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Abstract 22	
  

Graph theory has recently received a lot of attention from the neuroscience community as a method to 23	
  

represent and characterize brain networks. Still, there is a lack of a gold standard for the methods that 24	
  

should be employed for the preprocessing of the data and the construction of the networks, as well as 25	
  

a lack of knowledge on how different methodologies can affect the metrics reported. We used graph 26	
  

theory analysis applied to resting-state functional Magnetic Resonance Imaging (rs-fMRI) to 27	
  

investigate the influence of different node-defining strategies and the effect of normalizing the 28	
  

functional acquisition on several commonly reported metrics used to characterize brain networks. The 29	
  

nodes of the network were defined using either the individual FreeSurfer segmentation of each subject 30	
  

or the FreeSurfer segmented MNI (Montreal National Institute) 152 template, using the Destrieux and 31	
  

sub-cortical atlas. The functional acquisition was either kept on the functional native space or 32	
  

normalized into MNI standard space. The comparisons were done at three levels: on the connections, 33	
  

on the edge properties and on the network properties levels. Our results reveal that different 34	
  

registration and brain parcellation strategies have a strong impact on all the levels of analysis, 35	
  

possibly favoring the use of individual segmentation strategies and conservative registration 36	
  

approaches. In conclusion, several technical aspects must be considered so that graph theoretical 37	
  

analysis of connectivity MRI data can provide a framework to understand brain pathologies. 38	
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Acronyms 46	
  

fMRI-functional Magnetic Resonance Imaging; 47	
  

MNI-Montreal National Institute; 48	
  

AAL-Automated Anatomic Labeling; 49	
  

MPRAGE - magnetization prepared rapid gradient echo; 50	
  

TR-Repetition Time; 51	
  

TE-Echo Time; 52	
  

FoV-Field of View; 53	
  

WM-White matter; 54	
  

CSF-Cerebrospinal fluid; 55	
  

Dof-degrees of freedom; 56	
  

ROIS-regions of interest; 57	
  

ATL-atlas; 58	
  

NAT-native; 59	
  

FS-FreeSurfer; 60	
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1 Introduction 71	
  

The brain remains to this day as one of the most enigmatic organs in the human body. The inherent 72	
  

difficulty to understand its wiring patterns and how they relate to different functions brought the 73	
  

necessity to explore new methods that can bring new lights on this subject [1]. One such method that 74	
  

has received increasing attention in the last decade is graph theory and the study of complex networks. 75	
  

One of the core strengths of graph theory in brain network modeling lies in its ability to quantitatively 76	
  

characterize the topological organization of the brain [2]. It can have a key role in the interpretation of 77	
  

the complex dynamics detected in the brain across different studies using different modalities and 78	
  

models. Starting in the 90’s (see for a review reference [3]), several key moments revolutionized the 79	
  

study of the brain connectivity, namely  the introduction of the functional Magnetic Resonance 80	
  

Imaging (fMRI) technique [4], the first studies that demonstrated the potential of the analysis of brain 81	
  

connectivity patterns [5-7], the association of memory mechanisms to different mental states and 82	
  

connectivity patterns [8,9] and the introduction of the concept of small-world networks [10]. More 83	
  

recently, multiple studies have shown the potential of the application of graph theory to represent and 84	
  

characterize brain networks. While there are reports of the application of graph theory with different 85	
  

imaging techniques, such as Electroencephalography, Magnetoencephalography [11] and Positron 86	
  

Emission Tomography [12], MRI is by far the most common [13,14].  87	
  

A graph is a mathematical abstraction that can be understood as a group of nodes, which represent the 88	
  

different elements of the network, linked by edges, representing some relationship between them [15]. 89	
  

Translating these components into a brain network is fairly simple in concept: each node can 90	
  

represent an anatomic unit of the brain (can theoretically range from individual cells to full anatomic 91	
  

structures) and the edges can represent different relationships between regions, like the statistical 92	
  

correlation of fMRI activations, the number/density of connecting fibers obtained through diffusion 93	
  

tractography or structural properties such as cortical thickness correlations. Despite the many 94	
  

advantages of using graph theory as a model for brain connectivity, some key issues still ensue. 95	
  

Building a brain graph means making a lot of decisions and assumptions that can directly affect the 96	
  

outcome and the results arising from different processing strategies cannot be easily compared [16]. It 97	
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has been demonstrated that different properties of the network behave differently with connection 98	
  

type [17], network size, edge density and degree distribution [18], specially the small world 99	
  

parameters, depending on the number of nodes and the average degree of the network [19].  100	
  

Different node defining strategies can vary greatly on the number of nodes used, ranging from very 101	
  

small networks with 19 nodes [20], to the most common number of 90 nodes from the AAL 102	
  

(Automated Anatomic Labeling) atlas [21-23], and building up to much bigger networks ranging from 103	
  

