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Different microbial pathways can elongate the carbon chains of

molecules in open cultures of microbial populations (i.e. reactor

microbiomes) under anaerobic conditions. Here, we discuss

three such pathways: 1. homoacetogenesis to combine two

carbon dioxide molecules into acetate; 2. succinate formation

to elongate glycerol with one carbon from carbon dioxide; and

3. reverse b oxidation to elongate short-chain carboxylates

with two carbons into medium-chain carboxylates, leading to

more energy-dense and insoluble products (e.g. easier to

separate from solution). The ability to use reactor microbiomes

to treat complex substrates can simultaneously address two

pressing issues: 1. providing proper waste management; and 2.

producing renewable chemicals and fuels.
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Introduction
Open cultures of anaerobic microbial populations break

down and convert waste organic materials into a mixture

of mainly short-chain carboxylic acids with 2–4 carbon

atoms [C2–C4]), carbon dioxide, and hydrogen [1]. We

refer to these open cultures as anaerobic reactor micro-

biomes, not only because they have a lot in common with

gut microbiomes, but also because this terminology

innately infers to open cultures instead of artificially

mixed communities of once pure cultures. Carboxylic

acids are weak organic acids with at least one carboxyl

group and throughout the text we will refer to them as

carboxylates to include both the undissociated and dis-

sociated species (e.g. acetic acid is acetate, lactic acid is
www.sciencedirect.com 
lactate, and succinic acid is succinate). The short-chain

carboxylates can accumulate or be converted further to,

for example, methane by acetogens and methanogens

within the same anaerobic reactor microbiome. This

conversion into methane occurs within a well-operated

anaerobic digestion system. However, methane is a low

value product that may subside anaerobic digestion into

an economically unattractive technology when govern-

mental subsidies or policies are absent [2]. Fortunately,

other fermentation products with a higher monetary value

can be produced from wastes under anaerobic conditions.

Moreover, the carbon chains of the carboxylates can be

elongated within the same anaerobic reactor microbiome

when reduced compounds are present [3�]. Here, we

review promising chain-elongation pathways.

We have limited the scope of this review, however, to

pathways that have been described when enriched within

anaerobic reactor microbiomes because of the following

advantages compared to pure or defined-mixed cultures in

bioprocesses: 1. the avoidance of sterilization and antibiotic

additions; 2. the adeptness to treat complex and variable

organic waste substrates [1]; 3. the circumvention of using

pure cultures as an inoculum; 4. the prospect to enrich for

uncultured isolates with advanced functions from an unde-

fined inoculum; and 5. the ability to operate bioprocesses in

a (semi)-continuous mode for many years. These advan-

tages make conversion of waste economically feasible, and

thus we focus here on microbial systems that do not

compete with human food production. Previously noted

disadvantages for reactor microbiomes, such as instability

and unpredictability, were not observed for methanogenic

microbiomes in well-operated anaerobic digestion sys-

tems. In fact, these reactor microbiomes were stable and

resilient [4�,5], which has resulted in efficient performance

during many years of operation for thousands of full-scale

anaerobic digesters worldwide [6]. In the first section of this

review, we focus on relevant microbial pathways that are

known to elongate carbon chains in reactor microbiomes

without the addition of external electron acceptors (visual-

ized in Figure 1a–c) — each sub-section reviews one of

three microbial pathways (sub-section headings a–c). In the

second section of this review, we focus on technologies that

may be necessary to aid chain elongation.

