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Abstract

In this work we provide a new mathematical model for the Pennes’
bioheat equation, assuming a fractional time derivative of single order. Al-
ternative versions of the bioheat equation are studied and discussed, to take
into account the temperature-dependent variability in the tissue perfusion,
and both finite and infinite speed of heat propagation. The proposed bio-
heat model is solved numerically using an implicit finite difference scheme
that we prove to be convergent and stable. The numerical method proposed
can be applied to general reaction diffusion equations, with a variable diffu-
sion coefficient. The results obtained with the single order fractional model,
are compared with the original models that use classical derivatives.
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1. Introduction

The way temperature diffuses in our body, has been a subject of interest
for a long time. From the practical method of measuring the body tem-
perature with our own hands, to the use of highly sophisticated measuring
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devices, we can find diverse alternative possibilities and intense theoreti-
cal and experimental research work that resulted in major advances and
increased knowledge of temperature distribution inside the human body.

The pioneering work of Harry H. Pennes [33] in 1948 is the corner-
stone of the mathematical modeling of temperature diffusion in tissues,
but, as happens with most initial modelling approaches, it required some
improvements. Moreover, this model was originally derived for modelling
the temperature in a human forearm, but it is extensively used by several
authors for modelling temperature diffusion in different tissues (such as the
analysis of hyperthermia in cancer treatment [9]).

Pennes’ [33] bioheat transfer equation (see also [30], [1], [36], [31], [24],
[25]), which describes the thermal distribution in human tissue, taking into
account the influence of blood flow (see Fig. 1), is given by

ρtct
∂T (x, t)

∂t
= k

∂2T (x, t)

∂x2
+Wbcb (Ta − T )+qm, t > 0, 0 < x < L, (1.1)

where ρt, ct are constants representing the density
[
kg/m3

]
and the spe-

cific heat [J/ (kg ◦C)], respectively, and k is the tissue thermal conductivity
[J/(s.m ◦C)]; Wb is the mass flow rate of blood per unit volume of tissue[
kg/
(
s.m3

)]
; cb is the blood specific heat; qm is the metabolic heat genera-

tion per unit volume
[
J/(s.m3)

]
; Ta represents the temperature of arterial

blood [◦C]; T is the temperature and the term Wbcb (Ta − T ) represents the
blood perfusion. It is worth mentioning that the Wb constant was exper-
imentally obtained by Pennes for a human forearm (he adjusted Wb until
the temperature theoretical results matched the experimental ones).

Figure 1. Heat transfer between blood vessels and tissue.
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In order to overcome Pennes’ bioheat model limitations, other models
have been proposed in the literature. Since in (1.1) the blood velocity field
is not taken into account, in 1974, Wulff [41] and Klinger [23] considered the
local blood mass flux to account for the blood flow direction. Also, Pennes
assumed that thermal equilibration occurs in the capillaries, but in 1980
Chen and Holmes [5] showed that the major heat transfer processes occur
in the 50 to 500 μm diameter vessels. Based on the Klinger model [23],
Chen and Holmes proposed a new model by adding dispersion and micro-
circulatory perfusion terms, and, in 1984, Weinbaum, Jiji and Lemons [39]
presented a new vascular bioheat model by considering the countercurrent
blood flow (this way, the blood leaving the tissue can also influence the
temperature of the medium).

All these models, although sophisticated, do not take into account the
role of thermoregulation. Therefore, in 2010, Zolfaghari and Maerefat [42]
developed the simplified thermoregulatory bioheat (STB) model that takes
into account the thermoregulatory mechanisms of the human body (shiv-
ering, regulatory sweating and vasomotion). The model is a combination
of Pennes’ bioheat equation and Gagge’s two-node model (thermal comfort
model) [13], [14]. This model proved to be reasonably accurate, showing a
good fit to experimental data (for more on bioheat transfer see [27], [43]).

Although these models are more complete and, theoretically, more ac-
curate than the classic Pennes’ bioheat equation, their complexity makes
them quite complicated to handle (some of the field variables, needed for
the model to work, are difficult to obtain) and adjust to acquired experi-
mental data. On the other hand, Pennes’ equation is simple, with a small
number of physical parameters, thus attracting researchers from different
fields and encouraging the continued improvement of the model.

Different versions of this model have been proposed in the literature,
that take into account the temperature-dependent variability in the tissue
perfusion [24], [25], [7], [38], and, with the thermal conductivity being either
depth-dependent or temperature-dependent.

The use of fractional calculus models for physical phenomena often leads
to an improvement in the accuracy of the models (especially in processes
with memory), and, Damor et al. [6] proposed a fractional version of the
bioheat equation, by replacing the first-order time derivative with a deriv-
ative of arbitrary positive real order α (note that the equation written in
this form is not dimensionally consistent, see Fig. 2),

ρtct
∂αT (x, t)

∂tα
= k

∂2T (x, t)

∂x2
+Wbcb (Ta − T ) + qm, t > 0, 0 < x < L.

(1.2)
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Figure 2. Dimensional analysis.

More recently, Ezzat et al. [10] (see also [20]) presented a new mathe-
matical model for the Pennes’ bioheat equation using a fractional version of
the Fourier law for temperature. They constructed a model that comprises
both the classic (parabolic) and hyperbolic Pennes’ bioheat equation (note
that the hyperbolic equation [32] ensures a finite speed pulse propagation
while an infinite speed is obtained with the classic one), being given by,

ρtct
∂

∂t

(
T (x, t)+

τα

α!

∂αT (x, t)

∂tα

)
=k

∂2T (x, t)

∂x2
+

(
qm (x, t)+

τα

α!

∂αqm (x, t)

∂tα

)
,

t > 0, 0 < x < L. (1.3)

Other versions of the model exist in the literature that basically are
tailored versions of the original bioheat equation (1.1), with the purpose of
modelling very specific cases.

In their paper [6], Damor et al. presented a method for the numerical
solution of such equations. They do not provide any proof of convergence
and stability of their method, and, they use a first order approximation for
the discretisation of the Neumann boundary conditions. Another interest-
ing work is the study proposed by Karatay et al. [22] where they present
a new numerical scheme, based on the Crank-Nicholson method, for the
solution of the time-fractional heat equation. In this work, we consider the
fractional version of the Pennes’s bioheat transfer equation (1.1), with the
thermal diffusivity coefficient assumed as a function of space. In order to
approximate the solution of this equation a numerical method is presented
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and the convergence and stability of the method are provided. Also, in our
case the equation is dimensionally consistent.

