminated these metabolites can follow two pathways: the biliary or the urinary 

pathway. Large extensively conjugated metabolites are more likely to be eliminated in 

the bile, whereas small conjugates such as monosulfates are preferentially excreted in 

the urine (Crespy et al.,  2003).  

 

4. Bioactive properties of phenolic acids 

Phenolic acids are often included in human diet and have been largely studied due to 

their bioactivities such as antioxidant (Rice-Evans et al., 1996, Ferreira et al., 2009), 

antitumor (Carocho & Ferreira., 2013; Heleno et al., 2014a) and antimicrobial (Alves et 

al., 2013) properties, among others. In particular, mushrooms are a source of these 

molecules in diet (Table 2). 
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Gallic acid, besides having astringent and styptic uses has also several bioactivities 

reported such as antineoplastic, bacteriostatic, antimelanogenic and antioxidant 

properties (Kim, 2007). This molecule showed anticancer properties in prostate 

carcinoma cells (Kaur, Velmurugan, Rajamanickam, Agarwal & Agarwal, 2009). 

Grupta, Grupta & Mahmood (2007), reported gallic acid as a potent inhibitor of brush 

border sucrose and other disaccharides in the mammalian intestine, while Kratz et al. 

(2008) described its promising activity as an anti-HSV-2 (Herpes simplex virus) agent. 

Furthermore, Lu et al. (2010) proposed gallic acid as a candidate for treatment of brain 

tumors due to its ability to suppress cell viability, proliferation, invasion and 

angiogenesis in human glioma cells. In another study, this phenolic acid proved to 

induce HeLa cervical cancer cells death by apoptosis and necrosis (You, Moon, Han & 

Park, 2010). 

p-Hydroxybenzoic acid, has been reported to have antioxidant activity against free 

radicals (Rice-Evans et al., 1996), antimicrobial activity against pathogenic bacteria and 

fungi (Heleno et al., 2013a) among other bioactivities such as estrogenic and 

antimutagenic properties (Pugazhendhi, Pope & Darbre, 2005).  

Protocatechuic acid possesses several bioactivities such as antioxidant (Ferreira et al., 

2009), antimicrobial (Alves et al., 2013), cytotoxic (Yip, Chan, Pang, Tam & Wong, 

2006), chemopreventive, apoptotic (Yin, Lin, Wu, Tsao, & Hsu 2009), and 

neuroprotective (An, Guan, Shi, Bao, Duan & Jiang, 2006) properties, being also a LDL 

oxidation inhibitor (Hur et al., 2003). 

Another phenolic acid with beneficial properties is vanillic acid that showed antisicking 

and anthelmintic activities, being also able to suppress hepatic fibrosis in chronic liver 

injury (Itoh et al., 2010). Furthermore, this compound proved to be able to inhibit snake 

venom 5’-nucleotidase (Dhananjaya, Nataraju, Gowda, Sharath & D'Souza, 2009).   
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Syringic acid revealed antioxidant, antibacterial and hepatoprotective activities (Kong, 

Zhao, Shan, Xiao & Guo, 2008; Itoh et al., 2010). 

Gentisic acid has been described as having anti-inflammatory, antirheumatic and 

analgesic activities, being also a cytostatic agent and capable to inhibit low density 

lipoprotein oxidation in human plasma (Ashidate et al., 2005). 

Lin & Nakatsui (1998) described that salicylic acid has analgesic, antipyretic, anti-

inflammatory, antiseptic and antifungal properties.  

Besides being antioxidant (Rice-Evans et al., 1996; Ferreira et al., 2009), cinnamic acid 

was also reported as an antitumor agent by Vaz et al. (2012) that verified its capacity to 

inhibit cell growth in a non-small lung cancer cell line (NCI-H460). Heleno et al. 

(2014a) in agreement with the mentioned authors, referred the cytotoxicity of cinnamic 

acid against the same cell line, also revealing activity against colon (HCT15) and 

cervical (HeLa) carcinoma cell lines. Ekmekcioglu, Feyertag & Marktl (1998), reported 

that this compound was able to inhibit proliferation and modulate brush border 

membrane enzyme activities in human colon adenocarcinoma cells (CaCo-2). 