Pathways
Homoacetogenesis (a)

Homoacetogens utilize the Wood-Ljungdahl (reductive

acetyl-CoA) pathway under anaerobic conditions to
Current Opinion in Biotechnology 2014, 27:115–122
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Figure 1
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The metabolic pathways of: (a) homoacetogenesis; (b) succinate formation; and (c) reverse b oxidation are shown. Substrates are highlighted in red,

while products are highlighted in dark blue for each pathway. Key enzymes discussed in the text and the reactions they catalyze are also highlighted in

the pathways. For reverse b oxidation: ethanol as the source of reducing equivalents and energy is shown in Step 1: ethanol; reverse b oxidation of

acetate to n-butyrate is shown in Step 2: acetate; lactate as the source of reducing equivalents and energy is shown in Step 1: lactate; and reverse b

oxidation of n-butyrate to n-caproate is shown in Step 2: n-butyrate. Locations of energy recovery (*) are highlighted for each respective pathway, if

they are known. It has been suggested that many bacteria harvest energy via the RNF complex, which is coupled with flavin-based electron bifurcation

(FBEB). The starred central box (*) contains an example of energy conservation via RNF complex and ATP-synthase. The RNF complex couples the

oxidation of reduced ferredoxin with the reduction of NAD+ to drive formation of a proton/sodium gradient across the membrane, generating ATP via

ATP-synthase. Note for (c) that some of the Fd�red generated during crotonyl-CoA reduction is also used for the generation of NADH, which is needed

for reduction in the reverse b oxidation cycle. Figure was generated with information from [7,8,10,20,26,52,53,54].
elongate CO2 into acetate, which is a C1 to C2 chain-

elongation pathway, with H2 as an electron donor

(Figure 1a, Table 1). Latif et al. [7] (this issue) reviewed

this pathway in detail with updated information on energy

conservation and redox homeostasis. Well-characterized

homoacetogens are within the genera Clostridium and

Acetobacterium [8], but this property is also found in mem-

bers of many other genera such as Moorella and Sporumosa.
Current Opinion in Biotechnology 2014, 27:115–122 
The overall conversion of H2 and CO2 into acetate is

thermodynamically favorable at a pH of 7 with Gibbs free

energy change values of �75 to �95 kJ/mol depending on

temperature (Table 1). However, Kleerebezem and van

Loosdrecht [9] predicted that under methanogenic con-

ditions (low H2 partial pressure of <10�2 kPa in a reactor

microbiome), a temperature exceeding 45 8C would

stop acetate generation from H2/CO2. Via additional
www.sciencedirect.com
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Table 1

Thermodynamic information for homoacetogenesis, succinate formation, and reverse b oxidation. All DG�
0

r values are calculated considering

all reactants and products to be in the aqueous phase except for H2 and CO2, which are gaseous at 101.33 kPa. DG�
0

r values are at biological

standard state (pH = 7 at 25 -C; 6.82 at 37 -C; 6.58 at 55 -C) and calculated using DG�f and DH�f values for the individual compounds at 25 -C
from Kleerebezem and van Loosdrecht [9] and CRC Handbook of Chemistry and Physics, 94th ed. [51], and the Gibbs-Helmholtz equation.

For chain-elongation reactions with ethanol oxidation, the reactions are shown with their individual and overall DG�
0

r values.

Pathway Microbe Chain-elongation reactions Coupled

reactions

DG�r
(kJ/mol

at 25 8C)

DG�
0

r

(kJ/mol

at 37 8C)

DG�
0

r

(kJ/mol

at 55 8C)

Homoacetogenesis C. thermoaceticum 4 H2 + 2CO2! acetate�

+ H+ + 2H2O

– �94.96 �86.83 �74.67

Succinate formation A. succinogenes Glycerol + CO2!
succinate2� + H2O + 2H+

– �44.50 �41.25 �36.37

Ethanol oxidation C. kluyveri Ethanol + H2O ! acetate�

+ H+ + 2H2

� 1 10.50 7.54 4.36

Reverse b oxidation Ethanol + acetate� !
n-butyrate� + H2O

� 5 �193.00a �191.37a �188.33a

Chain elongation of acetate and

ethanol to n-butyrate

6 ethanol + 4 acetate�

! 5n-butyrate� + H+

+ 2H2 + 4H2O

Overall �182.50a �183.83a �183.97a

Ethanol oxidation C. kluyveri Ethanol + H2O !
acetate� + H+ + 2H2

� 1 10.50 7.54 4.36

Reverse b oxidation Ethanol + n-butyrate� !
n-caproate� + H2O

� 5 �194.00a �192.49a �190.22a

Chain elongation of n-butyrate

and ethanol to n-caproate

6 ethanol + 5n-butyrate�

! acetate� + 5n-caproate�

+ H+ + 2H2 + 4H2O

Overall �183.50a �184.95a �185.86a

Chain elongation of acetate and

lactate to n-butyrate

(via reverse b oxidation)