The paper is organized as follows: in the next section we describe the
fractional differential equation of single order used in this work; in Section
3 we describe the proposed numerical scheme, in Section 4 we prove the
stability and convergence of the numerical scheme, in Section 5 we test the
convergence order of the method, and, perform numerical studies with the
modified Pennes’ model in Section 6. The paper ends with Section 7, where
we provide some conclusions and plans for further investigation.

2. Fractional bioheat equation

The bioheat equation presented before (1.1) is now adapted, using the

time-fractional derivative instead of the first-order time derivative, ∂T (x,t)
∂t ,

generalizing in this way the original equation derived by Harry Pennes:

∂αT (x, t)

∂tα
= A

∂

∂x

(
k (x)

∂T (x, t)

∂x

)
−BT (x, t)+C 0 < t < T ∗, 0 < x < L,

(2.1)
where ∂α

∂tα is the fractional Caputo derivative of arbitrary real order α given
by [8],

∂αT (x, t)

∂tα
=

1

Γ (1− α)

∫ t

0
(t− s)−α ∂T (x, s)

∂s
ds (2.2)

with 0 < α < 1, and A = 1
ρtctτα−1 , B = Wbcb

ρtctτα−1 , and C = WbcbTa+qm
ρtctτα−1 .

Note that k (x) is a function of x, meaning that we can deal with possible
anisotropy. Also, it is worth-mentioning the fact that we have added a new
parameter τ [s] to the equation, so that it becomes dimensionally consistent.
Alternatively, one could have assumed different coefficients from the ones
used in the classical equation, and set the correct dimensions to these new
parameters.

It should be noted that the fractional formulation has its origin in the
generalization of the Fourier law,

q = −k∇T. (2.3)

Gurtin and Pipkin [18] proposed a general non-local dependence in time,
given by

q = −k

∫ ∞

0
K (u)∇T (t− u)du. (2.4)

Assuming the substitution τ = t − u and choosing 0 as the starting
point, we have the following equation

q = −k

∫ ∞

0
K (t− τ)∇T (τ)dτ, (2.5)
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that leads to the heat conduction equation with memory,

∂T (x, t)

∂t
= a

∫ t

0
K (t− τ)�T (τ)dτ. (2.6)

If we assume that the nonlocal time dependence between the heat flux
vector and the temperature gradient is given by the power kernel,

q = − kpk
Γ (α)

∂

∂t

∫ ∞

0
(t− τ)α−1 ∇T (τ)dτ, 0 < α ≤ 1, (2.7)

then the corresponding heat equation is given by

∂αT (x, t)

∂tα
= a

∂

∂x

(
∂T (x, t)

∂x

)
, (2.8)

where a is the thermal diffusivity coefficient, with suitable dimensions [16],
[34], [35].

If instead of the previous kernel we choose the “short-tail memory” with
exponential kernel,

q = −kstm
ξ

∫ t

0
exp

(
− t− τ

ξ

)
∇T (τ)dτ, (2.9)

where ξ is a nonnegative constant, then the telegraph equation for temper-
ature is obtained, [3], [4],

∂T (x, t)

∂t
+ ξ

∂

∂t

(
∂T (x, t)

∂t

)
= a

∂

∂x

(
∂T (x, t)

∂x

)
. (2.10)

Note that this telegraph equation solves the problem of infinite velocity
propagation (a local perturbance in temperature is felt instantaneously in
the entire medium), inherent to the classical temperature equation. The
parameter ξ can be seen as thermal relaxation time, ranging from 10−8 to
10−14 [s] in homogeneous substances, but, it may also take values of 30 [s]
in meat products [21].

In equation (2.1) we propose a new model, with a new parameter τ ,
but, an answer to the question “which values should be used for τ?” is a
difficult task, since the physical meaning of τ is not yet defined.

Nonetheless, the fact that the time-fractional derivative promotes sub-
diffusion or superdiffusion, should not destroy or alter the well known prop-
erties of density and specific heat of the materials being studied (at least in
a continuum approach). By looking at (2.7), we see that a new relationship
between the heat flux and the temperature gradient is proposed, therefore,
it can be assumed that instead of changing the density or specific heat, or
creating a new model parameter, we are changing the thermal conductivity,
k (see [26] for more information on anomalous heat conduction, and, the
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breakdown of the Fourier law). Taking as an example the equation pro-
posed before for the anomalous diffusion, Eq. (2.8), this can be rewritten
in the following way:

ρtct
∂αT (x, t)

∂tα
= kα

∂

∂x

(
∂T (x, t)

∂x

)
, (2.11)

where kα =
kpk
τα−1 is a “new” thermal conductivity. Generally speaking,

if we keep the classical conservation of energy equation intact, then the
time-fractional derivative will force changes in the relationship between the
temperature flux and the temperature gradient, including the “anomalous”
thermal conductivity coefficient.

2.1. Boundary conditions. We assume constant heat flux at the bound-
aries

− k(x)
∂T (x, t)

∂x

∣∣∣∣
x=0

= q0, t > 0 (2.12)

− k(x)
∂T (x, t)

∂x

∣∣∣∣
x=L

= 0, t > 0, (2.13)

and an initial condition,

T (x, 0) = Ta, x ∈ (0, L). (2.14)

This way we are assuming that at x = 0 we have a constant heat flux,
and that “far” from that region, the zero temperature gradient applies. Be-
sides the constant heat flux, we also consider periodic boundary conditions,
given by,

− k(x)
∂T (x, t)

∂x

∣∣∣∣
x=0

= q0 cos (ωt) , t > 0, (2.15)

where ω is the heating frequency. It should be noted that one possible
application of this type of boundary conditions is the tumor treatment by
alternate cooling and heating [37].

