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In order to reduce the cost of Al-Sc alloys and maintain their mechanical properties, the microstructure
and mechanical properties of Al-0.24 wt% Sc-0.07 wt% Yb in comparison with Al-0.28 wt% Sc alloys
were studied. The aging behaviour, precipitate morphologies, precipitate coarsening and precipitation
hardening of both alloys were investigated. The average diameter and the size distribution of nanoscale
Al3Sc and Als(Sc,Yb) precipitates at various aging conditions were measured. Transmission electron
microscopy (TEM) and high-resolution TEM were used to deeply understand the precipitate evolution.
A maximum hardness around 73 (HV5) was obtained with a precipitate diameter from 4.3 to 5.6 nm for

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Al-Sc alloys have excellent mechanical properties at ambient
and elevated temperatures due to the presence of a high number
density (as high as 102 m~3) of elastically-hard AlsSc (L1,
structure) precipitates [1-4]. The AlsSc precipitates remain fully
coherent with the o-Al matrix at elevated temperatures [1,5].
Among alloying elements of Al alloys, Sc has one of the greatest
strengthening effects on a per-atom basis [6]. The Al3Sc precipi-
tates are very stable with respect to coarsening, even for long
aging times at 350 °C [1], while in commercial age-hardening 2xxx
and 6xxx series alloys containing Cu, Mg and Si, the precipitates
coarsen rapidly at temperatures above 250 °C [6]. At ambient
temperature the lattice parameters of Al and AlsSc are 0.40496
and 0.4105 nm, respectively, showing a small lattice parameter
mismatch of AlsSc precipitates with the a-Al matrix [7-9]. A good
interfacial strength between the AlsSc precipitates and the a-Al
matrix will hinder dislocation motion and prevent grain growth
[10]. In addition, the high thermal stability of the AlsSc precipitates
will improve the strength of these alloys at high temperature
[11,12]. Therefore Al-Sc alloys are widely used in the fabrication of
sports equipment, aerospace components and in a range of struc-
tural applications.
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Although Al-Sc alloys are very attractive, their use is limited by
the cost and availability of Sc. A possible solution for this problem
could be replacing part of the Sc content by other alloying
elements similar in nature in order to reduce the Sc content
without decreasing properties. Among them, rare-earth metals
(REMs) are attractive ternary additions to substitute Sc, showing
some interesting characteristics/benefits: (i) many REMs substi-
tute Sc in the AlsSc precipitates forming Als(Sc;_xREMy) (L1,
structure) with high solubility [13,14]; (ii) the light REMs have a
smaller diffusivity in Al than Sc [15], improving the coarsening
resistance of the precipitates; (iii) REMs increase the lattice
parameter mismatch between o-Al and Als(Sc;_xREM,) [13,14],
which could increase the creep resistance of the alloy [16]; (iv)
most of the REMs have electronegativity values very similar to Sc
suggesting that these metals should strongly resemble Sc in their
interaction with o-Al. The metallic radii of all REMs are signifi-
cantly larger than Sc leading to an increasing of the lattice
parameter mismatch between a-Al and Als(Scq _xREM,). Karnesky
et al. [17] showed that the Vickers hardness of Al-0.06 at%
Sc-0.02 at% REM alloys (REM =Dy, Er, Gd, Sm, Y, or Yb) aging at
300 °C are generally similar to that of Al-0.08 at% Sc alloy. The
Al-0.06 at% Sc alloys microalloyed with Yb or Gd have much
improved creep resistance when compared to binary Al-Sc or
ternary Al-Sc-Zr alloys with the same composition and precipitate
radius [18]. According to Sawtell and Morris [19,20], addition of
0.3 at% Er, Gd, Ho, or Y improves the tensile strength of Al-0.3 at%
Sc alloys at room temperature.
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In this study, we investigate dilute Al-0.24 wt% Sc alloys with
microalloying addition of 0.07 wt%Yb to compare with Al-0.28 wt
%Sc alloy. The effects of substituting Yb for Sc on the microstruc-
ture and the mechanical properties of Al-Sc alloy are investigated
by using SEM, TEM, high-resolution TEM and Vickers hardness.