Different authors (Alves et al., 2013; Heleno et al., 2013a) described cinnamic acid as 

an antimicrobial agent, showing  activity against Gram positive and Gram negative 

bacteria (either clinical isolates or collection microorganisms), and fungi. 

p- Coumaric acid also revealed antioxidant activity against free radicals (Rice-Evans et 

al., 1996), and antitumor activity against breast (MCF7), NCI-H460 and HCT15 

carcinoma cell lines (Heleno et al., 2014a). In a study about antimicrobial activity 

performed by Lou, Wang, Rao, Sun, Ma & Li (2012), the authors reported that p- 

coumaric acid had dual mechanisms of bactericidal activity: it was able to disrupt 

bacterial cell membranes and binding to bacterial genomic DNA to inhibit cellular 
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functions, leading to cell death. Heleno et al. (2014b) also described a promising 

antimicrobial activity of p-coumaric acid against several pathogenic bacteria and fungi.  

Caffeic and ferulic acids have also been accounted for their bioactive properties. These 

phenolic acids showed antioxidant activities measured by common assays such as 

DPPH (2,2-diphenyl-1-picrylhydrazyl radical), ABTS (2,2'-azino-bis(3-   

thylbenzothiazoline-6-sulphonic acid)) and ORAC (oxygen radical absorbance capacity) 

methods (Vilãno, Fernández-Pachón, Troncoso & García-Parrilla., 2005; Piazzon et al., 

2012). These compounds have been also reported as antimicrobial agents against 

pathogenic bacteria and fungi (Alves et al., 2013).  

Yagasaki, Miura, Okauchi & Furuse  (2000) that studied the activity of chlorogenic acid 

and its related compounds such as caffeic acid, proved that both chlorogenic acid as 

well as the released compound caffeic acid were able to significantly reduce the 

invasion of a rat ascites hepatoma cell line (AH109A), without altering the cell 

proliferation.  

The diverse biological functions of these phenolic acids suggest potential 

pharmacological activities (Khadem & Marles, 2010). Thus, looking at all the 

promising bioactivities and knowing that mushrooms are a rich source of these 

molecules we can conclude that mushrooms are a good option to include in our daily 

diet.  

 

4. Controversy on in vivo bioactivity of polyphenols 

As mentioned above, phenolic acids represent a significant portion of polyphenols 

family in our diet. Their bioactivity, specially antioxidant properties are related with the 

phenolic hydroxyl groups attached to ring structures and these molecules can act as 

reducing agents, hydrogen donators, singlet oxygen quenchers, superoxide radical 
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scavengers and as metal chelators over hydroxyl and peroxyl radicals, superoxide 

anions and peroxynitrites (Terpinc et al., 2011). 

Nevertheless, there has been some controversy about the bioactivity of polyphenols 

after metabolism. Once ingested, these molecules are metabolized and transformed in 

methylated, glucuronated and sulfated metabolites (Manach et al., 2004).  

Glucuronidation and sulfation conjugation reactions are described to have a significant 

impact on the bioactivity of polyphenols. These conjugation reactions significantly 

reduce polyphenols antioxidant activity, since both sulfation and glucuronidation occur 

at the reducing hydroxyl groups of the phenolic structure, which are the functions 

mainly responsible for the antioxidant properties of polyphenols (Piazzon et al., 2012). 

There are only a few studies about the biological properties of the conjugated 

derivatives of polyphenols, where phenolic acids are included, present in plasma or 

tissues because of the lack of precise identification and commercial standards.  

Polyphenols are expected to act at water-lipid interfaces and may also be involved in 

oxidation regeneration pathways with vitamins C and E, since the hydrophobicity of 

these compounds is intermediate between that of vitamin C (highly hydrophilic) and 

that of vitamin E (highly hydrophobic) (Manach et al., 2004).  

