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Abstract 

Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. 

Novel paradigms for tissue engineering include the need of active or smart scaffolds in order 

to properly regenerate specific tissues. In particular, as electrical and electromechanical clues 

are among the most relevant ones in determining tissue functionality in tissues such as muscle 

and bone, among others, electroactive materials and, in particular, piezoelectric ones, show 

strong potential for novel tissue engineering strategies, in particular taking also into account 

the existence of these phenomena within some specific tissues, indicating their requirement 

also during tissue regeneration. 

This referee reports on piezoelectric materials used for tissue engineering applications. The 

most used materials for tissue engineering strategies are reported together with the main 

achievements, challenges and future needs for research and actual therapies. This review 

provides thus a compilation of the most relevant results and strategies and a start point for 

novel research pathways in the most relevant and challenging open questions. 
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1. Introduction 

Metals, alloys and ceramic materials are being replaced by polymers in different application 

areas including aerospace and automotive industries, electronics, sensors, actuators and tissue 

and biomedical engineering. Different processing techniques have been developed for the 

production of polymers with tailored properties, including electrical, mechanical, thermal, 

chemical and surface properties, among others, addressing specific applications demands [1-

2]. 

Polymers present attractive properties when compared to inorganic materials. They are light 

weight, inexpensive, mechanically and electrically tough, they show excellent compatibility 

with other organic and inorganic materials for the development of multifunctional hybrid 

systems, and some of them are biodegradable and/or biocompatible [3-5]. 

The increasing advances in materials science and engineering is allowing the improvement 

and optimization of the so-called smart materials and, in particular, smart polymer materials, 

for a larger number of application areas [6-10]. 

Smart materials are materials with reproducible, significant and stable variations of at least 

one property when subjected to external stimuli. Smart materials are typically classified 

according to the output response and include piezoelectric materials, materials that develop a 

voltage when a mechanical stress is applied or vice-versa; shape memory materials, in which 

a large deformation can be induced and recovered by temperature or stress variations; 

temperature responsive polymers, magnetostrictive materials, pH sensitive materials, self-

healing materials, thermoelectric materials and conductive polymers, among others [11-13]. 

These materials are also generally knows as active materials. 

Particularly interesting for sensor and actuator applications, are materials that undergo 

deformation under a specific stimuli or than provide a specific stimuli under mechanical force 

and/or deformation. Depending on the transduction mechanism, they can be broadly classified 
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as non-electrically deformable polymers (actuated by non-electric stimulus such as pH, light 

and temperature, for example) and electroactive polymers (EAP) when the transduction 

mechanism involves electro-mechanical coupling. The later are further classified as dielectric 

EAP, which electromechanical response is dominated by electrostatic forces and ionic EAP 

which actuation mechanism involves the diffusion of ions [14-15]. Electrically conductive 

polymers are another class of electrically active materials that is attracting increased attention 

as they show simultaneously high conductivity and the physico-chemical properties of 

polymers [16-18]. 

In the last decades, a variety of natural and synthetic materials with various molecular designs 

emerged as potential biomaterials for tissue and biomedical engineering [19]. Natural 

materials are attractive for biomedical and related applications as they are obtained from 

natural sources, exhibiting similar properties to the tissue they are replacing, many of them 

containing specific cues for cell adhesion and proliferation and allowing cell infiltration [20]. 

On the other hand, polymers from natural origin are often difficult to process and show poor 

mechanical and electrical properties [21]. In this way, a variety of synthetic polymers such as 

poly(lactic acid) (PLA) [22-23], poly(glycolic acid) (PGA) [24-25], poly(lactic-co-glycolic 

acid) (PLGA) [26-27], poly(ethylene glycol) (PEG) [28-29], and polycaprolactone (PCL) [30] 

have been widely used to produce materials/scaffolds for tissue engineering [31]. 

Although an extensive list of polymer has been studied regarding tissue engineering 

applications, most of the developed scaffolds have been used in a passive way, just as support 

for the cells and tissues [32]. Nevertheless, it was verified that for some specific cells and 

tissues, the active behavior of the material used for the scaffold development can be taken to 

advantage, providing even the necessary stimuli for proper tissue regeneration. This fact gave 

rise to the strong increase of the development of smart materials for tissue engineering 

applications [33]. 
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Being electrical signals one of the main physical stimuli present in the human body and, in 

particular, the electromechanical signals, this review is devoted to summarize the research 

efforts, main conclusions, main challenges and needs as well as the strong potential of 

developing electroactive scaffolds based on piezoelectric polymers for specific tissue 

engineering applications. 