2. Experimental procedure

Al-0.28 wt% Sc and Al-0.24 wt% Sc-0.07 wt% Yb alloys were
cast by using commercially pure Al (99.83 wt% purity), Al-2 wt% Sc
master alloy and pure Yb (99.99 wt% purity). The alloys were
melted in a graphite crucible using a high frequency induction
furnace. For each alloy, pure Al was firstly melted at 720 °C + 5.
Then the Al-2 wt% Sc master alloy and pure Yb were added into
the melt. The melt was kept at this temperature for 30 min and
stirred with an alumina rod to ensure homogeneity. The molten
alloys were poured into cylindrical copper moulds with 16 mm in
diameter and 80 mm in length and water cooled. The composition
of the as-cast alloy was measured by X-ray Fluorescence Spectro-
metry (Bruker S8 Tiger). The chemical composition of the as-cast
alloys is given in Table 1.

In order to study the effect of homogenization treatment and
aging temperature on precipitation behaviour and age hardening
response, two separate studies were conducted: in one, the as-cast
alloys were treated at 640 °C for 72 h for homogenization and
water quenched to room temperature. The samples were subse-
quently treated at various temperatures within the range 150-
375 °C for 2 h, followed by water quenching to ambient room
temperature; in the other, the same procedure without homo-
genization treatment was carried out.

In order to evaluate the aging kinetics, isothermal aging with-
out homogenization treatment of the cast samples was carried out.
The samples were aged at different temperatures between 300
and 350 °C for times ranging from 10 min to 7 days.

Vickers hardness was used to monitor the hardening behaviour.
Vickers hardness measurements were performed at room tempera-
ture using 30 kg load and 20s dwell time. Eight measurements
were performed on each sample. Scanning electron microscopy
(SEM) micrographs were obtained on a Nano-SEM-FEI Nova 200
FEG/SEM scanning electron microscope. Transmission electron
microscopy (TEM) and high resolution electron microscope
(HRTEM), were used to determine the structure and morphologi-
cal characteristics of the precipitates. The specimens were exam-
ined by FEI TECNAI G20 operating at 200 kV. Thin foils for
transmission electron microscope (TEM) and high resolution
electron microscope (HRTEM) observations were sectioned from
the alloys under different conditions. The foils were prepared by
double-jet electropolishing in a solution of 25% nitric acid and 75%
methanol solution. In order to determine the average diameter
and evaluate the number of precipitates, the TEM micrographs
were analysed by Image ] software. For each condition, four TEM
micrographs at various positions of sample with more than 200
precipitates were selected to measure the precipitate size.

Table 1
Chemical composition of the as-cast alloys.

3. Results and discussion
3.1. Age hardening behaviour of the as-cast alloys

3.1.1. Effect of homogenization treatment and aging temperatures on
ageing behaviour

The Vickers hardness curves of Al-0.28 wt% Sc and Al-0.24 wt%
Sc-0.07 wt% Yb alloys aged at various temperatures within the
range 150-375°C for 2h with and without homogenization
treatment are shown in Fig. 1. It is evident that the hardness
values of the alloys aged in the as-cast condition are significantly
higher than those of the alloys homogenized and aged. In the as-
cast alloys, Sc and Yb exist in a-Al supersaturated solid solution
due to the high cooling rate during solidification. The precipitation
of intermetallic particles occurs during the homogenization treat-
ment, reducing the supersaturation level of Sc and Yb in a-Al solid
solution. As a consequence, homogenized alloys will have the
lower hardening effect due to the lower fraction volume/density of
precipitates. Fig. 2 shows SEM micrographs of as-cast and homo-
genized Al-0.24 wt% Sc-0.07 wt% Yb samples. In the homogenized
samples, several large particles of intermetallic precipitates were
formed and heterogeneously distributed in a-Al.

