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Abstract The present study investigates nonlinear
vibration and dynamic behaviour of a ceramic-on-
ceramic hip implant. The aim of this research is to
firstly gain a better understanding of hip squeaking
and vibration and secondly to investigate the effect
of friction on contact point path during normal gait.
For this purpose, a spatial multibody dynamic hip
model was developed, using a friction-velocity con-
stitutive law combined with a Hertzian contact model.
Furthermore, the physiological three-dimensional rota-
tion angles and forces are taken into account to calcu-
late tangential and normal contact forces, respectively.
Comparing the outcomes with that available in the lit-
erature allowed for the validation of our approach. It
was shown that the cause of hip squeaking is friction-
induced vibration owing to different phenomena such
as stick–slip friction, negative-sloping friction and con-
tact force changes. Moreover, friction-induced vibra-
tion does significantly change contact point path during
the gait when compared to non-friction analysis.
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1 Introduction

Ceramic-on-ceramic (CoC) hip arthroplasty has demon-
strated very good clinical performance due to the supe-
rior wear resistance and low biological reactivity. How-
ever, the occurrence of audible squeaking in some
patients is a cause for concern. In fact, the preva-
lence of hip squeaking is reported between 1 and 20%
[1]. In vivo CoC fundamental squeaking frequencies
have been measured in the range of 400–7500 Hz [2].
A possible cause of squeaking in metal-on-metal and
CoC bearings without lubrication is the stick–slip phe-
nomenon between the head and cup of artificial hip
joints [3,4]. It has been computationally and exper-
imentally shown that friction-induced vibration was
the main reason of hip squeaking [5,6]. In order to
consider this issue numerically, a complex eigenvalue
method was employed to identify the stability proper-
ties of hip implants under laboratory conditions and in
a pseudo-in vivo configuration. However, considerable
differences between theoretical and in vivo results were
observed, which could be associated with the choice
of boundary conditions [7,8]. This study also reported
that hip prostheses become unstable when the friction
coefficient between components reaches critical values.
It was concluded that increasing the critical friction
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coefficient could decrease the occurrence of ceramic
bearing squeaking [7,8]. Weiss et al. [9] found experi-
mentally that there was oscillation behaviour on top of
the gross head movement against the liner. This was a
micrometre scale elliptical motion inside the liner and
the vibrational pattern of hip implants was two dimen-
sional. However, the hip squeaking frequencies they
reported were higher than those found in vivo.

It is known that when two surfaces slide against each
other, friction develops and acts as a resistance to rela-
tive motion. Sliding is an unsteady phenomenon made
up of continuous or transient contact resulting in inter-
mittent or cyclical squeaking due to a slight variation
in the normal contact load for instance [10]. Moreover,
friction force acts like a cross-coupling force linking
normal and parallel motions at the contact surface [11].
It is well known that friction can induce vibration in
structures owing to instability in the structural system
such as the instability due to a surface property for
which friction decreases as relative velocity between
sliding surfaces increases [5,10]. Moreover, there are
other sources of instability in structure systems, namely
mode-coupling, Sprag-slip, frictional follower forces,
stick–slip and material nonlinearity that have all been
suggested as possible causes of self-excited friction-
induced vibration [5,10–13].

In addition to the short-time frame dynamic effects
described above, friction is also affected by longer time
frame parameters such as deformation and wear of sur-
faces. Hence, to update the wear and deformation, the
wear process on the hip implant surfaces should be cal-
culated over time. One of the most important parame-
ters to predict wear between the femoral head and cup
is the slide track shape as any variation in its shape can
cause a huge variation in the wear rate [14–16]. Mattei
et al. [17] developed a theoretical contact point track
to compute wear which assumed that the reaction force
between the head and cup lies in the direction joining
their centres due to frictionless contact [18]. Another
technique to determine wear was fixing the centre of the
femoral head and then simulating physiological rota-
tions of the femur by applying physiological rotations
[19]. Furthermore, Ramamuri et al. [20] provided loci
of movement of selected points on the femoral head
during normal gait computationally. Saikko and Calo-
nius [21] developed a computational method based on
Euler angles, and utilised it to compute slide tracks
for the three-axis motion of the hip joint during walk-
ing and for two hip simulators. The slide track pat-

terns resulting from the gait waveforms were found to
be similar to those produced by hip simulators. Sariali
et al.[22] also provided sliding path of motion between
the head and cup when the hip implant is in edge load-
ing or in normal centred conditions using Leeds II hip
simulator.