3. Numerical solution

In order to obtain an approximate solution of Eq. (2.1), we need to
approximate the time and spatial derivatives. For that, we consider a uni-
form space mesh on the interval [0, L], defined by the gridpoints xi = iΔx,
i = 0, . . . , N , where Δx = L

N , and we approximate the space derivative by
the second order finite difference:

∂

∂x

(
k (x)

∂T (x, t)

∂x

)∣∣∣∣
x=xi

=[{
k

(
xi +

Δx

2

)
T (xi+1, t)−

(
k

(
xi +

Δx

2

)
+ k

(
xi − Δx

2

))
T (xi, t)
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+ k

(
xi − Δx

2

)
T (xi−1, t)

} /
(Δx)2

]
+ O

(
(Δx)2

)
. (3.1)

For the discretisation of the fractional time derivative we also assume
a uniform mesh, with a time step Δt = T ∗/R and time gridpoints tl =
lΔt, l = 0, 1, ..., R, and, we use the backward finite difference formula pro-
vided by Diethelm [8],

∂αT (x, t)

∂tα
=

(�t)−αj

Γ (2− αj)

l∑
m=0

a
(α)
m,l (T (xi, tl−m)− T (xi, 0))

+O
(
(Δt)2−α

)
,

(3.2)

where

a
(α)
m,l =

⎧⎨
⎩

1, m = 0,

(m+ 1)1−α − 2m1−α + (m− 1)1−α , 0 < m < l,

(1− α) l−α − l1−α + (l − 1)1−α , m = l.

The coefficients a
(α)
m,l are such that

a
(α)
m,l < 0, m = 1, 2, ..., l − 1, (3.3)

l∑
m=0

a
(α)
m,l > 0, l = 1, 2, . . . . (3.4)

For a proof of these results, see [11] and [28]. These properties will be
useful when deriving the stability and convergence of the proposed method.
Since the fractional derivative is a nonlocal operator, an increase in the
computational effort is expected. To solve this problem, parallel algorithms
can be used. The interested reader on the topic of parallel computing of
fractional derivatives may consult the work by Gong et al. [15] where
a parallel algorithm for the Riesz fractional reaction-diffusion equation is
presented and explained.

Denoting the approximate value of T (xi, tl) by T l
i , and k

(
xi ± Δx

2

)
by ki± 1

2
and neglecting the O

(
(�x)2

)
and O

(
(�t)2−α

)
terms, the finite

difference scheme is then given by

(�t)−α

Γ (2− α)

l∑
m=0

a
(α)
m,l

(
T l−m
i − T 0

i

)

= A
ki+ 1

2
T l
i+1 −

(
ki+ 1

2
+ ki− 1

2

)
T l
i + ki− 1

2
T l
i−1

(Δx)2
(3.5)

+ f
(
xi, tl, T

l
i

)
i = 1, ..., N − 1, l = 1, ..., R,

with f (xi, tl, T (xi, tl)) ∼ f
(
xi, tl, T

l
i

)
= −BT l

i + C.
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For consistency with the order of the spatial discretisation at grid points
i = 2, ..., N−2, we also assume a second a order approximation for the Neu-
mann boundary conditions. For that, a second order forward and backward
finite difference formulae were used,

∂T (x, tl)

∂x

∣∣∣∣
x=0

=
−T (x2, tl) + 4T (x1, tl)− 3T (x0, tl)

2Δx
+O((Δx)2), (3.6)

∂T (x, tl)

∂x

∣∣∣∣
x=L

=
3T (xN , tl)− 4T (xN−1, tl) + T (xN−2, tl)

2Δx
+O((Δx)2).

(3.7)
In this way we can obtain the following approximate expressions for the
temperature at x0 and xN ,

T l
0 ≈ −1

3
T l
2 +

4

3
T l
1 +

2Δxf0(t)

3k(0)
(3.8)

and

T l
N ≈ 4

3
T l
N−1 −

1

3
T l
N−2 −

2ΔxfL (t)

3k (L)
, (3.9)

where f0 (t) stands for q0 or q0 cos (ωt) and fL (t) stands for 0. In order
to keep the method as general as possible we will proceed using f0 (t) and
fL (t) (two functions of time) as the imposed fluxes.

We now present the system of equations that we need to solve. Using
(3.8) and (3.9) in equations (3), for i = 1 and i = N−1 we obtain:

(�t)−α

Γ (2− α)

l∑
m=0

a
(α)
m,l

(
T l−m
1 − T 0

1

)
=

(
k 3

2
− 1

3
k 1

2

)
DT l

2

−
((

k 3
2
− 1

3
k 1

2

)
D +B

)
T l
1 + 2k 1

2
D
f0 (t)Δx

3k0
+ C,

(3.10)

(�t)−α

Γ (2− α)

l∑
m=0

a
(α)
m,l

(
T l−m
N−1 − T 0

N−1

)
=−

((
k 2N−3

2
− 1

3
k 2N−1

2

)
D+B

)
T l
N−1

+

(
k 2N−3

2
− 1

3
k 2N−1

2

)
DT l

N−2 − 2k 2N−1
2

D
fL (tl)Δx

3kN
+C.

(3.11)
For i = 2, ..., N−2 we have:

(�t)−α

Γ (2− α)

l∑
m=0

a
(α)
m,l

(
T l−m
i − T 0

i

)
= ki+ 1

2
DT l

i+1

−
((

ki+ 1
2
+ ki− 1

2

)
D +B

)
T l
i + ki− 1

2
DT l

i−1 +C, (3.12)

where D =
A

(Δx)2
.
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Introducing the vectors

�x =
[
x1 x2 . . . xN−1

]T
,

Tl =
[
T l
1 T l

2 · · · T l
N−1

]T
, (3.13)

∂2T

∂x2
(�x, tl)

[
∂2T

∂x2
(x1, tl)

∂2T

∂x2
(x2, tl) · · · ∂2T

∂x2
(xN−1, tl)

]T
,

the right-hand-side (rhs) of system of equations (3.10)-(3.12) can now be
written in a discretised matrix form (for a time level l), as:

A
∂2T

∂x2
(�x, tl)−BTl + C ≈ MTl + Sl, (3.14)

where

Sl =

[
C + 2k 1

2
D

Δx

3k (0)
f0 (tl) C · · · C C − 2k 2N−1

2
D
Δx

3k0
fL (tl)

]T
(3.15)

and

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1
−1,− 1

3
−B ϕ1

1,− 1
3

0 . . . 0 0

k 5
2
D −ϕ2

1,1 −B k 3
2
D 0 . . . 0

. . .
. . .

. . .
. . .

. . . . . .

0
. . . ki+ 1

2
D −ϕi

1,1 −B ki− 1
2
D . . .

. . .
. . .

. . .
. . .

. . . . . .