Also shown in Fig. 1 is the effect of substituting 0.07 wt% Yb for
Sc of Al-0.28 wt% Sc alloy on aging behaviour at various tempera-
tures. The onset of age hardening for both alloys occurs at 200 °C.
The precipitates form most rapidly at the temperature range of
300-350 °C, for which the highest hardness values were obtained.
In the aging process without homogenization treatment, the
Vickers hardness value peaks of Al-0.28 wt% Sc and Al-0.24 wt%
Sc-0.07 wt% Yb alloys are 72 HV at 325 °C and 68 HV at 350 °C,
respectively. A decreasing in Vickers hardness is observed for both
alloys for temperatures higher than 375 °C due to the precipitate
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Fig. 1. Vickers hardness curves of Al-0.28 wt% Sc, Al-0.24 wt% Sc-0.07 wt% Yb
alloys at various aging temperatures with and without previous homogenization
treatment.

Alloy Sc Yb Si Fe Ni Cu Ba Mn Ti Al
Al-Sc
wt% 0.283 - 0.383 0.130 0.010 0.007 0.060 0.010 0.009 Bal
at% 0.170 0.369 0.063 0.005 0.003 0.012 0.005 0.005 Bal
Al-Sc-Yb
wt% 0.243 0.068 0.328 0.208 0.040 0.032 0.015 - - Bal
at% 0.146 0.011 0.316 0.101 0.018 0.014 0.003 - - Bal
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Fig. 2. SEM micrographs of Al-0.24 wt% Sc-0.07 wt% Yb alloy: (a) as-cast and (b) homogenization treated.

coarsening. The results showed that the partial replacement of Sc
by Yb did not significantly affect either the kinetics or the peak
hardness. Karnesky et al. [17] reported similar effect of Yb on the
hardening response of an Al-0.08 at% Sc based alloy.

The alloys used in this work present in their composition small
contents of other elements, namely Si and Fe that may have some
small influence on the alloys mechanical properties, namely
hardness. Nevertheless, the difference between both alloys is very
small, suggesting that the relative hardness values have not been
influenced by the presence of those elements.

3.1.2. Isothermal aging behaviour

The age hardening behaviour of Al-0.28 wt% Sc and Al-0.24 wt
% Sc-0.07 wt% Yb alloys at aging temperatures of 300, 325 and
350 °C is shown in Fig. 3. It is quite evident that the Al-0.24 wt%
Sc-0.07 wt% Yb alloy shows the similarity of Vickers hardness and
aging behaviour with the Al-0.28 wt% Sc alloy. All the curves
exhibits four different regions: (a) an incubation period; (b) a
period with a rapid increase in hardness values where the precipi-
tates nucleate from a supersaturated solid solution and grow;
(c) a period of maximum hardness values (peak aging); and
(d) over-aging, characterized by a slow decrease in hardness by
the precipitates coarsening. The time to reach the hardness value
peak decreases when the aging temperature increases from 300 to
350 °C. The Al-0.28 wt% Sc and Al-0.24 wt% Sc-0.07 wt% Yb alloys
reach the hardness value peak after 20, 5, and 1 h when aging at
300, 325, and 350 °C, respectively. Higher temperature leads to
earlier occurrence of over-aging. In Fig. 3(a), there is no signifi-
cantly softening due to over-aging for both alloys aged at 300 °C
after 7 days. However, Fig. 3(b) and (c) shows a fast over-aging for
both alloys aged at 325 and 350 °C. At these aging temperatures,
the hardness drop becomes obviously after reaching the peak
values. Higher aging temperature conducts to higher diffusion rate
for precipitates nucleation and growth. It accelerates the over-
aging stage.

3.2. Evolution of precipitates

3.2.1. Precipitate morphologies

The aging behaviour presented above is controlled by the alloys
microstructure. In order to correlate the observed hardening with
microstructures, TEM and HRTEM observations were performed
on samples at different processing states to reveal the evolution of
the precipitates.