998 nodes [24] and up to 10000 [25]. The choice of the nodes definition can also vary from the use of 104	
  

pre-segmented atlas in a standard space [26,27], the use of segmentation tools to individually 105	
  

parcellate each subject’s brain [23,28], brain activation clusters extracted from fMRI analysis [26,29] 106	
  

or simply to the use of all voxels in the image [25]. Such diversity of possibilities demands a thorough 107	
  

knowledge on how these might affect the characteristics of the network in all its range of possibilities. 108	
  

Another key difference between studies is the choice of fundamental preprocessing steps: some 109	
  

studies normalize the images to a standard space [20,22,27,28] while others do not [25,26]; some 110	
  

apply spatial smoothing steps with differently sized kernels [20,26,28], while others do not [22,27]; 111	
  

some apply signal regression to remove confound signals [20,27,28], while others do not [22,23,25]; 112	
  

and finally different frequency filtering strategies can also be found [17,30,31]. 113	
  

There is an obvious need to have the functional images (originally on its native space) and the node 114	
  

defining images (usually on a standard space) in a common space. While the most common approach 115	
  

to achieve this is to normalize the functional images to the standard space, the opposite is still a valid, 116	
  

rather unused, option. Although, as hypothesized in another study [25], the interpolation of the voxels 117	
  

that occurs during this step can introduce artificial correlations, the effect of the normalization step on 118	
  

the networks is still largely unexplored.   119	
  

On the brain parcellation strategies, the most common approach is to simply co-register the functional 120	
  

images and a fixed template, resuming the segmentation to a normalization step. A more elaborate 121	
  

alternative is to employ tools to individually segment each subject, such as FreeSurfer [32]. This 122	
  

strategy takes more factors into consideration (such as surface matching and gyri and sulci 123	
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identification) and is known to produce more accurate results [33]. The impact of these different 124	
  

procedures on the resulting networks is still unknown. 125	
  

All these different possibilities may be responsible for some of the differences found, in the metrics 126	
  

that characterize the networks, between different studies, having a direct impact on the conclusions 127	
  

that can be draw from its results. In this work we will focus on the study of two critical issues: the 128	
  

effect of normalizing the fMRI images and the effect that different node defining strategies (i.e. the 129	
  

use of individual parcellation methods versus the simple superposition of a fixed template) have on 130	
  

the resulting networks. 131	
  

2 Materials and methods 132	
  

2.1 Ethics statement 133	
  

The study was conducted in accordance with the principles expressed in the Declaration of Helsinki 134	
  

and was approved by the Ethics Committee of Hospital de Braga (Portugal). 135	
  

 2.2 Subjects and acquisitions  136	
  

In the current study, the MRI acquisitions of 59 healthy volunteers were used, from which 4 were 137	
  

discarded due to excess of movement during the acquisition, so that all subjects displayed head 138	
  

motion less than 2 mm in translation or 1 degree in rotation. Thus, a total of 55 subjects from the 139	
  

SWITCHBOX project were used in this study (31 males and 24 females aged between 51 and 82 140	
  

years old and with mean age of 64.85 ± 8.82 years). The goals and tests of the study were explained to 141	
  

all participants, which provided informed written signed consent.  142	
  

Two different acquisitions from each subject were used: as structural acquisition, a T1 magnetization 143	
  

prepared rapid gradient echo (MPRAGE) with repetition time (TR)  = 2730 ms, echo time (TE) = 3.5 144	
  

ms, field of view (FoV) = 256 mm x 256 mm, flip angle = 7º, in plane resolution of 1 mm x 1 mm and 145	
  

1 mm slice thickness; as a resting-state functional acquisition, a T2* echo-planar imaging (EPI) 146	
  

acquisition with 180 volumes, TR = 2000 ms, TE = 30 ms, FoV = 224 mm x 224 mm, flip angle = 90º, 147	
  

in plane resolution of 3.5 mm x 3.5 mm and 4.5 mm slice thickness. All acquisitions were performed 148	
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on a clinically approved Siemens Magnetom Avanto 1.5 T (Siemens Medical Solutions, Elangen, 149	
  

Germany) scanner, in Hospital de Braga, using a 12-channel receive-only Siemens head coil. During 150	
  

the resting-state acquisition all subjects were instructed to remain with their eyes closed and to not 151	
  

think of anything in particular.  152	
  

2.3 Preprocessing strategies 153	
  

All fMRI images were preprocessed using BrainCAT [34], and the Matlab (v.2009b, 154	
  

http://www.mathworks.com/)  toolbox Conn [35]. fMRI preprocessing steps included the removal of 155	
  

the first 5 volumes, motion correction, slice timing correction, skull stripping, band-pass temporal 156	
  

filtering (0.01 – 0.08 Hz) using BrainCAT, and the removal of the white matter (WM) and 157	
  

cerebrospinal fluid (CSF) confound signals using Conn and the CompCor strategy [36].  158	
  

While the usual procedure in functional studies is to normalize all images to a standard space (e.g. 159	
  