The aims of the present paper were firstly to inves-
tigate the effect of friction on the femoral head/liner
sliding track shape and secondly gain a better under-
standing of friction-induced vibration in artificial hip
joints. This desideratum is achieved by developing the
planar multibody dynamic model proposed by Askari
et al. [23] to analysis three-dimensional vibration and
dynamics of artificial hip joints. The friction-induced
vibration and contact-impact events occurring between
the head and cup surfaces were taken into considera-
tion as external generalised hip forces in the governing
equation of the motion. A friction-velocity relation [24]
and a Hertz contact model [25] were employed to for-
mulate tangential and normal contact forces, respec-
tively. Physiological rotation angles and forces were
also taken into account. Nonlinear governing motion
equations were solved, using adaptive Runge-Kutta-
Fehlberg method. In addition, a FFT frequency analy-
sis of the audible sounds from CoC hip acceleration
was carried out to assess the frequency of hip squeak-
ing. This approach is verified by comparing outcomes
with in vivo, experimental and computational results
available in the literature. The effect of hip implant
size on hip squeaking frequencies and friction on both
contact stress/moments and squeaking of hip implants
were also analysed as well as the path shape of con-
tact point between the cup and head. Finally, friction-
induced vibration of artificial hip joints owing to stick–
slip, negative-sloping friction, contact force changes
and friction follower force was analysed.

2 Multibody dynamic approach

2.1 Description of the artificial hip joint model

In this section, a mathematical model of an artificial
hip joint is presented as a spatial multibody system.
When the joint is assumed to be ideal, the femoral
head moves without friction having three relative rota-
tional degrees-of-freedom, while the femoral head cen-
tre translation is constrained. However, the presence
of head/liner clearance results in a six-degrees-of-
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Nonlinear vibration and dynamics of ceramic 1367

Fig. 1 A representation of the head/cup articulation

freedom unconstrained system exhibiting translational
and rotational movement. The vibrational dynamics of
this system are controlled by contact-impaction forces
generated when the femoral head and cup liner collide.
Thus, this type of system can be referred to as a force
joint, since it deals with force constraints instead of
kinematic constraints [26–32].

Let’s consider a head/cup couple of an artificial hip
joint, depicted in Fig. 1, in which the femoral head is
separated from the femoral stem and neck through the
cross-section proposed in Askari et al. [23] for the case
of planar systems. Pc and Pb denote potential contact
points located on the femoral head and cup surfaces.
These points reside on the plane of collision, which is
represented by a plane tangential to both the ball and
cup surfaces at the contact point. The femoral head cen-
tre with respect to the reference coordinate system is
defined by three coordinates (r, θ, ϕ). The radial clear-
ance size is defined as c = Rc − Rb, where Rc and Rb

denote the cup and femoral radius, respectively. The
penetration depth of the ball inside the liner is δ as
illustrated in Fig. 1. The vector that connects the point
Oc to the point Ob is described as the eccentricity vec-
tor. The normal and tangential directions at the contact
point are defined by n and t which are unit vectors
in the direction of the clearance vector and tangential
relative velocity at the contact point. In the Cartesian
right-hand coordinate system illustrated in Fig. 1, the
x axis points from the lateral to the medial direction
(L–M); the z axis points from inferior to superior and

the y axis parallel and in the walking direction from
posterior to anterior (P–A). Moreover, the cup is con-
sidered to be stationary and anatomically inclined from
the horizontal plane around y axis with an angle of π /4.

The following are some of the most relevant kine-
matics aspects related to the spherical clearance joint.
In a spherical coordinate system, orthogonal unit vec-
tors (er , eθ , eϕ) can be expressed as follow

n = er = sin ϕ cos θ i + sin ϕ sin θ j + cos ϕk

eθ = − sin θ i + cos θ j + 0k

eϕ = cos ϕ cos θ i + cos ϕ sin θ j − sin ϕk. (1)

The evaluation of the normal contact and tangential
friction forces requires the computation of relative tan-
gential and normal velocities of contact points on the
head and cup surfaces. Therefore, position vectors of
contact points can be written as follows

rPb = rOb + rPb/Ob , (2)

rPc = rPc/Oc , (3)

in which rPb and rPc are the position vectors of contact
points on the head and cup with respect to the global
reference frame placed at the centre of the cup, Oc. The
distance vector between the contact points of the cup
and head is given by

rPb/Pc = rOb + rPb/Ob − rPc/Oc , (4)

where

rOb = rn, (5)

which is the eccentricity vector. Differentiating Eq. (4)
with respect to time yields

vPb/Pc = d

dt

(
rPb/Pc

) = d

dt
(rn)