The TEM micrographs of Al-0.28 wt% Sc and Al-0.24 wt%
Sc-0.07 wt% Yb alloys aged at 325 °C for 5h, 325 °C for 7 days,

and 350 °C for 7 days are shown in Fig. 4, respectively. In order to
observe more clearly the morphology of precipitates, higher
magnification of TEM micrographs with bright-field and dark-
field techniques are exhibited in Fig. 5. The micrographs show the
approximately spheroidal AlsSc and Als(Sc,Yb) precipitates, uni-
formly distributed throughout the «-Al matrix. The Als(Sc,Yb)
precipitates in Al-0.24 wt% Sc-0.07 wt% Yb alloy could be AlsSc,
Al3(Scy_xYby) (Sc-rich composition), Al3(Yb;_,Scx) (Yb-rich com-
position), or AlsYb precipitates. There are no signs of coherency
loss that can be observed in Figs. 4 and 5. The precipitates in both
alloys aged at the higher temperature (350 °C) for long holding
time (7 days) still remain coherent with «-Al matrix. The pre-
cipitate diameter of both alloys at the different aging conditions
was measured and the corresponding results are presented in
Table 2. After aging at 300 °C for 7 days the average diameter of
AlsSc precipitate is 5.6 nm and that of Als(Sc,Yb) precipitate is
5.9 nm. The presence of very small precipitates after long aging
time indicates that coarsening occurred very slowly at 300 °C.
In combination with hardness results presented in Section 3.1, it
can be seen that the strongest hardening effects of both alloys was
achieved at aging temperature of 300 °C. When alloys were aged
at 325 °C, the average diameter is 4.3 nm for the AlsSc precipitate
and 4.5 nm for the Als(Sc,Yb) precipitates at the aging peak. With
prolonged aging times, after 7 days the average diameter of Al3Sc
and Als(Sc,Yb) precipitates slowly increase to 8.4 and 8.8 nm,
respectively. At the temperature of 350 °C and 7 days aging, the
average diameter of AlsSc and Als(Sc,Yb) precipitates are 13.7 and
15.4 nm, respectively. The TEM images show a smaller number of
larger size precipitates due to the coarsening process. The average
precipitates size of Al-0.24 wt% Sc-0.07 wt% Yb alloy is slightly
higher than that of Al-0.28 wt% Sc alloys for all aging conditions.
Thus, it suggests that Yb did not affect the coarsening rate of
Al-Sc alloy.

The precipitates size distribution (PSDs) of Al-0.28 wt% Sc and
Al-0.24 wt% Sc-0.07 wt% Yb alloys aged at 325 °C and 350 °C for
7 days is illustrated in Fig. 6. The PSDs of Al-0.28 wt% Sc aged at
325 °C for 7 days showed more narrow width in comparison with
Al-0.24 wt% Sc-0.07 wt% Yb alloys at the same aging condition.
The precipitates diameter ranges of Al-0.28 wt% Sc and Al-0.24 wt
% Sc-0.07 wt% Yb alloys are 7-10.5 and 5-12 nm, respectively. The
PSDs of both alloys aged at 350 °C for 7 days exhibited a similar
width. The precipitates diameter ranges of Al-0.28 wt% Sc and
Al-0.24 wt% Sc-0.07 wt% Yb alloys at this aging condition are
10-18 and 12-20 nm, respectively.

Precipitates in Al-0.28 wt% Sc and Al-0.24 wt% Sc-0.07 wt% Yb
alloys at aging peak and the most coarsened stage were deeply
studied by HRTEM technique. The HRTEM images of both alloys
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Fig. 3. Isothermal ageing curves of Al-0.28 wt% Sc and Al-0.24 wt% Sc-0.07 wt% Yb alloys at: (a) 300 °C; (b) 325 °C; (c) 350 °C.