Glucuronidation and sulfation render polyphenols more hydrophilic, which can affect 

their site of action and interactions with other antioxidants (Manach et al., 2004).  

For phenolic acids, bearing a carboxyl function in addition to the hydroxyl groups, 

glucuronidation can occur at the reducing hydroxyl group (phenyl-O-glucuronides) and 

at the carboxylic group (acyl glucuronides). Therefore, acyl glucuronides retain all the 

free reducing hydroxyl functions of the parent compound while in the case of phenyl-O-

glucuronides, at least one hydroxyl group of the phenolic acid is bound to the 

glucuronate moiety (Piazzon et al., 2012). 
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Cren-Olive, Teissier, Duriez & Rolando (2003), described that methylated polyphenols 

present lower ability to protect low density lipoproteins (LDL) from in vitro oxidation 

than the respective parental compound. On the other hand, several authors reported an 

increase on the antioxidant capacity of plasma after the consumption of various 

polyphenol-rich foods, meaning that some of the polyphenol metabolites retain 

antioxidant activity (Serafini, Laranjinha, Almeida & Maiani., 2000).  

Nevertheless, conjugation reactions might enhance certain specific bioactivities. For 

example, Koga & Meydani (2001), described that plasma metabolites of catechin have 

inhibitory effect on monocyte adhesion to interleukin 1 β-stimulated human aortic 

endothelial cells, while catechin had no effect. In another study, quercetin 3-O-

glucuronide presented vascular smooth muscle cell hypertrophy by angiotensin II 

(Yoshizumi et al., 2002). In contrast, Spencer et al. (2001), reported that two flavonoid 

metabolites (5-and 7-O-glucuronides of epicatechin) were unable to protect fibroblasts 

and neuronal cells from oxidative stress in vitro, while epicatechin and 

methylepicatechin were protective. The bioactivity of phenolic acids and metabolites 

will be compared and discussed in section 6. 

Further investigation on the bioactivities of these molecules is needed to better 

understand the effects of the type and position of conjugation on the various potential 

activities of polyphenols.  

 

5. Chemical and enzymatic synthesis of phenolic acid metabolites 

There are only a few reports in the literature describing the synthesis of metabolites 

from phenolic acids to evaluate their bioactivities in comparison with the corresponding 

parental compounds. 
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Piazzon et al. (2012) as well as our research group (Heleno et al., 2013a; Heleno et al., 

2014a), described the chemical or enzymatic synthesis of glucuronated, sulfated and 

methylated derivatives of several phenolic acids, obtaining structures similar to those 

formed in vivo after phenolic acids metabolism (Figure 4A-E).  

For the glucuronidation reactions, the authors reacted the phenolic acids with 

acetobromo-α-D-glucuronic acid methyl ester, potassium carbonate and dimethyl 

sulfoxide (Heleno et al., 2013a) or with sodium hydroxide and acetonitrile (ACN) 

(Piazzon et al., 2012) at room temperature, to obtain the glucuronide protected forms of 

the parental acids (Figure 4A-D). Piazzon et al. (2012) continued the reaction to obtain 

the final deprotected glucuronide using potassium hydroxide, water and chloridric acid 

as reaction conditions to obtain the final deprotected glucuronide (Figure 4A).  

The same authors also synthesized glucuronides from FA using mouse liver 

microssomes. After extraction procedures and HPLC analysis with electrochemical or 

UV detection, FA, FAG and another compound, the ferulic acid 4´-O-glucuronide 

(FFG) were identified and quantified, being the ratio between FFG and FAG of 2.4:1, 

residual FA was also quantified (Piazzon et al., 2012). 

For the methylation reactions, the authors performed several different steps in order to 

obtain the complete series of methylated compounds derived from each phenolic acid. 

CAM, CoAM1 and HAM1 were obtained by reacting the parental compound with 

sulphuric acid in methanol at room temperature, affording the desired derivatives that 

have the carboxylic group from the parental compound replaced by a methoxy group, 

HAM1 and CoAM1 have a free hydroxyl group in the p-positions (Figure 4B-D) 

(Heleno et al., 2014a). 