M. elsdenii Lactate� + acetate�

+ H+! n-butyrate�

+ CO2 + H2O

Overall �57.74 �59.43 �61.97

a The unit is kJ/5 mol of product.
thermodynamic calculations, Gonzalez-Cabaleiro et al.
[10��] confirmed that energy investment is required in

the CO2 to CO reduction step of the homoacetogenesis

pathway (biological standard conditions [pH 7; 25 8C]).

They also predicted that methylene THF reductase is the

enzyme most probably coupled with proton translocation

to provide energy recovery in the pathway [10��]. Aceto-

gens (e.g. A. woodii and C. ljungdahlii) link methylene THF

reductase to flavin-based electron bifurcation (FBEB) and

the RNF complex (NADH:ferredoxin oxidoreductase) to

conserve energy (* in Figure 1) [7].

When the H2 partial pressure declines in the system, a

decrease occurs in the total energy that is available for the

pathway. Eventually, at very low H2 partial pressures of

<10�2 kPa, no net energy can be harvested from proton

translocation, rendering this pathway unfeasible [10��].
Thus, a thermodynamic bottleneck may exist within the

microbiome at low H2 partial pressures, and thus H2

conversion via methanogenic archaeal and sulfate-redu-

cing bacterial activity must be limited to achieve chain

elongation. From chemostat experiments it was hypoth-

esized that only a narrow range of growth rates are feasible

for homoacetogenesis [11]. In addition, the homoaceto-

genesis pathway is reversible at very low H2 partial

pressures in microbiomes, and calculations have indicated

that the energy coupling sites are the same in both

directions [10��]. Finally, Ni et al. [12] estimated that
www.sciencedirect.com 
hydrogenotrophic methanogens outcompete homoaceto-

gens within microbiomes at low H2 partial pressures,

while this is vice versa at high H2 partial pressures (e.g.

from fermentation). The conversion of H2 and CO2 into

acetate is more energetically favorable at higher H2 partial

pressures, indicating that pressurized bioreactors may be

attractive [13].

Currently, �10 million tons of acetate are produced

annually, mainly via petrochemical methods [8]. The

Wood-Ljungdahl pathway through acetogenic activity

in the microbiome could fix the CO2 that is commonly

lost during industrial fermentations [14] with H2 as the

electron donor via electrolysis of surplus, renewable elec-

tric power. The rates of acetate production for homoace-

togens in pure-culture fermentations have been favorable

with production rates of 0.3–0.4 g final product L�1 h�1

[13,15]. This rate is not limited by the microbial activity

but by the H2 gas transfer into solution [16]. Considerably

lower production rates of 1 � 10�2–6 � 10�3 g L�1 h�1

from homoacetogenic activity in microbiomes from sup-

plied H2 and CO2 have been found compared to pure

culture fermentations [12,17].

Succinate formation (b)

Succinate is a dicarboxylate that can be produced by

several very different microbial pathways. Succinate is

a key intermediate in the Krebs cycle (citric acid cycle) to
Current Opinion in Biotechnology 2014, 27:115–122
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degrade organic compounds completely to CO2. It is also

an intermediate of anaerobic bacteria that form or degrade

propionate. Here, succinate production is discussed

because of the ability of specific anaerobic bacteria to

chain elongate the waste product glycerol (C3) with CO2

(C1) into succinate (C4), which is a C1 chain-elongation

pathway (Figure 1b, Table 1). This CO2 fixation pathway,

therefore, includes a carboxylation reaction, such as via

the Wood-Ljungdahl pathway or the Arnon-Buchanan

cycle (reverse citric acid cycle) in strict anaerobic bacteria,

which results in the elongation of the chain length of

organic molecules [18]. Carboxylation reactions even

occur in bacteria that are heterotrophic and produce net

CO2. To our knowledge, succinate fermentation is the only

fermentation pathway in which net CO2 is consumed when

sugars are the substrates (including glycerol as a sugar

backbone). This is due to synthesis of oxaloacetate by

carboxylation of: 1. pyruvate with pyruvate carboxylase;

or 2 phosphoenoylpyruvate (PEP) with PEP carboxylase

(Figure 1b).