MNI) [37], this step will, no matter how good the interpolation function is, alter the original data. To 160	
  

evaluate the effects of the normalization, two different strategies were tested: the normalization of all 161	
  

images to MNI standard space with 2 mm isotropic voxel size and the registration of all the support 162	
  

data (both the T1 structural data and the masks defining the nodes) to the native space of the 163	
  

functional acquisition of each subject. These strategies will allow testing if the normalization 164	
  

procedures can directly affect the network properties. Normalization and registration of all images 165	
  

was done using FSL flirt [38]: for each subject from the native functional image to the T1 anatomical 166	
  

image using a rigid body transformation (6 dof) and from the T1 image native space to the MNI 167	
  

standard space using an affine transformation (12 dof). The concatenation and inversion of both 168	
  

transformation matrices allows for the registration from the functional native space to the MNI 169	
  

standard space and vice-versa. 170	
  

2.4 Graph construction 171	
  

The construction of the graph encompasses two different stages, the definition of the nodes and the 172	
  

definition of the edges. On the node definition two different strategies were compared: the use of a 173	
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fixed template atlas, which was overlaid into each subject’s acquisition, and the use of individually 174	
  

segmented images for each subject performed applying FreeSurfer’s v5.1 semi-automated workflow 175	
  

[32]. To eliminate the effect of comparing networks with different sizes [18] and different regions 176	
  

[19], derived from the use of different atlases, the MNI 152 brain template was segmented using the 177	
  

same FreeSurfer workflow, and thus creating the fixed template atlas. For both strategies, regions 178	
  

from two different segmentations were combined: 146 regions from the Destrieux cortical atlas [33] 179	
  

and 14 regions from the subcortical segmentation [39], resulting in a total of 160 regions (Table I; 180	
  

Figure 1). These two different node-defining strategies allowed us to test the effect of building 181	
  

networks with different parcellation strategies.  182	
  

Insert Table I around here; 183	
  

Insert Figure 1 around here; 184	
  

Using these masks, the mean signal across the voxels of each region was extracted from each time 185	
  

point of the fMRI acquisition, allowing for the final extraction of the time series. To measure the 186	
  

similarity between time series, establishing a measure of functional connectivity (edges) between the 187	
  

corresponding ROIs, the Pearson correlation coefficient was used. The Pearson coefficient of each 188	
  

possible combination of ROIs was calculated in Conn and used to build a correlation matrix for each 189	
  

subject. The Fisher’s r-to-Z transformation was then used to transform the r-values of the correlations 190	
  

into Z values.  191	
  

Combining the two different preprocessing and node defining strategies, four different networks were 192	
  

computed for each subject: with the functional images in the MNI standard space (MNI networks) 193	
  

using the fixed template atlas (ATL-MNI) and the individual FreeSurfer segmentation (FS-MNI); in 194	
  

the functional native space (NAT networks) using the fixed template atlas (ATL-NAT) and using the 195	
  

individual FreeSurfer segmentation (FS-NAT). 196	
  

The workflow and all the possible strategies are represented in Figure 2. 197	
  

Insert Figure 2 around here; 198	
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2.5 Network analysis and comparison 199	
  

The comparison of the resulting networks was done at three levels: on the edges level, on node level 200	
  

and on the global network level. Regarding the networks’ edges, differences in the Z transform 201	
  

correlation coefficients were tested for each pair of regions. 202	
  

On the node level, two of the most commonly reported nodal metrics were used: betweenness 203	
  

centrality and local efficiency. The betweenness centrality, Ci
B, measures the fraction of shortest paths 204	
  

that pass through the node i of the network [40],  205	
  

Ci
B=(1/n(n-1)) Σ s≠i≠t (σst(i)/ σst) 206	
  

where σst(i) denotes the number of shortest paths between s and t that pass through i and σst denotes 207	
  

the total number of shortest paths between s and t. Measures of centrality evaluate the existence of 208	
  

nodes key to the communication of the network, through which a significant number of 209	
  

communication paths go. Metrics of segregation indicate the existence of highly interconnected 210	
  

groups, associated with functional specialization. Local efficiency (Eloc) is one of such metrics:  211	
  

Eloci=1/(N) Σi∈N (Σj,h∈N,j≠i aijaih dij(Ni)-1) /ki(ki-1) 212	
  

where Ni is the subgraph of the neighbours of node i, aij, is the existence of a connection between i and 213	
  

j and ki is the degree of the node i. 214	
  

On the network level, three properties were tested: clustering coefficient, average path length and 215	
  

assortativity coefficient. As measure of network segregation, the mean clustering coefficient Cp 216	
  

reflects the tendency to form clusters of interconnected nodes [10,41], 217	
  

Cp=(1/N) Σ Ci, Ci=(e(Gi))/(d(i)(d(i)-1)/2), 218	
  

where N denotes the number of nodes in the network, Ci denotes the clustering coefficient of the node 219	
  

i in graph G, d(i) denotes the degree (or number of edges connected to) of the node i, and e(Gi) 220	
  

denotes the number of edges in Gi, the subgraph formed by all the node i neighbours. Functional 221	
  

integration measures reveal how easily each brain region communicates with the rest of the brain and 222	
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combines specialized information. The average path length was used as a network wise metric of 223	
  

integration, here calculated as the inverse of the network efficiency, Eglob, to allow its calculation in 224	
  

disconnected graphs [41,42],  225	
  

L=1/Eglob, Eglob=1/(N(N-1)) Σx,y∈G,x≠ydij
-1 226	
  

where dij denotes the distance, or the minimum number of connections, between the nodes i and j. 227	
  