CoAM2 and HAM2 were achieved by reacting the parental compounds with dimethyl 

sulphate and potassium carbonate in acetone at 45-50ºC, affording the desired 
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compounds that have both carboxylic and hydroxyl groups replaced by methoxyl groups 

(Figure 4C,D) (Heleno et al., 2014a). 

To afford CoAM3 and HAM3, the compounds HAM2 and HAM3 were reacted with 

NaOH and ethanol at 65ºC affording the desired compounds in which the carboxylic 

group remains but the hydroxyl group from the p-position is replaced with a methoxyl 

group, completing the series (Figure 4C,D) (Heleno et al., 2014a). 

Piazzon et al. (2012) synthesized ferulic acid sulphate ester and caffeic acid 

monosulfate esters according to procedures previously described by Todd, Zimmerman, 

Crews & Alberte (1993). Briefly, the sulfurochloridic acid (ClOS3H) was added 

dropwise to ferulic and caffeic acids in pyridine and the reaction stayed on stirring at 

20ºC. The authors obtained ferulic acid 4´-O-sulfate, caffeic acid 4´-O-sulfate and 

caffeic acid 3´-O-sulfate (Figure 4E). 

 

6. Bioactivity of phenolic acids versus their metabolites 

All the glucuronated, methylated and sulphated compounds mentioned above and the 

respective parental phenolic acids were studied for their bioactivities namely, 

antioxidant (Piazzon et al., 2012), antimicrobial (Heleno et al., 2013a; Heleno et al., 

2014b) and antitumor (Heleno et al., 2014a) properties, in order to compare the 

biological activity of the parental compounds before and after metabolism in vivo.  

Piazzon et al. (2012) also evaluated the antioxidant activity of some commercial 

glucuronides derived from ferulic and caffeic acids namely, ferulic acid-4´-O-

glucuronide (FFG), caffeic acid-3´-O-glucuronide and caffeic acid-4´-O-glucuronide. 

The antioxidant activity of the glucuronated and sulphated compounds was measured by 

both the ferric reducing antioxidant power (FRAP, ferric reducing ability) and the 

ABTS radical scavenging assays.  
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Concerning the glucuronide derivatives, the results showed that FAG, the acyl 

glucuronide of ferulic acid was able to retain antioxidant activity, similar to the activity 

of the parental compound in the FRAP assay, while in the ABTS assay its activity 

decreased almost 50% in comparison with ferulic acid antioxidant activity for this 

assay. 

However, the phenyl-O-glucuronide of ferulic acid, the ferulic acid 4´-O-glucuronide, 

showed much lower antioxidant activity than ferulic acid in both antioxidant activity 

assays. Caffeic acid 3´-O-glucuronide also retained a strong antioxidant activity in 

comparison with the parental phenolic acid activity for the FRAP assay, while for the 

ABTS its activity was also a half of the activity of caffeic acid. 

Caffeic acid 4′-O-glucuronide displayed a good antioxidant activity with ABTS assay, 

which is about a third with respect to that of caffeic acid, while with the FRAP assay, it 

was about 20-fold lower than the one of caffeic acid.  

Regarding the sulfate derivatives of ferulic and caffeic acids, Piazzon et al. (2012) 

verified that their activity is lower when compared with the antioxidant activities of the 

parental phenolic acids for both assays. These results showed the importance of the 

reducing hydroxyl groups in the antioxidant activity of phenolic acids and their 

metabolites. 

Considering all the metabolites tested the acyl glucuronide of ferulic acid and the 

phenyl 3´-O-glucuronide of caffeic acid retained a strong antioxidant capacity. These 

compounds remained with the 4´-hydroxyl groups in the aromatic ring that is 

determinant for the antioxidant activity (Hodnick, Milosevljevic, Nelson & Pardini., 

1988; Pulido, Bravo & Saura-Calixto., 2000). 