0 0 . . . 0 ϕN−1

− 1
3
,1
−B ϕN−1

1
3
,−1

−B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.16)

with ϕi
w1,w2

=
(
w1ki+ 1

2
+w2ki− 1

2

)
D.

The approximation (3.2), at (x, t) = (xi, tl), for the time fractional
derivative can be written as

∂αT

∂tα
(xi, tl) ≈ (�t)−α

Γ (2− α)

(
T l
i +

l−1∑
m=1

a
(α)
m,l

(
T l−m
i

)
−

l−1∑
m=1

a
(α)
m,lT

0
i − T 0

i

)
,

(3.17)
or, in matrix form,

∂αT

∂tα
(�x, tl) ≈ (�t)−α

Γ (2− α)

(
Tl +

l−1∑
m=1

a
(α)
m,lT

l−m −
l−1∑
m=1

a
(α)
m,lT

0 −T0

)
.

(3.18)
From the previous considerations we are now in position to describe the

numerical scheme. Assume that we are at time level l and that we know
the temperature field from the previous time levels, then from (3.14) and
(3.18) the system of equations that needs to be solved can be written as
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Tl +

l−1∑
m=1

[
a
(α)
m,lT

l−m
]
−T0

l−1∑
m=1

a
(α)
m,l −T0 = ΛMTl + ΛSl (3.19)

with Λ =
Γ (2− α)

(�t)−α . Or, in an equivalent form,

(I− ΛM)Tl = −
l−1∑
m=1

[
a
(α)
m,lT

l−m
]
+T0 +T0

l−1∑
m=1

a
(α)
m,l + ΛSl. (3.20)

The matrix I−ΛM, where I is the (N − 1)× (N − 1) identity matrix,
is a strictly diagonally dominant matrix. Therefore the matrix I − ΛM is
invertible and the system (3.20) admits a unique solution given by

Tl = (I− ΛM)−1

(
−

l−1∑
m=1

[
a
(α)
m,lT

l−m
]
+T0 +T0

l−1∑
m=1

a
(α)
m,l + ΛSl

)
.

(3.21)

4. Stability and convergence of the difference scheme

In this section we will prove the stability and convergence of the pro-
posed method. Some of the ideas used in the demonstrations were based
on the excellent work by Huang et al. [19].

4.1. Stability of the difference scheme. For the proof of stability, the
following lemma will be used.

Lemma 4.1. Let L be an arbitrary square matrix. Then for any ε > 0
there exists a norm, denoted by ‖.‖ε, such that ‖L‖ε ≤ ρ (L) + ε.

Theorem 4.1. Let 0 < ε ≤ Δt, the scheme given by (3.21) is uncon-
ditionally stable with respect to the initial conditions.

P r o o f. For the proof of this result, we will assume the existence of
two different vector solutions, Hl

1 and Hl
2 (that satisfy Eq. (3.21)) with

different initial conditions
(
H0

1 
= H0
2

)
but same boundary conditions. The

difference Hl = Hl
1 −Hl

2 satisfies the following equation
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(I− ΛM)Hl = −
l−1∑
m=1

[
a
(α)
m,lH

l−m
]
+H0 +H0

l−1∑
m=1

a
(α)
m,l. (4.1)

From Lemma 4.1 we know that, given ε > 0, there exists a norm ‖.‖ε
such that ∥∥∥(I− ΛM)−1

∥∥∥
ε
≤ ρ
(
(I− ΛM)−1

)
+ ε. (4.2)

Using (4.2), for l = 1 we obtain∥∥H1
∥∥
ε
=
∥∥∥(I− ΛM)−1H0

∥∥∥
ε
≤
∥∥∥(I− ΛM)−1

∥∥∥
ε

∥∥H0
∥∥
ε

≤
(
ρ
(
(I− ΛM)−1

)
+ ε
) ∥∥H0

∥∥
ε
. (4.3)

Since Λ, D, B and ki are all positive, using the Gerschgorin theorem is
straightforward to prove that ρ (I− ΛM) > 1 which implies

ρ
(
(I− ΛM)−1

)
< 1. (4.4)

Hence, from (4.3) it follows∥∥H1
∥∥
ε
≤ (1 + ε)

∥∥H0
∥∥
ε
. (4.5)

Now, assume that the following relationship holds:∥∥∥Hk
∥∥∥
ε
≤ (1 + ε)k

∥∥H0
∥∥
ε
, k = 1, 2, ..., l, (4.6)

and we will prove
∥∥Hl+1

∥∥
ε
≤ (1 + ε)l+1

∥∥H0
∥∥
ε
.

From (3.3), (3.4), (4.4) and (4.6), it can be deduced that

∥∥∥Hl+1
∥∥∥
ε
≤
∥∥∥(I− ΛM)−1

∥∥∥
ε

∥∥∥∥∥
l∑

m=1

[(
−a

(α)
m,l+1

)
Hl+1−m

]
+H0 +H0

l∑
m=1

(
a
(α)
m,l+1

)∥∥∥∥∥
ε

≤ (1 + ε)

(∥∥∥∥∥
l∑

m=1

[(
−a

(α)
m,l+1

)
Hl+1−m

]∥∥∥∥∥
ε

+

[
1 +

l∑
m=1

(
a
(α)
m,l+1

)]∥∥H0
∥∥
ε

)

≤ (1 + ε)

([
l∑

m=1

(−a
(α)
m,l+1)

]
(1 + ε)j

∥∥H0
∥∥
ε
+

[
1 +

l∑
m=1

(a
(α)
m,l+1)

]
(1 + ε)l

∥∥H0
∥∥
ε

)

≤ (1 + ε)l+1
∥∥H0

∥∥
ε
≤ e(l+1)ε

∥∥H0
∥∥
ε
. (4.7)

Assuming 0 < ε ≤ Δt, from (4.7) it follows that∥∥∥Hl+1
∥∥∥
ε
≤ eT

∗ ∥∥H0
∥∥
ε
,

meaning that our numerical scheme is unconditionally stable with respect
to the initial conditions. �
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4.2. Convergence analysis. Let us define the vector of the errors at time
step l:

el =
[
el1, e

l
2, ..., e

l
N−1

]
, l = 1, 2, ..., ,

where eli = T (xi, tl) − T l
i l = 1, 2, ..., i = 1, ..., N − 1 is the error at each

point of the mesh.