Measures of network resilience quantify the network ability to resist to direct or random attacks. One 228	
  

possible measure is the assortativity coefficient r, which measures the correlation between a node 229	
  

degree and the degree of its neighbours, in other words, shows how likely it is for a node with a high 230	
  

degree to be connected to nodes with a similar degree [43,44], 231	
  

r=(M-1Σi=1..Mjiki - [M-1Σi=1..M ½(ji + ki)]2)/ (M-1Σi=1..M ½(ji + ki )- [M-1Σi=1..M ½(ji + ki)]2) 232	
  

M denotes the number of edges in the graph, ji and ki denote the degree of the nodes at both ends of 233	
  

the edge i. 234	
  

Commonly, networks can be classified according to different architectures. One such architecture is 235	
  

the small-world topology. These networks are usually defined as having a higher Cp than those found 236	
  

on random networks (Cp/Cp rand > 1), and a similar L (L/Lrand≈1) [10,41]. This translates into the 237	
  

formation of highly connected sub-networks while keeping a high level of connectivity [45]. As so, 238	
  

Cp/Cp rand and L/Lrand were also called small-world parameters and were used to characterize the 239	
  

networks.  240	
  

The nodal and network metrics for all networks and subjects were calculated along a range of 241	
  

densities, from 5 to 40% in steps of 2.5%. In order to reduce the complexity of the analysis, the nodal 242	
  

properties were condensed across the density range through the use of the integrated version of the 243	
  

measure, calculated as follows [22]: 244	
  

X(i)= Σi=5
k=45 X(i; kΔd)Δd, 245	
  

where X is the property of the node i, along 15 density levels, and Δd is the density interval (0.025). 246	
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Only positive correlation coefficients were considered and all networks were binarized prior to 247	
  

calculation of the metrics. All calculations were done using the Brain Connectivity Toolbox [41] and 248	
  

Matlab. 249	
  

2.6 Statistical analysis 250	
  

In order to compare the different strategies, a 2x2 repeated measures ANOVA was done using Matlab, 251	
  

on the Z-transformed correlation coefficients, metrics CB, LocEf, Cp, L, r and using the registration 252	
  

approach, parcellation strategy and registration*parcellation interactions as within subject contrasts. 253	
  

The necessary assumptions for the analysis were previously verified and met. Differences were 254	
  

considered significant at p ≤ 0.05 corrected for multiple comparisons using the family-wise error 255	
  

(FWE) procedure. 256	
  

3 Results 257	
  

3.1 Network Characterization 258	
  

The average network matrices for each strategy, thresholded at a density of 7.5%, can be found in 259	
  

Figure 3. In these matrices, similar connection tendencies were observed for all the strategies. From 260	
  

the division in cortical and sub-cortical regions, it is possible to observe a tendency for stronger 261	
  

connections between regions of the same atlas: cortical regions revealed higher connectivity with 262	
  

other cortical regions than with subcortical regions and the same pattern was observed for subcortical 263	
  

regions. Moreover, regions tend to present stronger connections to regions within the same 264	
  

hemisphere than to regions of the contralateral hemisphere. A symmetry effect can also be observed, 265	
  

meaning that, regions showed strong tendencies to connect to the matching region on the contralateral 266	
  

hemisphere, as evidenced by the diagonal crossing both the second and third quadrant of the matrices 267	
  

(Figure 3). From the distribution of Z-transformed correlation coefficients (Figure 4 a)) it is possible 268	
  

to observe a roughly normal distribution, with the majority of values located between 0 and 0.2, while 269	
  

in the distance distribution (Figure 4 b)) it is noticeable that most values are located between 15 and 270	
  

55 mm. 271	
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Insert figure 3 around here. 272	
  

Insert figure 4 around here. 273	
  

Regarding the small-world properties of the networks (Figure 5), all presented high clustering values 274	
  

for the full range of densities, with 1.5 < Cp/Cp rand < 6, and a tendency for the values to become closer 275	
  

to those of random networks as the network density increased (Figure 5 a)). The characterization of 276	
  

the average path length of each network revealed values close to those of random networks with 1 < 277	
  