In a piezoelectric material (Figure 1), an electrical response due to mechanical excitation or 

vice versa can be observed. In these types of materials a certain anisotropy in its structure is 

required. In synthetic polymers that are in noncrystalline or semicrystalline form and are 

originally isotropic, they are typically subjected to a poling procedure (such as corona) to 

meet this requirement [34]. The most common way to describe the piezoelectric effect is by 

the so-called direct effect, where the piezoelectric dij coefficient is given by (Equation 1). 

𝑑𝑖𝑗 = (
𝜕𝐷𝑖

𝜕𝑋𝑗
)

𝐸

= (
𝜕𝑥𝑖

𝜕𝐸𝑗
)

𝑋

         (1) 

where D is the electric induction; E is the electric field strength; X is the mechanical stress; 

and 𝑥 is the strain [35]. In this sense, it is possible observe that the piezoelectricity is the 

relation between the electrical variables (D and E) and the mechanical parameters (X and 𝑥). 

With respect to the so-called inverse piezoelectric effect, the eij coefficient is obtained by 

(Equation 2). 

𝑒𝑖𝑗 = (
𝜕𝐷𝑖

𝜕𝑥𝑗
)

𝐸

= − (
𝜕𝑋𝑖

𝜕𝐸𝑗
)

𝑥

         (2) 

The direct piezoelectric effect (dij) concerns the conversion of the mechanical energy into 

electrical energy while the inverse piezoelectric effect (eij) describes the conversion of 

electrical energy into the mechanical energy. 

 

2. Electrical cues in human body 

Many of the major functions in cells and organs of the human body are controlled by 

electrical signals. As early as in the 18th century it is described the use of electrostatic charge 
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for skin lesion treatment [36] and in 1983, electrical potentials ranging between 10 and 60 mV 

depending on the human body location were measured [37]. 

Electric fields and potentials induce distinct effects on cells and it has been proven that small 

applied electric fields can guide a variety of different cell types to move and migrate 

directionally such as corneal, epidermal and epithelial cells [38-41]; can modulate the 

phenotypes of vascular endothelial cells [42]; can regenerated nerve fibers [43] and are widely 

used in orthopedic practices, showing the improvement of ligament healing in vivo [44]. 

 

2.1. Piezoelectricity in human body 

Extensive and classic studies of the piezoelectric properties of bone and other biological 

materials have been also reported. The piezoelectricity can be referred as a extended property 

of living tissue, playing a significant role in several physiological phenomena [45]. 

Piezoelectricity can be thus found in different parts of the human body (Figure 2) such as 

bone, tendon, ligaments, cartilage, skin, dentin, collagen, deoxyribonucleic acids (DNA) and 

conceivably, in cell membranes [45-50]. 

 

2.1.1. Bone 

Bone is a dynamic tissue in constant adaptation and remodeling through complex feedback 

mechanisms, involving electromechanical processes, due to its piezoelectric characteristics. 

Due to its piezoelectric nature, bone is the paradigm for piezoelectric electromechanical effect 

in human tissue [51]. 

The first study reporting the piezoelectric properties of the bone was in 1955 [52]. Few years 

later, electric currents in bone and the generation of electric potentials when the bone is 

mechanically stressed were verified [53-54]. This phenomenon, recognized as piezoelectricity, 

is independent of the cell viability. The mechanical stress produces electrical signals and these 

signals represent the stimulus that promotes bone growth and remodeling according to the 
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Wolff's law [55]. The biomechanical properties of bone, in particular its piezoelectric activity, 

have been addressed microscopically [56] and macroscopically, with models using finite 

element analysis [57]. Further, it has been also hypothesized a mechanism by which the 

piezoelectric signals can regulate the bone growth [58]. At the cellular level, the bone cell 

type that plays an important role in the bone structure development and appears to be involved 

in bone mechanotransduction, the osteocytes, was identified [59]. Consequently, for bone 

regeneration, these cells communicate with other bone cells, such as osteoblasts and 

osteoclasts. The influence of electrical stimulation on bone healing has been studied in vitro 

[60-66] and in vivo [67-72] and it has been demonstrated that the application of these stimulus 

can enhance and stimulate osteogenic activities. In this way, the osteoblasts are affected by 

electromechanical signals to apposite bone tissue [73-74], the piezoelectric nature of bone, 

leading to natural conversion of the mechanical stimuli into electrical ones. 

 

2.1.2. Collagen and other piezoelectric tissues 

Due to their collagenous structure, tendons and ligaments also exhibit piezoelectricity, giving 

rise, therefore, to an electrical potential variation when a mechanical stress is applied [75-76]. 

The piezoelectricity of dry tendons was measured [77], as well as the electrical potentials 

generated in hydrated tendon [78-79], the piezoelectric coefficient decreasing with increasing 

hydration [80]. 