aged at 325 °C for 5 h and 350 °C for 7 days are shown in Fig. 7.
Through fast Fourier transform (FFT) analysis, the [011] zone axis
orientation was found to fit well to the simulation of the reciprocal
lattice section at the orientation. The FFT images show the
reflections from (100) and (011) of LI, AlsSc and Als(Sc,Yb)
precipitates and the reflections from (200), (022), and (111) of
a-Al. The interface between the precipitates and the o-Al matrix
remained coherent in both alloys even after aging at 350 °C for
7 days. There are no interfacial misfit dislocations in the HRTEM
images, which conducts fully coherency of precipitates. Fig. 7
(a) and (b) shows the precipitates morphology of Al-0.28 wt% Sc
and Al-0.24 wt% Sc-0.07 wt% Yb alloys aged at 325 °C for 5 h. The
images show small precipitates with diameter less than 5 nm. The
larger size and more obvious morphologies of precipitates are
observed in Fig. 7(c) and (d) corresponding to both alloys aged at
350 °C for 7 days. The AlsSc precipitates in Al-0.28 wt% Sc alloy
have a facetted shape that corresponds to a great rhombicubocta-
hedron predicted by Marquis et al. [1]. Facets are parallel to the

{100} and {011} planes. The precipitates average diameter is
18.1 nm, while the Als(Sc,Yb) precipitate in Al-0.24 wt% Sc-
0.07 wt% Yb alloy exhibits an approximately spheroidal shape
with 18.5 nm diameter. The presence of Yb decreases the amount
of faceting parallel to the {100} and {011} and changes the
morphology of precipitates into a more spheroidal shape.

3.2.2. Coarsening behaviour

The coarsening behaviour of spherical precipitates in binary
alloys was predicted by The Lifshitz-Slyozov-Wagner (LSW)
model base on volume diffusion theory [21,22]. The Ostwald
ripening of spherical precipitates was developed in concen-
trated multicomponent alloys by Umantsev and Olsan [23] and
more detailed in ternary alloys, allowing for capillary effects by
Kuehmann and Voorhees (KV) [24]. According to the KV model,
the coarsening behaviour of precipitates was analysed through the
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Fig. 4. TEM micrographs of Al-0.28 wt% Sc (a-c) and Al-0.24 wt% Sc-0.07 wt% Yb (d-f) alloys aged at 325 °C for 5 h, 325 °C for 7 days, and 350 °C for 7 days.

following equation:
(R()" —(R(to))" = K(t —to) M

where K is a coarsening rate constant, (R(t)) is the average
precipitate radius at time t, (R(tp)) is the average precipitate radius
at the onset of quasi-stationary coarsening at time to, and n is the
inverse time exponent. Eq. (1) could be applied for both binary
alloy (Al-0.28 wt% Sc) and ternary alloy (Al-0.24 wt% Sc-0.07 wt%
Yb) with different coarsening rate constant. It was assumed
that (R(tp))" and tp is much smaller than (R(t))* and t, Eq. (1)
became [25,26]:

R()Y' =Kt (2)

A log-log plot of Eq. (2) reveals a slope of 1/n as following
equation:

log (R(t)):%log t+% log K 3)

This slope is known as a time exponent of coarsening and often
reported to indicate the coarsening behaviour of precipitates.
By applying the KV model to the Al-0.28 wt% Sc and Al-0.24 wt
% Sc-0.07 wt% Yb alloys aged at 325 °C, the time exponents of
coarsening 1/n was calculated and showed the same value of 0.19
for both alloys. This value indicated that the precipitate coarsening
behaviour of both investigated alloys is similar to the Al-0.18 at%
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50 nm

Fig. 5. TEM micrographs of Al-0.28 wt% Sc (a) and Al-0.24 wt% Sc-0.07 wt% Yb (b and c) alloys aged at 350 °C for 7 days: (a) and (b) bright-field TEM image; and (c) dark-

field TEM image.

Table 2

Average precipitate diameter and hardness of Al-0.28 wt% Sc and Al-0.24 wt% Sc-0.07 wt% Yb alloys.