Heleno et al. (2013a) and Heleno et al. (2014b) evaluated the antimicrobial activity of p-

hydroxybenzoic, cinnamic and p-coumaric glucuronated protected forms and 
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methylated metabolites, and compared their antimicrobial activities with those of their 

parental compounds. The authors measured the antimicrobial activity against Gram-

positive bacteria (Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, and 

Micrococcus flavus), Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia 

coli, Salmonella typhimurium, Enterobacter cloacae), and fungi (Aspergillus fumigatus, 

Aspergillus versicolor, Aspergillus ochraceus, Aspergillus niger, Trichoderma viride, 

Penicillium funiculosum, Penicillium ochrochloron, Penicillium verrucosum var. 

cyclopium), and also the demelanizing activity against the mentioned fungi. 

Regarding the antibacterial activity, the glucuronide protected forms of p-

hydroxybenzoic, cinnamic and p-coumaric acids (HAGP, CAGP and CoAGP) revealed 

lower activity than the parental compounds, with the exception of CoAGP that 

maintained the antibacterial activity of p-coumaric acid.  

Methylated derivatives of p-hydroxybenzoic acid (HAM1, HAM2 and HAM3) 

presented lower antibacterial activity than the parental compound HA. Cinnamic acid 

presented an excellent antibacterial activity against all the tested bacteria, while its 

methylated derivative revealed a much lower activity. Methylated derivatives of p-

coumaric acid (CoAM1, CoAM2 and CoAM3) revealed higher activity than the 

parental compound. 

Concerning the antifungal activity, glucuronated protected forms, HAGP, CAGP and 

CoAGP, revealed higher activity than the respective parental compounds against almost 

all the fungi tested. 

Regarding the methylated derivatives, all the p-hydroxybenzoic acid derivatives showed 

lower activity than the parental compound as well as the methylated derivative of 

cinnamic acid, CAM. Nevertheless, all the p-coumaric acid derivatives, CoAM1, 

CoAM2 and CoAM3 showed higher activity than the parental compound. 
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Compounds HAM1 and HAM3 showed demelanizing effect on A. fumigatus, lowering 

the amount of conidia and giving nude vesicle without conidia, as well as compounds 

CoAM1, CoAM2, HAM3 and CAM on P. verrucosum. 

Heleno et al. (2014a), reported the cytotoxicity of p-hidroxybenzoic, cinnamic and p-

coumaric acid glucuronated protected forms (HAGP, CAGP and CoAGP) and 

methylated derivatives (HAM1, HAM2, HAM3, CAM, CoAM1, CoAM2 and CoAM3), 

against five human tumor cell lines namely, MCF-7 (breast adenocarcinoma), NCI-

H460 (non-small cell lung carcinoma), HCT15 (colon carcinoma), HeLa (cervical 

carcinoma) and HepG2 (hepatocellular carcinoma).  

The authors reported that the glucuronated protected forms presented higher 

cytotoxicity than the parental molecules against all the tested cell lines. Regarding 

methylated derivatives of p-hydroxybenzoic acid, HAM1 and HAM2, showed higher 

cytotoxicity than the parental phenolic acid, as well as p-coumaric acid methylated 

derivatives. The presence of an ester group increased the growth inhibitory activity of 

the compounds; HAM1 and CoAM1 have the carboxylic group replaced by an ester 

group and an hydroxyl group in the para position, while HAM2 and CoAM2 have also 

a carboxylic group replaced by an ester group and a methoxy group in the para position.  

However, HAM3 and CoAM3 that remains the carboxylic group of CoA but with a 

methoxyl group in the para positions showed none or very weak activity. Cinnamic acid 

methylated derivative, CAM, that has also the carboxylic group replaced by an ester and 

no groups in para position presented lower activity than cinnamic acid. 

All the tested compounds revealed no toxicity on non-tumor porcine liver cells. 
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7. Concluding remarks 

Overall, the results from antioxidant activity revealed that, although ferulic and caffeic 

acids are extensively metabolized after absorption, their glucuronated metabolites can 

retain a strong antioxidant activity and might still exert a significant antioxidant action 

in vivo. These two phenolic acids are the most representative in human diet and, after 

absorption, they are metabolized and circulate in the human plasma as conjugated 

forms. Thus, the strong antioxidant activity exhibited by some of these metabolites 

might contribute to the increase of plasma antioxidant activity measured after the intake 

of phenolic acids rich-foods (e.g., mushrooms) as described before. 