Piezoelectric effect has been also observed in different soft tissues, such as skin, callus, 

cartilage and tendons, as well as in hard ones, such as bone, and appears to be associated with 

the presence of oriented fibrous proteins [45, 81]. All connective tissue contains one or more 

types of fibrous molecules such as collagen, keratin, fibrin, elastin, reticulum or cellulose 

structure, showing also piezoelectric properties [45].  

It seems evident from the literature that the piezoelectric effect can be attributed to the main 

organic constituent of tissue, which is collagen in the case of the bone and tendons [82-83]. 
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Thus, it has been shown that the crystalline unit of collagen is polar hexagonal (C6) [56], 

showing piezoelectric properties. Further, as previously indicated, it has been shown that dry 

bone is piezoelectric, i.e., a mechanical stress induces a polarization (direct effect) and an 

application of an electric field produces a change in the material geometry or strain (converse 

effect). It was reported that for dry fibers, the polarization results from the displacement of the 

hydrogen bonds formed in the polypeptide chains of the collagen crystals. Other studies 

confirmed such findings. Thus, in [84] the piezoelectric and pyroelectric behavior of collagen 

were measured independently from the bone, confirming that the electroactive properties arise 

from the structure of collagen molecules. It was suggested that the crystalline structure of 

collagen changed under wet conditions and that the bound water promotes a change its crystal 

symmetry to the point where no piezoelectric properties were observed [78, 85]. A certain 

minimum amount of water concentration, which increases the crystal symmetry, is 

nevertheless required to maintain the overall structural integrity. Further, it was also 

suggested that, due to the variability of the electroactive behavior of collagen in wet and dry 

states, wet bone shows different piezoelectric symmetry relation [78, 85]. More recently, 

studies of the piezoelectric response of human bone using a piezoresponse force microscope, 

in order to measure this effect at nanometer scale resolution directly in the collagen matrix, 

resulted in the quantification of the piezoelectric response in 7 – 8 pC.N-1 [86]. 

With respect to other biological tissues, the electrical polarization variations were also 

verified in hair when subjected to stress [87] as well as in DNA [75]. Finally, investigations in 

the calcifications commonly found in human pineal gland tissues resulted in the determination 

that the pineal gland contains non centrosymmetric material which, according to 

crystallographic symmetry considerations, is also piezoelectric [88]. 

 

3. Electrically active materials for tissue engineering 
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Advances in the understanding of electrical properties of tissues and cells are increasingly 

attracting attention to this area of research. Living cells show many properties of electrical 

systems, i.e., they generate electromotive force, regulate the potential difference whenever 

needed, use varying resistances in series or in parallel, switch on and off, control and rectify 

current flow and store charge [89-90]. An electric voltage exists across the plasma membrane, 

while the inside of the cell remains more negative than the outside. By convention, the 

potential outside the cell is called zero; therefore, the typical value of the membrane potential 

is in the range of -60 to -100 mV [91]. 

Thus, conductive polymers have been applied in tissue engineering applications. One of the 

most studied conductive polymers for tissue and biomedical engineering is polypyrrole (PPy) 

that has been proven to be a promising substrate for cell growth and proliferation, in particular 

for axon growth in vitro and in vivo experiments [90, 92]. Studies reveal that the application 

of an external electrical stimulus to the material, and consequently to the cell, enhances axons 

outgrowth to levels beyond the ones obtained for cultures on non-conducting polymers [92-

93]. One of the major drawbacks of the used conductive polymers for in vivo applications is 

their inherent inability to biodegradation, which may induce chronic inflammation and require 

surgical removal [94]. In order to solve this issue, attempts to blend them with suitable 

biodegradable polymers have been carried out. Thus, nerve guidance channels (NGCs) were 

fabricated from an electrically conductive, biodegradable polymer of PPy and poly(D,L-

lactide-co-epsilon-caprolactone) (PDLLA/CL) [92]. Further, the influence of the applied 

current intensity in the neurite outgrowth was evaluated and it was found that a current 

intensity of 1.7–8.4 µA/cm leads to the largest enhancement of neurite outgrowth on 

conductive PDLLA/CL and PPy surfaces.  

Polyaniline (PANI) is the oxidative product of aniline under acidic conditions and is 

commonly known as aniline black [95] and the ability of PANI and PANI variants to support 

cell growth has been evidenced [96], independently of the oxidation state [97]. In this way, 
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adhesion and proliferation of cardiac myoblasts (H9c2) on conductive PANI substrates have 

been reported [98]. Both non-conductive emeraldine base and conductive salts forms of PANI 

were found to be biocompatible and to support cell attachment and proliferation, which 

attracted much attention of this material for tissue and biomedical applications. Further, there 

are other electrically conductive polymers that are being studied for tissue and biomedical 

engineering such as poly(3, 4-ethylenedioxythiophene) (PEDOT) for cochlear implants, 

vision prosthesis, neural regeneration devices and neural recording electrodes [99]. 