LetTl
an =

[
T (x1, tl) T (x2, tl) · · · T (xN−2, tl) T (xN−1, tl)

]T
be

the vector containing the exact solution for each node i (at time step l).
It can be easily seen that Tl

an satisfies the following equation,

(I− ΛM)Tl
an = −

l−1∑
m=1

[
a
(α)
m,lT

l−m
an

]
+T0

an +T0
an

l−1∑
m=1

a
(α)
m,l

+ΛSl +ΛRl,

(4.8)

where Rl = [Rl
1, Rl

2, ....., R
l
N−1] is a (N −1) × 1 vector containing the

errors committed in the discretisation of the derivative operators. If T (x, t)
is sufficiently regular, from (3.1), (3.2), (3.6) and (3.7) it is straightforward
to prove that the truncation error at each point (xi, tl), i = 1, . . . , N−1
satisfies

Rl
i = O

(
(Δx)2

)
+O

(
(�t)2−α

)
. (4.9)

On the other hand, the approximate solutionTl obtained from the proposed
method satisfies

(I− ΛM)Tl = −
l−1∑
m=1

[
a
(α)
m,lT

l−m
]
+T0 +T0

l−1∑
m=1

a
(α)
m,l + ΛSl. (4.10)

Subtracting (4.10) from (4.8) we have (notice that e0 = [0, 0, ..., 0]),

el = (I− ΛM)−1

(
l−1∑
m=1

[(
−a

(α)
m,l

)
el−m

]
+ΛRl

)
. (4.11)

Therefore, for l = 1, 2, . . . , R, we have∥∥∥el∥∥∥
ε
≤ (1 + ε)

∥∥∥∥∥
l−1∑
m=1

[(
−a

(α)
m,l

)
el−m

]∥∥∥∥∥
ε

+ Λ(1 + ε)
∥∥∥Rl
∥∥∥
ε

≤ (1 + ε)

l−1∑
m=1

(
−a

(α)
m,l

)∥∥∥el−m
∥∥∥
ε
+ Λ(1 + ε)

∥∥∥Rl
∥∥∥
ε
, (4.12)

where ε is a positive constant such that ε < Δt.

Let us define a sequence {pl}l∈N0 such that pl−pl+1 = a
(α)
m,l+1, m = 0, 1,

. . . , l−1. Then pl = (l + 1)1−α − l1−α, l = 0, 1, . . ., and from (3.3) we can
conclude that pl is a decreasing sequence. Taking this into account, in what
follows we prove by induction on l, that
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∥∥∥el∥∥∥
ε
≤ CΛ (1 + ε)l p−1

l−1

(
(Δt)2−α + (Δx)2

)
, l = 0, 1, . . . . (4.13)

From (4.12) and (4.9) we obtain∥∥e1∥∥
ε
≤ Λ (1 + ε)

∥∥R1
∥∥
ε
≤ CΛ (1 + ε) p−1

0

(
(Δt)2−α + (Δx)2

)
, (4.14)

then (4.13) is valid for l = 1. Now, suppose we have∥∥ej∥∥
ε
≤ C Λ (1 + ε) p−1

j−1

(
(Δt)2−α + (Δx)2

)
, j = 1, 2, . . . , l, (4.15)

we want to prove that∥∥∥el+1
∥∥∥
ε
≤ C Λ (1 + ε) p−1

l

(
(Δt)2−α + (Δx)2)

)
. (4.16)

From (4.12), (4.9), (4.15), and using some properties of the sequences

pl and a
(α)
m,j (explained before), we obtain∥∥∥el+1

∥∥∥
ε
≤ (1 + ε)

l∑
m=1

(
−a

(α)
m,l+1

)
CΛ (1 + ε)l−m p−1

l−m−1

(
(Δt)2−α + (Δx)2

)
+(1 + ε)CΛ

(
(Δt)2−α + (Δx)2

)
≤ C

(
(Δt)2−α + (Δx)2

)
(1 + ε)l+1 p−1

l

(
l∑

m=1

(
−a

(α)
m,l+1

)
+ pl

)
. (4.17)

Since
l∑

m=1

(
−a

(α)
m,l+1

)
+ pl = (p0 − p1 + p1 − p2 + ...+ pl−1 − pl) + pl = p0 = 1,

from (4.17) it follows∥∥∥el+1
∥∥∥
ε
≤ C

(
(Δt)2−α + (Δx)2

)
(1 + ε)l+1 p−1

l ,

and by induction, (4.13) is valid for l ∈ N.

Theorem 4.2. Let 0 < ε ≤ Δt, if the solution of (2.1) is of the class
C2 with respect to t and of the class C4 with respect to x, then there exists
a constant C0 independent of Δx and Δt such that∥∥∥el∥∥∥

ε
≤ C0

(
(Δt)2−α + (Δx)2

)
, l = 0, 1, . . . . (4.18)

P r o o f. From (4.13), the
∥∥∥el∥∥∥

ε
satisfies∥∥∥el∥∥∥

ε
≤ l−α

pl
CΓ(2− α)lα (Δt)α (1 + ε)l

(
(Δt)2−α + (Δx)2

)
≤ l−α

pl
CΓ(2− α)T ∗α (1 + ε)l

(
(Δt)2−α (Δx)2

)
, l = 0, 1, . . . . (4.19)
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On the other hand,

lim
l→∞

l−α

pl
= lim

l→∞
l−α

(l + 1)−α − l−α

=
1

1− α
lim
l→∞

(
1− 1

l

)α

=
T ∗α

1− α
. (4.20)

Thus, for 0 < ε ≤ �t, (1 + ε)n+1 ≤ eT
∗
it follows (4.18), for some positive

constant C0 that does not depend on Δt and Δx. �

Note that the convergence order depends on the fractional order α. For
a method presenting optimal order convergence without the need to impose
inconvenient smoothness conditions on the solution, see the work by Ford
et al. [12].

5. Methodology Assessment

In order to illustrate the effectiveness of the method, some examples for
which the analytical solution is known are presented. The error is measured
by determining the maximum error at the mesh points (xi, tl):

εΔx,Δt = max
i=1,...,N, l=0,...,R

∣∣∣T (xi, tj)− T l
i

∣∣∣ , (5.1)

where T l
i is the numerical solution at (xi, tl).