L/Lrand < 1.35 and once again a tendency to grow closer to those of random networks as the density 278	
  

increased (Figure 5 b)). Concerning the assortativity of the networks, all values were found to be 279	
  

positive and 0.24 < r < 0.41 (Figure 5 c)).  280	
  

Insert Figure 5 around here. 281	
  

3.2 Effect of registration and parcellation strategies 282	
  

For the isolated effect of the registration and parcellation strategies significant differences were found 283	
  

on the three levels of analysis.   284	
  

In the edges comparison, differences were found in the registration test (Figure 6 a)), in a total of 243 285	
  

edges. All these edges, when computed in native space, presented higher values than the same edges 286	
  

computed in standard space. When considering the parcellation test (Figure 6 b)), differences were 287	
  

found in a total of 112 edges, 26 of them having higher value on the ATL networks and 86 on the FS 288	
  

networks. 289	
  

From the distribution of correlations of the edges with significant differences, on the registration 290	
  

comparison (Figure 6 c)) it was possible to observe that the NAT networks Z-transformed correlation 291	
  

values lied between 0.2 and 0.4, while on the MNI networks these were mainly located between -0.1 292	
  

and 0.2. On the parcellation comparison (Figure 6 d)) the values of Z-transformed correlation 293	
  

significant differences from all networks were located mainly between 0.2 and 0.4. From the distance 294	
  

distribution of differences, on the registration comparison (Figure 6 e)), it was possible to observe a 295	
  

tendency for differences to be located on either long or short distance edges with a higher tendency 296	
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for the short range. On the parcellation comparison, differences were mainly located over shorter 297	
  

connections (Figure 6 f)). 298	
  

Insert Figure 6 around here   299	
  

On the nodal metrics, differences were found on both metrics for the registration test: one on CB, with 300	
  

MNI networks having higher value and 5 on the Eloc with the NAT networks always having higher 301	
  

values. On the parcellation test, significant differences were found on the CB metric on 3 vertices with 302	
  

FS networks always having higher values and no differences were found on the Eloc (Table 2). 303	
  

Insert Table 2 around here; 304	
  

On the global metrics level, several differences were found: on the registration test, differences were 305	
  

found on the clustering metric for values of density between 15 and 40%, with the NAT networks 306	
  

always having higher values; on the average path length, differences were found on the full range of 307	
  

densities, with the NAT networks having higher values; and no differences were found on the 308	
  

assortativity metric (Table 3). 309	
  

Inset Table 3 around here. 310	
  

For the parcellation test, differences were found for the clustering coefficient between densities of 311	
  

22.5 and 40%, on the average path length for density values of 5, 17.5 and 20% and on the 312	
  

assortativity metric a density of 12.5%. In all instances FS networks showed higher values than ATL 313	
  

networks (Table 4). 314	
  

Insert Table 4 around here 315	
  

3.3 Interactions between the node definition and registration strategies 316	
  

No significant results were found for the registration*parcelation interaction. 317	
  

 318	
  

4 Discussion 319	
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The results herein obtained are in accordance to the expected characteristics and architecture of brain 320	
  

networks, as demonstrated in several studies [18,19,22,46,47]. All networks were shown to be 321	
  

assortative (r>0) and efficient (L/Lrand ≈1) in the full range of densities. All of them also showed a 322	
  

strong small world like tendency to constitute clusters (Cp/Cp rand>1) on the lower range of densities 323	
  

(5% to 20%). 324	
  

The thresholded correlation matrices demonstrated a clear tendency for regions to connect to other 325	
  

regions within the same anatomical division (cortical/sub-cortical and left/right), evidencing not only 326	
  

a tendency for lateralization of function in the human brain [22], but also reflecting a tendency to have 327	
  

more efficient networks by having stronger connections over smaller anatomical distances [48]. The 328	
  

diagonals over the L/R quadrants reflect the natural correlation and sharing of functions between 329	
  

symmetric regions [49,50]. 330	
  

For the isolated effect of the registration strategies several significant differences were found in all 331	
  

three levels of the analysis. From the differences matrix and the corresponding correlation and 332	
  

distance distribution it is possible to observe a strong tendency for the networks built in the functional 333	
  

native space to have higher values of correlation and for these differences to be mainly located on 334	
  

either shorter or longer range connections. These differences translate in the network metrics into a 335	
  

higher clustering coefficient and longer average path distance in the native space networks, with a 336	
  

very large effect size [51]. Overall, this seems to point that networks built in this space favor the 337	
  

detection of stronger local paths of communication, not restrained to physically proximal, or inter-338	
  

hemispheric, regions, in detriment of more evenly spread connections. On the nodal metrics, it could 339	
  

be expected that this would translate into a higher tendency for the native space networks to have 340	
  

vertices with a stronger centrality role. Instead we found differences in only one vertex in BC, favoring 341	
  

the MNI space networks (although with a small effect size). In the local efficiency, the differences 342	
  

favor again the native space networks, with the existence of nodes with a more important role on 343	
  

facilitating the communication on their local networks, which should be associated with the higher 344	
  

clustering coefficient, but again, with a small effect size. The differences found can be the result of 345	
  

multiple factors: the resampling and interpolation of the functional data in the normalization step, the 346	
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resampling of the parcellation images and loss of detail, or a mixture of both. As no interaction was 347	
  

found between the registration and parcellation strategies, the first option emerges as the most likely. 348	
  