+�b × rPb/Ob − �c × rPc/Oc , (6)

where

�b = ωx i + ωyj + ωzk. (7)

and �c is zero because the cup is assumed to be sta-
tionary. Furthermore, ωx , ωy and ωz are angular veloc-
ities of the femoral head around the vectors x , y and
z, respectively. Consequently, the relative velocity of
contact points is written as

vPb/Pc = ṙn︸︷︷︸
vnn

+ (r θ̇ sin ϕeθ + r ϕ̇eϕ + �b × Rbn
)

︸ ︷︷ ︸
vt t

,

(8)
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in which t is the tangential unit vector at contact point
and

θ = tan−1(y/x), (9)

ϕ = tan−1(

√
x2 + y2/z), (10)

r =
√

x2 + y2 + z2, (11)

θ̇ = ẏx − ẋ y

x2 + y2 , (12)

ϕ̇ = zx ẋ + zy ẏ − żx2 − ż y2

r2
√

x2 + y2
, (13)

ṙ = x ẋ + y ẏ + zż

r
, (14)

and Rb is the femoral head radius. Finally, the relative
penetration depth, shown in Fig. 1, can be computed as

δ = r − (Rc − Rb) . (15)

where Rc − Rb is defined as joint radial clearance that
is specified by the user.

Equation (8) represents the relative tangential and
normal velocities of contact points locating on the
femoral head and cup surfaces. These velocity compo-
nents are used to compute normal and tangential contact
forces on the collision plane which will be considered
in the next subsections.

2.2 Normal contact force models

It has been recognised by many authors that modelling
normal contact forces during impact plays a critical role
in the dynamic response of mechanical systems. The
contact force model must be evaluated using a suitable
constitutive law that takes into account material proper-
ties of the colliding bodies, geometric characteristics of
the impacting surfaces and the impact velocity. Addi-
tionally, the numerical method for the calculation of the
contact forces should be stable in order to allow for the
integration of the equations of motion [33–36]. While
various types of constitutive laws have been published,
the Hertzian model remains the most utilised [37]. The
contact force between the femoral head and cup, repre-
sented by a sphere and a hemisphere, respectively, can
be modelled by the Hertz contact law given as

Fn
p j

= K δnn. (16)

where K is the stiffness coefficient and δ is the relative
penetration depth given by Eq. (15). In general, the

exponent n is set to 1.5. However, this law is purely
elastic in nature and cannot represent the energy loss
during the impact process. Lankarani and Nikravesh
[25] overcame this difficulty by separating the normal
contact force into elastic and dissipative components,

Fn
p j

= (
K δn + Dδ̇

)
n. (17)

where D denotes damping coefficient of the impact-
ing bodies. Utilizing Lankarani and Nikravesh model,
the normal contact force developed on the head can be
expressed as

Fn
p j

= −K δ
3
2

(

1 + 3
(
1 − c2

e

)

4

δ̇

δ̇(−)

)

n. (18)

where δ̇ and δ̇(−) are the relative penetration veloc-
ity and the initial impact velocity, respectively, and ce

represents the coefficient of restitution which is a spec-
ified parameter. The generalised stiffness parameter K
depends on the geometry and physical properties of the
contacting surfaces, which for two spherical contacting
bodies with radii Ri and R j are expressed by [37]

K = 4

3
(
σi + σ j

)
(

Ri R j

Ri − R j

)1/2

. (19)

in which the material parameters σi and σ j are given
by

σz = 1 − υ2
z

Ez
. (20)

where E and υ are Young’s modulus and Poisson’s
ratio, respectively. It must be highlighted that the use of
Eq. (18) is limited by Love’s criterion, that is, it is only
valid for impact velocities lower than the propagation
velocity of elastic waves across the bodies [38].

It must be stated that there are other contact force
models that can be utilised in multibody system contact
problems. In particular, the interested reader can find
relevant information on the impact between spheres in
the publications by Machado et al. [39].