Regarding the antimicrobial activity, the methylation reactions in the parental molecules 

have considerably increased the activity of CoA. However, the inclusion of acetyl 

groups increased the antifungal activity but maintained the antibacterial effects. In the 

case of HA and CA, despite the inclusion of methyl groups did not increase the 

antimicrobial activity, the demelanizing activity of the parental compounds increased. 

Concerning the antitumor potential, in most of the cases the substitution of the 

carboxylic group (in parental organic acids) for an ester (in methylated derivatives) 

increased the cytotoxicity of the parental compounds. Glucuronated protected 

derivatives had considerably increase the cytotoxicity of the respective parental 

compounds due to the inclusion of acetyl molecules in the parental compound. 

Those reports allow a comparison between parental molecules and derived metabolites. 

It is extremely important to understand the behavior of organic acids (including 

phenolic acids) regarding their bioactivity after metabolism. Furthermore, future studies 

are needed in order to clarify specific mechanistic pathways of these molecules. 
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Table 1. Main enzymes involved in the biossynthesis of phenolic acids through shikimate pathway from L-phenylalanine or L- tyrosine. 

 Entry                        Starting molecule                Enzyme           Final compound 

1 

 
Phenylalanine 

Phenylalanine ammonia lyase 

(PAL)  
 

Cinnamic acid 

2 

 
Cinnamic acid 

Oxidase 

(Presumed ß-oxidation)  
 

Benzoic acid 

3 

 
Benzoic acid 

Benzoic acid 4-hydroxylase 

 
p-Hydroxybenzoic acid 

4 

 
p-Hydroxybenzoic acid 

p-Hydroxybenzoic acid 3- 

hydroxylase 
 

Protocatechuic                              Gentisic acid 
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5 

 
Protocatechuic acid 

Protocatechuic acid 5-

hydroxylase 

 
Gallic acid 

6 

 
Protocatechuic acid 

Protocatechuic acid 3-O-

methyltransferase  
 

Vanillic acid 

7 

 
Vanillic acid 

Vanillic acid 4-O-

methyltransferase 

 
 
 

 
Veratric acid 

8 

 
Vanillic acid 

Vanillic acid 5 hydroxylase 

and 

 Vanillic acid 5-O-

methyltransferase  
Syringic acid 
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9 

 
Cinnamic acid 

Cinnamic acid 4-hydroxylase 

 
p-Coumaric acid 

10 

 
L- Tyrosine 

Tyrosine ammonia lyase (TAL) 

 
p-Coumaric acid 

11 

 
p-Coumaric acid 

p-Coumaric acid 3-hydroxylase 

 
Caffeic acid 

12 

 
Caffeic acid 

Caffeic acid 3-O-

methyltransferase 
 

Ferulic acid 
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13 
 

Ferulic acid 

Ferulic acid 5-hydroxylase and 

Caffeic/5-hydroxyferulic acid 

O-methyltransferase (COMT) 
 

Sinapic acid 

14 

 

Caffeic + quinic acid 

4-Caffeate CoA ligase and Quinate 

O-hydroxycinnamoyltransferase  

	
  
3,4 or 5-O-caffeoylquinic acid 
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      Table 2. Phenolic acids identified in mushroom species. Adapted from (Ferreira et al., 2009). 