Aging condition Al-0.28 wt% Sc

Al-0.24 wt% Sc-0.07 wt% Yb

Precipitate diameter (nm)

Hardness - HV3q

Precipitate diameter (nm) Hardness - HV3q

300 °C, 7 days 56+05 73+2
325°C,5h 43+0.2 72+3
325 °C, 7 days 8.4+0.9 61+2
350 °C, 7 days 13.7+19 52+3

59+0.7 67 +2
45+0.8 74+3
88+ 18 58 +2
154+ 18 50+1

Sc alloy aged at 300 °C ((1/n)=0.18) referred by Marquis et al.
[1,25] and AI-0.06 at% Sc-0.02 at% Yb (at%) alloy aged at 300 °C
((1/n)=0.18) referred by Van Dalen et al. [27].

3.3. Precipitation hardening mechanisms

The evolution of precipitates and corresponding hardness at
different aging conditions is presented in Table 2. According to
Hyland et al. [28] and Marquis et al. [2], the volume fraction of
precipitate is approximately constant for Al-Sc alloys aged at
various temperatures from 275 °C to 400 °C after long enough
aging time (longer than 10,000 s at 288 °C and 2000 s at 343 °C).
On this work the alloys were aged at 300, 325, and 350 °C for 5 h
and 7 days. For these conditions and according to the findings of
Hyland and Marquis we can assume that the volume fraction of

precipitates is constant. The precipitation hardening is typically
understood through the cutting mechanism which dislocations cut
through precipitates and the Orowan bypass mechanism which
dislocations bow or loop precipitates. According to the experi-
mental data from the study about precipitation strengthening in
Al-0.3 wt% Sc alloy, Marquis et al. [2] predicted a transition from
cutting mechanism to Orowan bypass mechanism at a precipitate
diameter of 4.2 nm. The strength of alloy is controlled by the
cutting mechanism for smaller sizes, and the Orowan bypass
mechanism for larger sizes of precipitates which higher precipitate
diameter results in lower hardness. Table 2 showed a maximum
hardness around 73 (HV3q) at a precipitate diameter from 4.3 to
5.6 nm for both alloys. It sharply decreases to HV3p=50 when the
average diameter of precipitate increases to 13.7-15.4 nm. This
result is in a good agreement with above theory and the result of
Marquis et al. [2].
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Fig. 7. High-resolution TEM images of Al-0.28 wt% Sc (a-c) and Al-0.24 wt% Sc-0.07 wt% Yb (b-d) alloys aged at 325 °C for 5 h and 350 °C for 7 days.
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4. Conclusions

The similarity of microstructure, hardness and aging beha-
viour of Al-0.24 wt% Sc-0.07 wt% Yb alloy in comparison with
Al-0.28 wt% Sc alloy was shown in this investigation. It indicates
that the substitution of 0.07 wt% Yb for more expensive Sc in
the Al-0.28 wt% Sc alloy is possible. Some final characteristics of
Al-0.28 wt% Sc and Al-0.24 wt% Sc-0.07 wt% Yb alloys were
concluded below:

® The hardness values of both alloys aged without homogeniza-
tion treatment are significantly higher than those of alloys aged
after homogenization treatment.

® The approximately spheroidal AlsSc and Als(Sc,Yb) precipitates
were uniformly distributed throughout the «-Al matrix. The
precipitates remain fully coherent with a-Al matrix even after
aging at high temperature for long time.

® With the aging temperature of 325 °C, the average diameter is
4.3 nm for AlsSc precipitates and 4.5 nm for Als(Sc,Yb) pre-
cipitates at the aging peak. At the temperature of 350 °C and
7 days aging, the average diameter of AlsSc and Als(Sc,Yb)
precipitates are 13.7 and 15.4 nm, respectively

® The Al;Sc precipitates of Al-0.28 wt% Sc alloy show the facetted
shape that are similar with great rhombicuboctahedron shape.
While the Als(Sc,Yb) precipitates of Al-0.24 wt% Sc-0.07 wt%
Yb alloy show an approximately spheroidal shape.
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