2.3 Tangential contact force

When two surfaces enter into contact phase and tend to
slide against each other, friction develops and acts as a
resistance to the relative motion. According to Eq. (8),
which represents the relative velocity of contact points,
the tangential force due to friction phenomenon has to
be considered when the relative velocity has a rela-
tive tangential velocity component. Moreover, friction
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Fig. 2 Friction coefficient
characteristic [24]
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force acts like a cross-coupling force linking normal
and parallel motions at the contact surface [11]. The
most commonly used friction model is the Coulomb
law which assumes the tangential friction force is pro-
portional to the normal contact force. This model does
not, however, explain neither the stick–slip phenom-
enon nor the negative damping effect [40]. Therefore,
a model which can provide a good representation of
the friction between sliding surfaces, while taking into
account stick–slip and negative damping effect should
be employed. The tangential contact forces can be
evaluated as friction force using a modified Coulomb
friction law [41]

Ft
p j

= −μ (vt )

∥∥
∥Fn

p j

∥∥
∥ t, (21)

where vt represents the tangential velocity and μ

denotes the friction coefficient. The friction force
defined in Eq. (21) also permits the friction force to
follow the displacement and act as a follower force.
Although this coefficient depends on a number of para-
meters, the model used in the present study is confined
to dependence on the relative velocity between the head
and cup only. Therefore, the following friction function
is generated

μ (vt ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
− cf

v2
0

(|vt | − v0)
2 + cf

)
sgn (vt ) ,

|vt | < v0

(cd+ (cf−cd) exp (−ξ (|vt | −v0))) sgn (vt ) ,

|vt | ≥ v0

(22)

The first part of the friction coefficient function uses a
near zero continuous curve to avoid divergence of the
numerical model. The second term is the Stribeck fric-
tion relation in which cf and cd are related to static and
dynamic friction coefficients, respectively. In addition,
ξ > 0 is the negative slope of sliding state [42] and
v0 is velocity tolerance that is defined to avoid com-
putational instability as the change of velocity direc-
tion. This friction coefficient function is represented
in Fig. 2. After friction coefficient starts from zero,
it increases to peak friction which Bengisu and Akay
[24] referred as static friction, cf . The friction coeffi-
cient then reduces with increasing tangential velocity
until the friction finally reaches steady state.

2.4 Dynamic governing equations of the system

In this subsection, governing equations of system
motion are derived, based on the free body diagram
of the femoral head illustrated in Fig. 3. The rotation
of the femoral head around the x , y and z axes, rep-
resents flexion–extension (FE), abduction–adduction
(AA) and internal–external rotation (IER), respec-
tively. The normal contact and friction forces are com-
puted according to the constitutive laws presented
above and then transferred to the head centre. Thus,
employing Newton’s Second law yields
∑

MOx=I β̈x ,
∑

MOx=Mxx−(R j n × Ft
p j

)·i 〈δ〉0
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Fig. 3 Free body diagram of the femoral head

∑
MOy=I β̈y,

∑
MOy=Myy−(R j n × Ft

p j
)·j 〈δ〉0

∑
MOz=I β̈z,

∑
MOz=Mzz−(R j n × Ft

p j
)·k 〈δ〉0,

(23)
∑

FX=mẍ,
∑

FX= fx+
(

Ft
p j

+Fn
p j

)
·i 〈δ〉0

∑
FY =mÿ,

∑
FY = fy+

(
Ft

p j
+Fn

p j

)
·j 〈δ〉0

∑
FZ=mz̈,

∑
FZ= fz+

(
Ft

p j
+Fn

p j

)
·k 〈δ〉0 −mg.

(24)

Since the rotation angle of femoral head and its first
and second derivations are known, then the angular
momentum can be determined in order to obtain the
external moment vector, M, which acts at the ball cen-
tre to result in the known angular acceleration.

M = Iβ̈ + R j n × Ft
p j

〈δ〉0 , (25)

where

M =
⎛

⎝
Mxx

Myy

Mzz

⎞

⎠ , β̈ =
⎛

⎝
β̈x

β̈y

β̈z

⎞

⎠ , (26)

and 〈δ〉0 is discontinuity function defined as

〈δ〉0 =
{

1 δ > 0
0 δ ≤ 0.