Carbon nanotubes (CNTs) are other group of conducting fillers incorporated into non-

conductive polymers to provide structural reinforcement and electrical conductivity into the 

scaffolds and to direct cell growth [100]. Some studies indicated that CNTs are cytotoxic, 

while others revealed that carbon nanotubes are excellent substrates for cellular growth [100]. 

As a result of these studies, it is claimed that when used in suspension, CNTs seems to be 

toxic to cells, while they appear to be non-toxic if immobilized into a specific polymer matrix 

or culture dish [101]. 

Table 1 summarizes some relevant experimental conditions and cells used for electrical 

stimulation based on electrically conductive polymers. These materials have been particularly 

explored for neural development and it was verified that the application of electric fields 

influence the rate and orientation [43] and also the extension and direction [102] of the neurite 

outgrowth of cultured neurons in vitro. 

Common to the aforementioned materials is the need of an external power supply in order to 

induce electrical signals and thus to promote electrical stimulus to the cells. This is a strong 

drawback for in-vivo applications and thus, it is important to develop a generation of 

biomaterials including combinations of biological, chemical, mechanical and electrical 

stimulatory cues, being the last ones without external power supply and therefore wires. 

In this scope, piezoelectric polymers appear as a possibility for applying electrical signals to 

the cells by mechanoelectrical transduction. Piezoelectric materials generate transient surface 
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charge variations and therefore electrical potential variations when mechanical solicitation are 

applied to the material and, therefore, no need for additional energy sources or electrodes 

[103] are requires. 

 

4. Piezoelectric soft biomaterials and structures 

General for all materials used as scaffolds, the design of these bioactive biomaterials is 

another important parameter to consider and a suitable morphology, in combination to the 

piezoelectric characteristics, has to be optimized for proper cell response.  

Many processing methods have been developed to process biomaterials into scaffolds with 

different dimensionalities and morphologies [104-105]. Different structures of biomaterials 

including microspheres, fibers, porous membranes, hydrogels and sponges have been 

designed and used in tissue engineering [19]. However, effects of internal biomaterials 

structures remain largely unexplored and the comparison of cell response in the different 

structures types remains elusive. In particular, just a few scaffold morphologies have been 

used for piezoelectric tissue engineering including films, membranes and fibers, among others. 

Some structures of -poly(vinylidene fluoride) (PVDF) are shown in Figure 3.  

Porous scaffolds have been obtained by solvent casting/salt leaching, phase separation, gas 

foaming, gel casting, precipitation and emulsion freeze-drying [104-105]. The main 

drawbacks of these methods are associated with the possibility to obtain scaffolds with an 

inaccurate and limited interconnectivity pore morphology that is disadvantageous for uniform 

cell seeding and tissue growth [31, 106]. This major drawbacks can be overcome by fibrous 

scaffolds produced by electrospinning, a method that offers the ability of control the pore 

interconnectivity and moreover the internal and external morphology of fibers by controlling 

processing parameters such as applied voltage, solution viscosity and conductivity, among 

others [106]. Moreover, electrospinning allows the production of scaffolds with small pore 

size, density and high surface area [105-106]. The pores of the scaffolds should be large 
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enough to allow cell migration, where they eventually become bound to the ligands within the 

scaffold. Therefore, for any scaffold, a critical range of pore sizes exists, which may vary 

depending on the cell type and tissue being engineered [107]. The fiber diameter of the 

scaffolds produced by electrospinning can range from 5 nm to a few microns [106]. A similar 

method to electrospinning is electrospray, which allows the preparation of polymeric micro- 

and nanoparticles that can also be used as support for cell expansion and differentiation [108-

109]. Other methods can be used for particle formation however this method might overcome 

some of the drawbacks associated with conventional microparticle-producing methods, such 

as solvent casting, single and double emulsion, spray-drying, porous glass membrane 

emulsification and coacervation [108]. 

More recently, rapid prototyping (RP) technologies also known as solid free-form fabrication 

(SFF) allows translating computer data files such as computer-aided design (CAD), computed 

tomography (CT), magnetic resonance imaging (MRI) and convert the digital information 

through layered manufacturing SFF machines into a 3D scaffold [105-106, 110]. Three-

dimensional printing (3DP), fused deposition modeling (FDM), stereolithography apparatus 

(SLA) and selective laser sintering (SLS) are widely been applied in the fabrication of 

materials with unique geometries with controllable pore architecture which could not obtained 

by conventional methods [106, 108]. Various biomaterials are commonly used in RP 

technologies such as PEG, PLGA, PCL, collagen, starch, HA and TCP [104, 111-112]. 

However, to the best of our knowledge few studies report the production of piezoelectric 

scaffolds by these methods, being stereolithography the most commonly used method for the 

fabrication of piezoelectric scaffolds based on PLLA [112]. 