 

Phenolic acid Mushroom species Reference 
Gallic acid Termitomyces heimii, Termitomyces mummiformiis, Lactarius 

deliciosos, Pleurotus sajor-caju, Hydnum repandum, Lentinus 
squarrulosus, Sparassis crispa, Morchella conica,  Russula brevipes, 
Geastrum arinarius, Cantharellus cibarius, Lactarius sanguifluus, 
Macrolepiota procera, Cantharellus clavatus,  Auricularia 
polytricha, Pleurotus djamor, Lentinus sajor-caju, Termitomyces 
tylerance, Morchella anguiticeps, Termitomyces microcarpus, 
Helvella crispa, Termitomyces shimperi, Pleurotus ostreatus, 
Agaricus bisporus, Flammulina velutipes, Pleurotus eryngii, Lentinus 
edodes, Agaricus blazei, Phellinus linteus, Ganoderma lucidum, 
Inonotus obliquus 

Puttaraju et al., 2006; Kim et 
al., 2008 

p-Hydroxybenzoic 
acid 

Agaricus bisporus (white), Agaricus bisporus (brown), Lentinus 
edodes, Russula cyanoxantha, Tricholoma equestre, Amanita 
rubescens, Suillus granulatus, Agaricus arvensis, Agaricus silvicola, 
Agaricus romagnesii, Lactarius deliciosus, Lepista nuda, Lycoperdon 
molle, Sarcodon imbricatus, Ramarya botrytis, Tricholoma acerbum, 
Sparassis crispa, Phellinus linteus, Inonotus obliquus, Ganoderma 
lucidum, Coprinopsis atramentária, Lactarius bertillonii, Lactarius 
vellereus, Rhodotus palmatus, Xerocomus chrysenteron, Morchella 
esculenta 

Mattila et al., 2001; Ribeiro, 
Rangel, Valentão, Baptista, 
Seabra & Andrade, 2006; 
Ribeiro et al., 2007; Heleno et 
al., 2012a; Heleno et al., 
2012b; Heleno et al., 2013 

Protocatechuic acid Agaricus bisporus (white), Agaricus bisporus (brown), Lentinus 
edodes, Termitomyces mummiformis, Boletus edulis, Lactarius 
deliciosos, Pleurotus sajor-caju, Lentinus squarrulosus, Hydnum 
repandum, Sparassis crispa, Morchella conica, Russula brevipis, 
Lentinus sajor-caju, Lactarius sanguifluus, Macrolepiota procera, 
Cantharellus clavatus, Auricularia polytricha, Pleurotus djamor, 

Mattila et al., 2001; Puttaraju et 
al., 2006; Kim et al., 2008; 
Heleno et al., 2012b; Heleno, 
et al., 2013 
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Termitomyces tylerance, Morchella anguiticeps, Termitomyces 
microcarpus, Helvella crispa, Termitomyces shimperi, Termitomyces 
heimii, Lepista nuda, Ramarya botrytis, Pleurotus ostreatus, 
Flammulina velutipes, Pleurotus eryngii, Agaricus blazei, Inonotus 
obliquus, Phellinus linteus, Ganoderma lucidum, Lactarius 
bertillonii, Lactarius vellereus, Rhodotus palmatus, Xerocomus 
chrysenteron, Morchella esculenta 

Vanillic acid Pleurotus sajor-caju, Hydnum repandum, Lentinus squarrulosus, 
Morchella conica, Russula brevipis, Lactarius sanguifluus, 
Macrolepiota procera, Cantharellus clavatus, Auricularia polytricha, 
Pleurotus djamor, Helvella crispa, Termitomyces microcarpus, 
Termitomyces shimperi, Lentinus sajor-caju, Termitomyces heimii, 
Lycoperdon molle, Tricholoma acerbum 

Puttaraju et al., 2006; Barros, 
Dueñas, Ferreira, Baptista & 
Santos-Buelga, 2008 

Syringic acid Termitomyces mummiformis, Hydnum repandum, Morchella conica, 
Russula brevipes, Lactarius sanguifluus, Macrolepiota procera, 
Cantharellus clavatus, Pleurotus djamor, Lentinus sajor-caju, 
Termitomyces tylerance, Morchella anguiticeps, Termitomyces 
microcarpus, Agaricus blazei, Sparassis crispa 