Actinobacillus succinogenes and Basfia succiniciproducens are

bovine ruminal species that are able to ferment glycerol to

succinate with the former being considered as a promising

bacterium in respect to industrial succinate production

[19–21]. The elongation of glycerol and CO2 into succi-

nate is thermodynamically favorable under standard con-

ditions with a Gibbs free energy change value of �40 kJ/

mol (Table 1). Succinate production is a fermentation

pathway in which external CO2 is required to sustain

redox and carbon balances, especially when the bacteria

have a limited capacity to dispose off excess reducing

equivalents by, for example, the formation of ethanol,

lactate, or hydrogen. Zou et al. [21] has already observed

that increasing the dissolved CO2 concentration has a

positive effect on rates for pure cultures. In-depth

thermodynamic calculations are necessary to investigate

whether thermodynamic bottlenecks exist for the

elongation of glycerol in microbiomes.

Succinate is an important additive in the food and phar-

maceutical industry. In addition, it is a platform chemical

for bulk organic synthesis, with a total production of more

than 20,000 to 30,000 tons annually via petrochemical

methods [22]. The volume of generated glycerol, which

is a side product of biodiesel production, is large enough

to cover all potential demand for succinate if this

microbial fermentation pathway becomes optimized.

Already, relatively high succinate production rates from

glucose and CO2 with pure cultures of A. succinogenes of

0.86 g final product L�1 h�1 have been observed after

increasing the dissolved CO2 concentration by adding

MgCO3 as a CO2 source at a CO2 partial pressure of

101.33 kPa (i.e. 100% CO2 gas). However, because of its

isolation from a nutrient-rich rumen environment, the

nutrient requirements for this pure culture are too high

for an economically viable system. We already know that
Current Opinion in Biotechnology 2014, 27:115–122 
a glycerol-to-succinate-converting bacterium exists in

the nutrient-poor environment of a reactor microbiome,

which treats sludge. However, research is required to

select for such reactor microbiome to perform this path-

way at sufficiently high rates [23].

Reverse b oxidation (c)

The b oxidation pathway is a reversible metabolic path-

way that can perform either the oxidation or reduction

reaction depending on specific certain anaerobic con-

ditions [10��]. Because of the abundance of b oxidation

in anaerobic reactor microbiomes, the metabolic trait to

operate in the reverse is likely already present when the

environmental conditions become favorable. The first

required environmental condition is the presence of

energy-rich, reduced compounds, such as ethanol and

lactate, to provide energy, reducing equivalents, and

acetyl-CoA via step-1 microbial pathways (Figure 1c; Step

1: ethanol and Step 1: lactate). This is followed by the

cyclic, step-2 reverse b oxidation pathways (Figure 1c;

Step 2: acetate and Step 2: n-butyrate), and both steps

together form the chain elongation of interest (Table 1).

In the reactor microbiome, a high enough H2 partial

pressure is the second environmental condition that

should be met to prevent the oxidation, and thus removal,

of short-chain and medium-chain carboxylates [24].

For every 5 molecules of ethanol that is used for C2

elongation, 1 molecule of ethanol is oxidized into acetate

(Table 1) to provide metabolic energy (ATP) via sub-

strate level phosphorylation. The conversion of ethanol

also provides reducing equivalents (NADH) for the

reverse b oxidation cycle (Figure 1c; Step 1: ethanol).