These scaffold structures have to be achieved with the few natural and synthetic materials 

exhibiting piezoelectric properties, the most relevant ones, with the respective piezoelectric 

properties being reported in Table 2 and 3, respectively. 
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However, to demonstrate the suitability and effect of the piezoelectric properties for tissue 

engineering applications, synthetic polymers have been mostly chosen instead the natural 

ones for their use as scaffolds. These have known compositions and can be designed to 

minimize immune response. They can be tailored to produce a wide range of scaffold 

geometries and hybrid structures by combining polymers with other organic or inorganic 

hybrid structures. 

Among all polymers, PVDF [113] and vinylidene fluoride (VDF) [114] copolymers, are the 

synthetic, semi-crystalline polymers with the highest electroactive properties, including 

piezoelectric, pyroelectric and ferroelectric properties [114]. 

As previously mentioned, it is possible to find electrical activity and even piezoelectricity in 

many parts of the human body. For that reason, it seems be advantageous to employ 

biomaterials based on piezoelectric properties for active tissue engineering of specific tissues. 

 

5. Tissue engineering based on piezoelectric polymers 

Studies of the use of piezoelectric polymers for tissue engineering applications are mostly 

devoted to bone, neural and muscle regeneration.  

Table 4 summarizes the main works using piezoelectric polymers, the intended applications 

and scaffold morphology, together with the cultivated cells. 

Dynamic assays were performed in the studies marked with * contrary to the others where 

only static assays were carried out. It is to notice that when no dynamic conditions are used, 

the suitability of the piezoelectric effect is not proven, but just the suitability of the material 

and the relevance of the (positive or negative) surface charge, when the material is poled. 

It is to notice that the most used polymer is PVDF and its co-polymers as, due to its larger 

piezoelectric response, serve as an ideal material platform for proving the concept of 

mechano-electrical transductions for tissue engineering. Also several sample morphologies 

have been used, such as films, fibers, porous membranes and 3D porous scaffolds for different 
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applications in tissue engineering, mainly for bone, muscle and nerve regeneration. With the 

challenge to mimic the architecture of these tissues, the fibers have proved to be one of the 

favorite choices and for most of the studies mesenchymal stem cells have been chosen. For 

bone tissue engineering applications, PVDF fibers were produced and its effect on biological 

function was studied with hMSCs [128]. It was verified that the cells attach to the PVDF 

fibers and present a larger alkaline phosphatase activity and early mineralization when 

compared with the control, showing the potential for the use of PVDF scaffolds for bone 

tissue engineering applications. The same cells were also used with PLLA fibers to study their 

biocompatibility and suitability for bone differentiation and the same results were obtained 

[132]. Regarding nerve regeneration, fibers were also used and it was verified that the cells 

attach and the neurites extend radially on the random aligned fibers, whereas the aligned 

fibers directed the neurite outgrowth, demonstrating their potential for neural tissue 

engineering [150-151]. 

On the other hand, despite the demonstrated potential, there is still just a few conclusive 

works addressing the effect of the electrical stimulus promoted by the piezoelectric response 

of the materials, as for these studies, specific dynamical mechanical stimulus should be 

applied during cell culture, for example, by the use of mechanical bioreactors. The applied 

mechanical stimulus can be vibration, compression or stretching of the piezoelectric scaffold. 

In this scope, piezoelectric materials based on PVDF films, have been used to study the effect 

of mechanical stimulation of bone cells, by converse piezoelectric effect. On a substrates 

submitted to dynamic mechanical conditions, the stimulation was achieved with an alternating 

sinusoidal current (AC) of 5 V at 1 and 3 Hz for 15 min at each frequency. It was verified that 

mechanical stimulation of bone induces new bone formation in vivo and increases the 

metabolic activity and gene expression of osteoblasts in culture [122]. The influence of the 

same piezoelectric substrate, PVDF film, on the bone response cultivated under static and 

dynamic conditions was also investigated [124]. The dynamic culture was performed on a 
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home-made bioreactor system with mechanical stimulation by placing the culture plate on a 

vertical vibration module at a frequency of 1 Hz with amplitude of ~1 mm. The results 

showed that the surface charge under mechanical stimulation improves the osteoblast growth 

and consequently, that electroactive membranes and scaffolds can provide the necessary 

electrical stimuli for the growth and proliferation of electrically responsive tissue and in 

particular of tissues which also show piezoelectric response, such as bone. The same dynamic 

culture was used to enhanced osteogenic differentiation of human adipose stem cells, proving 

that dynamic mechanical stimulus in combination with suitable osteogenic differentiation 

media can offer tools to better mimick the conditions found in vivo [127]. Moreover, 

piezoelectric (PVDF) has been used as actuator in in vivo assays for orthopedic applications 

[123]. After one month implantation it was verified that the converse piezoelectric effect can 

be used to stimulate the bone growth at the bone implant interface. 