Puttaraju et al., 2006; Kim et 
al., 2008 

Veratric acid Sparassis crispa Kim et al., 2008 
Gentisic acid Termitomyces heimii, Termitomyces mummiformis, Lactarius 

deliciosus, Pleurotus sajor-caju, Hydnum repandum, Lentinus 
squarrulosus, Sparassis crispa, Morchella conica, Russula brevipes, 
Lactarius  sanguifluus, Macrolepiota procera, Cantharellus clavatus, 
Auricularia polytricha, Pleurotus djamor, Lactarius sanguifluus, 
Termitomyces tylerance, Morchella anguiticeps, Termitomyces 
microcarpus, Helvella crispa, Termitomyces shimperi, Agaricus 
blazei 

Puttaraju et al., 2006, Kim et 
al., 2008 

Cinnamic acid Agaricus bisporus (white), Agaricus bisporus (brown), Termitomyces 
heimii, Termitomyces mummiformis, Termitomyces shimperi, 
Pleurotus sajor-caju, Hydnum repandum, Lentinus squarrulosus, 

Puttaraju et al., 2006; Kim et 
al., 2008; Heleno et al., 2012a; 
Heleno et al., 2012b 
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Sparassis crispa, Lactarius sanguifluus, Cantharellus clavatus, 
Pleurotus djamor, Agaricus arvensis, Agaricus silvicola, Agaricus 
rimagnesii, Cantharellus cibarius, Lycoperdon perlatum, 
Macrolepiota procera, Agaricus blazei, Ganoderma lucidum, 
Coprinopsis atramentaria, Lactarius bertillonii, Lactarius vellereus, 
Rhodotus palmatus, Xerocomus chrysenteron 

p-Coumaric acid Cantharellus cibarius, Termitomyces heimii, Boletus edulis, 
Sparassis crispa, Geastrum arinarius, Lactarius sanguifluus, 
Macrolepiota procera, Pleurotus djamor, Lentinus sajor-caju, 
Fistulina hepatica, Agaricus arvensis, Agaricus silvícola, Lepista 
nuda, Sparassis crispa, Ganoderma lucidum, Coprinopsis 
atramentaria, Lactarius bertillonii, Lactarius vellereus, Xerocomus 
chrysenteron, Morchella esculenta 

Valentão et al., 2005; Puttaraju 
et al., 2006; Ribeiro et al., 
2007; Kim et al., 2008; Heleno 
et al., 2012a; Heleno et al., 
2012b; Heleno et al., 2013 

o-Coumaric acid Inonotus obliquus Kim et al., 2008 
Ferulic acid Termitomyces heimii, Termitocytes microcarpus, Termitocytes 

shimperi, Lactarius deliciosus, Pleurotus sajor-caju, Lentinus 
squarrulosus, Sparassis crispa, Morchella conica, Cantharellus 
cibarius, Lactarius sanguifluus, Macrolepiota procera, Cantharellus 
clavatus, Pleurotus djamor, Flammulina velutipes, Inonotus obliquus 

Puttaraju et al., 2006; Kim et 
al., 2008 

Caffeic acid Termitomyces heimii, Termitocytes tylerance, Termitomyces 
microcarpus, Termitomyces shimperi, Boletus edulis, Lentinus 
squarrulosus, Morchella conica, Russula brevipes, Cantharellus 
cibarius, Lactarius sanguifluus, Macrolepiota procera, Cantharellus 
clavatus, Pleurotus djamor, Lentinus sajor-caju, Morchella 
anguiticeps, Fistulina hepatica, Flammulina velutipes, Sparassis 
crispa, Phellinus linteus 

Puttaraju et al., 2006; Ribeiro 
et al., 2007; Kim et al., 2008 

5- Sulfosalicylic 
acid 

Flammulina velutipes, Sparassis crispa, Phellinus linteus, 
Ganoderma lucidum 

Kim et al., 2008 

3,4 or 5- O- 
Caffeoylquinic acid 

Cantharellus cibarius, Pleurotus ostreatus, Flammulina velutipes, 
Phellinus linteus 

Valentão et al., 2005; Kim et 
al., 2008 
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