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Fiber meshes of poly(hydroxybutyrate) (PHB) and poly(hydroxybutyrate)/poly(ethylene
oxide) (PHB/PEO) with different concentrations of chlorhexidine (CHX) were prepared by
electrospinning for assessment as a polymer based drug delivery system. The electrospun
fibers were characterized at morphological, molecular and mechanical levels. The bactericidal
potential of PHB and PHB/PEO electrospun fibers, with and without CHX, was investigated
against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by disk diffusion
susceptibility tests. Electrospun fibers containing CHX exhibited bactericidal activity. PHB/
PEO-1%CHX displayed higher CHX release levels and equivalent antibacterial activity when
compared to PHB/PEO with 5 and 10 wt% CHX. Bactericidal performance of samples with
1 wt% CHX was assessed by Colony Forming Units (CFU), where reductions of 100% and
99.69% against E. coli and S. aureus were achieved, respectively.
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1. Introduction According to Zeng et al. [3], polymer based drug delivery

systems show advantages when compared to the conven-

Material engineering approaches allow the design of
materials with increasing complexity and functionality for
application in the development of drug delivery systems
[1]. Both natural and synthetic polymers are being used in
controlled drug release to maximize system efficiency [1,2].
“Drug release” refers to the process in which drug solutes
migrate from the initial position in the polymer system to
the polymer outer surface and then to the medium [1]. This
process is affected by multiple complex factors such as the
structural characteristics of the material system, release
environment and possible interactions between them [1].
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tional dosage forms as they allow, for example, the thera-
peutic effect with reduced toxicity and enhance compliance
of the patients by delivering drugs at a controlled rate over
a period of time to the site of action [3]. However, some
problems such as the low efficiency of the drug delivery
systems and drug disintegration at the beginning of the
process are still unresolved [3]. Drugs can be encapsulated
directly into fibers processed by electrospinning, thus
conferring on the electrospun fibers the function of drug
carriers [3]. The study of electrospun fiber carriers for drug
delivery is very limited [3]. Reported electrospun drug
delivery systems include transdermal, oral sustained, tar-
geted, implantable, tissue engineering and trans-
membrane delivery [4]. Drug delivery with polymer fibers
is based on the principle that the delivery rate of the drug
can be controlled by tailoring surface area of both drug and
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carrier [5]. Several factors that can affect the drug release
from electrospun fibers are fiber geometry and thickness,
membrane porosity, composition, crystallinity and
swelling, to name a few [6].

Synthetic and natural biodegradable polymers have
received special attention in pharmaceutical research [2].
Delivery systems based on biodegradable polymers are
used because these polymers degrade into compounds that
can be readily excreted from the body, thus obviating the
need for later removal at the end of the treatment period
[7].

Biodegradable polymers are used to control the drug
release rate by diffusion through the polymer matrix or the
pores within the matrix, and/or by degradation of the
polymer chain and erosion of the matrix [2]. However, the
control of the drug release rate from a delivery system that
is susceptible to a degradation process is difficult, as the
release rate may change over the degradation process [2].

PHB is a biocompatible polymer obtained from natural
sources with a high degree of crystallinity. It is also char-
acterized by high brittleness, poor processability and poor
thermal stability [8]. Due to its natural origin, PHB has
potential for biomedical applications, including drug de-
livery systems [9]. It has been evaluated for controlled drug
release systems, surgical structures, wound dressings, or-
thopedic devices, tissue engineering and skin substitute
materials [10].

Chlorhexidine (CHX) is one of the most efficient anti-
microbial agents [11]. This drug has been widely used in a
largely range of applications due to its antimicrobial ac-
tivities against Gram-positive and Gram-negative bacteria
and fungi, and non-toxicity toward mammalian cells
[11,12]. It is used in several products for oral protection and,
in general, for dentistry applications due to its antiseptic
and disinfectant action on wounds [13]. Various studies
[11,12,14-16] have been conducted on CHX release, how-
ever, only a few works are devoted to CHX release with
electrospun fibers. Chen et al. [12] studied electrospun
cellulose acetate fibers containing CHX as a bactericide for
Gram-negative Escherichia coli and the Gram-positive
Staphylococcus epidermidis. It was concluded that CHX
bound on cellulose acetate fibers is still capable of killing
the bacteria with a reduction of 99.9% of the viable bacteria
in 1 hour [12].