In the parcellation strategies comparison several differences were also found. At the correlation level 349	
  

it is possible to observe differences in both directions, mostly with higher values in the individual 350	
  

segmentation networks. From the correlation distribution it is possible to observe a small tendency for 351	
  

the individual segmentation networks to have higher values of correlation, and from the distance 352	
  

distribution for the differences to be located mainly over shorter-range edges and within hemispheres. 353	
  

We found higher values of Cp in the individual segmentation strategies, with large to very large effect 354	
  

sizes, L, with high effect sizes, CB, with small to very small effect sizes and r with large effect sizes. 355	
  

These differences can be explained by the higher precision of the strategy in segmenting the different 356	
  

areas according to sulci and gyri [33], possibly establishing higher and more accurate correlations. 357	
  

This strategy seems to favor the detection of strong and short connections associated with the 358	
  

formation of local clusters (as seen in the increased Cp). The lack of ability of the fixed template 359	
  

strategy networks to detect these strong correlations favors the survival on the threshold procedure of 360	
  

the weaker, long distance connections, establishing extra paths of communication between distant 361	
  

points in the network, reducing the average shortest path in these networks. Furthermore on the nodal 362	
  

metrics comparison, three individual segmentation network vertices were found to have higher value 363	
  

of BC. As the main hubs of communication in a network are usually associated with the necessity to 364	
  

establish bridges of communications between strong and independent clusters, these seem a logic 365	
  

finding, supported by the large effect size. 366	
  

This study presents some limitations that should be noted. While we reveal the impact of the 367	
  

normalization step in several aspects of the network, it is, in this study, impossible to show which 368	
  

inner step of the normalization is the exact responsible for these differences. Further exploration of 369	
  

the effect of resampling the functional data and the use of different interpolation functions are needed 370	
  

to characterize the exact effect of this step. It is also important to notice that several of the differences 371	
  

found in the network metrics were present on higher values of density. This can be explained by 372	
  

observing the distributions of correlations of differences, as most edges with significant differences 373	
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have medium to low levels of correlation, only once these survive the thresholding procedure their 374	
  

effect will be noticeable on the network. There is a tendency in neuroimaging studies to focus on 375	
  

lower density networks, possibly reducing the relevance of some of the present findings. Yet, there is 376	
  

no direct evidence of which density threshold is more appropriate, which could be critical for the 377	
  

overall interpretation of the present finding and of complex brain networks studies. 378	
  

Overall, we have shown a strong impact of two different pre-processing steps on the resulting 379	
  

networks. It is, without a prior-knowledge of the expected network properties, impossible to 380	
  

determine which strategy better represents the underlying biological brain network, making it only 381	
  

possible to theoretically argue in favor of those strategies that have either less impact on the data, and 382	
  

are more precise in defining the regions of interest. While further exploration of the normalization 383	
  

step is needed, the present results favor the use of the more conservative approach, avoiding the use of 384	
  

resampling and interpolation functions on the data, whenever possible. Similar to this, the use of a 385	
  

more precise segmentation method for defining the ROIs also seems to have a moderate impact on the 386	
  

networks obtained.  387	
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Legends and titles: 506	
  

 507	
  

Figure 1. Axial view of the ROIs defined for 1 subject after preprocessing: a) in native functional space; b) 508	
  

in MNI space. 509	
  

 510	
  

Figure 2. Complete image processing workflow: from the raw images to the correlation matrices. In blue, 511	
  

the workflow of functional images and, in red, the workflow of the node defining atlases.Figure 3. Correlation 512	
  

matrices for the four networks thresholded at 7.5% density averaged for all subjects: networks built using 513	
  

the pre-segmented atlas (ATL), the individual segmentation (FS); built on the standard MNI space and on the 514	
  

functional native space (NAT). White lines divide the matrices in sub-cortical (Sub Cort) and cortical (Cort) 515	
  

regions as well as left and right.  516	
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 517	
  

Figure 3. Correlation matrices for the four networks thresholded at 7.5% density averaged for all 518	
  

subjects: networks built using the pre-segmented atlas (ATL), the individual segmentation (FS); built on the 519	
  

standard MNI space and on the functional native space (NAT). White lines divide the matrices in sub-cortical 520	
  

(Sub Cort) and cortical (Cort) regions as well as left and right.  521	
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 522	
  

Figure 4. Networks distributions: a) distribution of Z-transformed correlation values; b) distribution of 523	
  

distances; 524	
  

 525	
  

Figure 5. Global metrics network characterization. Cp/Cprand: network average clustering coefficient 526	
  

compared to random networks; L/Lrand: network average path length compared to random networks; r: network 527	
  

assortativity;. For the networks built using the pre-segmented atlas (ATL), the individual segmentation (FS); 528	
  

built on the standard MNI space (MNI) and on the functional native space (NAT); 529	
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 530	
  