Lactate conversion has also been described to generate

the necessary acetyl-CoA to provide the two carbon atoms

for the acetate to n-butyrate elongation via reverse b

oxidation (Figure 1c; Step 1: lactate) [10��,25,26] with

ATP generation from the conversion of pyruvate into

acetyl-CoA (likely by oxidation of ferredoxin by a mem-

brane-bound RNF complex) and NADH formation from

the conversion of lactate into pyruvate [26] (Figure 1c).

The reverse b oxidation pathway is a cyclic process and

adds an acetyl-CoA molecule, which is derived from

ethanol or lactate (step 1), to a carboxylate, elongating

its carbon chain length with C2 at a time (i.e. acetate [C2]

to n-butyrate [C4] (Figure 1c; Step 2: acetate), n-butyrate

[C4] to n-caproate [C6] (Figure 1c; Step 2: n-butyrate),

n-caproate [C6] to n-caprylate [C8], propionate [C3] to

n-valerate [C5], among others) [3�,27��,28]. Calculations

and experimental work showed that energy harvesting

via proton translocation (including the use of the RNF

complex [* in Figure 1c]) occurs in the pathway where

crotonyl-CoA is reduced to butyryl-CoA with butyryl-

CoA dehydrogenase or hex-2-enoyl-CoA is reduced

to hexanoyl-CoA with hexanoyl-CoA dehydrogenase

[10��,25]. Numerous bacteria in the microbiome have
www.sciencedirect.com
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all the necessary enzymes to perform the reverse

b oxidation pathway, with Clostridium kluyveri being

the best-known microbe that can perform this both in

pure and open cultures, including the ethanol oxidation

pathway to obtain energy (Step 1: ethanol) [1,3�].

The combined pathways of ethanol oxidation and reverse

b oxidation that form chain elongation are thermodyna-

mically feasible at a pH of 7 with a Gibbs free energy

change value of � �185 kJ/5 mol at temperatures that

range from 25 8C to 55 8C for both n-butyrate and

n-caproate production (Table 1). Further calculations

showed that under a range of ethanol concentrations no

thermodynamic bottlenecks exist for acetate elongation

to n-butyrate with ethanol as the electron donor (pH 7;

25 8C) [10��]. However, the chain elongation pathway

(i.e. the combined ethanol oxidation and reverse b oxi-

dation pathways for n-caproate production) did not occur

at 55 8C in bioreactors, while it did occur at 30 8C. There-

fore, chain elongation may be limited by a thermodyn-

amic bottleneck or end product toxicity at the higher

temperatures [24]. For the combined pathway that

elongates acetate and lactate into n-butyrate, we calcu-

lated a Gibbs free energy change value of ��60 kJ/mol at

temperatures that range from 25 8C to 55 8C (Table 1).

Megasphaera elsdenii has been of interest in recent studies

regarding this combined pathway [26,29].

When H2 was used as the electron donor instead of

ethanol in thermodynamic calculations (at H2 partial

pressures of 1 � 10�3, 1 � 10�1, 10, 50, and 100 kPa), a

thermodynamic bottleneck was found due the highly

endergonic two acetyl-CoA condensation reaction, requir-

ing unfeasibly low acetoacetyl-CoA concentrations [10��].
We, therefore, assume that the direct generation of n-

caproate from H2 and CO2 cannot occur even at high

H2 partial pressures. This may explain why feeding only

H2 and CO2 to a microbiome with the goal to produce

medium-chain carboxylates, such as n-caproate, resulted

in very low volumetric production rates of �1 � 10�3 g

n-caproate L�1 h�1 [17]. The sluggish indirect generation

of n-caproate can be explained via sequential pathways of

homoacetogenesis, acetate reduction to ethanol [30], and

the combined ethanol oxidation/reverse b oxidation. This

is a slow sequential process because of the sluggish

kinetics of acetate reduction in reactor microbiomes

[30]. Acetate reduction into ethanol is much faster with

a high-rate homoacetogenic bioprocess, such as synthesis

gas (syngas: a mixture of primarily CO, H2 and CO2)

fermentation with pure cultures [15]. The effluent of

syngas fermentation can then be fed into a high-rate

chain elongation bioprocess in reactor microbiomes to

considerably increase the overall rate of H2 and CO2

conversion into n-caproate [31�].