In an electrospinning process, a strong electrostatic field
is applied to a polymer solution held in a syringe and feed
through a needle [17]. The fiber jet travels through the at-
mosphere allowing the solvent to evaporate, thus leading
to the deposition of solid polymer fibers on the collector
[17].

In the present work PHB/PEO fiber membranes con-
taining different amounts of CHX were produced by elec-
trospinning. The influence of the presence of the drug on
fiber diameter and average size distribution, as well as the
evolution of the mechanical properties of the membranes
was characterized. Further, drug immobilization on the fi-
bers was confirmed and the CHX release kinetics evaluated.
Bactericidal performance of PHB/PEO samples 1 wt% CHX
was assessed by Colony Forming Units (CFU), against both
the gram-negative strain E. coli and gram-positive strain
S. aureus.

2. Experimental
2.1. Materials

Poly(hydroxybutyrate), (PHB, molecular weight of
~531112 Da) from sugar cane was supplied by PHB In-
dustrial. Poly(ethylene oxide), (PEO, molecular weight of
~100 000 Da) was supplied by Polysciences and Chlor-
hexidine, (CHX, molecular weight of ~505.45 Da) was
purchased from Sigma Aldrich. The polymer solutions of
PHB and PHB/PEO (90/10, wt%) with different final CHX
concentrations (1, 5 and 10 wt%) were dissolved in a blend
of N,N dimethylformamide (DMF, from Merck) and chlo-
roform (CF, from Merck) (80/20 v/v) to achieve a final
polymer concentration of 10% (w/w). The polymer solu-
tions with CHX were dissolved at 70 °C under stirring until
complete dissolution.

2.2. Electrospinning

Electrospinning was performed by the method
described previously [18]. Briefly, the polymer solution was
placed in a glass syringe (10 mL) fitted with a steel needle
with a diameter of 0.5 mm. Electrospinning was conducted
in a home-made controlled temperature chamber at 40 °C,
arelative humidity between 45-55% and applying a voltage
of 20 kV with a power supply from Glassman (model PS/
FC30P04). A syringe pump (from Syringepump) was used to
feed the polymer solutions into the needle tip at a rate of
10 mLh~\. The as-spun randomly oriented fibers were
collected on a grounded collecting plate and stored at room
temperature.

2.3. Electrospun fiber membrane characterization

Electrospun fiber membranes were coated with a thin
gold layer using a sputter coater (Polaron, model SC502),
and their morphology was analyzed using scanning elec-
tron microscopy (SEM) (Quanta 650 from FEI) with an
accelerating voltage of 10 kV. The fiber average diameter
and their size distribution was calculated over approxi-
mately 40 fibers using SEM images at 5000X magnification
and Image ] software. Contact angle measurements (sessile
drop in dynamic mode) were performed at room temper-
ature in a Data Physics OCA20 device using ultrapure water
as test liquid. The contact angles were measured by
depositing water drops (3 pL) on the sample surface and
analyzed with SCA20 software. At least 6 measurements on
each sample were performed in different membrane loca-
tions, and the average contact angle was taken as the result
for each sample.

Infrared measurements (FTIR) were performed at room
temperature with an ABB FTLA 2000 apparatus in trans-
mission mode from 4000 to 500 cm™ . FTIR spectra were
collected after 10 scans with a resolution of 4 cm~'. The
measurements were performed with dry potassium bro-
mide pellets (KBr).

The mechanical properties of the electrospun fiber
membranes (dimensions of 40 mm x 5 mm x 40 pm) were
characterized by stress-strain experiments in tensile mode
with a Linkam TST 350 universal testing machine. The
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tensile experiments were carried out at a deformation rate
of 0.5 mm.min~' at room temperature. Elastic modulus (E)
was obtained through Hook’s law, relating the stress (o)
and the strain (¢) for the uniaxial deformation [19]:

0 = Ee (1)

Mechanical results are reported as averages of the data
taken from at least five specimens.