Concerning nerve regeneration, neurons were cultured directly on electrically charged PVDF 

polymer growth substrates to determine if local electrical charges enhance nerve fiber 

outgrowth in vitro [43, 145]. Piezoelectric PVDF substrates generated 2-3 mV at 1200 Hz 

when placed on standard incubator shelves and it was concluded that the enhanced outgrowth 

process was induced effectively by the piezoelectric output of the films. 

The study of the piezoelectric effect of polyurethane/PVDF (PU/PVDF) fibers was also 

investigated for wound healing applications [166]. For this, the scaffolds were subjected to 

intermittent deformation of 8% at a frequency of 0.5 Hz for 24 h and the results indicated that 

piezoelectric-excited scaffolds showed enhanced migration, adhesion and secretion, leading to 

more rapid wound healing than those on the control scaffolds. In vivo assays were also 

performed with the implantation of these scaffolds in rats and a higher fibrosis level was 

verified due to the piezoelectric stimulation, which was caused by random animal movements 

leading to the mechanical deformation of the scaffolds. 
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So, it is possible conclude that piezoelectric materials would be useful in many t issue 

engineering applications. In in vitro assay, the mechanical deformation can be made by the 

use of bioreactors and in in vivo assay, the stimulation was made by movements of the patient 

which will cause the mechanical deformation of the scaffolds (Figure 1). Further, since the 

piezoelectric effect can be found in several human body tissues, as previously mentioned, it is 

natural to assume that piezoelectric scaffolds will be needed, at least, for the proper 

regeneration of those tissues.  

Up to now, the most commonly used polymer to study the piezoelectric effect in tissue 

engineering applications was the PVDF, due to its larger piezoelectric response. This polymer 

is non-degradable, which can be a limitation for applications including scaffold implantation. 

On the other hand, it can be successfully used as scaffold for cells stimulation before 

implantation, due to its large piezoelectric response and physico-chemical stability. 

 

6. Final remarks, conclusions and main challenges 

Tissue engineering has emerged as an alternative to conventional methods for tissue repair 

and regeneration, but different strategies can be chosen; as represented in Figure 4, left. 

Basically, it consists in choosing appropriate cells, materials and biochemical and physical 

signals to repair, maintain or regenerate the tissue function. The cells can be harvested 

directly from the patient or stem cells can be used to be combine with an biomaterial scaffold 

to grown in vitro without (route B of figure 4, left) or with (route C of figure 4 left) signals 

and then implanted. It should be also noted that the bioreactor use in tissue engineering is an 

attempt to simulate an in vivo physiological environment. The scaffolds can also be implanted 

directly to facilitate cell regeneration in vivo (route A of figure 4, left). 

Within this general strategy, it seem evident the need of a combination of physical and 

biochemical stimuli giving rise to the suitable environment for tissue regeneration. In 

particular, one of the most interesting effects to be applied in a next generation of materials 
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for scaffold development is the possibility of electrical stimulation, in order to promote 

electrical stimulus to the cells, which is essential to improve functionality of specific tissues 

during tissue regeneration.  

A biomimetic approach also shows the specific need of piezoelectric scaffolds and supports 

for tissue engineering applications, related to the existence of this phenomena in the living 

tissue.  

In particular, bone, as the paradigm of piezoelectric tissue, can undergo increased 

regeneration success rate by applying piezoelectric related tissue engineering strategies. Thus, 

Figure 4, right shows a promising strategy for the repair or regeneration of damaged bone. 

This tissue engineering therapy involves harvesting healthy cells (adult or stem cells) 

culturing in an appropriate scaffold for growth in vitro in a bioreactor which will provide the 

proper biochemical and physical stimulus and then implanted. The main purpose of this 

strategy is recreating the bone tissue environment, including biochemical and 

electromechanical stimulus.  

It can be concluded that piezoelectric materials can be used to further explore and implement 

novel tissue engineering strategies. Polymer materials with suitable piezoelectric response can 

be tailored in terms of physicochemical properties and microstructure, leading to suitable 

scaffolds designs. On the other hand, their full potential has not been achieved and novel 

bioreactor concepts should be developed mimicking in-vivo mechanical conditions and 

allowing thus to explore, mediate through the mechanical solicitation of the materials, the 

electrical stimulation of the cells. 

A new generation of studies involving bioreactors is needed in order to achieve a deep 

knowledge of the mechanoelectro transduction effects on specific cells.  