(27)

in which δ > 0 represents when the system is in contact
and δ ≤ 0 for free flight mode. The normal and tan-
gential contact forces are only effective if the system is
in contact mode, which means detecting impact is an
important step [43]. Moreover, the impact and rebound

velocities and location should be obtained as initial
conditions for solving motion equations of following
dynamic scenario, which are either free flight or con-
tact mode. In order to detect either impact or rebound
time, the following condition should be assessed during
the solution process by progressing time:

δ
(

t i
)

< 0, δ
(

t i+1
)

> 0, (28)

Finally, the equations of motion can be written as
⎡

⎣
m 0 0
0 m 0
0 0 m

⎤

⎦

⎡

⎣
ẍ
ÿ
z̈

⎤

⎦

=

⎡

⎢
⎢⎢
⎣

fx +
(

Ft
pb

+ Fn
pb

)
· i 〈δ〉0

fy +
(

Ft
pb

+ Fn
pb

)
· j 〈δ〉0

fz +
(

Ft
pb

+ Fn
pb

)
· k 〈δ〉0 − mg

⎤

⎥
⎥⎥
⎦

(29)

Using the state space representation, the second order
equations of motion, Eq. (29) can be rewritten as a first
order equations set as

ż = H (z) , (30)

where z = [
z1 z2 z3 z4 z5 z6

]T = [
x y z ẋ ẏ ż

]T

and H(z) is given as follows

ż =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

ż1

ż2

ż3

ż4

ż5

ż6

⎤

⎥⎥⎥⎥⎥
⎥
⎦

= 1

m

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

z3

z4

z5

fz1 +
(

Ft
pb

+ Fn
pb

)
· i 〈δ〉0

fz2 +
(

Ft
pb

+ Fn
pb

)
· j 〈δ〉0

fz3 +
(

Ft
pb

+ Fn
pb

)
· k 〈δ〉0 − mg

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

(31)

In turn, r , θ , ϕ and their time derivatives can be
expressed with respect to state space parameters in Eq.
(31). The resulting equations are nonlinear and must
be solved by using a numerical method. In the present
work, the adaptive Runge-Kutta-Fehlberg method is
utilised to discretise the interval of time [44]. In the
next section, the results of solutions for Eq. (31) for
artificial hip joints will be presented and discussed.
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Fig. 4 a Angular velocities
where—ωz(IER); dashed
lines ωy(AA); dashed
dotted lines ωx (FE); b
Physiological adopted
forces with— fz(Vertical);
dashed lines fy(A-P);
dashed dotted lines
fx (M-L) for the gait cycle
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3 Results and discussion

In this section, the governing motion equations of a
CoC artificial hip joint with clearance are solved. The
ceramic components are represented with the follow-
ing material properties: 3.58e11 GPa Young’s modu-
lus, 0.23 Poisson’s ratio and 4370 kg/m3density. The
hip implant is modelled as a joint with a clearance size
of 50 µm and restitution coefficient 0.9, while friction
coefficients are assumed to be Cf / Cd=0.15 / 0.1. Three-
dimensional physiological forces and angular veloc-
ities were sourced from the literature and shown in
Fig. 4a, b [45]. The dynamic response of the system is
obtained by solving the equations of motion using the
adaptive Runge-Kutta–Fehlberg method. The compu-
tational method is stable and solutions to the equations
are always achieved. Moreover, total computation time
for the present method is no longer than 20 min.

3.1 Contact point path

The contact point track between the femoral head and
cup over the gait cycle has a significant influence on
the computed wear rates as observed in Archard’s

wear methodology [14]. Moreover, establishing near
physiological motion in a joint simulator is of para-
mount importance when understanding wear rates [21].
Owing to the crucial significance of contact point track-
ing and wear, this section aims to dynamically study
the path of contact point between the femoral head and
cup with both low and high friction in a non-lubricated
joint.

In the first comparison, the sliding track of a spe-
cific point on the femoral head surface is demonstrated
against the path of contact point between the femoral
head and cup. This sliding track is shown as continu-
ous blue line in Fig. 5a and is calculated based on the
computational method proposed by Saikko and Calo-
nius [21]. While the contact point path of frictionless
head/cup articulation is drawn in Fig. 5a as a distinct
red line. The specific point coincides with the contact
point when the heal strikes, shown by the square in Fig.
5a. Moreover, these two curves cross each other five
points despite the starting point (square point). How-
ever, curves pass through those cross points at different
times as stated in the figure and its caption. The sliding
distances of both curves are illustrated in Fig. 5b. It can
be concluded that sliding distance obtained from the

Fig. 5 a Sliding track of
the square point and contact
track point of artificial hip
joint, (times in which the
continuous blue curve
passes the cross points are
0.1986, 0.4469, 0.4744,
0.6068 and 0.9158s,
respectively), b
corresponding sliding
distances. (Color figure
online) 1 2 3 4 5 6 7 8 9
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Fig. 6 The track of contact point projected on x − y surface.
a contact point tracks obtained from an ideal joint (distinct red
line) and clearance joint with low friction coefficient (continuous

blue line), b contact point tracks acquired from an ideal joint (dis-
tinct red line) and clearance joint with high friction coefficient
(continuous blue line). (Color figure online)

present method for contact point track is very close to
that acquired from Saikko and Calonius [21].