24. “Invitro” drug release study

The electrospun fiber membranes of PHB and PHB/PEO
with different CHX concentrations were dried, cut into
13 mm diameter pieces (triplicate samples were used for
statistical purposes), and the initial weight was measured.
Each specimen was then placed in a tube containing 10 mL
of phosphate-buffered saline solution (PBS, pH 7.4). The
tubes containing the solutions were then incubated in an
air circulation oven (HERAEUS Vacuotherm) at 37 °C for 72
days. The PBS solution was removed from the tubes and
renewed every three days for the samples with higher in-
cubation times; for shorter times, the solution was
removed and measured.

The amount of CHX released from the nanofibers to the
PBS solution was measured using a UV-Vis spectropho-
tometer (UV - 2501 PC Shimadzu) by measuring the
absorbance at 254 nm [12] using a 1 cm quartz cell. A
50 ppm stock solution of CHX in PBS was used to prepare
standard solutions with different concentrations (from 0 up
to —10 ppm) in order to obtain the calibration curve.

2.5. Antibacterial activity

2.5.1. Disk diffusion susceptibility test

In order to determine materials’ antibacterial proper-
ties, 5 mm diameter sample discs were submitted to a disk
diffusion experimental procedure based on the procedure
described in [20]. Escherichia coli and Staphylococcus
aureus bacteria pre-inocula (kindly provided by the Fac-
ulty of Pharmacy, University of Porto, Portugal) were
incubated in Mueller Hinton Agar (Himedia) culture me-
dium overnight at 37 °C. The discs were sterilized using
ultraviolet (UV) light. McFarland 0.5 turbidity standard
was used as a reference to inoculate fresh Mueller Hinton
Agar plates with 1-2 x 10% CFUs (Colony Forming Units)
mL~! of each bacteria in PBS, pH 7.4, that were evenly
spread on the medium surface. The membrane samples
were placed onto the inoculated plates and were incu-
bated for 24 h at 37 °C. High resolution pictures were ac-
quired and the zone of inhibition (Zol) was calculated
using Image ] software. The statistical analysis of One-way
ANOVA and Tukey post-tests were performed using
GraphPad Prism 4 software.

2.5.2. Evaluation of contact bactericidal effectiveness

The evaluation of the contact antibacterial efficiency of
the PHB/PEO and PHB/PEO with 1 wt% CHX fiber mem-
branes was performed according to the AATCC Test
Method 100-2012 [21]. The pre-inocula of the bacteria
were incubated overnight in Nutrient Broth (Himedia).

The sample patches, previously sterilized by UV light, were
inoculated with 2.5 x 10® CFUs mL~! of E. coli and
2.5 x 10° CFUs mL™! S. aureus diluted in PBS, pH 7.4. To
determine the percentage of CFU reduction the following
formula was used:

R:A;Bxloo (2)

where R corresponds to the percentage reduction, A to the
colony count obtained immediately after the inoculation of
the samples and B to the bacteria count after 24 h of in-
cubation at 37 °C. All colonies were counted visually.

3. Results and discussion
3.1. Fiber membrane morphology

Solutions of PHB/CHX were impossible to electrospin
into smooth and bead free fibers, even for small amounts of
drug. A blend of PHB/PEO (90/10, w/w) was prepared and
the electrospinning process could be performed. Moreover,
different amounts of CHX (1, 5 and 10 wt%) were added to
the solution and suitably electrospun. PEO was chosen as a
blending material to stabilize the electrospinning process
of PHB/PEO with CHX, as it has been demonstrated that the
addition of a small amount of PEO into the solution facili-
tates the electrospinning process by increasing the solution
elasticity [12]. PEO is also miscible with PHB due to the
specific interactions of the PHB carbonyl groups with the
CH; groups of PEO [22,23].

Further, CF does not allow CHX dissolution and the
presence of drug clusters in the solution was visually
observed, even after 2 h in a water bath with ultrasound. It
was reported that DMF is a good CHX solvent and, addi-
tionally, due to the low dielectric constant and boiling point
[18], the addition of a small amount of DMF to the solution
mixture allows CHX dissolution, promoting better distri-
bution of the drug among the fibers and helps to stabilize
the electrospinning process.

As-spun PHB and PHB/PEO membranes without CHX
showed a smooth surface, without beads, and a random
fiber distribution (Fig. 1). Further, PHB/PEO electrospun
samples with 1 and 5 wt% CHX showed a similar
morphology to that found for the pristine electrospun
samples but, on the other hand, fibers with 10 wt% CHX are
thinner and show higher amounts of beads (Fig. 1d).