Example 5.1.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂αT (x, t)

∂tα
=

∂

∂x

(
(x+ 1)

∂T (x, t)

∂x

)
+ t3/2x2

(
3

2
− x

)

−T (x, t)− 3t3/2
(
1− 3x2

)− 3
√
πt3/2−αx2 (2x− 3)

8Γ
(
5
2 − α

)
T (x, 0) = 0, x ∈ (0, 1)

∂T (x, t)

∂x

∣∣∣∣
x=0,1

= 0, t ∈ (0, 1)

(5.2)

whose analytical solution is T (x, t) = t3/2x2
(
3
2 − x

)
.
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Example 5.2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂αT (x, t)

∂tα
=

∂

∂x

(
(x+ 1)∂T (x,t)

∂x

)
− cos (t) t2

(
x− x4

4

)

− t2
(−1 + 3x2 + 4x3

)
cos(t)− (−4 + x3)xt−α

4

×

⎛
⎜⎜⎝
2t2 2F3

({
1,

3

2

}
,

{
1

2
;
3

2
− α

2
, 2 − α

2

}
;− t2

4

)
Γ(3− α)

⎞
⎟⎟⎠

+
(−4 + x3)xt−α

4

×

⎛
⎜⎜⎝
6t4 2F3

({
2,

5

2

}
,

{
3

2
;
5

2
− α

2
, 3 − α

2

}
;− t2

4

)
Γ(5− α)

⎞
⎟⎟⎠

−T (x, t))

T (x, 0) = 0, x ∈ (0, 1)

∂T (x, t)

∂x

∣∣∣∣
x=0

= t2 cos(t),
∂T (x, t)

∂x

∣∣∣∣
x=1

= 0, t ∈ (0, 1),

(5.3)

whose analytical solution is T (x, t) = cos (t) t2
(
x− x4

4

)
, with 2F3 (...; ...; ...)

the generalized hypergeometric function.

In Tables 1 and 2, we show the time and space convergence orders

obtained for Ex. 5.1 using two different values of α (
1

2
and

3

4
). Note that the

analytical solution is not smooth at t = 0, and therefore, we are expecting
a reduction on the theoretical convergence order (the convergence order

depends on α
(
O
(
(�t)2−α

))
, and so, for a smooth function, we would

obtain in the limit of a highly refined mesh, an experimental convergence
order of 1.5 when α = 0.5 and 1.25 when α = 0.75).

For the space variable, we obtain an experimental convergence order of
2 (in the limit of a highly refined mesh), while for time, the convergence
order slightly decreased, as expected, being 1.35 for α = 0.5 and 1.22 for
α = 0.75. Nevertheless, the computations were easily performed, indicating
that the method can deal with nonsmooth solutions.

Ex. 5.2 was also used to test the convergence order of the method. In
this case, the imposed temperature flux is a sinusoidal function of time,
that may be interpreted physically as a pulsating temperature applied at

Authenticated | luis.ferras@dep.uminho.pt author's copy
Download Date | 8/7/15 10:58 AM



1096 L. Ferrrás, N. Ford, M. Morgado, J. Nóbrega, M. Rebelo

Step-sizes α = 3/4 α = 1/2
Δt Δx εΔx,Δt p εΔx,Δt p
1/16 0.002 0.00207 − 0.00185 −
1/32 0.002 0.00090 1.19 0.00075 1.33
1/64 0.002 0.00039 1.21 0.00030 1.35
1/128 0.002 0.00017 1.22 0.00012 1.35

Table 1. Numerical results obtained for the problem given
in Eq. 5.2, for two different values of α (12 and 3

4): values of
the maximum of the absolute errors at the mesh points and
the experimental orders of convergence p, for the variable t
(Δx = 0.002).

Step sizes α = 3/4 α = 1/2
Δt Δx εΔx,Δt q εΔx,Δt q

0.001 1/8 0.02687 − 0.02929 −
0.001 1/16 0.00718 1.91 0.00780 1.91
0.001 1/32 0.00183 1.97 0.00201 1.96
0.001 1/64 0.00045 2.04 0.00051 1.99

Table 2. Numerical results obtained for the problem given
in Eq. 5.2, for two different values of α (12 and 3

4): values of
the maximum of the absolute errors at the mesh points and
the experimental orders of convergence q, for the variable x
(Δt = 0.001).

the surface of an object. In this case, the analytical solution is a smooth
function in both time and space.

The results presented in Tables 3 and 4 show that the convergence or-
ders obtained, match the theoretical predictions, reinforcing the robustness
of the numerical method proposed. Fig. 3 shows the pronounced effect of
the sinusoidal boundary condition, resulting in a wavy variation of T (x, t)
with t for x = 0.75. A perfect match is found between the analytical and
the numerical results, for �x = 0.05 and �t = 0.05.

Note that the numerical method was derived for the numerical solution
of equations that are simpler than the ones presented in the two previous
examples. Nevertheless, the numerical method proved to be robust, provid-
ing the theoretical results we were expecting. The reason for choosing these
two examples, was based on the lack of analytical solutions for fractional
differential equations with the structure of equation (2.1).
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Step-sizes α = 0.9
Δt Δx εΔx,Δt p
1/10 0.002 0.00929 −
1/20 0.002 0.00449 1.05
1/40 0.002 0.00213 1.08
1/80 0.002 0.00100 1.09

Table 3. Numerical results obtained for the problem given
in Eq. 5.3, for α = 0.9: values of the maximum of the
absolute errors at the mesh points and the experimental
orders of convergence p, for the variable t (Δx = 0.002).

Step sizes α = 0.9
Δt Δx εΔx,Δt q

0.001 1/4 0.06052 −
0.001 1/8 0.01855 1.71
0.001 1/16 0.00513 1.85
0.001 1/32 0.00038 1.90

Table 4. Numerical results obtained for the problem given
in Eq. 5.3, for α = 0.9: values of the maximum of the
absolute errors at the mesh points and the experimental
orders of convergence p, for the variable x (Δt = 0.001).

Figure 3. Variation of T (x, t) with t for a constant x = 0.75.
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Figure 4. Variation of temperature along the space for
three different times. Comparison between the numerical
and analytical results.