There is a strong analogy between the contact point
path computed by the present multibody dynamic
approach for an ideal and low friction artificial hip joint.
Assuming the hip implant is ideal without both clear-
ance and friction, the contact point track between the
head and cup can be calculated by knowing the contact
point where is on the head surface and the direction of
the forces acting at the femoral head centre, shown in
Fig. 6a as distinct red lines. The continuous blue line is
obtained from the present method for a clearance joint
assuming the friction is very low. The track of contact
point is very close to that of an ideal joint, as seen in
Fig. 6a. This result is consistent with the sliding track
used by Raimondi et al. [18] and Mattei et al. [17]. They
assumed the reaction force between the head and cup
lays in the direction joining their centres due to the fric-
tionless contact. Interestingly, the contact point track
of a hip implant with high friction differs considerably
from the ideal and low friction modes as observed in
Fig. 6b. It can be drawn that the contact point of the
system with high friction over the gait cycle moves a
longer length from the start to end point of the track
than that with the low friction case. Consequently, the
alteration in motion will affect implant wear and defor-
mation rates over the long term. Another significant dif-
ference as a result of increased friction is the oscillatory
behaviour of the head motion inside the cup observable
as thick path lines (Fig. 6b). This vibrational motion of
the femoral head inside the cup has to be taken into
account when evaluating wear rates, since the location
of contact point changes repeatedly even though with

an amplitude in very minute fashion. According to both
the increase of sliding distance and oscillatory move-
ment of the femoral head, it is hypothesised that wear
rates can become greater.

3.2 Hip squeaking

A FFT frequency analysis of the audible sounds from
the head centre acceleration was also carried out to
assess the frequency of hip squeaking. Fundamental
hip squeaking frequencies of artificial hip joints with
different cup radii are plotted in Fig. 7. Results are
consistent with those found in vivo by Walter et al. [2]
which are in the range of 400–7500 Hz. Hip squeaking
frequencies were found to increase as hip implant size
decreases. Moreover, it was found that CoC artificial
hip joints do not squeal when the friction is below a
critical value [46].

3.3 Three-dimensional vibration

In this subsection, vibrations of the femoral head
inside the cup are investigated. Recently, Weiss et al.
[9] showed the femoral head vibrates inside the cup
with two-dimensional micrometre movement. How-
ever, they did not report any vibration of the ball in the
third dimension, that being the normal z direction. The
present paper aims to provide a better understanding
of the three-dimensional vibration of the femoral head
inside the socket. Trajectory of the femoral head in
planes x − y, x − z and y − z is shown in Fig. 8a–c.
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Fig. 7 FFT analysis of CoC
hip implants for different
cup radii. a 25 mm; b 20
mm; c 16 mm; d 14 mm
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The thickness of the contact point track demonstrates
the vibration of the femoral head inside the cup. In order
to better understand the ball vibration, two different
instants of the gait cycle are selected arbitrary, namely
t = 0.5 and 0.7 s and the ball vibration in different
planes is shown in Fig. 8 at those instants. Figure 8a-
1, a-2 are consistent with results found experimentally
by Weiss et al. [9] in 2D. They reported a micrometre
scale elliptical motion of the ball inside the liner and
determined the cause of squeaking is mode-coupling
instability. In addition, the femoral head vibrates in all
three directions x , y and z, as shown in Fig. 8b-1, b-2,
c-1, c-2. The amplitude of ball vibration in z direction
is very small compared to the x and y directions.

In addition to mode-coupling instability, the orien-
tation of the femoral head motion changes significantly
during the gait cycle. The friction force which is a
non-conservative force alters its direction to track the
ball displacements. This force is a follower force and
leads the system to friction-induced vibration. Follower
forces are well-known sources of asymmetry in stiff-
ness matrices and are considered to be responsible for
flutter instabilities in a wide variety of mechanical sys-
tems [47].