The mean diameter of PHB/PEO fibers range from
1.5 + 0.4 pm up to 1.2 + 0.9 pm, and is influenced by the
presence of the CHX in the solution (Fig. 2). It was observed
that the incorporation of drug in the polymeric solution
leads to a broader fiber size distribution, especially for
small amounts of CHX (Fig. 2).

The applied voltage is the drive of the electrospinning
process, and fiber formation is mainly achieved by the
stretching and acceleration of the jets promoted by the
high electrical field. When a high electric field is applied
between the needle tip and a grounded collector, formation
of a higher charge density on the surface of the ejected jets
occurs; thus the jet velocity increases and higher elonga-
tion forces are imposed on the jet [24,25]. CHX has two
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Fig. 2. PHB/PEO fiber mean diameter with different CHX concentrations.

cationic groups separated by a hydrophobic bridging
structure (hexamethylene) and, when a small amount of
drug is added to the solution, the charges carried by the
solution increase, promoting higher stretching of the jet,
leading to the formation of smooth and thinner fibers.
However, when CHX is above a certain threshold (possibly
between 5 and 10 wt%), the charges present in the solution
lead to higher jet stretch ratios at a given electric field,
leading to the jet disintegration and the formation of beads
(Fig. 1) [24].

Fiber membrane wettability was qualitatively evaluated
by water contact angle measurements. PHB has hydro-
phobic behavior with a water contact angle of 126 + 3°,
while for the samples containing PEO with and without
CHX the water was absorbed almost immediately by the
fiber membrane, which is related to the hydrophilic nature
of PEO and CHX (data no shown) [3,12,26].

3.2. Fourier transformed infrared spectroscopy

In order to characterize the interaction between the
polymer blend and the CHX, Fourier transform infrared
spectroscopy (FTIR) was performed (Fig. 3). The FTIR
spectra show the characteristic vibrational bands of CHX at
1665 cm™! corresponding to the C=N-H stretching vibra-
tion [27], as well as the absorption bands corresponding to
the aromatic C=C stretching located at 1537 and
1490 cm ! [12]. In this way, the presence of the CHX in the
membranes after processing was confirmed [28].

3.3. Mechanical properties

Mechanical integrity of polymer membrane is an
important practical aspect, because material often requires
manipulation and sample integrity must be maintained. It
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Fig. 3. FTIR spectra of CHX and PHB/PEO electrospun membranes with 0, 1
and 10 wt% of incorporated drug.

was experimentally observed that the samples with higher
amounts of drug were very fragile and they easily broke
during clamping. Further, the influence of PEO and CHX on
the overall mechanical properties of random fiber mem-
branes was evaluated through stress-strain measurements
(Fig. 4).

The incorporation of PEO in the PHB blend promotes an
increase of the deformation at break (Fig. 4) without
compromising the elastic modulus when compared to the
PHB polymer. This effect is promoted by blending a hard
(PHB) with a soft component (PEO). Further, when CHX is
added to the PHB/PEO polymer blend, the deformation at
break is reduced but the elastic modulus increases
(Table 1). PHB films are known to have fragile behavior
with a deformation at break below 5% and an elastic
modulus around 1.5 GPa [29,30]. The brittleness of PHB was
attributed to polymer glass transition that occurs ~0 °C,
leading to cold recrystallization at room temperature,
which restricts the mobility of the amorphous phase in
interfibrillar and/or interlamellar regions, and results in a
failure at relatively low strains [31].
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Fig. 4. Stress-strain curves for PHB and PHB/PEO with 0, 1 and 5 wt% of CHX.

Table 1

Mechanical properties of PHB and PHB/PEO with different CHX concen-
trations (all values are expressed as mean values + standard deviation
(SD)).