Currently, n-caproate is commercially produced via var-

ious petrochemical methods. When microbiomes can
www.sciencedirect.com 
generate medium-chain carboxylates economically, a

market will likely develop to use n-caproate as a sustain-

able platform chemical: 1. directly as animal feed, green

antimicrobials, or corrosion inhibitors [1,32,33]; or 2.

indirectly by conversion with organic chemistry into

biofuels such as biodiesel or jet fuels [34]. Research

has already shown relatively high volumetric rates and

specificities for production of medium-chain carboxylates

in microbiomes, and two different approaches have

emerged. One approach has been to use procured acetate

and ethanol as substrates and to operate bioreactors at a

pH of 7 without in-line product extraction. This approach

has achieved the highest volumetric production rates of

2.2 g n-caproate L�1 h�1 to date [27��,32,35�]. The other

approach has been to use realistic substrates, such as

ethanol beer or syngas fermentation effluent, and to

operate bioreactors at a lower pH of �5.5 to: 1. prevent

acetoclastic methanogenic activity; and 2. to generate a

pH gradient to extract the undissociated n-caproic acid

from the broth via in-line liquid/liquid extraction [3�,31�].
This has resulted in an excellent selectivity of �80% even

though the substrate was complex [3�]. Due to the toxic

nature of undissociated n-caproic acid at a lower pH value

of 5.5 [33,36], n-caproate must be extracted out of the

broth. The relatively low maximum solubility of n-caproic

acid is advantageous for in-line extraction, especially

when compared to the complete miscible nature of etha-

nol. Therefore, n-caproate production/extraction is per-

ceived as a possible alternative to energy-intensive

ethanol distillation when the product toxicity of n-caproic

acid can be managed [3�,31�].

Technologies
To maximize the selectivity of the elongated products,

technology on the periphery of the fermentors may be

necessary to serve three different purposes: 1. to remove

or deliver electrons, and therefore to aid fermentation, by

implementing electrodes and power sources; 2. to separ-

ate the products by in-line extraction technology; or 3. to

convert fermentation products further with post-proces-

sing technologies, possibly to aid separation.

Electrodes

Microbial electrocatalysis with power-source-controlled

electrodes that are placed in anaerobic bioreactors (fer-

mentors) can be utilized as an oxidative or reductive

driver for microbial production processes [37,38]. The

use of electric power is attractive because it can be

produced sustainably without arable land requirements

[39]. An oxidative driver involves an anode as an electron

sink to discharge reducing equivalents via the electrical

circuit. Currently, industrial fermentations often require

oxygen addition to restore the metabolic redox balance,

but the use of electrodes may circumvent this practice. An

early proof-of-concept study without external mediators

was performed with genetically engineered Shewanella
oneidensis MR-1 to discharge excess electrons during the
Current Opinion in Biotechnology 2014, 27:115–122
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conversion of glycerol to ethanol via glycolysis [40]. A

reductive driver involves a cathode as an electron source,

and several reactor microbiomes (biocathodes) have

already achieved the production of acetate through

homoacetogenesis at rates of 0.04 g L�1 h�1 [41��,42],

which is higher than the rate of homoacetogenesis in

microbiomes as described earlier. Homoacetogenesis

with electrodes is one route of microbial electrosynthesis.

In addition, cathode utilization within a bioreactor with

glycerol fermentation enhanced production of alcohols

and indirectly led to reverse b oxidation to produce n-

valerate from propionate [43]. In two other studies with

reactor microbiomes, the reverse b oxidation pathway

was observed with biocathodes but without the supply of

fermentable substrates  or ethanol, albeit at low pro-

duction rates due to the requirement of acetate to ethanol

reduction [44,45].

Extraction

Operating conditions with lower pH values result in toxic

environments when short-chain or medium-chain car-

boxylates are being generated [33], and therefore a need

was identified to continuously extract the product from

the fermentation broth [24]. Four separation methods

will be briefly discussed here: 1. liquid-liquid extraction;

2. crystallization; 3. ion exchange; and 4. electrodialysis.