Figure 6: Edge level significant differences for the registration and parcellation comparisons for p< 0.05 531	
  

corrected for multiple comparisons with FWE procedure: a) and b) location and direction of differences; c) 532	
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and d) distribution of the Z-transformed correlation values for the edges with significant differences for each 533	
  

network; e) and f) distribution of physical distances for the edges with significant differences. 534	
  

Table 1- Regions of Interest used from the Destrieux and Sub-Cortical atlas. 535	
  

Designation   

lh/rh-Thalamus-Proper ctx_lh/rh_G_temp_sup-Lateral 

lh/rh-Caudate ctx_lh/rh_G_temp_sup-Plan_polar 

lh/rh-Putamen ctx_lh/rh_G_temp_sup-Plan_tempo 

lh/rh-Pallidum ctx_lh/rh_G_temporal_inf 

lh/rh-Hippocampus ctx_lh/rh_G_temporal_middle 

lh/rh-Amygdala ctx_lh/rh_Lat_Fis-ant-Horizont 

lh/rh-Accumbens-area ctx_lh/rh_Lat_Fis-ant-Vertical 

ctx_lh/rh_G_and_S_frontomargin ctx_lh/rh_Lat_Fis-post 

ctx_lh/rh_G_and_S_occipital_inf ctx_lh/rh_Pole_occipital 

ctx_lh/rh_G_and_S_paracentral ctx_lh/rh_Pole_temporal 

ctx_lh/rh_G_and_S_subcentral ctx_lh/rh_S_calcarine 

ctx_lh/rh_G_and_S_transv_frontopol ctx_lh/rh_S_central 

ctx_lh/rh_G_and_S_cingul-Ant ctx_lh/rh_S_cingul-Marginalis 

ctx_lh/rh_G_and_S_cingul-Mid-Ant ctx_lh/rh_S_circular_insula_ant 

ctx_lh/rh_G_and_S_cingul-Mid-Post ctx_lh/rh_S_circular_insula_inf 

ctx_lh/rh_G_cingul-Post-dorsal ctx_lh/rh_S_circular_insula_sup 

ctx_lh/rh_G_cingul-Post-ventral ctx_lh/rh_S_collat_transv_ant 

ctx_lh/rh_G_cuneus ctx_lh/rh_S_collat_transv_post 

ctx_lh/rh_G_front_inf-Opercular ctx_lh/rh_S_front_inf 

ctx_lh/rh_G_front_inf-Orbital ctx_lh/rh_S_front_middle 

ctx_lh/rh_G_front_inf-Triangul ctx_lh/rh_S_front_sup 

ctx_lh/rh_G_front_middle ctx_lh/rh_S_interm_prim-Jensen 

ctx_lh/rh_G_front_sup ctx_lh/rh_S_intrapariet_and_P_trans 

ctx_lh/rh_G_Ins_lg_and_S_cent_ins ctx_lh/rh_S_oc_middle_and_Lunatus 

ctx_lh/rh_G_insular_short ctx_lh/rh_S_oc_sup_and_transversal 

ctx_lh/rh_G_occipital_middle ctx_lh/rh_S_occipital_ant 

ctx_lh/rh_G_occipital_sup ctx_lh/rh_S_oc-temp_lat 

ctx_lh/rh_G_oc-temp_lat-fusifor ctx_lh/rh_S_oc-temp_med_and_Lingual 

ctx_lh/rh_G_oc-temp_med-Lingual ctx_lh/rh_S_orbital_lateral 
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ctx_lh/rh_G_oc-temp_med-Parahip ctx_lh/rh_S_orbital_med-olfact 

ctx_lh/rh_G_orbital ctx_lh/rh_S_orbital-H_Shaped 

ctx_lh/rh_G_pariet_inf-Angular ctx_lh/rh_S_parieto_occipital 

ctx_lh/rh_G_pariet_inf-Supramar ctx_lh/rh_S_postcentral 

ctx_lh/rh_G_parietal_sup ctx_lh/rh_S_precentral-inf-part 

ctx_lh/rh_G_postcentral ctx_lh/rh_S_precentral-sup-part 

ctx_lh/rh_G_precentral ctx_lh/rh_S_suborbital 

ctx_lh/rh_G_precuneus ctx_lh/rh_S_subparietal 

ctx_lh/rh_G_rectus ctx_lh/rh_S_temporal_inf 

ctx_lh/rh_G_subcallosal ctx_lh/rh_S_temporal_sup 

ctx_lh/rh_G_temp_sup-G_T_transv ctx_lh/rh_S_temporal_transverse 

	
  536	
  

Table 2-Significant differences in the nodal metrics in bold for the registration and parcellation 537	
  

comparisons, with p<0.05 corrected for multiple comparisons with the FWE procedure. 538	
  

 

Networks Registration Parcellation 

 