Sample E (MPa) Omax (MPa) €break (%)
PHB 54+5 095 +0.3 10+ 3
0 wt% 38 £ 15 0.87 £0.2 30+ 6
1wt 93 + 15 191 + 04 10+ 3
5 wt% 97 £9 149 + 0.3 23 +4

When CHX is added to the polymer fibers, an increase of
elastic modulus accompanied by a decrease of the strain at
break was observed when CHX, probably due to the strong
interfacial interactions between the matrix and the filler.
Mechanical properties of fibrous membranes are deeply
influenced by the combination of several factors such
polymer intrinsic properties, fiber diameter and packing
density, and even porosity [32]. Bianco et al. [29] reported
that elastic modulus, maximum stress and strain at break of
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)
blended with PEO decreased with increase of the PEO
content, and they attributed this effect to the formation of
co-continuous fibers made up of the two polymeric com-
ponents, with consequent combination of their mechanical
properties.

3.4. CHX release kinetics

Drug release from the polymer fiber membranes is
higher for the samples with lower drug contents incorpo-
rated into the polymer blend. In the case of electrospun
cellulose acetate fibers, the bound concentration of CHX to
electrospun cellulose acetate fibers varied in a narrow
range between 5 and 9 wt%, this being the effect of CHX on
binding and drug release weak for concentrations below
2 wt% [12]. Similarly, the present results indicate that the
amount of unbound CHX present in the PHB/PEO electro-
spun membranes is larger for the samples with 1 wt% of
CHX, when compared to the samples with higher amounts
of CHX. The sample with 5 wt% CHX should be more bound
to the polymer structure and, consequently, lower drug
contents are released to the PBS solution (Fig. 5).

Various empiric kinetics models described the overall
release of drug from dosage forms [33]. The Korsmeyer-
Peppas (KP) model describes the phenomena of drug
release from a polymeric system:

M.

o

= Kt" (3)

where M/M ., is defined as the fraction of drug released at
time t, K is the release rate constant and n is the release
exponent and is used to characterize the different release
mechanisms [33]. The fitting results to the experimental
data are presented in Fig. 5 and Table 2.

In the KP model, n is indicative of the mechanism of
drug diffusional release that occurs by CHX molecular
diffusion. According to Korsmeyer et al. [34], if 0.5 < n, the
drug release is ruled by a anomalous diffusion mechanism.
It was observed that the n parameter obtained for the CHX
release fitting results decreases from 0.21 to 0.15 with
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Fig. 5. Drug release curves of electrospun fibers with CHX. Dots corresponds
to experimental data and the solid lines to the fitting results.

Table 2
Drug release Kkinetics parameters obtained by the Korsmeyer-Peppas
model.

CHX (wt%) K (days™) n R?

1 7521073 0.21 0.98
5 44,5*103 0.17 098
10 61.1*103 0.15 0.97

increasing of the drug content present in the polymer fibers
mats (Table 2), which suggests that CHX molecules were
distributed along the polymer fibers, promoting rapid
diffusion out at the initial release time [4].

3.5. Antibacterial activity

The bacteria E. coli and S. aureus were used as indicators
for antibacterial efficiency of the polymer system contain-
ing CHX. The bactericidal capacity of the different con-
centrations of CHX was determined using disk diffusion
tests. The contact killing efficiency of PHB/PEO with
different CHX contents was assessed by CFU quantification
(Fig. 6). All the CHX concentrations exhibited significant
bactericidal properties when compared to the experiment
control of PHB/PEO fibers without CHX (Fig. 6¢c and d, E. coli
P < 0.01; S. aureus P < 0.001), reflecting the effective
antibacterial activity for this polymeric system. Moreover,
for each microorganism, the zones of inhibition generated
for the tested concentrations of CHX presented no signifi-
cant differences among them, which demonstrates that the
PHB/PEO fiber mats with 1, 5 and 10 wt% of CHX possess
equivalent bactericidal potency. The antibacterial efficiency
was higher against S. aureus in comparison to E. coli. For
instance the PHB/PEO 1 wt% CHX samples presented a Zol
in S. aureus roughly two fold higher than in gram-negative E.
coli. This was expected as gram-positive S. aureus bacteria
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Fig. 6. PHB/PEO with 1, 5 and 10 wt% CHX antibacterial activity assays against E. Coli (a) and S. aureus (b). Zone of inhibition (Zol) obtained for PHB/PEO control
and PHB/PEO with 1, 5 and 10 wt% CHX against E. Coli (c) and S. aureus (d). One-way ANOVA with Tukey multiple comparison test, ** corresponds to P < 0.01 and

*** corresponds to P < 0.001.
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Table 3

Colony forming unit (CFU) count immediately after inoculation (0 h)
and after 24 h of incubation. Bacteria reduction was calculated using
Equation 2.