For validation purposes, we also compared the results obtained by our
method with the analytical solution (5.4) derived by [36] for the classical
Bioheat equation (1.1),

T (x, t) = Ta +
q0√

4kWbcb

⎡
⎢⎢⎢⎢⎣

e−
√

Wbcb
k

xerfc

(
x√
4kt
ctρt

−
√

Wbcb
ctρt

t

)

−e

√
Wbcb

k
xerfc

(
x√
4kt
ctρt

+
√

Wbcb
ctρt

t

)
⎤
⎥⎥⎥⎥⎦ . (5.4)

For this particular case, the case study was the temperature response of
a semi-infinite biological tissue. Therefore, we chose the same coefficients as
the ones given in [6], but, we set the metabolic heat generation to zero. We
have used ρt = 1050

[
kg/m3

]
, ct = 4180 [J/ (kg ◦C)], k = 0.5 [J/(s.m ◦C)],

Wb = 0.5
[
kg/
(
s.m3

)]
, cb = 3770 [J/ (kg ◦C)], Ta = 37◦C, L = 0.02m,

q0 = 5000 and qm = 0
[
J/(s.m3)

]
.

Fig. 4 shows the variation of temperature, T , with time, t, for a constant
value of x. The results were obtained for �x = 0.0001 and �t = 0.25, for
three different time intervals. Since the analytical solution was derived for
α = 1 [36], we used a value of α closer to 1 (α = 0.999). As shown, a
good agreement was obtained between the numerical and the analytical
solutions. We can also see that the temperature increases with time, due
to the influence of the source term that represents the perfusion of blood.
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6. Case Study

In order to test the influence of the time-fractional derivative on the
classical Bioheat equation, we used as a case study, the heating of skin
assuming we have a geometry as the one shown in Fig. 5, where different
layers of skin are shown. For this problem, three different case studies were
considered: (I) the tissue is only formed by one layer; (II) three layers
are considered, the epidermis, dermis, and, the subcutaneous tissue, with
the space variable, x, ranging from 0 to 0.005 [m]; (III) the parameter τ
is used to fit the experimental data. For the second case study, since the
thermal conductivities of the epidermis, dermis and subcutaneous tissue,
are given by 0.23, 0.45 and 0.19 [W/(m ◦C)], respectively, we will use a
logistic function to perform the smooth passage between the different layers
of skin, allowing this way to test the robustness of the numerical method.

Figure 5. Different skin layers.

Case study 1: For ease of understanding, the first numerical tests were
performed assuming a constant thermal conductivity, k. For that purpose
we used the epidermis tissue properties ρt = 1200, ct = 3590, k = 0.23, al-
though other properties could have been used, since the aim of this first case
is to illustrate the general influence of the time-fractional derivative on the
temperature distribution. For demonstration purposes we have also con-
sidered a blood perfusion rate of Wb = 0.5 [6], a specific heat of cb = 3770,
and an arterial blood temperature of Ta = 37 (note that the epidermis
perfusion rate is zero [17]). The length of the epidermis is approximately
0.08 [mm], but, for this case study we considered a larger tissue portion
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(L = 0.02 [m]) so that the zero gradient boundary condition is not affect-
ing the overall temperature distribution. Additionally, the metabolic heat
generation qm and the temperature flux q0 on the skin surface are assumed
to be, respectively, 0 and 5000

[
J/(s.m3)

]
.

Figure 6. Variation of temperature along time (x =
0.0003 [m]) and space (t = 2 [s]). (a) τ = 1 and three dif-
ferent values of α. (b) and (c)α = 0.999 and three different
values of τ . (d) α = 0.5 and three different values of τ .

As remarked previously, in the literature we can find studies that make
use of the time-fractional derivative, not taking into account the fact that
the substitution of the classical time derivative by its generalized version,
results in a change of units. The results obtained with such dimensionally
inconsistent equation are equivalent to the ones obtained with the model
proposed in this work, assuming τ = 1. Therefore, Fig. 6 shows the
variation of temperature along time, using different values for τ . In Fig. 6
(a) we consider τ = 1 (being mathematically equivalent to equation (1.2)),
and, in Figs. 6 (b), (c) and (d) we test the influence of τ on the temperature
diffusion along the tissue and time.

As expected, the temperature increases with time (due to the perfusion
of blood). Also, initially the temperature increases with α, and, the oppo-
site behavior occurs after a certain period (Fig. 6 (a)). A similar behaviour
was observed by Murio [29].
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Figs. 6 (b) and (c) show that for the range of values studied, the pa-
rameter τ has a small influence on the temperature variation. This was
expected, since the change in τ can be seen as a small change in the den-
sity and specific heat. The influence of τ on the temperature variation is
expected to increase for smaller values of α, as shown in Fig. 6 (d). In
these problems, the mesh used was �x = 0.0001 and �t = 0.01.

Case study 2: For the second case we have taken into account three
different layers of skin, the epidermis, the dermis and the subcutaneous
tissue. The density and the specific heat are the ones from the subcuta-
neous region, that is, ρt = 1000, ct = 2675. The thermal conductivity
function is given by k (x) = 0.23 + (1 + exp [m (−x+ 0.00008)])−1 0.45 −
(1 + exp [m (−x+ 0.00208)])−1 0.26, and L = 0.005 [m] (with m a param-
eter that allows tuning the variation of k between two layers. For this
particular case we have considered m = 100000). The perfusion rate and
blood properties are the ones presented before, and, the metabolic heat
generation is assumed to be qm = 368.1.

Fig. 7 shows the variation of temperature along the different layers of
skin, for t = 2 [s], and considering two different values of α (0.999 and 0.8).

Figure 7. Variation of temperature for constant t = 2 [s]
and two different values of α, 0.999 and0.8 (τ = 1).

Case study 3: In this last case study, we used the experimental data
provided by Barcroft and Edholme [2] for the temperature variation inside
a human arm. One of their experiments consisted of measuring the tem-
perature decrease of the subcutaneous tissue (1 cm below the skin surface)
when the forearm is submersed in a 12◦C water bath (see Fig. 8 (a)). For
the numerical tests we have assumed a 1D problem, and, even then, good
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results were obtained by setting α = 0.96 and and τα−1 = 0.5248 (based
on the data provided in the papers [2] and [40] we have used the following
parameters: initial temperature of 33.6C, ρt = ct = 1 g/cm3, ρb = cb =
1 [cal.g−1.C−1], qm = 0.0001 [cal.s−1.cm−3], k = 0.0015 cal.s−1 .cm−1.C−1,
Wbcb = 0.000016). The boundary conditions are given by

∂T (x, t)

∂x

∣∣∣∣
x=0

= 0, (6.1)

− k
∂T (x, t)

∂x

∣∣∣∣
x=4 [cm]

= 0.0075 (T − 12) . (6.2)

Figure 8. (a) Experimental setup. (b) Fitting experimen-
tal data (case study 3).