ATL-MNI ATL-NAT FS-MNI FS-NAT F(1,54) ηp
2 F(1,54) ηp

2 

Node CB 

       Left-Pole_temporal 59.554 62.079 76.751 79.507 0.178 0.003 23.840 0.310 

Right-Gand_S_occipital_inf 53.345 55.552 68.158 79.448 1.085 0.020 16.988 0.243 
Right-Lat_Fis-ant-Horizont 60.639 33.838 57.997 38.138 18.769 0.262 0.068 0.001 
Right-Pole_temporal 72.203 67.579 83.074 82.113 0.251 0.005 15.260 0.224 

 

Eloc 

       Left-S_postcentral 0.272 0.287 0.275 0.291 18.358 0.257 1.857 0.034 

Right-G_and_S_cingul-Mid-Post 0.257 0.280 0.259 0.282 22.277 0.296 0.279 0.005 
Left-G_postcentral 0.272 0.285 0.270 0.290 20.098 0.275 0.717 0.013 
RightS_postcentral 0.272 0.290 0.274 0.293 22.781 0.301 1.079 0.020 
Right-S_precentral-sup-part 0.255 0.276 0.259 0.286 14.980 0.220 5.514 0.094 
 539	
  

Table 3-Isolated effect of the registration strategies for the graph metrics across all threshold values; 540	
  

Significant results in bold corrected for multiple comparisons with the FWE procedure; 541	
  

  

 

Cp: NAT>MNI L: NAT>MNI r: MNI>NAT 
th(%) p F(1,54) ηp

2 p F(1,54) ηp
2 p F(1,54) ηp

2 
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5 0.170 1.931 0.035 <.001 19.687 0.271 0.384 0.770 0.014 
7.5 0.659 0.197 0.004 <.001 20.309 0.277 0.153 2.099 0.038 
10 0.094 2.905 0.052 <.001 21.534 0.289 0.050 4.034 0.071 

12.5 0.003 9.927 0.158 <.001 21.910 0.292 0.018 6.010 0.102 
15 <.001 15.641 0.228 <.001 23.712 0.309 0.004 9.018 0.145 

17.5 <.001 19.974 0.274 <.001 23.474 0.307 0.004 8.932 0.144 
20 <.001 22.796 0.301 <.001 25.725 0.327 0.005 8.713 0.141 

22.5 <.001 23.307 0.305 <.001 26.208 0.331 0.004 9.336 0.150 
25 <.001 24.921 0.320 <.001 26.813 0.336 0.003 9.803 0.156 

27.5 <.001 25.762 0.327 <.001 28.240 0.348 0.003 9.906 0.157 
30 <.001 27.324 0.340 <.001 28.841 0.352 0.003 9.986 0.159 

32.5 <.001 27.182 0.339 <.001 29.586 0.358 0.003 9.624 0.154 
35 <.001 27.413 0.341 <.001 28.214 0.347 0.006 8.305 0.135 

37.5 <.001 28.458 0.349 <.001 26.104 0.330 0.008 7.728 0.127 
40 <.001 29.942 0.361 <.001 24.315 0.314 0.014 6.421 0.108 

	
  542	
  

 543	
  

Table 4- Isolated effect of the parcellation strategies for the graph metrics across all threshold values; 544	
  

Significant results in bold corrected for multiple comparisons with the FWE procedure;	
  545	
  

 
Cp: FS>ATL L: FS>ATL 

r:FS>ATL 

r:FS>ATL 

 
th(%) p F(1,54) ηp

2 p F(1,54) ηp
2 p F(1,54) ηp

2 
5 0.58 0.31 0.006 <.001 15.107 0.222 0.005 8.721 0.141 

7.5 0.015 6.29 0.106 0.002 11.028 0.172 0.006 8.373 0.136 
10 0.008 7.604 0.125 0.002 10.404 0.164 0.001 13.110 0.198 

12.5 0.165 1.984 0.036 0.002 10.131 0.160 0.000 15.192 0.223 
15 0.067 3.485 0.062 0.003 9.614 0.154 0.008 7.639 0.126 

17.5 0.016 6.159 0.104 <.001 19.658 0.271 0.003 9.782 0.156 
20 0.038 4.514 0.078 <.001 14.613 0.216 0.040 4.440 0.077 

22.5 <.001 13.808 0.207 0.002 10.568 0.166 0.166 1.969 0.036 
25 <.001 19.346 0.267 0.002 10.783 0.169 0.403 0.710 0.013 

27.5 <.001 21.622 0.290 0.005 8.533 0.139 0.498 0.467 0.009 
30 <.001 28.434 0.349 0.009 7.348 0.122 0.482 0.502 0.009 

32.5 <.001 29.846 0.360 0.016 6.228 0.105 0.656 0.200 0.004 
35 <.001 29.312 0.356 0.045 4.202 0.073 0.592 0.290 0.005 

37.5 <.001 25.243 0.323 0.181 1.839 0.034 0.694 0.157 0.003 
40 <.001 25.713 0.327 0.119 2.505 0.045 0.781 0.078 0.001 

 546	
  

 547	
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