With liquid-liquid extraction, a solvent is used to extract

the desired compound from the fermentation broth [46].

The compound can then be back-extracted into an aqu-

eous solution via a pH gradient, and this was performed

with fermentation broth from a reactor microbiome

[3�,24]. This technology will favor the extraction of more

hydrophobic compounds, such as undissociated n-caproic

acid (i.e. n-caproic acid has a solubility of 10.19 g/L in

water) compared to undissociated n-butyric acid (about

100 g/L in water), and this will select for the reactor

microbiome to promote chain elongation [3�]. Crystal-

lization has been integrated with reactor microbiome

technology to extract a mixture of short-chain carboxy-

lates as part of the MixAlco process [47]. In addition,

crystallization of succinate was discussed in detail, but

problems of sluggish extraction were noted due to its

relatively high maximum solubility, which can be

possibly circumvented by direct conversion into other

products that are easier to extract [22]. Ion exchange

resins rely on a stoichiometric process in which certain

compounds, such as carboxylates, are adsorbed to the

resin and removed from the fermentation broth [46].

Electrodialysis is a process in which ion exchange mem-

branes are used to selectively extract ions from one

solution to another based on an electrical potential

difference [46]. This technology has been applied to

the separation of acetic acid from acetaldehyde waste-

water [48] and the recovery of succinate [46]. More work

is necessary to specifically extract elongated products

from reactor microbiomes and undoubtedly new tech-

nology will be developed [46].
Current Opinion in Biotechnology 2014, 27:115–122 
Conversion

Immediate conversion of the elongation products may be

implemented to: 1. increase product value; 2. convert

carboxylates into fuel chemicals; and/or 3. aid in product

separation. Many biochemical, electrochemical, and

thermochemical conversions are possible to upgrade car-

boxylates [22,34,49]. Conversion of carboxylates into fuel-

grade chemicals can be achieved by reducing them to

their corresponding alcohols. The latter are less corrosive,

and have better combustion properties. Reduction of a

carboxyl into an alcohol function requires energy and

reducing equivalents, since the alcohol is more reduced

and its combustion can release more free energy than that

of the carboxylate. Syngas in a biochemical reaction can

provide energy and reducing equivalents, which resulted

in highly efficient conversions for several carboxylates

including n-caproate to n-hexanol [50]. In another study,

the conversion of carboxylates, such as n-caproate, into a

C6 alkene platform was described via metal catalytic

conversions to generate jet fuels [34]. The conversion

of carboxylates can also decrease the maximum solubility,

and therefore improve product separation. This concept

was discussed in a review where the conversion of succi-

nate to solvents, such as pyrrolidones, or succinic esters or

succinate amines was highlighted [22].

Conclusions
Even though many older reports exists that describe the

presence of chain-elongation reactions in anaerobic reac-

tor microbiomes, a new concept has emerged that has its

primary goal of producing elongated carboxylates with

these systems. Besides the three pathways that we have

described in this review, it is foreseeable that other

pathways, such as the elongation of acetate (C2) and

propanol (C3) into n-valerate (C5) [29], can be utilized

in reactor microbiomes to produce elongated carboxy-

lates. For each of these pathways, whether they have

already been described or not, it is pertinent that the

microbiome is shaped to primarily enrich for the enzy-

matic reactions of interest. Many questions exist on how

to shape the microbiome and, if successful, whether the

system is stable and resilient to withstand operating

upsets that may occur during industrial processing

(similar to methanogenic microbiomes). The other areas

that need study are the extraction and/or conversion

technologies, which when used in line with the fermenta-

tion system, can be used as large drivers. In fact, for

certain chain-elongating pathways, in-line extraction may

be a prerequisite to shape the reactor microbiome to

obtain a high production rate and selectivity. Another

driver may be the use of electrodes in large-scale fermen-

ters, but further scale-up work is necessary before prac-

tical application will become important.
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25. Muñoz-Tamayo R, Laroche B, Walter É, Doré J, Duncan SH,
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