In Fig. 8 (b), we show that the proposed fractional bioheat equation
can be used to improve the accuracy of the numerical predictions.

7. Conclusions

In this work we proposed a generalization of the classical bioheat equa-
tion, through the substitution of the rate of change term by a fractional
time derivative. A numerical method was also devised to solve the proposed
equation, which was proved to be stable and convergent. The numerical
method proposed is general, and, can be used in the solution of other frac-
tional diffusion equations.

We observed that with this fractional bioheat model, for a fixed x, and
varying t from zero to a certain point tα ∼ 1, when the order of the time
derivative increases, the temperature decreases, and, after that point tα,
the opposite behavior is observed. The new model proved to be robust
and more flexible than the classical bioheat equation, since it allowed us to
obtain a better fit of experimental data.
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Conf. Proc., ICFDA’14 International Conf. on Fractional Differentia-
tion and Its Applications, Catania, Italy (2014).

[12] N.J. Ford, M.L. Morgado, M. Rebelo, Nonpolynomial collocation ap-
proximation of solutions to fractional differential equations. Fract. Calc.
Appl. Anal. 16, No 4 (2013), 874–891; DOI: 10.2478/s13540-013-0054-
3; http://www.degruyter.com/view/j/fca.2013.16.issue-4/

issue-files/fca.2013.16.issue-4.xml.
[13] A.P. Gagge, Rational temperature indices of man’s thermal environ-

ment and their use with a 2-node model of his temperature regulation.
Fed. Proc. 32 (1973), 1572–1582.

[14] A.P. Gagge, A.P. Fobelets, L.G. Berglund, A standard predictive index
of human response to the thermal environment. ASHRAE Trans. 92
(1986), 709–731.

[15] C. Gong, W. Bao, G. Tang, A parallel algorithm for the Riesz fractional
reaction-diffusion equation with explicit finite difference method. Fract.
Calc. Appl. Anal. 16, No 3 (2013), 654–669; DOI: 10.2478/s13540-013-
0041-8; http://www.degruyter.com/view/j/

fca.2013.16.issue-3/issue-files/fca.2013.16.issue-3.xml.
[16] R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Time fractional

diffusion: a discrete random walk approach. Nonlinear Dynamics 29
(2002), 129–143.

[17] T.R. Gowrishankar, D.A. Stewart, G.T. Martin, J.C. Weaver, Trans-
port lattice models of heat transport in skin with spatially hetero-
geneous, temperature-dependent perfusion. Biomed. Eng. Online 3
(2004), Id 42, 17p.; doi: 10.1186/1475-925X-3-42.

[18] M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction
with finite wave speeds. Arch. Rational Mech. Anal. 31 (1968), 113–
126.

[19] J.F. Huang, Y.F. Tang, W.J. Wang, J.Y. Yang, A compact difference
scheme for time fractional diffusion equation with Neumann boundary
conditions. In: AsiaSim 2012, Asia Simulation Conference 2012, Part
I, Shanghai, China (2012), 273–284; doi: 10.1007/978-3-642-34384-
1 33.

[20] X. Jiang, H. Qi, Thermal wave model of bioheat transfer with modified
Riemann–Liouville fractional derivative. J. Phys. A: Math. Theor. 45
(2012), Id 485101, 11 p.

[21] W. Kaminski, Hyperbolic heat conduction equation for materials with
a nonhomogeneous inner structure. J. Heat Transfer 112 (1990), 555–
560.

[22] I. Karatay, N. Kale, S.R. Bayramoglu, A new difference scheme for time
fractional heat equations based on the Crank-Nicholson method. Fract.

Authenticated | luis.ferras@dep.uminho.pt author's copy
Download Date | 8/7/15 10:58 AM

http://www.degruyter.com/view/j/fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xml
http://www.degruyter.com/view/j/fca.2013.16.issue-3/issue-files/fca.2013.16.issue-3.xml


FRACTIONAL PENNES’ BIOHEAT EQUATION: . . . 1105

Calc. Appl. Anal. 16, No 4 (2013), 892–910; DOI: 10.2478/s13540-013-
0055-2; http://www.degruyter.com/view/j/

fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xml.
[23] H.G. Klinger, Heat transfer in perfused biological tissue, I. General

theory. B. Math. Biol. 36 (1974), 403–415.
[24] A. Lakhssassi, E. Kengne, H. Semmaoui, Investigation of nonlinear

temperature distribution in biological tissues by using bioheat transfer
equation of Pennes’ type. Natural Science 3 (2010), 131–138.

[25] A. Lakhssassi, E. Kengne, H. Semmaoui, Modifed Pennes’ equation
modelling bio-heat transfer in living tissues: analytical and numerical
analysis. Natural Science 2 (2010), 1375–1385.

[26] B. Li, J. Wang, Anomalous heat conduction and anomalous diffusion in
one-dimensional systems. Physical Review Letters 91 (2003), Id 044301,
1–4; DOI: http://dx.doi.org/10.1103/PhysRevLett.91.044301.

[27] W.J. Minkowycz, E.M. Sparrow, J.P. Abraham, Advances in Numeri-
cal Heat Transfer, Vol. 3. CRC Press, Boca Raton, USA (2010).

[28] M.L. Morgado, M. Rebelo, Numerical approximation of distributed
order nonlinear reaction-diffusion equations. J. of Computational and
Applied Mathematics 275 (2015), 216–227.

[29] D.A. Murio, Implicit finite difference approximation for time fractional
diffusion equations. Computers and Mathematics with Appl. 56 (2008),
1138–1145.

[30] J.-H. Niu, H.-Z. Wang, H.-X. Zhang, J.-Y. Yan, Y.-S. Zhu, Cellular
neural network analysis for two dimensional bioheat transfer equation.
Med. Biol. Eng. Comput. 39 (2001), 601–604.

[31] W.L. Nyborg, Solutions of the bio-heat transfer equation. Phys. Med.
Biol. 33 (1988), 785–792.
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