One this is achieved, two strategies can be followed based on piezoelectric stimulation (figure 

4): 

a) Bioreactor culture for pre-differentiation and cell implantation 
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b) Scaffold implantation 

For the later, tailored piezoelectric materials with controlled biodegradation will be also 

needed. In any case, it can be stated already that tissue engineering strategies based on 

electroactive materials open a novel and rich field of research with strong potential for actual 

innovation to this field. 
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Tables and Table Captions 

 

 

Table 1: Relevant works on electrical stimulation conditions applied in tissue engineering 

strategies based on conductive polymers (adapted from [90]).  
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Conductive Scaffolds 
dc/ac current; 

potential 
Duration Cells 

PANI/PCL/gelatin dc: 100 mV 1 h 

Mouse neuronal 

cerebellum stem 

cells (C17.2) 

PANI/poly(L-lactide-co-ε-

caprolactone) 

(PANI/PLACL) 

dc: 0 - 200 mA 48 h NIH-3T3 fibroblasts 

PPy dc: 100 mV 2 h 

Rat neuronal 

phaeochromocytoma 

(PC12) 

PLGA coated with PPy 10 mV cm-1 2 h PC12 

PPy/poly(L-lactic acid) 

(PPy/PLLA) 
dc: 100 mV mm-1 2, 24 h 

Human skin 

fibroblasts 

PDLLA/CL coated with 

PPy 

dc: 0, 2, 8 e 

20 µA mm-1 mV-1 - PC12 

PPy 
ac: 50 µA at 0,05, 

5 and 500 Hz 
- 

Vascular smooth 

muscle cells 

(VSMC) 

PPy/PLLA dc: 50 mV mm-1 24h 
Human cutaneous 

fibroblasts 

Indium–tin oxide (ITO) 
ac: 100 mV (100 

Hz) 

30 min/day 

(3 days) 
PC12 

PLLA/CNT 
ac: 10 mA (10 

Hz) 
6 h/day Osteoblasts 

PCL/PPy dc: 10 V 4 h/day 
Dorsal root ganglia 

(DRG) 

PPy 

Biphasic 100 µs 

pulses of 

1 mA.cm-2 at 

250 Hz 

8 h/day 
Cochlear neural 

explants 

copolymer of 

hydroxyl-capped PLA and 

carboxyl-capped aniline 

pentamer (AP) (PLAAP) 

Electric potential 

of 0.1 V (1 Hz) 
1 h/day PC12 

PPy/Chitosan dc: 100 mV 4 h Schwann Cells 
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Table 2 – Biodegradable polymers with natural origin and corresponding main piezoelectric 

response (adapted from [75]). 

Natural Polymers 

Piezoelectric 

coefficient  

-d14 (pC/N) 

Polysaccharides 

Cellulose 
wood 0.10 

ramie 0.20 

Chitin 
crab shell 0.20 

lobster apodeme 1.50 

Amylose starch 2.00 

Proteins 

Collagen 

bone 0.20 

tendon 2.00 

skin 0.20 

Keratin 
wool 0.10 

horn 1.80 

Fibrin 

elongated films of 

fibrinogen-thrombin clot 
0.20 

Deoxyribonucleic acids 

salmon DNA (at -100 ºC) 
0.07 
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Table 3 – Piezoelectric natural and synthetic polymers. 

Polymer 
Dielectric constant 

(1 kHz; 25ºC) 

Piezoelectric 

Coefficient (pC/N) 
Ref. 

PLA 
3.0 – 4.0 9.82 

[115-

116] 

Polyhydroxybutyrate (PHB) 
2.0 – 3.5 1.6 – 2.0 

[117-

118] 

PVDF 
6 - 12 24 - 34 

[119-

120] 

Poly(vinylidene fluoride-

trifluoroethylene) (PVDF-

TrFE) 

18 38 [120] 

Polyamide-11 5 4 [121] 
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Table 4 – Material type, scaffold design and cells used for different applications. 

Applications Material type Scaffold design Cells type used Ref. 

Bone 

regeneration 

or  

Bone tissue 

engineering 

PVDF and copolymer  

[Films 

MC3T3-E1 

Goat marrow stromal cells into 

osteoblast 

Human adipose stem cells 

[122-124]  

[125]* 

 

[126 -

127*]  

Fibers 
Human mesenchymal stem cells 

(MSCs) 

[128] 

Blends membranes (porous) NIH3T3 mouse fibroblast [129] 

PLLA 

Films Implementation on male cats [130] 

Fibers 

Human fetal osteoblasts (hFOB) 

Human mandible–derived 

mesenchymal stem cells (hMSCs) 

[131] 

[132-133] 

PHB and copolymers  

Films Bone marrow cells [134] 

Fibers 
Human osteoblasts (HOB)  

Bone marrow cells 

[135] 

[134] 

3D Blends membranes 

(porous) 
MC3T3-E1 [136] 