CFU’s count (CFUmL™")  Bacteria
Time (O h) Time (24 h) E;‘)j”cm“
PHB/PEO  Escherichia coli 1.44 x 106 3.93 x 107 —2.69 x 103

Staphylococcus  1.70 x 10°  7.94 x 10*  59.26
aureus
PHB/PEO  Escherichia coli 0O 0 100
1%CHX Staphylococcus  3.19 x 10> 10 99.68
aureus

are more susceptible to the biocidal action of this biguanide
than E. coli [35-37]; indeed, the value of CHX minimal
inhibitory concentration (MIC) is approximately a half for S.
aureus (0.5-4 ug mL~!) that for E. coli (2-8 pg mL~1)[12,35].

The sample with 1 wt% CHX was chosen to quantify the
ability of the composite samples to eliminate the tested
bacteria (E. coli and S. aureus), because of its higher release
of the drug to the aqueous media (Fig. 5). Table 3 displays
the results obtained in the contact-killing experiment. As
can be observed, electrospun fibers without CHX did not
inhibit E. coli growth on contact, and an increase in bacteria
number was observed. However, PHB/PEO showed a
considerable reduction in S. aureus viable cell count after
24 h of incubation (Table 3).

It was observed that PHB/PEO with 1% CHX produced a
steep reduction of the viable bacterial cells in a very short
time. This was particularly so on E. coli, since the CFU count
immediately after inoculation was 0, representing com-
plete kill (>6-log). As for S. aureus, for 0 h the CFU count
would be similar in both electrospun materials, but a 2-log
reduction was identified for the sample with 1wt% CHX.
Such a rapid bactericidal action is only possible due to the
mechanism of action of CHX. This biguanide has a cationic
nature which electrostatically attracts it to the negatively
charged bacteria allowing a contact-killing capacity of log 4
(99.99%) in a wide scope of bacteria in just 10 minutes at a
concentration of 0.02% [38,39]. Taking into consideration
that the electrospun material produced possesses 1 wt% of
CHX, a highly effective bactericidal action is expected even
if exposure occurs for a very short period of time. However,
S. aureus displayed a higher susceptibility in disc diffusion
tests, showing a resistance in this contact-killing assay.
Several factors may be responsible for this unforeseen
survival rate that required further testing to pin-point the
reason. There is a possibility that a portion of the S. aureus
suspension may have been exposed to a sub lethal dosage
of CHX and only suffered a bacteriostatic effect [38]. A
reduction of 99.6% was observed for the PHB/PEO with 1 wt
% CHX, which represents a 2-log reduction.

4. Conclusions

Bactericide fiber membranes were produced by elec-
trospinning of polymer blends with different amounts of
chlorhexidine for assessment as a polymer based drug
delivery system. The addition of a small amount of a high
molecular weight PEO to the PHB solutions significantly

improves the elasticity of the PHB solution and facilitates
the formation of fibers. Further, it was observed that for
CHX concentrations above 5% present in the polymer so-
lution the electrospinning process was unstable due to the
charges added by the drug to the solution that promotes
higher stretch ratios of the jet, leading to the formation of
fibers and beads due to poor polymer entanglement.

An increase of polymer membrane elastic modulus was
observed for the samples with CHX incorporated and the
deformation at break decreases when compared to the
PHB/PEO fiber membranes without CHX. Drug release in a
PBS solution at 37 °C was characterized and it was found
that the sample with less CHX present in the polymeric
solution delivered higher amounts of the drug to the buffer
solution. CHX release kinetics was studied and KP model
shows that the drug release mechanism is ruled by an
anomalous diffusion mechanism.

The bactericidal potential of PHB and PHB/PEO electro-
spun fibers with and without CHX was investigated against
Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus)
by disk diffusion susceptibility tests. Bactericidal perfor-
mance of samples with 1 wt% CHX presents a reduction of
100% and 99.69% against E. coli and S. aureus, respectively.
Finally, the strategy present in this work is not limited to
the incorporation of the CHX, but will also enable incor-
poration of a wide range of pharmaceutical drugs into the
fibers.
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