3.4 stick–slip and negative damping

When the relative tangential speed between the femoral
head and cup at the contact point is very low, stick–slip
phenomenon arises because of the difference between
static and kinetic friction. Moreover, there is a nega-
tive friction–velocity gradient as observed in Fig. 2,
which leads to friction-induced vibration by introduc-
ing a negative damping component in the equations
of motion. Figure 9 illustrates stick and slip phase
intervals of the ball motion during a normal walking
cycle. The goal in this section is considering if stick–
slip friction and negative damping effect are causes
of the femoral head vibration. The plot can be cate-
gorised by three phases, namely stick, stick–slip and
pure slip. In the quasi-static stick phase, friction lies on
the very steep, negative-sloping region of the friction
curve. The femoral head goes from stick to slip and vice
versa repeatedly in the stick–slip region, which induces
the system to vibrate. During the slip part, the sys-
tem can also undergo friction-induced vibration owing
to negative-sloping velocity as the velocity increases
which lead to a negative damping component in the
equations of motion.
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Fig. 8 Contact point track
and the vibration of the
femoral head in x , y and z
directions
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Fig. 10 Penetration depth
during the gait cycle (a) and
the oscillation of
indentation close t = 0.5 s
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Fig. 11 The femoral head
moments and maximum
contact stress of an artificial
hip joint with friction
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3.5 Normal contact force changes

Figure 10a shows penetration depth with respect to time
during the gait cycle, while Fig. 10b depicts oscillatory
trend of penetration depth at a time of 0.5 s. This sec-
tion considers friction-induced vibration due to contact
force changes shown in Fig. 11d. It can be seen in Fig.
10b that the indentation of the head into the cup surfaces
has a vibrational behaviour due to alteration in the con-
tact force. Such a vibration is harmonic with frequency
in the audible range of 2800 Hz at t = 0.5 s. Conse-
quently, the friction-induced vibration occurs in artifi-
cial hip joints due to contact force changes and the cor-
responding frequencies are in the audible range. There
is neither high increase contact force nor decrease pen-

etration depth according to Figs. 10a and 11d, so the
system does not undergo sprag-slip. Moreover, pen-
etration depth is not zero or negative which means
the femoral head remains in contact during the gait
cycle.

3.6 Hip implant moments and contact stress

The contact stresses and contact area between the
femoral head and cup of artificial hip joints are key
determinants of implant wear. Furthermore, artificial
hip joint moments due to friction and joint kinetics, may
induce prosthetic implant loosening. This subsection
aims to investigate the effect of friction-induced vibra-
tion on maximum contact pressure and moments of
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CoC artificial hip joints. The effect of friction-induced
vibration is considered on moments and contact stress
of artificial hip joint over the gait cycle in Fig. 11. As
can be seen from the wide lines in the plot, friction-
induced vibration leads to an oscillatory behaviour in
the moment and contact stress curves. This demon-
strates that friction-induced vibration of the femoral
head moving against the liner does significantly alter
the amplitude of moment and contact stress oscilla-
tion within the joint. As variation in these parameters
directly influences prosthetic wear, and maybe loosen-
ing, these characteristics should be taken into account
during implant design. Moreover, the oscillating trend
of moments and contact stress during the gait cycle can
affect rehabilitation after total hip replacement.

4 Conclusion

Hip squeaking and the path of contact point between
the head and cup of a CoC hip implant were investi-
gated using a spatial multibody dynamic model. The
approach took not only tribological properties of bear-
ing surfaces, but also three-dimensional physiologi-
cal hip joint gait motions into account to derive and
solve nonlinear equations of motion. Furthermore, it
was robust and fast with respect to computation time.
Results were verified by comparing with in vivo, exper-
imental and computational outcomes available in the
literature.

It was be concluded that hip implant vibration
resulted from stick–slip, mode-coupling, contact force
changes and negative damping in the system. It was also
shown that the vibration of an artificial hip joint had a
three-dimensional characteristic. Vibration amplitude
of the femoral head in Z -direction was much lower
than the X and Y directions. Friction-induced vibra-
tion induced considerable oscillatory behaviour in the
X , Y and Z moments of the hip implant. Hip squeak-
ing frequencies increased with decreasing hip implant
size. Finally, it was illustrated that friction resulted in an
alteration in the contact point track as well as vibration
of the femoral head inside the cup. This can increase
the sliding distance, which significantly affects wear in
artificial hip joints.
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