 Fibers - hydrogel D-periodic Rat tail tendon  [137] 
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Collagen type I collagen fibrils 

3D matrices 

Human fetal osteoblastic cells 

(hFOB 1.19) and Bovine 

osteoblasts 

Human adipose-derived stem cells 

(ASCs) 

[138] 

 

 

[139] 

Composites 

PVDF/starch/natural 

rubber (NR) 
Blends membranes (porous) NIH3T3 mouse fibroblast [129] 

PVDF-

TrFE/starch/NR 
Blends membranes (porous) NIH3T3 mouse fibroblast [129] 

PVDF-TrFE/Barium 

titanate (BT) 
Membranes 

in vivo evaluation of rats 

Human alveolar bone-derived 

cells (Osteoblastic cells) 

Osteoblastic cells from human 

alveolar bone fragments 

Fibroblasts from human 

periodontal ligament (hPDLF) and 

keratinocytes (SCC9) 

[140] 

[141] 

 

[142] 

 

[143] 

PLA/demineralized 

bone powders (DBP) 
Fibers hMSCs [132] 

PLLA covered with 3D Porous Scaffold Saos-2 osteoblast-like cells [144] 
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bonelike apatite  

Apatite/collagen  3D Porous Scaffold Saos-2 osteoblast-like cells [144] 

Nerve or 

neural 

regeneration 

PVDF 

Films 

Mouse neuroblastoma cells 

(Nb2a) 

Spinal cord neurons 

[43, 145]* 

 

[146] 

Blends membranes (porous) 
Dense and microporous 

membranes: neuronal cells 

[147] 

Channels/Tubes 

Nerve guidance channels: in vivo 

assay: mouse sciatic nerve model. 

Tube containing nerve growth 

factor (NGF) and Collagen gel: in 

vivo assay: Wistar rats. 

[148] 

 

[149] 

PVDF-TrFE 

Films 

Poietics Normal Human Neural 

Progenitors 

Nb2a 

[150] 

 

[43]* 

Fibers 

Dorsal root ganglion  

Poietics normal human neural 

progenitors 

[151] 

[150] 

Tubes 
In vivo implementation: rat sciatic 

nerves 

[152] 

PLLA 3D Porous scaffold In vivo implementation: Sprague [153] 
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Dawley rats 

Collagen 
Fibers Schwann cells [154] 

3D gel matrices Embryonic rat cerebral cortices [155] 

Muscle 

regeneration 

PVDF 

Films C2C12 myoblast [156] 

Fibers C2C12 myoblast [156] 

Meshes In vivo study in rabbits [157] 

Fibers In vivo study in rabbits [158] 

Composites Au–PLLA Fibers primary rat muscle cells [159] 

Others 

applications 

Cartilage PHB 3D scaffolds 
Human adipose-derived stem cells 

(hASCs) 

[160] 

Abdominal hernia 

repair 
PVDF Meshes Implanted subcutaneously in rats 

[161] 

[162] 

Endothelialization PVDF Films Human cell line, EA.hy 926 [42] 

Vascular surgery PVDF Monofilament sutures 
In vivo study 

Adult female chinchilla rabbits 

[163] 

[164] 

Spinal cord injury 

regeneration 

PHB-co-3-

hydroxyvalerate 

(PHB-HV) 

3D scaffold by freeze-

drying technique 

primary culture of neurons and 

astrocytes from the hippocampus 

of P4 Wistar rats 

[165] 

Wound healing 
PU/PVDF Fibers  NIH 3T3 [166] 

PPy/PLLA  Membranes Human Skin Fibroblast  [167] 
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PVDF-TrFE Electrospun fibers Human skin fibroblasts [168] 

Tissue sensors PVDF Microstructures Human osteosarcoma (HOS)  [169] 
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Figures and Figure Captions 

 

 

 
 

Figure 1 – Schematic representation of the piezoelectric effect (piezoelectric material 

representation at the bottom of the image) and corresponding cell culture on piezoelectric 

supports a) without and b) with mechanical stimulus, the later leading to an electrical potential 

variation of the materials which is, in turn, influences cell response. 
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Figure 2 – Representative human body location in which electrical and piezoelectric signals 

are relevant. 

  



  

37 

 

 

 

Figure 3 – -PVDF obtained in different morphologies: a) porous membranes, b) electrospun 

fibers and c) microparticles. 
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Figure 4 – Left) Schematic representation of the different strategies of the tissue engineering 

field: 1 - The cells can be harvested directly of the patient; A - Scaffold implanted directly; B 

- Cells cultured in scaffold and then implanted; C - Cells cultured in scaffold with appropriate 

signal, namely chemical (such as growth factors) and physical (such as mechanical using a 

bioreactor) and then implanted. Right) Tissue engineering strategies for bone regeneration. 

 

 


